intel_lrc.c 65.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193 194 195 196 197
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
198

199
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 202 203 204
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
205
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
206 207
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208
} while (0)
209

210
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 212
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213
} while (0)
214

215 216 217 218 219 220 221
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
222
#define GEN8_CTX_ID_WIDTH 21
223 224
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
225

226 227 228
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

229 230
#define WA_TAIL_DWORDS 2

231
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232
					    struct intel_engine_cs *engine);
233 234 235 236
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
237

238 239
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
240
 * @dev_priv: i915 device private
241 242 243
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
244
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
245 246 247
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
248
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
249
{
250 251 252
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
253
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
254 255
		return 1;

256
	if (INTEL_GEN(dev_priv) >= 9)
257 258
		return 1;

259 260 261
	if (enable_execlists == 0)
		return 0;

262 263 264
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
265 266 267 268
		return 1;

	return 0;
}
269

270
static void
271
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
272
{
273
	struct drm_i915_private *dev_priv = engine->i915;
274

275
	engine->ctx_desc_template = GEN8_CTX_VALID;
276
	if (IS_GEN8(dev_priv))
277 278
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
279 280 281 282 283 284

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
}

285
/**
286 287 288
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
289
 * @engine: Engine the descriptor will be used with
290
 *
291 292 293 294 295
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
296 297 298 299 300 301 302
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
303
 */
304
static void
305
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
306
				   struct intel_engine_cs *engine)
307
{
308
	struct intel_context *ce = &ctx->engine[engine->id];
309
	u64 desc;
310

311
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
312

313 314
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
315
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
316
								/* bits 12-31 */
317
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
318

319
	ce->lrc_desc = desc;
320 321
}

322
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
323
				     struct intel_engine_cs *engine)
324
{
325
	return ctx->engine[engine->id].lrc_desc;
326
}
327

328 329 330
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
331
{
332 333 334 335 336 337
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
338

339
	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
340 341
}

342 343 344 345 346 347 348 349 350
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

351
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
352
{
353
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
354
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
355
	u32 *reg_state = ce->lrc_reg_state;
356

C
Chris Wilson 已提交
357
	reg_state[CTX_RING_TAIL+1] = rq->tail;
358

359 360 361 362 363 364 365
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
366 367

	return ce->lrc_desc;
368 369
}

370
static void execlists_submit_ports(struct intel_engine_cs *engine)
371
{
372 373
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
374 375 376 377
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

378
	GEM_BUG_ON(port[0].count > 1);
379 380 381 382
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
383
	port[0].count++;
384 385 386 387 388 389 390

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
		port[1].count = 1;
391 392 393
	} else {
		desc[1] = 0;
	}
394
	GEM_BUG_ON(desc[0] == desc[1]);
395 396 397 398 399 400 401 402 403 404

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

405
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
406
{
407
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
408
		i915_gem_context_force_single_submission(ctx));
409
}
410

411 412 413 414 415
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
416

417 418
	if (ctx_single_port_submission(prev))
		return false;
419

420
	return true;
421 422
}

423
static void execlists_dequeue(struct intel_engine_cs *engine)
424
{
425
	struct drm_i915_gem_request *last;
426
	struct execlist_port *port = engine->execlist_port;
427
	unsigned long flags;
428
	struct rb_node *rb;
429 430 431 432 433 434
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
435
		 * as we resubmit the request. See gen8_emit_breadcrumb()
436 437 438 439
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
440

441
	GEM_BUG_ON(port[1].request);
442

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
462
	 */
463

464
	spin_lock_irqsave(&engine->timeline->lock, flags);
465 466 467 468 469
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *cursor =
			rb_entry(rb, typeof(*cursor), priotree.node);

470 471 472
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
473
		 *
474 475 476 477
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
478
		 */
479 480 481 482 483 484 485 486 487 488 489 490 491
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
492 493
			if (ctx_single_port_submission(last->ctx) ||
			    ctx_single_port_submission(cursor->ctx))
494 495 496 497 498 499 500
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
501

502 503 504 505 506
		rb = rb_next(rb);
		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&cursor->priotree.node);
		cursor->priotree.priority = INT_MAX;

507
		__i915_gem_request_submit(cursor);
508 509 510 511 512
		last = cursor;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
513
		engine->execlist_first = rb;
514
	}
515
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
516

517 518
	if (submit)
		execlists_submit_ports(engine);
519 520
}

521
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
522
{
523
	return !engine->execlist_port[0].request;
524 525
}

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
/**
 * intel_execlists_idle() - Determine if all engine submission ports are idle
 * @dev_priv: i915 device private
 *
 * Return true if there are no requests pending on any of the submission ports
 * of any engines.
 */
bool intel_execlists_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (!i915.enable_execlists)
		return true;

	for_each_engine(engine, dev_priv, id)
		if (!execlists_elsp_idle(engine))
			return false;

	return true;
}

548
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
549
{
550
	const struct execlist_port *port = engine->execlist_port;
B
Ben Widawsky 已提交
551

552
	return port[0].count + port[1].count < 2;
B
Ben Widawsky 已提交
553 554
}

555
/*
556 557 558
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
559
static void intel_lrc_irq_handler(unsigned long data)
560
{
561
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
562
	struct execlist_port *port = engine->execlist_port;
563
	struct drm_i915_private *dev_priv = engine->i915;
564

565
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
566

567
	while (test_and_clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
568 569 570 571 572 573 574 575 576
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
577 578 579
		if (head == tail)
			break;

580 581
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
582
		do {
583 584 585 586 587 588
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

589 590 591 592 593
			/* Check the context/desc id for this event matches */
			GEM_BUG_ON(readl(buf + 2 * idx + 1) !=
				   upper_32_bits(intel_lr_context_descriptor(port[0].request->ctx,
									     engine)));

594 595 596 597 598 599 600 601 602 603
			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));
			}
604

605 606
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
607
		} while (head < tail);
608

609 610 611
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
612 613
	}

614 615
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
616

617
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
618 619
}

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
{
	struct rb_node **p, *rb;
	bool first = true;

	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	p = &root->rb_node;
	while (*p) {
		struct i915_priotree *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), node);
		if (pt->priority > pos->priority) {
			p = &rb->rb_left;
		} else {
			p = &rb->rb_right;
			first = false;
		}
	}
	rb_link_node(&pt->node, rb, p);
	rb_insert_color(&pt->node, root);

	return first;
}

646
static void execlists_submit_request(struct drm_i915_gem_request *request)
647
{
648
	struct intel_engine_cs *engine = request->engine;
649
	unsigned long flags;
650

651 652
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
653

654
	if (insert_request(&request->priotree, &engine->execlist_queue)) {
655
		engine->execlist_first = &request->priotree.node;
656 657 658
		if (execlists_elsp_idle(engine))
			tasklet_hi_schedule(&engine->irq_tasklet);
	}
659

660
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
661 662
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
	struct intel_engine_cs *engine;

	engine = container_of(pt,
			      struct drm_i915_gem_request,
			      priotree)->engine;
	if (engine != locked) {
		if (locked)
			spin_unlock_irq(&locked->timeline->lock);
		spin_lock_irq(&engine->timeline->lock);
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
	struct intel_engine_cs *engine = NULL;
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

690 691
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		list_for_each_entry(p, &pt->signalers_list, signal_link)
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);

720
		list_safe_reset_next(dep, p, dfs_link);
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
		if (!RB_EMPTY_NODE(&pt->node))
			continue;

		engine = pt_lock_engine(pt, engine);

		/* If it is not already in the rbtree, we can update the
		 * priority inplace and skip over it (and its dependencies)
		 * if it is referenced *again* as we descend the dfs.
		 */
		if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
			pt->priority = prio;
			list_del_init(&dep->dfs_link);
		}
	}

	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));

		pt->priority = prio;
		rb_erase(&pt->node, &engine->execlist_queue);
		if (insert_request(pt, &engine->execlist_queue))
			engine->execlist_first = &pt->node;
	}

	if (engine)
		spin_unlock_irq(&engine->timeline->lock);

	/* XXX Do we need to preempt to make room for us and our deps? */
}

761 762
static int execlists_context_pin(struct intel_engine_cs *engine,
				 struct i915_gem_context *ctx)
763
{
764
	struct intel_context *ce = &ctx->engine[engine->id];
765
	unsigned int flags;
766
	void *vaddr;
767
	int ret;
768

769
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
770

771
	if (ce->pin_count++)
772 773
		return 0;

774 775 776 777 778
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
779
	GEM_BUG_ON(!ce->state);
780

781 782 783
	flags = PIN_GLOBAL;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
784
	if (i915_gem_context_is_kernel(ctx))
785 786 787
		flags |= PIN_HIGH;

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
788
	if (ret)
789
		goto err;
790

791
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
792 793
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
794
		goto unpin_vma;
795 796
	}

797
	ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
798
	if (ret)
799
		goto unpin_map;
800

801
	intel_lr_context_descriptor_update(ctx, engine);
802

803 804
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
805
		i915_ggtt_offset(ce->ring->vma);
806

C
Chris Wilson 已提交
807
	ce->state->obj->mm.dirty = true;
808

809
	i915_gem_context_get(ctx);
810
	return 0;
811

812
unpin_map:
813 814 815
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
816
err:
817
	ce->pin_count = 0;
818 819 820
	return ret;
}

821 822
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
823
{
824
	struct intel_context *ce = &ctx->engine[engine->id];
825

826
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
827
	GEM_BUG_ON(ce->pin_count == 0);
828

829
	if (--ce->pin_count)
830
		return;
831

832
	intel_ring_unpin(ce->ring);
833

834 835
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
836

837
	i915_gem_context_put(ctx);
838 839
}

840
static int execlists_request_alloc(struct drm_i915_gem_request *request)
841 842 843 844 845
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
	int ret;

846 847
	GEM_BUG_ON(!ce->pin_count);

848 849 850 851 852 853
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

854
	GEM_BUG_ON(!ce->ring);
855 856 857 858 859 860 861 862 863 864
	request->ring = ce->ring;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
865
			goto err;
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	}

	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unreserve;

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
893
err:
894 895 896
	return ret;
}

897
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
898 899
{
	int ret, i;
900
	struct intel_ring *ring = req->ring;
901
	struct i915_workarounds *w = &req->i915->workarounds;
902

903
	if (w->count == 0)
904 905
		return 0;

906
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
907 908 909
	if (ret)
		return ret;

910
	ret = intel_ring_begin(req, w->count * 2 + 2);
911 912 913
	if (ret)
		return ret;

914
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
915
	for (i = 0; i < w->count; i++) {
916 917
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
918
	}
919
	intel_ring_emit(ring, MI_NOOP);
920

921
	intel_ring_advance(ring);
922

923
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
924 925 926 927 928 929
	if (ret)
		return ret;

	return 0;
}

930
#define wa_ctx_emit(batch, index, cmd)					\
931
	do {								\
932 933
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
934 935
			return -ENOSPC;					\
		}							\
936
		batch[__index] = (cmd);					\
937 938
	} while (0)

V
Ville Syrjälä 已提交
939
#define wa_ctx_emit_reg(batch, index, reg) \
940
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
958
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
959
						uint32_t *batch,
960 961 962 963
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

964
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
965
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
966
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
967
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
968 969 970
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
971
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
972 973 974 975 976 977 978 979 980 981
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

982
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
983
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
984
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
985
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
986
	wa_ctx_emit(batch, index, 0);
987 988 989 990

	return index;
}

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

1010 1011 1012 1013 1014 1015
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1016
 *
1017 1018
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1019
 *
1020 1021 1022 1023
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1024
 */
1025
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1026
				    struct i915_wa_ctx_bb *wa_ctx,
1027
				    uint32_t *batch,
1028 1029
				    uint32_t *offset)
{
1030
	uint32_t scratch_addr;
1031 1032
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1033
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1034
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1035

1036
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1037
	if (IS_BROADWELL(engine->i915)) {
1038
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1039 1040 1041
		if (rc < 0)
			return rc;
		index = rc;
1042 1043
	}

1044 1045
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1046
	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1057

1058 1059
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1060
		wa_ctx_emit(batch, index, MI_NOOP);
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1071 1072 1073
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1074
 *
1075
 *  The number of DWORDS written are returned using this field.
1076 1077 1078 1079
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1080
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1081
			       struct i915_wa_ctx_bb *wa_ctx,
1082
			       uint32_t *batch,
1083 1084 1085 1086
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1087
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1088
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1089

1090
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1091 1092 1093 1094

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1095
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1096
				    struct i915_wa_ctx_bb *wa_ctx,
1097
				    uint32_t *batch,
1098 1099
				    uint32_t *offset)
{
1100
	int ret;
D
Dave Airlie 已提交
1101
	struct drm_i915_private *dev_priv = engine->i915;
1102 1103
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1104
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1105
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1106 1107 1108 1109
	if (ret < 0)
		return ret;
	index = ret;

1110 1111 1112 1113 1114 1115 1116
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1117 1118
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1119
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1120
		u32 scratch_addr =
1121
			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1158 1159 1160 1161 1162 1163 1164
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1165
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1166
			       struct i915_wa_ctx_bb *wa_ctx,
1167
			       uint32_t *batch,
1168 1169 1170 1171 1172 1173 1174 1175 1176
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1177
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1178
{
1179 1180 1181
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1182

1183
	obj = i915_gem_object_create(engine->i915, PAGE_ALIGN(size));
1184 1185
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1186

1187
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1188 1189 1190
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1191 1192
	}

1193 1194 1195 1196 1197
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1198
	return 0;
1199 1200 1201 1202

err:
	i915_gem_object_put(obj);
	return err;
1203 1204
}

1205
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1206
{
1207
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1208 1209
}

1210
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1211
{
1212
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1213 1214 1215
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1216
	int ret;
1217

1218
	WARN_ON(engine->id != RCS);
1219

1220
	/* update this when WA for higher Gen are added */
1221
	if (INTEL_GEN(engine->i915) > 9) {
1222
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1223
			  INTEL_GEN(engine->i915));
1224
		return 0;
1225
	}
1226

1227
	/* some WA perform writes to scratch page, ensure it is valid */
1228
	if (!engine->scratch) {
1229
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1230 1231 1232
		return -EINVAL;
	}

1233
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1234 1235 1236 1237 1238
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1239
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1240 1241 1242
	batch = kmap_atomic(page);
	offset = 0;

1243
	if (IS_GEN8(engine->i915)) {
1244
		ret = gen8_init_indirectctx_bb(engine,
1245 1246 1247 1248 1249 1250
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1251
		ret = gen8_init_perctx_bb(engine,
1252 1253 1254 1255 1256
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1257
	} else if (IS_GEN9(engine->i915)) {
1258
		ret = gen9_init_indirectctx_bb(engine,
1259 1260 1261 1262 1263 1264
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1265
		ret = gen9_init_perctx_bb(engine,
1266 1267 1268 1269 1270
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1271 1272 1273 1274 1275
	}

out:
	kunmap_atomic(batch);
	if (ret)
1276
		lrc_destroy_wa_ctx_obj(engine);
1277 1278 1279 1280

	return ret;
}

1281
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1282
{
1283
	struct drm_i915_private *dev_priv = engine->i915;
1284 1285 1286 1287 1288
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1289

1290
	intel_engine_reset_breadcrumbs(engine);
1291
	intel_engine_init_hangcheck(engine);
1292

1293 1294
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1295 1296
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1297 1298 1299
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1300

1301
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1302

1303
	/* After a GPU reset, we may have requests to replay */
1304
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1305 1306 1307
	if (!execlists_elsp_idle(engine)) {
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1308
		execlists_submit_ports(engine);
1309
	}
1310 1311

	return 0;
1312 1313
}

1314
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1315
{
1316
	struct drm_i915_private *dev_priv = engine->i915;
1317 1318
	int ret;

1319
	ret = gen8_init_common_ring(engine);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1333
	return init_workarounds_ring(engine);
1334 1335
}

1336
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1337 1338 1339
{
	int ret;

1340
	ret = gen8_init_common_ring(engine);
1341 1342 1343
	if (ret)
		return ret;

1344
	return init_workarounds_ring(engine);
1345 1346
}

1347 1348 1349 1350 1351 1352 1353
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
	struct intel_context *ce = &request->ctx->engine[engine->id];

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1364
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1365 1366
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1367
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1368

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	if (i915.enable_guc_submission)
		return;

	/* Catch up with any missed context-switch interrupts */
	I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1385 1386 1387

	/* Reset WaIdleLiteRestore:bdw,skl as well */
	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1388 1389
}

1390 1391 1392
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1393
	struct intel_ring *ring = req->ring;
1394
	struct intel_engine_cs *engine = req->engine;
1395 1396 1397
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1398
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1399 1400 1401
	if (ret)
		return ret;

1402
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1403 1404 1405
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1406 1407 1408 1409
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1410 1411
	}

1412 1413
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1414 1415 1416 1417

	return 0;
}

1418
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1419 1420
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1421
{
1422
	struct intel_ring *ring = req->ring;
1423
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1424 1425
	int ret;

1426 1427 1428 1429
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1430 1431
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1432
	if (req->ctx->ppgtt &&
1433
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1434
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1435
		    !intel_vgpu_active(req->i915)) {
1436 1437 1438 1439
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1440

1441
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1442 1443
	}

1444
	ret = intel_ring_begin(req, 4);
1445 1446 1447 1448
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1449 1450 1451 1452 1453 1454 1455 1456
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1457 1458 1459 1460

	return 0;
}

1461
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1462
{
1463
	struct drm_i915_private *dev_priv = engine->i915;
1464 1465 1466
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1467 1468
}

1469
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1470
{
1471
	struct drm_i915_private *dev_priv = engine->i915;
1472
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1473 1474
}

1475
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1476
{
1477 1478
	struct intel_ring *ring = request->ring;
	u32 cmd;
1479 1480
	int ret;

1481
	ret = intel_ring_begin(request, 4);
1482 1483 1484 1485 1486
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1487 1488 1489 1490 1491 1492 1493
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1494
	if (mode & EMIT_INVALIDATE) {
1495
		cmd |= MI_INVALIDATE_TLB;
1496
		if (request->engine->id == VCS)
1497
			cmd |= MI_INVALIDATE_BSD;
1498 1499
	}

1500 1501 1502 1503 1504 1505 1506
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1507 1508 1509 1510

	return 0;
}

1511
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1512
				  u32 mode)
1513
{
1514
	struct intel_ring *ring = request->ring;
1515
	struct intel_engine_cs *engine = request->engine;
1516 1517
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1518
	bool vf_flush_wa = false, dc_flush_wa = false;
1519 1520
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1521
	int len;
1522 1523 1524

	flags |= PIPE_CONTROL_CS_STALL;

1525
	if (mode & EMIT_FLUSH) {
1526 1527
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1528
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1529
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1530 1531
	}

1532
	if (mode & EMIT_INVALIDATE) {
1533 1534 1535 1536 1537 1538 1539 1540 1541
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1542 1543 1544 1545
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1546
		if (IS_GEN9(request->i915))
1547
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1548 1549 1550 1551

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1552
	}
1553

M
Mika Kuoppala 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1563 1564 1565
	if (ret)
		return ret;

1566
	if (vf_flush_wa) {
1567 1568 1569 1570 1571 1572
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1573 1574
	}

M
Mika Kuoppala 已提交
1575
	if (dc_flush_wa) {
1576 1577 1578 1579 1580 1581
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1582 1583
	}

1584 1585 1586 1587 1588 1589
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1590 1591

	if (dc_flush_wa) {
1592 1593 1594 1595 1596 1597
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1598 1599
	}

1600
	intel_ring_advance(ring);
1601 1602 1603 1604

	return 0;
}

1605 1606 1607 1608 1609
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
C
Chris Wilson 已提交
1610
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1611
{
C
Chris Wilson 已提交
1612 1613 1614 1615
	*out++ = MI_NOOP;
	*out++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request->ring, out);
}
1616

C
Chris Wilson 已提交
1617 1618 1619
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
				 u32 *out)
{
1620 1621
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1622

C
Chris Wilson 已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631
	*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*out++ = 0;
	*out++ = request->global_seqno;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1632
}
1633

1634 1635
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1636 1637
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
					u32 *out)
1638
{
1639 1640 1641
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1642 1643 1644 1645
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
C
Chris Wilson 已提交
1646 1647 1648 1649 1650 1651 1652
	*out++ = GFX_OP_PIPE_CONTROL(6);
	*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
		  PIPE_CONTROL_CS_STALL |
		  PIPE_CONTROL_QW_WRITE);
	*out++ = intel_hws_seqno_address(request->engine);
	*out++ = 0;
	*out++ = request->global_seqno;
1653
	/* We're thrashing one dword of HWS. */
C
Chris Wilson 已提交
1654 1655 1656 1657 1658 1659
	*out++ = 0;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1660 1661
}

1662 1663
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1664
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1665 1666 1667
{
	int ret;

1668
	ret = intel_logical_ring_workarounds_emit(req);
1669 1670 1671
	if (ret)
		return ret;

1672 1673 1674 1675 1676 1677 1678 1679
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1680
	return i915_gem_render_state_emit(req);
1681 1682
}

1683 1684
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1685
 * @engine: Engine Command Streamer.
1686
 */
1687
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1688
{
1689
	struct drm_i915_private *dev_priv;
1690

1691 1692 1693 1694 1695 1696 1697
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1698
	dev_priv = engine->i915;
1699

1700 1701
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1702
	}
1703

1704 1705
	if (engine->cleanup)
		engine->cleanup(engine);
1706

1707 1708 1709
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1710
	}
1711 1712

	intel_engine_cleanup_common(engine);
1713

1714
	lrc_destroy_wa_ctx_obj(engine);
1715
	engine->i915 = NULL;
1716 1717
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1718 1719
}

1720 1721 1722
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1723
	enum intel_engine_id id;
1724

1725
	for_each_engine(engine, dev_priv, id) {
1726
		engine->submit_request = execlists_submit_request;
1727 1728
		engine->schedule = execlists_schedule;
	}
1729 1730
}

1731
static void
1732
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1733 1734
{
	/* Default vfuncs which can be overriden by each engine. */
1735
	engine->init_hw = gen8_init_common_ring;
1736
	engine->reset_hw = reset_common_ring;
1737 1738 1739 1740

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1741 1742
	engine->request_alloc = execlists_request_alloc;

1743
	engine->emit_flush = gen8_emit_flush;
1744
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1745
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1746
	engine->submit_request = execlists_submit_request;
1747
	engine->schedule = execlists_schedule;
1748

1749 1750
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1751
	engine->emit_bb_start = gen8_emit_bb_start;
1752 1753
}

1754
static inline void
1755
logical_ring_default_irqs(struct intel_engine_cs *engine)
1756
{
1757
	unsigned shift = engine->irq_shift;
1758 1759
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1760 1761
}

1762
static int
1763
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1764
{
1765
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1766
	void *hws;
1767 1768

	/* The HWSP is part of the default context object in LRC mode. */
1769
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1770 1771
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1772 1773

	engine->status_page.page_addr = hws + hws_offset;
1774
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1775
	engine->status_page.vma = vma;
1776 1777

	return 0;
1778 1779
}

1780 1781 1782 1783 1784 1785
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1786 1787
	intel_engine_setup_common(engine);

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1813 1814 1815 1816 1817 1818
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1819
	ret = intel_engine_init_common(engine);
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	if (ret)
		goto error;

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1837
int logical_render_ring_init(struct intel_engine_cs *engine)
1838 1839 1840 1841
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1842 1843
	logical_ring_setup(engine);

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1854
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1855
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1856

1857
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1872
	return logical_ring_init(engine);
1873 1874
}

1875
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1876 1877 1878 1879
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1880 1881
}

1882
static u32
1883
make_rpcs(struct drm_i915_private *dev_priv)
1884 1885 1886 1887 1888 1889 1890
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1891
	if (INTEL_GEN(dev_priv) < 9)
1892 1893 1894 1895 1896 1897 1898 1899
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1900
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1901
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1902
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1903 1904 1905 1906
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1907
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1908
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1909
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1910 1911 1912 1913
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1914 1915
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1916
			GEN8_RPCS_EU_MIN_SHIFT;
1917
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1918 1919 1920 1921 1922 1923 1924
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1925
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1926 1927 1928
{
	u32 indirect_ctx_offset;

1929
	switch (INTEL_GEN(engine->i915)) {
1930
	default:
1931
		MISSING_CASE(INTEL_GEN(engine->i915));
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1946 1947 1948 1949
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1950
{
1951 1952
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1953 1954 1955 1956 1957 1958

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1959
	reg_state[CTX_LRI_HEADER_0] =
1960 1961 1962
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
1963 1964
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1965
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
1966
					   CTX_CTRL_RS_CTX_ENABLE : 0)));
1967 1968 1969 1970 1971 1972 1973 1974
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
1975
		       RING_CTL_SIZE(ring->size) | RING_VALID);
1976 1977 1978 1979 1980 1981
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
1982
		       RING_BB_PPGTT);
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1996
		if (engine->wa_ctx.vma) {
1997
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1998
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1999 2000 2001 2002 2003 2004

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2005
				intel_lr_indirect_ctx_offset(engine) << 6;
2006 2007 2008 2009 2010

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2011
	}
2012
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2013 2014
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2015
	/* PDP values well be assigned later if needed */
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2032

2033
	if (ppgtt && USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2034 2035 2036 2037 2038 2039 2040
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	}

2041
	if (engine->id == RCS) {
2042
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2043
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2044
			       make_rpcs(dev_priv));
2045
	}
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2069
	ctx_obj->mm.dirty = true;
2070 2071 2072 2073 2074 2075

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2076

2077
	i915_gem_object_unpin_map(ctx_obj);
2078 2079 2080 2081

	return 0;
}

2082 2083
/**
 * intel_lr_context_size() - return the size of the context for an engine
2084
 * @engine: which engine to find the context size for
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2096
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2097 2098 2099
{
	int ret = 0;

2100
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2101

2102
	switch (engine->id) {
2103
	case RCS:
2104
		if (INTEL_GEN(engine->i915) >= 9)
2105 2106 2107
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2118 2119
}

2120
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2121
					    struct intel_engine_cs *engine)
2122
{
2123
	struct drm_i915_gem_object *ctx_obj;
2124
	struct intel_context *ce = &ctx->engine[engine->id];
2125
	struct i915_vma *vma;
2126
	uint32_t context_size;
2127
	struct intel_ring *ring;
2128 2129
	int ret;

2130
	WARN_ON(ce->state);
2131

2132 2133
	context_size = round_up(intel_lr_context_size(engine),
				I915_GTT_PAGE_SIZE);
2134

2135 2136 2137
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2138
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2139
	if (IS_ERR(ctx_obj)) {
2140
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2141
		return PTR_ERR(ctx_obj);
2142 2143
	}

2144
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2145 2146 2147 2148 2149
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2150
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2151 2152
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2153
		goto error_deref_obj;
2154 2155
	}

2156
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2157 2158
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2159
		goto error_ring_free;
2160 2161
	}

2162
	ce->ring = ring;
2163
	ce->state = vma;
2164
	ce->initialised = engine->init_context == NULL;
2165 2166

	return 0;
2167

2168
error_ring_free:
2169
	intel_ring_free(ring);
2170
error_deref_obj:
2171
	i915_gem_object_put(ctx_obj);
2172
	return ret;
2173
}
2174

2175
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2176
{
2177
	struct intel_engine_cs *engine;
2178
	struct i915_gem_context *ctx;
2179
	enum intel_engine_id id;
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2192
		for_each_engine(engine, dev_priv, id) {
2193 2194
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2195

2196 2197
			if (!ce->state)
				continue;
2198

2199 2200 2201 2202
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2203

2204 2205 2206
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2207

C
Chris Wilson 已提交
2208
			ce->state->obj->mm.dirty = true;
2209
			i915_gem_object_unpin_map(ce->state->obj);
2210

2211 2212 2213 2214
			ce->ring->head = ce->ring->tail = 0;
			ce->ring->last_retired_head = -1;
			intel_ring_update_space(ce->ring);
		}
2215 2216
	}
}