raid5.c 220.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/module.h>
51
#include <linux/async.h>
52
#include <linux/seq_file.h>
53
#include <linux/cpu.h>
54
#include <linux/slab.h>
55
#include <linux/ratelimit.h>
56
#include <linux/nodemask.h>
57
#include <linux/flex_array.h>
N
NeilBrown 已提交
58 59
#include <trace/events/block.h>

60
#include "md.h"
61
#include "raid5.h"
62
#include "raid0.h"
63
#include "bitmap.h"
64

65 66 67
#define cpu_to_group(cpu) cpu_to_node(cpu)
#define ANY_GROUP NUMA_NO_NODE

68 69 70 71
static bool devices_handle_discard_safely = false;
module_param(devices_handle_discard_safely, bool, 0644);
MODULE_PARM_DESC(devices_handle_discard_safely,
		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72
static struct workqueue_struct *raid5_wq;
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
82
#define BYPASS_THRESHOLD	1
83
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
84
#define HASH_MASK		(NR_HASH - 1)
85
#define MAX_STRIPE_BATCH	8
L
Linus Torvalds 已提交
86

87
static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 89 90 91
{
	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
	return &conf->stripe_hashtbl[hash];
}
L
Linus Torvalds 已提交
92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
static inline int stripe_hash_locks_hash(sector_t sect)
{
	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
}

static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
{
	spin_lock_irq(conf->hash_locks + hash);
	spin_lock(&conf->device_lock);
}

static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
{
	spin_unlock(&conf->device_lock);
	spin_unlock_irq(conf->hash_locks + hash);
}

static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
{
	int i;
	local_irq_disable();
	spin_lock(conf->hash_locks);
	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
	spin_lock(&conf->device_lock);
}

static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
{
	int i;
	spin_unlock(&conf->device_lock);
	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
		spin_unlock(conf->hash_locks + i - 1);
	local_irq_enable();
}

L
Linus Torvalds 已提交
129 130 131 132 133 134
/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
135
 * This function is used to determine the 'next' bio in the list, given the sector
L
Linus Torvalds 已提交
136 137
 * of the current stripe+device
 */
138 139
static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
{
140
	int sectors = bio_sectors(bio);
141
	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 143 144 145
		return bio->bi_next;
	else
		return NULL;
}
L
Linus Torvalds 已提交
146

147
/*
148 149
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150
 */
151
static inline int raid5_bi_processed_stripes(struct bio *bio)
152
{
153 154
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	return (atomic_read(segments) >> 16) & 0xffff;
155 156
}

157
static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158
{
159 160
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	return atomic_sub_return(1, segments) & 0xffff;
161 162
}

163
static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164
{
165 166
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	atomic_inc(segments);
167 168
}

169 170
static inline void raid5_set_bi_processed_stripes(struct bio *bio,
	unsigned int cnt)
171
{
172 173
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	int old, new;
174

175 176 177 178
	do {
		old = atomic_read(segments);
		new = (old & 0xffff) | (cnt << 16);
	} while (atomic_cmpxchg(segments, old, new) != old);
179 180
}

181
static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182
{
183 184
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	atomic_set(segments, cnt);
185 186
}

187 188 189
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
190 191 192 193
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
194 195 196 197 198
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
199 200 201 202 203
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
204

205 206 207 208 209
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
210 211
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
212
{
213
	int slot = *count;
214

215
	if (sh->ddf_layout)
216
		(*count)++;
217
	if (idx == sh->pd_idx)
218
		return syndrome_disks;
219
	if (idx == sh->qd_idx)
220
		return syndrome_disks + 1;
221
	if (!sh->ddf_layout)
222
		(*count)++;
223 224 225
	return slot;
}

226
static void return_io(struct bio_list *return_bi)
227
{
228 229
	struct bio *bi;
	while ((bi = bio_list_pop(return_bi)) != NULL) {
230
		bi->bi_iter.bi_size = 0;
231 232
		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
					 bi, 0);
233
		bio_endio(bi, 0);
234 235 236
	}
}

237
static void print_raid5_conf (struct r5conf *conf);
L
Linus Torvalds 已提交
238

239 240 241 242 243 244 245
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

246 247 248 249
static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
{
	struct r5conf *conf = sh->raid_conf;
	struct r5worker_group *group;
250
	int thread_cnt;
251 252 253 254 255 256 257 258 259 260 261
	int i, cpu = sh->cpu;

	if (!cpu_online(cpu)) {
		cpu = cpumask_any(cpu_online_mask);
		sh->cpu = cpu;
	}

	if (list_empty(&sh->lru)) {
		struct r5worker_group *group;
		group = conf->worker_groups + cpu_to_group(cpu);
		list_add_tail(&sh->lru, &group->handle_list);
262 263
		group->stripes_cnt++;
		sh->group = group;
264 265 266 267 268 269 270 271 272
	}

	if (conf->worker_cnt_per_group == 0) {
		md_wakeup_thread(conf->mddev->thread);
		return;
	}

	group = conf->worker_groups + cpu_to_group(sh->cpu);

273 274 275 276 277 278 279 280 281 282 283 284 285 286
	group->workers[0].working = true;
	/* at least one worker should run to avoid race */
	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);

	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
	/* wakeup more workers */
	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
		if (group->workers[i].working == false) {
			group->workers[i].working = true;
			queue_work_on(sh->cpu, raid5_wq,
				      &group->workers[i].work);
			thread_cnt--;
		}
	}
287 288
}

289 290
static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
			      struct list_head *temp_inactive_list)
L
Linus Torvalds 已提交
291
{
292 293 294 295
	BUG_ON(!list_empty(&sh->lru));
	BUG_ON(atomic_read(&conf->active_stripes)==0);
	if (test_bit(STRIPE_HANDLE, &sh->state)) {
		if (test_bit(STRIPE_DELAYED, &sh->state) &&
296
		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297
			list_add_tail(&sh->lru, &conf->delayed_list);
298
		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299 300 301 302 303
			   sh->bm_seq - conf->seq_write > 0)
			list_add_tail(&sh->lru, &conf->bitmap_list);
		else {
			clear_bit(STRIPE_DELAYED, &sh->state);
			clear_bit(STRIPE_BIT_DELAY, &sh->state);
304 305 306 307 308 309
			if (conf->worker_cnt_per_group == 0) {
				list_add_tail(&sh->lru, &conf->handle_list);
			} else {
				raid5_wakeup_stripe_thread(sh);
				return;
			}
310 311 312 313 314 315 316 317 318
		}
		md_wakeup_thread(conf->mddev->thread);
	} else {
		BUG_ON(stripe_operations_active(sh));
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			if (atomic_dec_return(&conf->preread_active_stripes)
			    < IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		atomic_dec(&conf->active_stripes);
319 320
		if (!test_bit(STRIPE_EXPANDING, &sh->state))
			list_add_tail(&sh->lru, temp_inactive_list);
L
Linus Torvalds 已提交
321 322
	}
}
323

324 325
static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
			     struct list_head *temp_inactive_list)
326 327
{
	if (atomic_dec_and_test(&sh->count))
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
		do_release_stripe(conf, sh, temp_inactive_list);
}

/*
 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
 *
 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
 * given time. Adding stripes only takes device lock, while deleting stripes
 * only takes hash lock.
 */
static void release_inactive_stripe_list(struct r5conf *conf,
					 struct list_head *temp_inactive_list,
					 int hash)
{
	int size;
343 344
	unsigned long do_wakeup = 0;
	int i = 0;
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	unsigned long flags;

	if (hash == NR_STRIPE_HASH_LOCKS) {
		size = NR_STRIPE_HASH_LOCKS;
		hash = NR_STRIPE_HASH_LOCKS - 1;
	} else
		size = 1;
	while (size) {
		struct list_head *list = &temp_inactive_list[size - 1];

		/*
		 * We don't hold any lock here yet, get_active_stripe() might
		 * remove stripes from the list
		 */
		if (!list_empty_careful(list)) {
			spin_lock_irqsave(conf->hash_locks + hash, flags);
361 362 363
			if (list_empty(conf->inactive_list + hash) &&
			    !list_empty(list))
				atomic_dec(&conf->empty_inactive_list_nr);
364
			list_splice_tail_init(list, conf->inactive_list + hash);
365
			do_wakeup |= 1 << hash;
366 367 368 369 370 371
			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
		}
		size--;
		hash--;
	}

372 373 374 375 376
	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
		if (do_wakeup & (1 << i))
			wake_up(&conf->wait_for_stripe[i]);
	}

377
	if (do_wakeup) {
378 379
		if (atomic_read(&conf->active_stripes) == 0)
			wake_up(&conf->wait_for_quiescent);
380 381 382
		if (conf->retry_read_aligned)
			md_wakeup_thread(conf->mddev->thread);
	}
383 384
}

S
Shaohua Li 已提交
385
/* should hold conf->device_lock already */
386 387
static int release_stripe_list(struct r5conf *conf,
			       struct list_head *temp_inactive_list)
S
Shaohua Li 已提交
388 389 390 391 392 393
{
	struct stripe_head *sh;
	int count = 0;
	struct llist_node *head;

	head = llist_del_all(&conf->released_stripes);
S
Shaohua Li 已提交
394
	head = llist_reverse_order(head);
S
Shaohua Li 已提交
395
	while (head) {
396 397
		int hash;

S
Shaohua Li 已提交
398 399 400 401 402 403 404 405 406 407
		sh = llist_entry(head, struct stripe_head, release_list);
		head = llist_next(head);
		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
		smp_mb();
		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
		/*
		 * Don't worry the bit is set here, because if the bit is set
		 * again, the count is always > 1. This is true for
		 * STRIPE_ON_UNPLUG_LIST bit too.
		 */
408 409
		hash = sh->hash_lock_index;
		__release_stripe(conf, sh, &temp_inactive_list[hash]);
S
Shaohua Li 已提交
410 411 412 413 414 415
		count++;
	}

	return count;
}

L
Linus Torvalds 已提交
416 417
static void release_stripe(struct stripe_head *sh)
{
418
	struct r5conf *conf = sh->raid_conf;
L
Linus Torvalds 已提交
419
	unsigned long flags;
420 421
	struct list_head list;
	int hash;
S
Shaohua Li 已提交
422
	bool wakeup;
423

424 425 426 427 428
	/* Avoid release_list until the last reference.
	 */
	if (atomic_add_unless(&sh->count, -1, 1))
		return;

429 430
	if (unlikely(!conf->mddev->thread) ||
		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
S
Shaohua Li 已提交
431 432 433 434 435 436
		goto slow_path;
	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
	if (wakeup)
		md_wakeup_thread(conf->mddev->thread);
	return;
slow_path:
437
	local_irq_save(flags);
S
Shaohua Li 已提交
438
	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
439
	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
440 441 442
		INIT_LIST_HEAD(&list);
		hash = sh->hash_lock_index;
		do_release_stripe(conf, sh, &list);
443
		spin_unlock(&conf->device_lock);
444
		release_inactive_stripe_list(conf, &list, hash);
445 446
	}
	local_irq_restore(flags);
L
Linus Torvalds 已提交
447 448
}

449
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
450
{
451 452
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
453

454
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
455 456
}

457
static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
458
{
459
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
460

461 462
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
463

464
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
465 466 467
}

/* find an idle stripe, make sure it is unhashed, and return it. */
468
static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
L
Linus Torvalds 已提交
469 470 471 472
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

473
	if (list_empty(conf->inactive_list + hash))
L
Linus Torvalds 已提交
474
		goto out;
475
	first = (conf->inactive_list + hash)->next;
L
Linus Torvalds 已提交
476 477 478 479
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
480
	BUG_ON(hash != sh->hash_lock_index);
481 482
	if (list_empty(conf->inactive_list + hash))
		atomic_inc(&conf->empty_inactive_list_nr);
L
Linus Torvalds 已提交
483 484 485 486
out:
	return sh;
}

487
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
488 489 490
{
	struct page *p;
	int i;
491
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
492

493
	for (i = 0; i < num ; i++) {
494
		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
L
Linus Torvalds 已提交
495 496 497 498
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
499
		put_page(p);
L
Linus Torvalds 已提交
500 501 502
	}
}

503
static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
L
Linus Torvalds 已提交
504 505
{
	int i;
506
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
507

508
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
509 510
		struct page *page;

511
		if (!(page = alloc_page(gfp))) {
L
Linus Torvalds 已提交
512 513 514
			return 1;
		}
		sh->dev[i].page = page;
515
		sh->dev[i].orig_page = page;
L
Linus Torvalds 已提交
516 517 518 519
	}
	return 0;
}

520
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
521
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
522
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
523

524
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
525
{
526
	struct r5conf *conf = sh->raid_conf;
527
	int i, seq;
L
Linus Torvalds 已提交
528

529 530
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
531
	BUG_ON(stripe_operations_active(sh));
532
	BUG_ON(sh->batch_head);
533

534
	pr_debug("init_stripe called, stripe %llu\n",
535
		(unsigned long long)sector);
536 537
retry:
	seq = read_seqcount_begin(&conf->gen_lock);
538
	sh->generation = conf->generation - previous;
539
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
540
	sh->sector = sector;
541
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
542 543
	sh->state = 0;

544
	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
545 546
		struct r5dev *dev = &sh->dev[i];

547
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
548
		    test_bit(R5_LOCKED, &dev->flags)) {
549
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
550
			       (unsigned long long)sh->sector, i, dev->toread,
551
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
552
			       test_bit(R5_LOCKED, &dev->flags));
553
			WARN_ON(1);
L
Linus Torvalds 已提交
554 555
		}
		dev->flags = 0;
556
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
557
	}
558 559
	if (read_seqcount_retry(&conf->gen_lock, seq))
		goto retry;
560
	sh->overwrite_disks = 0;
L
Linus Torvalds 已提交
561
	insert_hash(conf, sh);
562
	sh->cpu = smp_processor_id();
563
	set_bit(STRIPE_BATCH_READY, &sh->state);
L
Linus Torvalds 已提交
564 565
}

566
static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
567
					 short generation)
L
Linus Torvalds 已提交
568 569 570
{
	struct stripe_head *sh;

571
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
572
	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
573
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
574
			return sh;
575
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
576 577 578
	return NULL;
}

579 580 581 582 583 584 585 586 587 588 589 590 591
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
592
static int calc_degraded(struct r5conf *conf)
593
{
594
	int degraded, degraded2;
595 596 597 598 599
	int i;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
600
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
601 602
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = rcu_dereference(conf->disks[i].replacement);
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
621 622
	if (conf->raid_disks == conf->previous_raid_disks)
		return degraded;
623
	rcu_read_lock();
624
	degraded2 = 0;
625
	for (i = 0; i < conf->raid_disks; i++) {
626
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
627 628
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = rcu_dereference(conf->disks[i].replacement);
629
		if (!rdev || test_bit(Faulty, &rdev->flags))
630
			degraded2++;
631 632 633 634 635 636 637 638 639
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
640
				degraded2++;
641 642
	}
	rcu_read_unlock();
643 644 645 646 647 648 649 650 651 652 653 654 655
	if (degraded2 > degraded)
		return degraded2;
	return degraded;
}

static int has_failed(struct r5conf *conf)
{
	int degraded;

	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	degraded = calc_degraded(conf);
656 657 658 659 660
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

661
static struct stripe_head *
662
get_active_stripe(struct r5conf *conf, sector_t sector,
663
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
664 665
{
	struct stripe_head *sh;
666
	int hash = stripe_hash_locks_hash(sector);
L
Linus Torvalds 已提交
667

668
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
669

670
	spin_lock_irq(conf->hash_locks + hash);
L
Linus Torvalds 已提交
671 672

	do {
673
		wait_event_lock_irq(conf->wait_for_quiescent,
674
				    conf->quiesce == 0 || noquiesce,
675
				    *(conf->hash_locks + hash));
676
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
677
		if (!sh) {
678
			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
679
				sh = get_free_stripe(conf, hash);
680 681
				if (!sh && !test_bit(R5_DID_ALLOC,
						     &conf->cache_state))
682 683 684
					set_bit(R5_ALLOC_MORE,
						&conf->cache_state);
			}
L
Linus Torvalds 已提交
685 686 687
			if (noblock && sh == NULL)
				break;
			if (!sh) {
688 689
				set_bit(R5_INACTIVE_BLOCKED,
					&conf->cache_state);
690 691
				wait_event_exclusive_cmd(
					conf->wait_for_stripe[hash],
692 693 694
					!list_empty(conf->inactive_list + hash) &&
					(atomic_read(&conf->active_stripes)
					 < (conf->max_nr_stripes * 3 / 4)
695 696
					 || !test_bit(R5_INACTIVE_BLOCKED,
						      &conf->cache_state)),
697 698
					spin_unlock_irq(conf->hash_locks + hash),
					spin_lock_irq(conf->hash_locks + hash));
699 700
				clear_bit(R5_INACTIVE_BLOCKED,
					  &conf->cache_state);
701
			} else {
702
				init_stripe(sh, sector, previous);
703 704
				atomic_inc(&sh->count);
			}
705
		} else if (!atomic_inc_not_zero(&sh->count)) {
706
			spin_lock(&conf->device_lock);
707
			if (!atomic_read(&sh->count)) {
L
Linus Torvalds 已提交
708 709
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
710 711
				BUG_ON(list_empty(&sh->lru) &&
				       !test_bit(STRIPE_EXPANDING, &sh->state));
712
				list_del_init(&sh->lru);
713 714 715 716
				if (sh->group) {
					sh->group->stripes_cnt--;
					sh->group = NULL;
				}
L
Linus Torvalds 已提交
717
			}
718
			atomic_inc(&sh->count);
719
			spin_unlock(&conf->device_lock);
L
Linus Torvalds 已提交
720 721 722
		}
	} while (sh == NULL);

723 724 725
	if (!list_empty(conf->inactive_list + hash))
		wake_up(&conf->wait_for_stripe[hash]);

726
	spin_unlock_irq(conf->hash_locks + hash);
L
Linus Torvalds 已提交
727 728 729
	return sh;
}

730 731 732 733 734 735
static bool is_full_stripe_write(struct stripe_head *sh)
{
	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
}

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
{
	local_irq_disable();
	if (sh1 > sh2) {
		spin_lock(&sh2->stripe_lock);
		spin_lock_nested(&sh1->stripe_lock, 1);
	} else {
		spin_lock(&sh1->stripe_lock);
		spin_lock_nested(&sh2->stripe_lock, 1);
	}
}

static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
{
	spin_unlock(&sh1->stripe_lock);
	spin_unlock(&sh2->stripe_lock);
	local_irq_enable();
}

/* Only freshly new full stripe normal write stripe can be added to a batch list */
static bool stripe_can_batch(struct stripe_head *sh)
{
	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
759
		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
		is_full_stripe_write(sh);
}

/* we only do back search */
static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
{
	struct stripe_head *head;
	sector_t head_sector, tmp_sec;
	int hash;
	int dd_idx;

	if (!stripe_can_batch(sh))
		return;
	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
	tmp_sec = sh->sector;
	if (!sector_div(tmp_sec, conf->chunk_sectors))
		return;
	head_sector = sh->sector - STRIPE_SECTORS;

	hash = stripe_hash_locks_hash(head_sector);
	spin_lock_irq(conf->hash_locks + hash);
	head = __find_stripe(conf, head_sector, conf->generation);
	if (head && !atomic_inc_not_zero(&head->count)) {
		spin_lock(&conf->device_lock);
		if (!atomic_read(&head->count)) {
			if (!test_bit(STRIPE_HANDLE, &head->state))
				atomic_inc(&conf->active_stripes);
			BUG_ON(list_empty(&head->lru) &&
			       !test_bit(STRIPE_EXPANDING, &head->state));
			list_del_init(&head->lru);
			if (head->group) {
				head->group->stripes_cnt--;
				head->group = NULL;
			}
		}
		atomic_inc(&head->count);
		spin_unlock(&conf->device_lock);
	}
	spin_unlock_irq(conf->hash_locks + hash);

	if (!head)
		return;
	if (!stripe_can_batch(head))
		goto out;

	lock_two_stripes(head, sh);
	/* clear_batch_ready clear the flag */
	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
		goto unlock_out;

	if (sh->batch_head)
		goto unlock_out;

	dd_idx = 0;
	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
		dd_idx++;
	if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
		goto unlock_out;

	if (head->batch_head) {
		spin_lock(&head->batch_head->batch_lock);
		/* This batch list is already running */
		if (!stripe_can_batch(head)) {
			spin_unlock(&head->batch_head->batch_lock);
			goto unlock_out;
		}

		/*
		 * at this point, head's BATCH_READY could be cleared, but we
		 * can still add the stripe to batch list
		 */
		list_add(&sh->batch_list, &head->batch_list);
		spin_unlock(&head->batch_head->batch_lock);

		sh->batch_head = head->batch_head;
	} else {
		head->batch_head = head;
		sh->batch_head = head->batch_head;
		spin_lock(&head->batch_lock);
		list_add_tail(&sh->batch_list, &head->batch_list);
		spin_unlock(&head->batch_lock);
	}

	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
		if (atomic_dec_return(&conf->preread_active_stripes)
		    < IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);

848 849 850 851 852 853 854 855 856
	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
		int seq = sh->bm_seq;
		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
		    sh->batch_head->bm_seq > seq)
			seq = sh->batch_head->bm_seq;
		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
		sh->batch_head->bm_seq = seq;
	}

857 858 859 860 861 862 863
	atomic_inc(&sh->count);
unlock_out:
	unlock_two_stripes(head, sh);
out:
	release_stripe(head);
}

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
/* Determine if 'data_offset' or 'new_data_offset' should be used
 * in this stripe_head.
 */
static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
{
	sector_t progress = conf->reshape_progress;
	/* Need a memory barrier to make sure we see the value
	 * of conf->generation, or ->data_offset that was set before
	 * reshape_progress was updated.
	 */
	smp_rmb();
	if (progress == MaxSector)
		return 0;
	if (sh->generation == conf->generation - 1)
		return 0;
	/* We are in a reshape, and this is a new-generation stripe,
	 * so use new_data_offset.
	 */
	return 1;
}

885 886 887 888
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
889

890
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
891
{
892
	struct r5conf *conf = sh->raid_conf;
893
	int i, disks = sh->disks;
894
	struct stripe_head *head_sh = sh;
895 896 897 898 899

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
900
		int replace_only = 0;
901 902
		struct bio *bi, *rbi;
		struct md_rdev *rdev, *rrdev = NULL;
903 904

		sh = head_sh;
T
Tejun Heo 已提交
905 906 907 908 909
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
910
			if (test_bit(R5_Discard, &sh->dev[i].flags))
S
Shaohua Li 已提交
911
				rw |= REQ_DISCARD;
T
Tejun Heo 已提交
912
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
913
			rw = READ;
914 915 916 917 918
		else if (test_and_clear_bit(R5_WantReplace,
					    &sh->dev[i].flags)) {
			rw = WRITE;
			replace_only = 1;
		} else
919
			continue;
S
Shaohua Li 已提交
920 921
		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
			rw |= REQ_SYNC;
922

923
again:
924
		bi = &sh->dev[i].req;
925
		rbi = &sh->dev[i].rreq; /* For writing to replacement */
926 927

		rcu_read_lock();
928
		rrdev = rcu_dereference(conf->disks[i].replacement);
929 930 931 932 933 934
		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev) {
			rdev = rrdev;
			rrdev = NULL;
		}
935 936 937
		if (rw & WRITE) {
			if (replace_only)
				rdev = NULL;
938 939 940
			if (rdev == rrdev)
				/* We raced and saw duplicates */
				rrdev = NULL;
941
		} else {
942
			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
943 944 945
				rdev = rrdev;
			rrdev = NULL;
		}
946

947 948 949 950
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
951 952 953 954
		if (rrdev && test_bit(Faulty, &rrdev->flags))
			rrdev = NULL;
		if (rrdev)
			atomic_inc(&rrdev->nr_pending);
955 956
		rcu_read_unlock();

957
		/* We have already checked bad blocks for reads.  Now
958 959
		 * need to check for writes.  We never accept write errors
		 * on the replacement, so we don't to check rrdev.
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
		 */
		while ((rw & WRITE) && rdev &&
		       test_bit(WriteErrorSeen, &rdev->flags)) {
			sector_t first_bad;
			int bad_sectors;
			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					      &first_bad, &bad_sectors);
			if (!bad)
				break;

			if (bad < 0) {
				set_bit(BlockedBadBlocks, &rdev->flags);
				if (!conf->mddev->external &&
				    conf->mddev->flags) {
					/* It is very unlikely, but we might
					 * still need to write out the
					 * bad block log - better give it
					 * a chance*/
					md_check_recovery(conf->mddev);
				}
980 981 982 983 984 985
				/*
				 * Because md_wait_for_blocked_rdev
				 * will dec nr_pending, we must
				 * increment it first.
				 */
				atomic_inc(&rdev->nr_pending);
986 987 988 989 990 991 992 993
				md_wait_for_blocked_rdev(rdev, conf->mddev);
			} else {
				/* Acknowledged bad block - skip the write */
				rdev_dec_pending(rdev, conf->mddev);
				rdev = NULL;
			}
		}

994
		if (rdev) {
995 996
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
997 998
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
999 1000
			set_bit(STRIPE_IO_STARTED, &sh->state);

K
Kent Overstreet 已提交
1001
			bio_reset(bi);
1002
			bi->bi_bdev = rdev->bdev;
K
Kent Overstreet 已提交
1003 1004 1005 1006 1007 1008
			bi->bi_rw = rw;
			bi->bi_end_io = (rw & WRITE)
				? raid5_end_write_request
				: raid5_end_read_request;
			bi->bi_private = sh;

1009
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1010
				__func__, (unsigned long long)sh->sector,
1011 1012
				bi->bi_rw, i);
			atomic_inc(&sh->count);
1013 1014
			if (sh != head_sh)
				atomic_inc(&head_sh->count);
1015
			if (use_new_offset(conf, sh))
1016
				bi->bi_iter.bi_sector = (sh->sector
1017 1018
						 + rdev->new_data_offset);
			else
1019
				bi->bi_iter.bi_sector = (sh->sector
1020
						 + rdev->data_offset);
1021
			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1022
				bi->bi_rw |= REQ_NOMERGE;
1023

1024 1025 1026
			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
			sh->dev[i].vec.bv_page = sh->dev[i].page;
K
Kent Overstreet 已提交
1027
			bi->bi_vcnt = 1;
1028 1029
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
1030
			bi->bi_iter.bi_size = STRIPE_SIZE;
1031 1032 1033 1034 1035 1036
			/*
			 * If this is discard request, set bi_vcnt 0. We don't
			 * want to confuse SCSI because SCSI will replace payload
			 */
			if (rw & REQ_DISCARD)
				bi->bi_vcnt = 0;
1037 1038
			if (rrdev)
				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1039 1040 1041 1042 1043

			if (conf->mddev->gendisk)
				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
						      bi, disk_devt(conf->mddev->gendisk),
						      sh->dev[i].sector);
1044
			generic_make_request(bi);
1045 1046
		}
		if (rrdev) {
1047 1048
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
1049 1050 1051 1052
				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);

			set_bit(STRIPE_IO_STARTED, &sh->state);

K
Kent Overstreet 已提交
1053
			bio_reset(rbi);
1054
			rbi->bi_bdev = rrdev->bdev;
K
Kent Overstreet 已提交
1055 1056 1057 1058 1059
			rbi->bi_rw = rw;
			BUG_ON(!(rw & WRITE));
			rbi->bi_end_io = raid5_end_write_request;
			rbi->bi_private = sh;

1060 1061 1062 1063 1064
			pr_debug("%s: for %llu schedule op %ld on "
				 "replacement disc %d\n",
				__func__, (unsigned long long)sh->sector,
				rbi->bi_rw, i);
			atomic_inc(&sh->count);
1065 1066
			if (sh != head_sh)
				atomic_inc(&head_sh->count);
1067
			if (use_new_offset(conf, sh))
1068
				rbi->bi_iter.bi_sector = (sh->sector
1069 1070
						  + rrdev->new_data_offset);
			else
1071
				rbi->bi_iter.bi_sector = (sh->sector
1072
						  + rrdev->data_offset);
1073 1074 1075
			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
			sh->dev[i].rvec.bv_page = sh->dev[i].page;
K
Kent Overstreet 已提交
1076
			rbi->bi_vcnt = 1;
1077 1078
			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			rbi->bi_io_vec[0].bv_offset = 0;
1079
			rbi->bi_iter.bi_size = STRIPE_SIZE;
1080 1081 1082 1083 1084 1085
			/*
			 * If this is discard request, set bi_vcnt 0. We don't
			 * want to confuse SCSI because SCSI will replace payload
			 */
			if (rw & REQ_DISCARD)
				rbi->bi_vcnt = 0;
1086 1087 1088 1089
			if (conf->mddev->gendisk)
				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
						      rbi, disk_devt(conf->mddev->gendisk),
						      sh->dev[i].sector);
1090 1091 1092
			generic_make_request(rbi);
		}
		if (!rdev && !rrdev) {
1093
			if (rw & WRITE)
1094 1095 1096 1097 1098 1099
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
1100 1101 1102 1103 1104 1105 1106

		if (!head_sh->batch_head)
			continue;
		sh = list_first_entry(&sh->batch_list, struct stripe_head,
				      batch_list);
		if (sh != head_sh)
			goto again;
1107 1108 1109 1110
	}
}

static struct dma_async_tx_descriptor *
1111 1112 1113
async_copy_data(int frombio, struct bio *bio, struct page **page,
	sector_t sector, struct dma_async_tx_descriptor *tx,
	struct stripe_head *sh)
1114
{
1115 1116
	struct bio_vec bvl;
	struct bvec_iter iter;
1117 1118
	struct page *bio_page;
	int page_offset;
1119
	struct async_submit_ctl submit;
D
Dan Williams 已提交
1120
	enum async_tx_flags flags = 0;
1121

1122 1123
	if (bio->bi_iter.bi_sector >= sector)
		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1124
	else
1125
		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1126

D
Dan Williams 已提交
1127 1128 1129 1130
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

1131 1132
	bio_for_each_segment(bvl, bio, iter) {
		int len = bvl.bv_len;
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
1148 1149
			b_offset += bvl.bv_offset;
			bio_page = bvl.bv_page;
1150 1151 1152 1153 1154 1155 1156
			if (frombio) {
				if (sh->raid_conf->skip_copy &&
				    b_offset == 0 && page_offset == 0 &&
				    clen == STRIPE_SIZE)
					*page = bio_page;
				else
					tx = async_memcpy(*page, bio_page, page_offset,
1157
						  b_offset, clen, &submit);
1158 1159
			} else
				tx = async_memcpy(bio_page, *page, b_offset,
1160
						  page_offset, clen, &submit);
1161
		}
1162 1163 1164
		/* chain the operations */
		submit.depend_tx = tx;

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
1176
	struct bio_list return_bi = BIO_EMPTY_LIST;
1177
	int i;
1178

1179
	pr_debug("%s: stripe %llu\n", __func__,
1180 1181 1182 1183 1184 1185 1186
		(unsigned long long)sh->sector);

	/* clear completed biofills */
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
1187 1188
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
1189
		 * !STRIPE_BIOFILL_RUN
1190 1191
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1192 1193 1194 1195 1196
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
1197
			while (rbi && rbi->bi_iter.bi_sector <
1198 1199
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
1200 1201
				if (!raid5_dec_bi_active_stripes(rbi))
					bio_list_add(&return_bi, rbi);
1202 1203 1204 1205
				rbi = rbi2;
			}
		}
	}
1206
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1207

1208
	return_io(&return_bi);
1209

1210
	set_bit(STRIPE_HANDLE, &sh->state);
1211 1212 1213 1214 1215 1216
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
1217
	struct async_submit_ctl submit;
1218 1219
	int i;

1220
	BUG_ON(sh->batch_head);
1221
	pr_debug("%s: stripe %llu\n", __func__,
1222 1223 1224 1225 1226 1227
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
S
Shaohua Li 已提交
1228
			spin_lock_irq(&sh->stripe_lock);
1229 1230
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
S
Shaohua Li 已提交
1231
			spin_unlock_irq(&sh->stripe_lock);
1232
			while (rbi && rbi->bi_iter.bi_sector <
1233
				dev->sector + STRIPE_SECTORS) {
1234 1235
				tx = async_copy_data(0, rbi, &dev->page,
					dev->sector, tx, sh);
1236 1237 1238 1239 1240 1241
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
1242 1243
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
1244 1245
}

1246
static void mark_target_uptodate(struct stripe_head *sh, int target)
1247
{
1248
	struct r5dev *tgt;
1249

1250 1251
	if (target < 0)
		return;
1252

1253
	tgt = &sh->dev[target];
1254 1255 1256
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
1257 1258
}

1259
static void ops_complete_compute(void *stripe_head_ref)
1260 1261 1262
{
	struct stripe_head *sh = stripe_head_ref;

1263
	pr_debug("%s: stripe %llu\n", __func__,
1264 1265
		(unsigned long long)sh->sector);

1266
	/* mark the computed target(s) as uptodate */
1267
	mark_target_uptodate(sh, sh->ops.target);
1268
	mark_target_uptodate(sh, sh->ops.target2);
1269

1270 1271 1272
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
1273 1274 1275 1276
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1277 1278
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1279
				 struct raid5_percpu *percpu, int i)
1280
{
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	void *addr;

	addr = flex_array_get(percpu->scribble, i);
	return addr + sizeof(struct page *) * (sh->disks + 2);
}

/* return a pointer to the address conversion region of the scribble buffer */
static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
{
	void *addr;

	addr = flex_array_get(percpu->scribble, i);
	return addr;
1294 1295 1296 1297
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1298 1299
{
	int disks = sh->disks;
1300
	struct page **xor_srcs = to_addr_page(percpu, 0);
1301 1302 1303 1304 1305
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
1306
	struct async_submit_ctl submit;
1307 1308
	int i;

1309 1310
	BUG_ON(sh->batch_head);

1311
	pr_debug("%s: stripe %llu block: %d\n",
1312
		__func__, (unsigned long long)sh->sector, target);
1313 1314 1315 1316 1317 1318 1319 1320
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
1321
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1322
			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1323
	if (unlikely(count == 1))
1324
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1325
	else
1326
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1327 1328 1329 1330

	return tx;
}

1331 1332 1333 1334 1335 1336 1337 1338 1339
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
1340 1341 1342
static int set_syndrome_sources(struct page **srcs,
				struct stripe_head *sh,
				int srctype)
1343 1344 1345 1346 1347 1348 1349 1350
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
1351
		srcs[i] = NULL;
1352 1353 1354 1355 1356

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1357
		struct r5dev *dev = &sh->dev[i];
1358

1359 1360 1361 1362 1363 1364 1365
		if (i == sh->qd_idx || i == sh->pd_idx ||
		    (srctype == SYNDROME_SRC_ALL) ||
		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
		     test_bit(R5_Wantdrain, &dev->flags)) ||
		    (srctype == SYNDROME_SRC_WRITTEN &&
		     dev->written))
			srcs[slot] = sh->dev[i].page;
1366 1367 1368
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

1369
	return syndrome_disks;
1370 1371 1372 1373 1374 1375
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
1376
	struct page **blocks = to_addr_page(percpu, 0);
1377 1378 1379 1380 1381 1382 1383 1384 1385
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

1386
	BUG_ON(sh->batch_head);
1387 1388 1389 1390
	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
1391
	else
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
1405
		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1406 1407
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
1408 1409
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
1410
				  to_addr_conv(sh, percpu, 0));
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
1421 1422
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
1423
				  to_addr_conv(sh, percpu, 0));
1424 1425
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
1426 1427 1428 1429

	return tx;
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
1442
	struct page **blocks = to_addr_page(percpu, 0);
1443 1444
	struct async_submit_ctl submit;

1445
	BUG_ON(sh->batch_head);
1446 1447 1448 1449 1450 1451
	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

1452
	/* we need to open-code set_syndrome_sources to handle the
1453 1454 1455
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
1456
		blocks[i] = NULL;
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
1483 1484
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
1485
					  to_addr_conv(sh, percpu, 0));
1486
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
1506 1507 1508
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
1509
					  to_addr_conv(sh, percpu, 0));
1510 1511 1512
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

1513
			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
D
Dan Williams 已提交
1514 1515
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
1516
					  to_addr_conv(sh, percpu, 0));
1517 1518 1519 1520
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
1521 1522
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
1523
				  to_addr_conv(sh, percpu, 0));
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
1535 1536 1537
	}
}

1538 1539 1540 1541
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1542
	pr_debug("%s: stripe %llu\n", __func__,
1543 1544 1545 1546
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
1547 1548
ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
		struct dma_async_tx_descriptor *tx)
1549 1550
{
	int disks = sh->disks;
1551
	struct page **xor_srcs = to_addr_page(percpu, 0);
1552
	int count = 0, pd_idx = sh->pd_idx, i;
1553
	struct async_submit_ctl submit;
1554 1555 1556 1557

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

1558
	BUG_ON(sh->batch_head);
1559
	pr_debug("%s: stripe %llu\n", __func__,
1560 1561 1562 1563 1564
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
1565
		if (test_bit(R5_Wantdrain, &dev->flags))
1566 1567 1568
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1569
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1570
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1571
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1572 1573 1574 1575

	return tx;
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
static struct dma_async_tx_descriptor *
ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
		struct dma_async_tx_descriptor *tx)
{
	struct page **blocks = to_addr_page(percpu, 0);
	int count;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu\n", __func__,
		(unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);

	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);

	return tx;
}

1596
static struct dma_async_tx_descriptor *
1597
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1598 1599
{
	int disks = sh->disks;
1600
	int i;
1601
	struct stripe_head *head_sh = sh;
1602

1603
	pr_debug("%s: stripe %llu\n", __func__,
1604 1605 1606
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
1607
		struct r5dev *dev;
1608 1609
		struct bio *chosen;

1610 1611
		sh = head_sh;
		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1612 1613
			struct bio *wbi;

1614 1615
again:
			dev = &sh->dev[i];
S
Shaohua Li 已提交
1616
			spin_lock_irq(&sh->stripe_lock);
1617 1618
			chosen = dev->towrite;
			dev->towrite = NULL;
1619
			sh->overwrite_disks = 0;
1620 1621
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
S
Shaohua Li 已提交
1622
			spin_unlock_irq(&sh->stripe_lock);
1623
			WARN_ON(dev->page != dev->orig_page);
1624

1625
			while (wbi && wbi->bi_iter.bi_sector <
1626
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1627 1628
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1629 1630
				if (wbi->bi_rw & REQ_SYNC)
					set_bit(R5_SyncIO, &dev->flags);
1631
				if (wbi->bi_rw & REQ_DISCARD)
S
Shaohua Li 已提交
1632
					set_bit(R5_Discard, &dev->flags);
1633 1634 1635 1636 1637 1638 1639 1640 1641
				else {
					tx = async_copy_data(1, wbi, &dev->page,
						dev->sector, tx, sh);
					if (dev->page != dev->orig_page) {
						set_bit(R5_SkipCopy, &dev->flags);
						clear_bit(R5_UPTODATE, &dev->flags);
						clear_bit(R5_OVERWRITE, &dev->flags);
					}
				}
1642 1643
				wbi = r5_next_bio(wbi, dev->sector);
			}
1644 1645 1646 1647 1648 1649 1650 1651 1652

			if (head_sh->batch_head) {
				sh = list_first_entry(&sh->batch_list,
						      struct stripe_head,
						      batch_list);
				if (sh == head_sh)
					continue;
				goto again;
			}
1653 1654 1655 1656 1657 1658
		}
	}

	return tx;
}

1659
static void ops_complete_reconstruct(void *stripe_head_ref)
1660 1661
{
	struct stripe_head *sh = stripe_head_ref;
1662 1663 1664 1665
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
1666
	bool fua = false, sync = false, discard = false;
1667

1668
	pr_debug("%s: stripe %llu\n", __func__,
1669 1670
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1671
	for (i = disks; i--; ) {
T
Tejun Heo 已提交
1672
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
S
Shaohua Li 已提交
1673
		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1674
		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
S
Shaohua Li 已提交
1675
	}
T
Tejun Heo 已提交
1676

1677 1678
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1679

T
Tejun Heo 已提交
1680
		if (dev->written || i == pd_idx || i == qd_idx) {
1681
			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1682
				set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1683 1684
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1685 1686
			if (sync)
				set_bit(R5_SyncIO, &dev->flags);
T
Tejun Heo 已提交
1687
		}
1688 1689
	}

1690 1691 1692 1693 1694 1695 1696 1697
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1698 1699 1700 1701 1702 1703

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1704 1705
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1706 1707
{
	int disks = sh->disks;
1708
	struct page **xor_srcs;
1709
	struct async_submit_ctl submit;
1710
	int count, pd_idx = sh->pd_idx, i;
1711
	struct page *xor_dest;
1712
	int prexor = 0;
1713
	unsigned long flags;
1714 1715 1716
	int j = 0;
	struct stripe_head *head_sh = sh;
	int last_stripe;
1717

1718
	pr_debug("%s: stripe %llu\n", __func__,
1719 1720
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	for (i = 0; i < sh->disks; i++) {
		if (pd_idx == i)
			continue;
		if (!test_bit(R5_Discard, &sh->dev[i].flags))
			break;
	}
	if (i >= sh->disks) {
		atomic_inc(&sh->count);
		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
		ops_complete_reconstruct(sh);
		return;
	}
1733 1734 1735
again:
	count = 0;
	xor_srcs = to_addr_page(percpu, j);
1736 1737 1738
	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1739
	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1740
		prexor = 1;
1741 1742 1743
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
1744
			if (head_sh->dev[i].written)
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	last_stripe = !head_sh->batch_head ||
		list_first_entry(&sh->batch_list,
				 struct stripe_head, batch_list) == head_sh;
	if (last_stripe) {
		flags = ASYNC_TX_ACK |
			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

		atomic_inc(&head_sh->count);
		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
				  to_addr_conv(sh, percpu, j));
	} else {
		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
		init_async_submit(&submit, flags, tx, NULL, NULL,
				  to_addr_conv(sh, percpu, j));
	}
1776

1777 1778 1779 1780
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1781 1782 1783 1784 1785 1786
	if (!last_stripe) {
		j++;
		sh = list_first_entry(&sh->batch_list, struct stripe_head,
				      batch_list);
		goto again;
	}
1787 1788
}

1789 1790 1791 1792 1793
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
1794 1795 1796 1797
	struct page **blocks;
	int count, i, j = 0;
	struct stripe_head *head_sh = sh;
	int last_stripe;
1798 1799
	int synflags;
	unsigned long txflags;
1800 1801 1802

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

S
Shaohua Li 已提交
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	for (i = 0; i < sh->disks; i++) {
		if (sh->pd_idx == i || sh->qd_idx == i)
			continue;
		if (!test_bit(R5_Discard, &sh->dev[i].flags))
			break;
	}
	if (i >= sh->disks) {
		atomic_inc(&sh->count);
		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
		ops_complete_reconstruct(sh);
		return;
	}

1817 1818
again:
	blocks = to_addr_page(percpu, j);
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828

	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		synflags = SYNDROME_SRC_WRITTEN;
		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
	} else {
		synflags = SYNDROME_SRC_ALL;
		txflags = ASYNC_TX_ACK;
	}

	count = set_syndrome_sources(blocks, sh, synflags);
1829 1830 1831 1832 1833 1834
	last_stripe = !head_sh->batch_head ||
		list_first_entry(&sh->batch_list,
				 struct stripe_head, batch_list) == head_sh;

	if (last_stripe) {
		atomic_inc(&head_sh->count);
1835
		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1836 1837 1838 1839
				  head_sh, to_addr_conv(sh, percpu, j));
	} else
		init_async_submit(&submit, 0, tx, NULL, NULL,
				  to_addr_conv(sh, percpu, j));
1840
	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1841 1842 1843 1844 1845 1846
	if (!last_stripe) {
		j++;
		sh = list_first_entry(&sh->batch_list, struct stripe_head,
				      batch_list);
		goto again;
	}
1847 1848 1849 1850 1851 1852
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1853
	pr_debug("%s: stripe %llu\n", __func__,
1854 1855
		(unsigned long long)sh->sector);

1856
	sh->check_state = check_state_check_result;
1857 1858 1859 1860
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1861
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1862 1863
{
	int disks = sh->disks;
1864 1865 1866
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1867
	struct page **xor_srcs = to_addr_page(percpu, 0);
1868
	struct dma_async_tx_descriptor *tx;
1869
	struct async_submit_ctl submit;
1870 1871
	int count;
	int i;
1872

1873
	pr_debug("%s: stripe %llu\n", __func__,
1874 1875
		(unsigned long long)sh->sector);

1876
	BUG_ON(sh->batch_head);
1877 1878 1879
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1880
	for (i = disks; i--; ) {
1881 1882 1883
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1884 1885
	}

1886
	init_async_submit(&submit, 0, NULL, NULL, NULL,
1887
			  to_addr_conv(sh, percpu, 0));
D
Dan Williams 已提交
1888
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1889
			   &sh->ops.zero_sum_result, &submit);
1890 1891

	atomic_inc(&sh->count);
1892 1893
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1894 1895
}

1896 1897
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
1898
	struct page **srcs = to_addr_page(percpu, 0);
1899 1900 1901 1902 1903 1904
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

1905
	BUG_ON(sh->batch_head);
1906
	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1907 1908
	if (!checkp)
		srcs[count] = NULL;
1909 1910

	atomic_inc(&sh->count);
1911
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1912
			  sh, to_addr_conv(sh, percpu, 0));
1913 1914
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1915 1916
}

N
NeilBrown 已提交
1917
static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1918 1919 1920
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1921
	struct r5conf *conf = sh->raid_conf;
1922
	int level = conf->level;
1923 1924
	struct raid5_percpu *percpu;
	unsigned long cpu;
1925

1926 1927
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1928
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1929 1930 1931 1932
		ops_run_biofill(sh);
		overlap_clear++;
	}

1933
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1944 1945
			async_tx_ack(tx);
	}
1946

1947 1948 1949 1950 1951 1952
	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
		if (level < 6)
			tx = ops_run_prexor5(sh, percpu, tx);
		else
			tx = ops_run_prexor6(sh, percpu, tx);
	}
1953

1954
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1955
		tx = ops_run_biodrain(sh, tx);
1956 1957 1958
		overlap_clear++;
	}

1959 1960 1961 1962 1963 1964
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1965

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1976

1977
	if (overlap_clear && !sh->batch_head)
1978 1979 1980 1981 1982
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1983
	put_cpu();
1984 1985
}

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
{
	struct stripe_head *sh;

	sh = kmem_cache_zalloc(sc, gfp);
	if (sh) {
		spin_lock_init(&sh->stripe_lock);
		spin_lock_init(&sh->batch_lock);
		INIT_LIST_HEAD(&sh->batch_list);
		INIT_LIST_HEAD(&sh->lru);
		atomic_set(&sh->count, 1);
	}
	return sh;
}
2000
static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
L
Linus Torvalds 已提交
2001 2002
{
	struct stripe_head *sh;
2003 2004

	sh = alloc_stripe(conf->slab_cache, gfp);
2005 2006
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
2007

2008 2009
	sh->raid_conf = conf;

2010
	if (grow_buffers(sh, gfp)) {
2011
		shrink_buffers(sh);
2012 2013 2014
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
2015 2016
	sh->hash_lock_index =
		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2017 2018
	/* we just created an active stripe so... */
	atomic_inc(&conf->active_stripes);
2019

2020
	release_stripe(sh);
2021
	conf->max_nr_stripes++;
2022 2023 2024
	return 1;
}

2025
static int grow_stripes(struct r5conf *conf, int num)
2026
{
2027
	struct kmem_cache *sc;
2028
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
2029

2030 2031 2032 2033 2034 2035 2036 2037
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

2038 2039
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
2040
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2041
			       0, 0, NULL);
L
Linus Torvalds 已提交
2042 2043 2044
	if (!sc)
		return 1;
	conf->slab_cache = sc;
2045
	conf->pool_size = devs;
2046 2047
	while (num--)
		if (!grow_one_stripe(conf, GFP_KERNEL))
L
Linus Torvalds 已提交
2048
			return 1;
2049

L
Linus Torvalds 已提交
2050 2051
	return 0;
}
2052

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
2066
static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2067
{
2068
	struct flex_array *ret;
2069 2070 2071
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2072 2073 2074 2075 2076 2077 2078 2079 2080
	ret = flex_array_alloc(len, cnt, flags);
	if (!ret)
		return NULL;
	/* always prealloc all elements, so no locking is required */
	if (flex_array_prealloc(ret, 0, cnt, flags)) {
		flex_array_free(ret);
		return NULL;
	}
	return ret;
2081 2082
}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
{
	unsigned long cpu;
	int err = 0;

	mddev_suspend(conf->mddev);
	get_online_cpus();
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		struct flex_array *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = scribble_alloc(new_disks,
					  new_sectors / STRIPE_SECTORS,
					  GFP_NOIO);

		if (scribble) {
			flex_array_free(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();
	mddev_resume(conf->mddev);
	return err;
}

2112
static int resize_stripes(struct r5conf *conf, int newsize)
2113 2114 2115 2116 2117 2118 2119
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
M
Masanari Iida 已提交
2120
	 * 2/ gather all the old stripe_heads and transfer the pages across
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
2140
	int err;
2141
	struct kmem_cache *sc;
2142
	int i;
2143
	int hash, cnt;
2144 2145 2146 2147

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

2148 2149 2150
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
2151

2152 2153 2154
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2155
			       0, 0, NULL);
2156 2157 2158
	if (!sc)
		return -ENOMEM;

2159 2160 2161
	/* Need to ensure auto-resizing doesn't interfere */
	mutex_lock(&conf->cache_size_mutex);

2162
	for (i = conf->max_nr_stripes; i; i--) {
2163
		nsh = alloc_stripe(sc, GFP_KERNEL);
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
		if (!nsh)
			break;

		nsh->raid_conf = conf;
		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
2178
		mutex_unlock(&conf->cache_size_mutex);
2179 2180 2181 2182 2183 2184
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
2185 2186
	hash = 0;
	cnt = 0;
2187
	list_for_each_entry(nsh, &newstripes, lru) {
2188
		lock_device_hash_lock(conf, hash);
2189
		wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2190 2191 2192 2193 2194
				    !list_empty(conf->inactive_list + hash),
				    unlock_device_hash_lock(conf, hash),
				    lock_device_hash_lock(conf, hash));
		osh = get_free_stripe(conf, hash);
		unlock_device_hash_lock(conf, hash);
2195

2196
		for(i=0; i<conf->pool_size; i++) {
2197
			nsh->dev[i].page = osh->dev[i].page;
2198 2199
			nsh->dev[i].orig_page = osh->dev[i].page;
		}
2200
		nsh->hash_lock_index = hash;
2201
		kmem_cache_free(conf->slab_cache, osh);
2202 2203 2204 2205 2206 2207
		cnt++;
		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
			hash++;
			cnt = 0;
		}
2208 2209 2210 2211 2212 2213
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
2214
	 * conf->disks and the scribble region
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

2225
	mutex_unlock(&conf->cache_size_mutex);
2226 2227 2228 2229
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
2230

2231 2232 2233 2234
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
2235
				nsh->dev[i].orig_page = p;
2236 2237 2238 2239 2240 2241 2242 2243 2244
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
2245 2246
	if (!err)
		conf->pool_size = newsize;
2247 2248
	return err;
}
L
Linus Torvalds 已提交
2249

2250
static int drop_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
2251 2252
{
	struct stripe_head *sh;
2253
	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
L
Linus Torvalds 已提交
2254

2255 2256 2257
	spin_lock_irq(conf->hash_locks + hash);
	sh = get_free_stripe(conf, hash);
	spin_unlock_irq(conf->hash_locks + hash);
2258 2259
	if (!sh)
		return 0;
2260
	BUG_ON(atomic_read(&sh->count));
2261
	shrink_buffers(sh);
2262 2263
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
2264
	conf->max_nr_stripes--;
2265 2266 2267
	return 1;
}

2268
static void shrink_stripes(struct r5conf *conf)
2269
{
2270 2271 2272
	while (conf->max_nr_stripes &&
	       drop_one_stripe(conf))
		;
2273

N
NeilBrown 已提交
2274 2275
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
2276 2277 2278
	conf->slab_cache = NULL;
}

2279
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
2280
{
2281
	struct stripe_head *sh = bi->bi_private;
2282
	struct r5conf *conf = sh->raid_conf;
2283
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
2284
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2285
	char b[BDEVNAME_SIZE];
2286
	struct md_rdev *rdev = NULL;
2287
	sector_t s;
L
Linus Torvalds 已提交
2288 2289 2290 2291 2292

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

2293 2294
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
2295 2296 2297
		uptodate);
	if (i == disks) {
		BUG();
2298
		return;
L
Linus Torvalds 已提交
2299
	}
2300
	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2301 2302 2303 2304 2305
		/* If replacement finished while this request was outstanding,
		 * 'replacement' might be NULL already.
		 * In that case it moved down to 'rdev'.
		 * rdev is not removed until all requests are finished.
		 */
2306
		rdev = conf->disks[i].replacement;
2307
	if (!rdev)
2308
		rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
2309

2310 2311 2312 2313
	if (use_new_offset(conf, sh))
		s = sh->sector + rdev->new_data_offset;
	else
		s = sh->sector + rdev->data_offset;
L
Linus Torvalds 已提交
2314 2315
	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2316
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2317 2318 2319 2320
			/* Note that this cannot happen on a
			 * replacement device.  We just fail those on
			 * any error
			 */
2321 2322 2323 2324 2325
			printk_ratelimited(
				KERN_INFO
				"md/raid:%s: read error corrected"
				" (%lu sectors at %llu on %s)\n",
				mdname(conf->mddev), STRIPE_SECTORS,
2326
				(unsigned long long)s,
2327
				bdevname(rdev->bdev, b));
2328
			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2329 2330
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2331 2332 2333
		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);

2334 2335
		if (atomic_read(&rdev->read_errors))
			atomic_set(&rdev->read_errors, 0);
L
Linus Torvalds 已提交
2336
	} else {
2337
		const char *bdn = bdevname(rdev->bdev, b);
2338
		int retry = 0;
2339
		int set_bad = 0;
2340

L
Linus Torvalds 已提交
2341
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2342
		atomic_inc(&rdev->read_errors);
2343 2344 2345 2346 2347 2348
		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error on replacement device "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
2349
				(unsigned long long)s,
2350
				bdn);
2351 2352
		else if (conf->mddev->degraded >= conf->max_degraded) {
			set_bad = 1;
2353 2354 2355 2356 2357
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error not correctable "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
2358
				(unsigned long long)s,
2359
				bdn);
2360
		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2361
			/* Oh, no!!! */
2362
			set_bad = 1;
2363 2364 2365 2366 2367
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error NOT corrected!! "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
2368
				(unsigned long long)s,
2369
				bdn);
2370
		} else if (atomic_read(&rdev->read_errors)
2371
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
2372
			printk(KERN_WARNING
2373
			       "md/raid:%s: Too many read errors, failing device %s.\n",
2374
			       mdname(conf->mddev), bdn);
2375 2376
		else
			retry = 1;
2377 2378 2379
		if (set_bad && test_bit(In_sync, &rdev->flags)
		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
			retry = 1;
2380
		if (retry)
2381 2382 2383 2384 2385
			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
				set_bit(R5_ReadError, &sh->dev[i].flags);
				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
			} else
				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2386
		else {
2387 2388
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2389 2390 2391 2392 2393
			if (!(set_bad
			      && test_bit(In_sync, &rdev->flags)
			      && rdev_set_badblocks(
				      rdev, sh->sector, STRIPE_SECTORS, 0)))
				md_error(conf->mddev, rdev);
2394
		}
L
Linus Torvalds 已提交
2395
	}
2396
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
2397 2398 2399 2400 2401
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

2402
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
2403
{
2404
	struct stripe_head *sh = bi->bi_private;
2405
	struct r5conf *conf = sh->raid_conf;
2406
	int disks = sh->disks, i;
2407
	struct md_rdev *uninitialized_var(rdev);
L
Linus Torvalds 已提交
2408
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2409 2410
	sector_t first_bad;
	int bad_sectors;
2411
	int replacement = 0;
L
Linus Torvalds 已提交
2412

2413 2414 2415
	for (i = 0 ; i < disks; i++) {
		if (bi == &sh->dev[i].req) {
			rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
2416
			break;
2417 2418 2419
		}
		if (bi == &sh->dev[i].rreq) {
			rdev = conf->disks[i].replacement;
2420 2421 2422 2423 2424 2425 2426 2427
			if (rdev)
				replacement = 1;
			else
				/* rdev was removed and 'replacement'
				 * replaced it.  rdev is not removed
				 * until all requests are finished.
				 */
				rdev = conf->disks[i].rdev;
2428 2429 2430
			break;
		}
	}
2431
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
2432 2433 2434 2435
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
2436
		return;
L
Linus Torvalds 已提交
2437 2438
	}

2439 2440 2441 2442 2443 2444 2445 2446 2447
	if (replacement) {
		if (!uptodate)
			md_error(conf->mddev, rdev);
		else if (is_badblock(rdev, sh->sector,
				     STRIPE_SECTORS,
				     &first_bad, &bad_sectors))
			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
	} else {
		if (!uptodate) {
2448
			set_bit(STRIPE_DEGRADED, &sh->state);
2449 2450
			set_bit(WriteErrorSeen, &rdev->flags);
			set_bit(R5_WriteError, &sh->dev[i].flags);
2451 2452 2453
			if (!test_and_set_bit(WantReplacement, &rdev->flags))
				set_bit(MD_RECOVERY_NEEDED,
					&rdev->mddev->recovery);
2454 2455
		} else if (is_badblock(rdev, sh->sector,
				       STRIPE_SECTORS,
2456
				       &first_bad, &bad_sectors)) {
2457
			set_bit(R5_MadeGood, &sh->dev[i].flags);
2458 2459 2460 2461 2462 2463 2464
			if (test_bit(R5_ReadError, &sh->dev[i].flags))
				/* That was a successful write so make
				 * sure it looks like we already did
				 * a re-write.
				 */
				set_bit(R5_ReWrite, &sh->dev[i].flags);
		}
2465 2466
	}
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
2467

2468
	if (sh->batch_head && !uptodate && !replacement)
2469 2470
		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);

2471 2472
	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
L
Linus Torvalds 已提交
2473
	set_bit(STRIPE_HANDLE, &sh->state);
2474
	release_stripe(sh);
2475 2476 2477

	if (sh->batch_head && sh != sh->batch_head)
		release_stripe(sh->batch_head);
L
Linus Torvalds 已提交
2478 2479
}

2480
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2481

2482
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
2483 2484 2485 2486 2487
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
2488
	dev->req.bi_max_vecs = 1;
L
Linus Torvalds 已提交
2489 2490
	dev->req.bi_private = sh;

2491 2492
	bio_init(&dev->rreq);
	dev->rreq.bi_io_vec = &dev->rvec;
2493
	dev->rreq.bi_max_vecs = 1;
2494 2495
	dev->rreq.bi_private = sh;

L
Linus Torvalds 已提交
2496
	dev->flags = 0;
2497
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
2498 2499
}

2500
static void error(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
2501 2502
{
	char b[BDEVNAME_SIZE];
2503
	struct r5conf *conf = mddev->private;
2504
	unsigned long flags;
2505
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
2506

2507 2508 2509 2510 2511 2512
	spin_lock_irqsave(&conf->device_lock, flags);
	clear_bit(In_sync, &rdev->flags);
	mddev->degraded = calc_degraded(conf);
	spin_unlock_irqrestore(&conf->device_lock, flags);
	set_bit(MD_RECOVERY_INTR, &mddev->recovery);

2513
	set_bit(Blocked, &rdev->flags);
2514 2515 2516 2517 2518 2519 2520 2521 2522
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
2523
}
L
Linus Torvalds 已提交
2524 2525 2526 2527 2528

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
2529
static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2530 2531
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
2532
{
N
NeilBrown 已提交
2533
	sector_t stripe, stripe2;
2534
	sector_t chunk_number;
L
Linus Torvalds 已提交
2535
	unsigned int chunk_offset;
2536
	int pd_idx, qd_idx;
2537
	int ddf_layout = 0;
L
Linus Torvalds 已提交
2538
	sector_t new_sector;
2539 2540
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
2541 2542
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2543 2544 2545
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
2558 2559
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
2560
	stripe2 = stripe;
L
Linus Torvalds 已提交
2561 2562 2563
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
2564
	pd_idx = qd_idx = -1;
2565 2566
	switch(conf->level) {
	case 4:
2567
		pd_idx = data_disks;
2568 2569
		break;
	case 5:
2570
		switch (algorithm) {
L
Linus Torvalds 已提交
2571
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
2572
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2573
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
2574 2575 2576
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
2577
			pd_idx = sector_div(stripe2, raid_disks);
2578
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
2579 2580 2581
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
2582
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2583
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
2584 2585
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2586
			pd_idx = sector_div(stripe2, raid_disks);
2587
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
2588
			break;
2589 2590 2591 2592 2593 2594 2595
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
2596
		default:
2597
			BUG();
2598 2599 2600 2601
		}
		break;
	case 6:

2602
		switch (algorithm) {
2603
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
2604
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2605 2606
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2607
				(*dd_idx)++;	/* Q D D D P */
2608 2609
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2610 2611 2612
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
2613
			pd_idx = sector_div(stripe2, raid_disks);
2614 2615
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2616
				(*dd_idx)++;	/* Q D D D P */
2617 2618
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2619 2620 2621
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
2622
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2623 2624
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2625 2626
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2627
			pd_idx = sector_div(stripe2, raid_disks);
2628 2629
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2630
			break;
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
2646
			pd_idx = sector_div(stripe2, raid_disks);
2647 2648 2649 2650 2651 2652
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2653
			ddf_layout = 1;
2654 2655 2656 2657 2658 2659 2660
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
2661 2662
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2663 2664 2665 2666 2667 2668
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2669
			ddf_layout = 1;
2670 2671 2672 2673
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
2674
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2675 2676
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2677
			ddf_layout = 1;
2678 2679 2680 2681
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
2682
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2683 2684 2685 2686 2687 2688
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
2689
			pd_idx = sector_div(stripe2, raid_disks-1);
2690 2691 2692 2693 2694 2695
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
2696
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2697 2698 2699 2700 2701
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
2702
			pd_idx = sector_div(stripe2, raid_disks-1);
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

2713
		default:
2714
			BUG();
2715 2716
		}
		break;
L
Linus Torvalds 已提交
2717 2718
	}

2719 2720 2721
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
2722
		sh->ddf_layout = ddf_layout;
2723
	}
L
Linus Torvalds 已提交
2724 2725 2726 2727 2728 2729 2730
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}

2731
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
2732
{
2733
	struct r5conf *conf = sh->raid_conf;
2734 2735
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2736
	sector_t new_sector = sh->sector, check;
2737 2738
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2739 2740
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
2741 2742
	sector_t stripe;
	int chunk_offset;
2743 2744
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
2745
	sector_t r_sector;
2746
	struct stripe_head sh2;
L
Linus Torvalds 已提交
2747 2748 2749 2750

	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

2751 2752 2753 2754 2755
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
2756
		switch (algorithm) {
L
Linus Torvalds 已提交
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
2768 2769 2770 2771 2772
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
2773
		default:
2774
			BUG();
2775 2776 2777
		}
		break;
	case 6:
2778
		if (i == sh->qd_idx)
2779
			return 0; /* It is the Q disk */
2780
		switch (algorithm) {
2781 2782
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
2783 2784 2785 2786
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2801 2802 2803 2804 2805 2806
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2807
			/* Like left_symmetric, but P is before Q */
2808 2809
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2810 2811 2812 2813 2814 2815
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2831
		default:
2832
			BUG();
2833 2834
		}
		break;
L
Linus Torvalds 已提交
2835 2836 2837
	}

	chunk_number = stripe * data_disks + i;
2838
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2839

2840
	check = raid5_compute_sector(conf, r_sector,
2841
				     previous, &dummy1, &sh2);
2842 2843
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2844 2845
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2846 2847 2848 2849 2850
		return 0;
	}
	return r_sector;
}

2851
static void
2852
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2853
			 int rcw, int expand)
2854
{
2855
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2856
	struct r5conf *conf = sh->raid_conf;
2857
	int level = conf->level;
2858 2859 2860 2861 2862 2863 2864 2865

	if (rcw) {

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2866
				set_bit(R5_Wantdrain, &dev->flags);
2867 2868
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2869
				s->locked++;
2870 2871
			}
		}
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
			if (!s->locked)
				/* False alarm, nothing to do */
				return;
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;

		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);

2887
		if (s->locked + conf->max_degraded == disks)
2888
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2889
				atomic_inc(&conf->pending_full_writes);
2890 2891 2892
	} else {
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2893 2894 2895
		BUG_ON(level == 6 &&
			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2896 2897 2898

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
2899
			if (i == pd_idx || i == qd_idx)
2900 2901 2902 2903
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2904 2905
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2906 2907
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2908
				s->locked++;
2909 2910
			}
		}
2911 2912 2913 2914 2915 2916 2917
		if (!s->locked)
			/* False alarm - nothing to do */
			return;
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2918 2919
	}

2920
	/* keep the parity disk(s) locked while asynchronous operations
2921 2922 2923 2924
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2925
	s->locked++;
2926

2927 2928 2929 2930 2931 2932 2933 2934 2935
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2936
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2937
		__func__, (unsigned long long)sh->sector,
2938
		s->locked, s->ops_request);
2939
}
2940

L
Linus Torvalds 已提交
2941 2942
/*
 * Each stripe/dev can have one or more bion attached.
2943
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2944 2945
 * The bi_next chain must be in order.
 */
2946 2947
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
			  int forwrite, int previous)
L
Linus Torvalds 已提交
2948 2949
{
	struct bio **bip;
2950
	struct r5conf *conf = sh->raid_conf;
2951
	int firstwrite=0;
L
Linus Torvalds 已提交
2952

2953
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2954
		(unsigned long long)bi->bi_iter.bi_sector,
L
Linus Torvalds 已提交
2955 2956
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
2957 2958 2959 2960 2961 2962 2963 2964 2965
	/*
	 * If several bio share a stripe. The bio bi_phys_segments acts as a
	 * reference count to avoid race. The reference count should already be
	 * increased before this function is called (for example, in
	 * make_request()), so other bio sharing this stripe will not free the
	 * stripe. If a stripe is owned by one stripe, the stripe lock will
	 * protect it.
	 */
	spin_lock_irq(&sh->stripe_lock);
2966 2967 2968
	/* Don't allow new IO added to stripes in batch list */
	if (sh->batch_head)
		goto overlap;
2969
	if (forwrite) {
L
Linus Torvalds 已提交
2970
		bip = &sh->dev[dd_idx].towrite;
2971
		if (*bip == NULL)
2972 2973
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2974
		bip = &sh->dev[dd_idx].toread;
2975 2976
	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
L
Linus Torvalds 已提交
2977 2978 2979
			goto overlap;
		bip = & (*bip)->bi_next;
	}
2980
	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
L
Linus Torvalds 已提交
2981 2982
		goto overlap;

2983 2984 2985
	if (!forwrite || previous)
		clear_bit(STRIPE_BATCH_READY, &sh->state);

2986
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2987 2988 2989
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2990
	raid5_inc_bi_active_stripes(bi);
2991

L
Linus Torvalds 已提交
2992 2993 2994 2995 2996
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2997
			     bi && bi->bi_iter.bi_sector <= sector;
L
Linus Torvalds 已提交
2998
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
K
Kent Overstreet 已提交
2999 3000
			if (bio_end_sector(bi) >= sector)
				sector = bio_end_sector(bi);
L
Linus Torvalds 已提交
3001 3002
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3003 3004
			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
				sh->overwrite_disks++;
L
Linus Torvalds 已提交
3005
	}
3006 3007

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3008
		(unsigned long long)(*bip)->bi_iter.bi_sector,
3009 3010 3011
		(unsigned long long)sh->sector, dd_idx);

	if (conf->mddev->bitmap && firstwrite) {
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
		/* Cannot hold spinlock over bitmap_startwrite,
		 * but must ensure this isn't added to a batch until
		 * we have added to the bitmap and set bm_seq.
		 * So set STRIPE_BITMAP_PENDING to prevent
		 * batching.
		 * If multiple add_stripe_bio() calls race here they
		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
		 * to complete "bitmap_startwrite" gets to set
		 * STRIPE_BIT_DELAY.  This is important as once a stripe
		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
		 * any more.
		 */
		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
		spin_unlock_irq(&sh->stripe_lock);
3026 3027
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
3028 3029 3030 3031 3032 3033
		spin_lock_irq(&sh->stripe_lock);
		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
		if (!sh->batch_head) {
			sh->bm_seq = conf->seq_flush+1;
			set_bit(STRIPE_BIT_DELAY, &sh->state);
		}
3034
	}
3035
	spin_unlock_irq(&sh->stripe_lock);
3036 3037 3038

	if (stripe_can_batch(sh))
		stripe_add_to_batch_list(conf, sh);
L
Linus Torvalds 已提交
3039 3040 3041 3042
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
S
Shaohua Li 已提交
3043
	spin_unlock_irq(&sh->stripe_lock);
L
Linus Torvalds 已提交
3044 3045 3046
	return 0;
}

3047
static void end_reshape(struct r5conf *conf);
3048

3049
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3050
			    struct stripe_head *sh)
3051
{
3052
	int sectors_per_chunk =
3053
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3054
	int dd_idx;
3055
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3056
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3057

3058 3059
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
3060
			     *sectors_per_chunk + chunk_offset,
3061
			     previous,
3062
			     &dd_idx, sh);
3063 3064
}

3065
static void
3066
handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3067
				struct stripe_head_state *s, int disks,
3068
				struct bio_list *return_bi)
3069 3070
{
	int i;
3071
	BUG_ON(sh->batch_head);
3072 3073 3074 3075 3076
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3077
			struct md_rdev *rdev;
3078 3079 3080
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
3081 3082 3083
				atomic_inc(&rdev->nr_pending);
			else
				rdev = NULL;
3084
			rcu_read_unlock();
3085 3086 3087 3088 3089 3090 3091 3092
			if (rdev) {
				if (!rdev_set_badblocks(
					    rdev,
					    sh->sector,
					    STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
3093
		}
S
Shaohua Li 已提交
3094
		spin_lock_irq(&sh->stripe_lock);
3095 3096 3097
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
3098
		sh->overwrite_disks = 0;
S
Shaohua Li 已提交
3099
		spin_unlock_irq(&sh->stripe_lock);
3100
		if (bi)
3101 3102 3103 3104 3105
			bitmap_end = 1;

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

3106
		while (bi && bi->bi_iter.bi_sector <
3107 3108 3109
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3110
			if (!raid5_dec_bi_active_stripes(bi)) {
3111
				md_write_end(conf->mddev);
3112
				bio_list_add(return_bi, bi);
3113 3114 3115
			}
			bi = nextbi;
		}
3116 3117 3118 3119
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
				STRIPE_SECTORS, 0, 0);
		bitmap_end = 0;
3120 3121 3122
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
3123 3124 3125 3126 3127
		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
			sh->dev[i].page = sh->dev[i].orig_page;
		}

3128
		if (bi) bitmap_end = 1;
3129
		while (bi && bi->bi_iter.bi_sector <
3130 3131 3132
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3133
			if (!raid5_dec_bi_active_stripes(bi)) {
3134
				md_write_end(conf->mddev);
3135
				bio_list_add(return_bi, bi);
3136 3137 3138 3139
			}
			bi = bi2;
		}

3140 3141 3142 3143 3144 3145
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3146
			spin_lock_irq(&sh->stripe_lock);
3147 3148
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
3149
			spin_unlock_irq(&sh->stripe_lock);
3150 3151
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
3152
			while (bi && bi->bi_iter.bi_sector <
3153 3154 3155 3156
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
3157 3158
				if (!raid5_dec_bi_active_stripes(bi))
					bio_list_add(return_bi, bi);
3159 3160 3161 3162 3163 3164
				bi = nextbi;
			}
		}
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
3165 3166 3167 3168
		/* If we were in the middle of a write the parity block might
		 * still be locked - so just clear all R5_LOCKED flags
		 */
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3169 3170
	}

3171 3172 3173
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
3174 3175
}

3176
static void
3177
handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3178 3179 3180 3181 3182
		   struct stripe_head_state *s)
{
	int abort = 0;
	int i;

3183
	BUG_ON(sh->batch_head);
3184
	clear_bit(STRIPE_SYNCING, &sh->state);
3185 3186
	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
		wake_up(&conf->wait_for_overlap);
3187
	s->syncing = 0;
3188
	s->replacing = 0;
3189
	/* There is nothing more to do for sync/check/repair.
3190 3191 3192
	 * Don't even need to abort as that is handled elsewhere
	 * if needed, and not always wanted e.g. if there is a known
	 * bad block here.
3193
	 * For recover/replace we need to record a bad block on all
3194 3195
	 * non-sync devices, or abort the recovery
	 */
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
		/* During recovery devices cannot be removed, so
		 * locking and refcounting of rdevs is not needed
		 */
		for (i = 0; i < conf->raid_disks; i++) {
			struct md_rdev *rdev = conf->disks[i].rdev;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
			rdev = conf->disks[i].replacement;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
		}
		if (abort)
			conf->recovery_disabled =
				conf->mddev->recovery_disabled;
3219
	}
3220
	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3221 3222
}

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
static int want_replace(struct stripe_head *sh, int disk_idx)
{
	struct md_rdev *rdev;
	int rv = 0;
	/* Doing recovery so rcu locking not required */
	rdev = sh->raid_conf->disks[disk_idx].replacement;
	if (rdev
	    && !test_bit(Faulty, &rdev->flags)
	    && !test_bit(In_sync, &rdev->flags)
	    && (rdev->recovery_offset <= sh->sector
		|| rdev->mddev->recovery_cp <= sh->sector))
		rv = 1;

	return rv;
}

3239
/* fetch_block - checks the given member device to see if its data needs
3240 3241 3242
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
3243
 * 0 to tell the loop in handle_stripe_fill to continue
3244
 */
3245 3246 3247

static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
			   int disk_idx, int disks)
3248
{
3249
	struct r5dev *dev = &sh->dev[disk_idx];
3250 3251
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
3252
	int i;
3253

3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280

	if (test_bit(R5_LOCKED, &dev->flags) ||
	    test_bit(R5_UPTODATE, &dev->flags))
		/* No point reading this as we already have it or have
		 * decided to get it.
		 */
		return 0;

	if (dev->toread ||
	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
		/* We need this block to directly satisfy a request */
		return 1;

	if (s->syncing || s->expanding ||
	    (s->replacing && want_replace(sh, disk_idx)))
		/* When syncing, or expanding we read everything.
		 * When replacing, we need the replaced block.
		 */
		return 1;

	if ((s->failed >= 1 && fdev[0]->toread) ||
	    (s->failed >= 2 && fdev[1]->toread))
		/* If we want to read from a failed device, then
		 * we need to actually read every other device.
		 */
		return 1;

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
	/* Sometimes neither read-modify-write nor reconstruct-write
	 * cycles can work.  In those cases we read every block we
	 * can.  Then the parity-update is certain to have enough to
	 * work with.
	 * This can only be a problem when we need to write something,
	 * and some device has failed.  If either of those tests
	 * fail we need look no further.
	 */
	if (!s->failed || !s->to_write)
		return 0;

	if (test_bit(R5_Insync, &dev->flags) &&
	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
		/* Pre-reads at not permitted until after short delay
		 * to gather multiple requests.  However if this
		 * device is no Insync, the block could only be be computed
		 * and there is no need to delay that.
		 */
		return 0;
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325

	for (i = 0; i < s->failed; i++) {
		if (fdev[i]->towrite &&
		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
			/* If we have a partial write to a failed
			 * device, then we will need to reconstruct
			 * the content of that device, so all other
			 * devices must be read.
			 */
			return 1;
	}

	/* If we are forced to do a reconstruct-write, either because
	 * the current RAID6 implementation only supports that, or
	 * or because parity cannot be trusted and we are currently
	 * recovering it, there is extra need to be careful.
	 * If one of the devices that we would need to read, because
	 * it is not being overwritten (and maybe not written at all)
	 * is missing/faulty, then we need to read everything we can.
	 */
	if (sh->raid_conf->level != 6 &&
	    sh->sector < sh->raid_conf->mddev->recovery_cp)
		/* reconstruct-write isn't being forced */
		return 0;
	for (i = 0; i < s->failed; i++) {
3326 3327 3328
		if (s->failed_num[i] != sh->pd_idx &&
		    s->failed_num[i] != sh->qd_idx &&
		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3329 3330 3331 3332
		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
			return 1;
	}

3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
	return 0;
}

static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
		       int disk_idx, int disks)
{
	struct r5dev *dev = &sh->dev[disk_idx];

	/* is the data in this block needed, and can we get it? */
	if (need_this_block(sh, s, disk_idx, disks)) {
3343 3344 3345 3346 3347
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3348
		BUG_ON(sh->batch_head);
3349
		if ((s->uptodate == disks - 1) &&
3350 3351
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
3352 3353
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
3354
			 */
3355 3356 3357 3358 3359 3360 3361 3362
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
3363 3364 3365 3366 3367 3368
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
3382
			}
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
3402 3403
		}
	}
3404 3405 3406 3407 3408

	return 0;
}

/**
3409
 * handle_stripe_fill - read or compute data to satisfy pending requests.
3410
 */
3411 3412 3413
static void handle_stripe_fill(struct stripe_head *sh,
			       struct stripe_head_state *s,
			       int disks)
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
3424
			if (fetch_block(sh, s, i, disks))
3425
				break;
3426 3427 3428
	set_bit(STRIPE_HANDLE, &sh->state);
}

3429 3430
static void break_stripe_batch_list(struct stripe_head *head_sh,
				    unsigned long handle_flags);
3431
/* handle_stripe_clean_event
3432 3433 3434 3435
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
3436
static void handle_stripe_clean_event(struct r5conf *conf,
3437
	struct stripe_head *sh, int disks, struct bio_list *return_bi)
3438 3439 3440
{
	int i;
	struct r5dev *dev;
3441
	int discard_pending = 0;
3442 3443
	struct stripe_head *head_sh = sh;
	bool do_endio = false;
3444 3445 3446 3447 3448

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
3449
			    (test_bit(R5_UPTODATE, &dev->flags) ||
3450 3451
			     test_bit(R5_Discard, &dev->flags) ||
			     test_bit(R5_SkipCopy, &dev->flags))) {
3452 3453
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
3454
				pr_debug("Return write for disc %d\n", i);
3455 3456
				if (test_and_clear_bit(R5_Discard, &dev->flags))
					clear_bit(R5_UPTODATE, &dev->flags);
3457 3458 3459
				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
				}
3460 3461 3462 3463
				do_endio = true;

returnbi:
				dev->page = dev->orig_page;
3464 3465
				wbi = dev->written;
				dev->written = NULL;
3466
				while (wbi && wbi->bi_iter.bi_sector <
3467 3468
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
3469
					if (!raid5_dec_bi_active_stripes(wbi)) {
3470
						md_write_end(conf->mddev);
3471
						bio_list_add(return_bi, wbi);
3472 3473 3474
					}
					wbi = wbi2;
				}
3475 3476
				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
						STRIPE_SECTORS,
3477
					 !test_bit(STRIPE_DEGRADED, &sh->state),
3478
						0);
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
				if (head_sh->batch_head) {
					sh = list_first_entry(&sh->batch_list,
							      struct stripe_head,
							      batch_list);
					if (sh != head_sh) {
						dev = &sh->dev[i];
						goto returnbi;
					}
				}
				sh = head_sh;
				dev = &sh->dev[i];
3490 3491
			} else if (test_bit(R5_Discard, &dev->flags))
				discard_pending = 1;
3492 3493
			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
			WARN_ON(dev->page != dev->orig_page);
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
		}
	if (!discard_pending &&
	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
		if (sh->qd_idx >= 0) {
			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
		}
		/* now that discard is done we can proceed with any sync */
		clear_bit(STRIPE_DISCARD, &sh->state);
S
Shaohua Li 已提交
3505 3506 3507 3508 3509 3510
		/*
		 * SCSI discard will change some bio fields and the stripe has
		 * no updated data, so remove it from hash list and the stripe
		 * will be reinitialized
		 */
		spin_lock_irq(&conf->device_lock);
3511
unhash:
S
Shaohua Li 已提交
3512
		remove_hash(sh);
3513 3514 3515 3516 3517 3518
		if (head_sh->batch_head) {
			sh = list_first_entry(&sh->batch_list,
					      struct stripe_head, batch_list);
			if (sh != head_sh)
					goto unhash;
		}
S
Shaohua Li 已提交
3519
		spin_unlock_irq(&conf->device_lock);
3520 3521
		sh = head_sh;

3522 3523 3524 3525
		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
			set_bit(STRIPE_HANDLE, &sh->state);

	}
3526 3527 3528 3529

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
3530

3531 3532
	if (head_sh->batch_head && do_endio)
		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3533 3534
}

3535
static void handle_stripe_dirtying(struct r5conf *conf,
3536 3537 3538
				   struct stripe_head *sh,
				   struct stripe_head_state *s,
				   int disks)
3539 3540
{
	int rmw = 0, rcw = 0, i;
3541 3542
	sector_t recovery_cp = conf->mddev->recovery_cp;

3543
	/* Check whether resync is now happening or should start.
3544 3545 3546 3547 3548 3549
	 * If yes, then the array is dirty (after unclean shutdown or
	 * initial creation), so parity in some stripes might be inconsistent.
	 * In this case, we need to always do reconstruct-write, to ensure
	 * that in case of drive failure or read-error correction, we
	 * generate correct data from the parity.
	 */
3550
	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3551 3552
	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
	     s->failed == 0)) {
3553
		/* Calculate the real rcw later - for now make it
3554 3555 3556
		 * look like rcw is cheaper
		 */
		rcw = 1; rmw = 2;
3557 3558
		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
			 conf->rmw_level, (unsigned long long)recovery_cp,
3559
			 (unsigned long long)sh->sector);
3560
	} else for (i = disks; i--; ) {
3561 3562
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
3563
		if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3564
		    !test_bit(R5_LOCKED, &dev->flags) &&
3565 3566
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
3567 3568 3569 3570 3571 3572
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
3573 3574
		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
		    i != sh->pd_idx && i != sh->qd_idx &&
3575
		    !test_bit(R5_LOCKED, &dev->flags) &&
3576 3577
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
3578 3579
			if (test_bit(R5_Insync, &dev->flags))
				rcw++;
3580 3581 3582 3583
			else
				rcw += 2*disks;
		}
	}
3584
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3585 3586
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
3587
	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3588
		/* prefer read-modify-write, but need to get some data */
3589 3590 3591 3592
		if (conf->mddev->queue)
			blk_add_trace_msg(conf->mddev->queue,
					  "raid5 rmw %llu %d",
					  (unsigned long long)sh->sector, rmw);
3593 3594
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
3595
			if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3596
			    !test_bit(R5_LOCKED, &dev->flags) &&
3597 3598
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
3599
			    test_bit(R5_Insync, &dev->flags)) {
3600 3601 3602 3603
				if (test_bit(STRIPE_PREREAD_ACTIVE,
					     &sh->state)) {
					pr_debug("Read_old block %d for r-m-w\n",
						 i);
3604 3605 3606 3607 3608 3609 3610 3611 3612
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
N
NeilBrown 已提交
3613
	}
3614
	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3615
		/* want reconstruct write, but need to get some data */
N
NeilBrown 已提交
3616
		int qread =0;
3617
		rcw = 0;
3618 3619 3620
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3621
			    i != sh->pd_idx && i != sh->qd_idx &&
3622
			    !test_bit(R5_LOCKED, &dev->flags) &&
3623
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3624 3625
			      test_bit(R5_Wantcompute, &dev->flags))) {
				rcw++;
3626 3627 3628
				if (test_bit(R5_Insync, &dev->flags) &&
				    test_bit(STRIPE_PREREAD_ACTIVE,
					     &sh->state)) {
3629
					pr_debug("Read_old block "
3630 3631 3632 3633
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
N
NeilBrown 已提交
3634
					qread++;
3635 3636 3637 3638 3639 3640
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
3641
		if (rcw && conf->mddev->queue)
N
NeilBrown 已提交
3642 3643 3644
			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
					  (unsigned long long)sh->sector,
					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3645
	}
3646 3647 3648 3649 3650

	if (rcw > disks && rmw > disks &&
	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
		set_bit(STRIPE_DELAYED, &sh->state);

3651 3652 3653
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
3654 3655
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
3656 3657
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
3658 3659 3660
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
3661 3662 3663
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3664
		schedule_reconstruction(sh, s, rcw == 0, 0);
3665 3666
}

3667
static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3668 3669
				struct stripe_head_state *s, int disks)
{
3670
	struct r5dev *dev = NULL;
3671

3672
	BUG_ON(sh->batch_head);
3673
	set_bit(STRIPE_HANDLE, &sh->state);
3674

3675 3676 3677
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
3678 3679
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
3680 3681
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3682 3683
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
3684
			break;
3685
		}
3686
		dev = &sh->dev[s->failed_num[0]];
3687 3688 3689 3690 3691 3692 3693 3694 3695
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
3696

3697 3698 3699 3700 3701
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
3702
		s->locked++;
3703
		set_bit(R5_Wantwrite, &dev->flags);
3704

3705 3706
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
3723
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3724 3725 3726 3727 3728
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
3729
			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3730 3731 3732 3733 3734
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
3735
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3736 3737 3738 3739
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
3740
				sh->ops.target2 = -1;
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3752 3753 3754
	}
}

3755
static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3756
				  struct stripe_head_state *s,
3757
				  int disks)
3758 3759
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
3760
	int qd_idx = sh->qd_idx;
3761
	struct r5dev *dev;
3762

3763
	BUG_ON(sh->batch_head);
3764 3765 3766
	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
3767

3768 3769 3770 3771 3772 3773
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

3774 3775 3776
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
3777
		if (s->failed == s->q_failed) {
3778
			/* The only possible failed device holds Q, so it
3779 3780 3781
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
3782
			sh->check_state = check_state_run;
3783
		}
3784
		if (!s->q_failed && s->failed < 2) {
3785
			/* Q is not failed, and we didn't use it to generate
3786 3787
			 * anything, so it makes sense to check it
			 */
3788 3789 3790 3791
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
3792 3793
		}

3794 3795
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
3796

3797 3798 3799 3800
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
3801
		}
3802 3803 3804 3805 3806 3807 3808
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
3809 3810
		}

3811 3812 3813 3814 3815
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
3816

3817 3818 3819
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
3820 3821

		/* now write out any block on a failed drive,
3822
		 * or P or Q if they were recomputed
3823
		 */
3824
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3825
		if (s->failed == 2) {
3826
			dev = &sh->dev[s->failed_num[1]];
3827 3828 3829 3830 3831
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
3832
			dev = &sh->dev[s->failed_num[0]];
3833 3834 3835 3836
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3837
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3838 3839 3840 3841 3842
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3843
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3844 3845 3846 3847 3848 3849 3850 3851
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
3881
			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3916 3917 3918
	}
}

3919
static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3920 3921 3922 3923 3924 3925
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
3926
	struct dma_async_tx_descriptor *tx = NULL;
3927
	BUG_ON(sh->batch_head);
3928 3929
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
3930
		if (i != sh->pd_idx && i != sh->qd_idx) {
3931
			int dd_idx, j;
3932
			struct stripe_head *sh2;
3933
			struct async_submit_ctl submit;
3934

3935
			sector_t bn = compute_blocknr(sh, i, 1);
3936 3937
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
3938
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
3951 3952

			/* place all the copies on one channel */
3953
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3954
			tx = async_memcpy(sh2->dev[dd_idx].page,
3955
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3956
					  &submit);
3957

3958 3959 3960 3961
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
3962
				    j != sh2->qd_idx &&
3963 3964 3965 3966 3967 3968 3969
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
3970

3971
		}
3972
	/* done submitting copies, wait for them to complete */
3973
	async_tx_quiesce(&tx);
3974
}
L
Linus Torvalds 已提交
3975 3976 3977 3978

/*
 * handle_stripe - do things to a stripe.
 *
3979 3980
 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
 * state of various bits to see what needs to be done.
L
Linus Torvalds 已提交
3981
 * Possible results:
3982 3983
 *    return some read requests which now have data
 *    return some write requests which are safely on storage
L
Linus Torvalds 已提交
3984 3985 3986 3987 3988
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 */
3989

3990
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
3991
{
3992
	struct r5conf *conf = sh->raid_conf;
3993
	int disks = sh->disks;
3994 3995
	struct r5dev *dev;
	int i;
3996
	int do_recovery = 0;
L
Linus Torvalds 已提交
3997

3998 3999
	memset(s, 0, sizeof(*s));

4000 4001
	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4002 4003
	s->failed_num[0] = -1;
	s->failed_num[1] = -1;
L
Linus Torvalds 已提交
4004

4005
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
4006
	rcu_read_lock();
4007
	for (i=disks; i--; ) {
4008
		struct md_rdev *rdev;
4009 4010 4011
		sector_t first_bad;
		int bad_sectors;
		int is_bad = 0;
4012

4013
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
4014

4015
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4016 4017
			 i, dev->flags,
			 dev->toread, dev->towrite, dev->written);
4018 4019 4020 4021 4022 4023 4024 4025
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
4026

4027
		/* now count some things */
4028 4029 4030 4031
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
4032
		if (test_bit(R5_Wantcompute, &dev->flags)) {
4033 4034
			s->compute++;
			BUG_ON(s->compute > 2);
4035
		}
L
Linus Torvalds 已提交
4036

4037
		if (test_bit(R5_Wantfill, &dev->flags))
4038
			s->to_fill++;
4039
		else if (dev->toread)
4040
			s->to_read++;
4041
		if (dev->towrite) {
4042
			s->to_write++;
4043
			if (!test_bit(R5_OVERWRITE, &dev->flags))
4044
				s->non_overwrite++;
4045
		}
4046
		if (dev->written)
4047
			s->written++;
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
		/* Prefer to use the replacement for reads, but only
		 * if it is recovered enough and has no bad blocks.
		 */
		rdev = rcu_dereference(conf->disks[i].replacement);
		if (rdev && !test_bit(Faulty, &rdev->flags) &&
		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
				 &first_bad, &bad_sectors))
			set_bit(R5_ReadRepl, &dev->flags);
		else {
4058
			if (rdev && !test_bit(Faulty, &rdev->flags))
4059
				set_bit(R5_NeedReplace, &dev->flags);
4060 4061
			else
				clear_bit(R5_NeedReplace, &dev->flags);
4062 4063 4064
			rdev = rcu_dereference(conf->disks[i].rdev);
			clear_bit(R5_ReadRepl, &dev->flags);
		}
4065 4066
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
		if (rdev) {
			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					     &first_bad, &bad_sectors);
			if (s->blocked_rdev == NULL
			    && (test_bit(Blocked, &rdev->flags)
				|| is_bad < 0)) {
				if (is_bad < 0)
					set_bit(BlockedBadBlocks,
						&rdev->flags);
				s->blocked_rdev = rdev;
				atomic_inc(&rdev->nr_pending);
			}
4079
		}
4080 4081 4082
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
4083 4084
		else if (is_bad) {
			/* also not in-sync */
4085 4086
			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
			    test_bit(R5_UPTODATE, &dev->flags)) {
4087 4088 4089 4090 4091 4092 4093
				/* treat as in-sync, but with a read error
				 * which we can now try to correct
				 */
				set_bit(R5_Insync, &dev->flags);
				set_bit(R5_ReadError, &dev->flags);
			}
		} else if (test_bit(In_sync, &rdev->flags))
4094
			set_bit(R5_Insync, &dev->flags);
4095
		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4096
			/* in sync if before recovery_offset */
4097 4098 4099 4100 4101 4102 4103 4104 4105
			set_bit(R5_Insync, &dev->flags);
		else if (test_bit(R5_UPTODATE, &dev->flags) &&
			 test_bit(R5_Expanded, &dev->flags))
			/* If we've reshaped into here, we assume it is Insync.
			 * We will shortly update recovery_offset to make
			 * it official.
			 */
			set_bit(R5_Insync, &dev->flags);

4106
		if (test_bit(R5_WriteError, &dev->flags)) {
4107 4108 4109 4110 4111 4112 4113
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 == rdev)
				clear_bit(R5_Insync, &dev->flags);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4114
				s->handle_bad_blocks = 1;
4115
				atomic_inc(&rdev2->nr_pending);
4116 4117 4118
			} else
				clear_bit(R5_WriteError, &dev->flags);
		}
4119
		if (test_bit(R5_MadeGood, &dev->flags)) {
4120 4121 4122 4123 4124
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4125
				s->handle_bad_blocks = 1;
4126
				atomic_inc(&rdev2->nr_pending);
4127 4128 4129
			} else
				clear_bit(R5_MadeGood, &dev->flags);
		}
4130 4131 4132 4133 4134 4135 4136 4137 4138
		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].replacement);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
				s->handle_bad_blocks = 1;
				atomic_inc(&rdev2->nr_pending);
			} else
				clear_bit(R5_MadeGoodRepl, &dev->flags);
		}
4139
		if (!test_bit(R5_Insync, &dev->flags)) {
4140 4141 4142
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
4143
		}
4144 4145 4146
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
4147 4148 4149
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
4150 4151
			if (rdev && !test_bit(Faulty, &rdev->flags))
				do_recovery = 1;
4152
		}
L
Linus Torvalds 已提交
4153
	}
4154 4155 4156 4157
	if (test_bit(STRIPE_SYNCING, &sh->state)) {
		/* If there is a failed device being replaced,
		 *     we must be recovering.
		 * else if we are after recovery_cp, we must be syncing
4158
		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4159 4160 4161 4162 4163
		 * else we can only be replacing
		 * sync and recovery both need to read all devices, and so
		 * use the same flag.
		 */
		if (do_recovery ||
4164 4165
		    sh->sector >= conf->mddev->recovery_cp ||
		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4166 4167 4168 4169
			s->syncing = 1;
		else
			s->replacing = 1;
	}
L
Linus Torvalds 已提交
4170
	rcu_read_unlock();
4171 4172
}

4173 4174
static int clear_batch_ready(struct stripe_head *sh)
{
4175 4176 4177 4178
	/* Return '1' if this is a member of batch, or
	 * '0' if it is a lone stripe or a head which can now be
	 * handled.
	 */
4179 4180
	struct stripe_head *tmp;
	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4181
		return (sh->batch_head && sh->batch_head != sh);
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
	spin_lock(&sh->stripe_lock);
	if (!sh->batch_head) {
		spin_unlock(&sh->stripe_lock);
		return 0;
	}

	/*
	 * this stripe could be added to a batch list before we check
	 * BATCH_READY, skips it
	 */
	if (sh->batch_head != sh) {
		spin_unlock(&sh->stripe_lock);
		return 1;
	}
	spin_lock(&sh->batch_lock);
	list_for_each_entry(tmp, &sh->batch_list, batch_list)
		clear_bit(STRIPE_BATCH_READY, &tmp->state);
	spin_unlock(&sh->batch_lock);
	spin_unlock(&sh->stripe_lock);

	/*
	 * BATCH_READY is cleared, no new stripes can be added.
	 * batch_list can be accessed without lock
	 */
	return 0;
}

4209 4210
static void break_stripe_batch_list(struct stripe_head *head_sh,
				    unsigned long handle_flags)
4211
{
4212
	struct stripe_head *sh, *next;
4213
	int i;
4214
	int do_wakeup = 0;
4215

4216 4217
	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {

4218 4219
		list_del_init(&sh->batch_list);

4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
		WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
					  (1 << STRIPE_SYNCING) |
					  (1 << STRIPE_REPLACED) |
					  (1 << STRIPE_PREREAD_ACTIVE) |
					  (1 << STRIPE_DELAYED) |
					  (1 << STRIPE_BIT_DELAY) |
					  (1 << STRIPE_FULL_WRITE) |
					  (1 << STRIPE_BIOFILL_RUN) |
					  (1 << STRIPE_COMPUTE_RUN)  |
					  (1 << STRIPE_OPS_REQ_PENDING) |
					  (1 << STRIPE_DISCARD) |
					  (1 << STRIPE_BATCH_READY) |
					  (1 << STRIPE_BATCH_ERR) |
					  (1 << STRIPE_BITMAP_PENDING)));
		WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
					      (1 << STRIPE_REPLACED)));

		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
					    (1 << STRIPE_DEGRADED)),
			      head_sh->state & (1 << STRIPE_INSYNC));

4241 4242
		sh->check_state = head_sh->check_state;
		sh->reconstruct_state = head_sh->reconstruct_state;
4243 4244 4245
		for (i = 0; i < sh->disks; i++) {
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				do_wakeup = 1;
4246 4247
			sh->dev[i].flags = head_sh->dev[i].flags &
				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4248
		}
4249 4250 4251
		spin_lock_irq(&sh->stripe_lock);
		sh->batch_head = NULL;
		spin_unlock_irq(&sh->stripe_lock);
4252 4253 4254
		if (handle_flags == 0 ||
		    sh->state & handle_flags)
			set_bit(STRIPE_HANDLE, &sh->state);
4255 4256
		release_stripe(sh);
	}
4257 4258 4259 4260 4261 4262
	spin_lock_irq(&head_sh->stripe_lock);
	head_sh->batch_head = NULL;
	spin_unlock_irq(&head_sh->stripe_lock);
	for (i = 0; i < head_sh->disks; i++)
		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
			do_wakeup = 1;
4263 4264
	if (head_sh->state & handle_flags)
		set_bit(STRIPE_HANDLE, &head_sh->state);
4265 4266 4267

	if (do_wakeup)
		wake_up(&head_sh->raid_conf->wait_for_overlap);
4268 4269
}

4270 4271 4272
static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
4273
	struct r5conf *conf = sh->raid_conf;
4274
	int i;
4275 4276
	int prexor;
	int disks = sh->disks;
4277
	struct r5dev *pdev, *qdev;
4278 4279

	clear_bit(STRIPE_HANDLE, &sh->state);
4280
	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4281 4282 4283 4284 4285 4286
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

4287 4288 4289 4290 4291
	if (clear_batch_ready(sh) ) {
		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
		return;
	}

4292
	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4293
		break_stripe_batch_list(sh, 0);
4294

4295
	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4296 4297 4298 4299 4300 4301
		spin_lock(&sh->stripe_lock);
		/* Cannot process 'sync' concurrently with 'discard' */
		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
			set_bit(STRIPE_SYNCING, &sh->state);
			clear_bit(STRIPE_INSYNC, &sh->state);
4302
			clear_bit(STRIPE_REPLACED, &sh->state);
4303 4304
		}
		spin_unlock(&sh->stripe_lock);
4305 4306 4307 4308 4309 4310 4311 4312
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
4313

4314
	analyse_stripe(sh, &s);
4315

4316 4317 4318 4319 4320
	if (s.handle_bad_blocks) {
		set_bit(STRIPE_HANDLE, &sh->state);
		goto finish;
	}

4321 4322
	if (unlikely(s.blocked_rdev)) {
		if (s.syncing || s.expanding || s.expanded ||
4323
		    s.replacing || s.to_write || s.written) {
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
			set_bit(STRIPE_HANDLE, &sh->state);
			goto finish;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(s.blocked_rdev, conf->mddev);
		s.blocked_rdev = NULL;
	}

	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

	pr_debug("locked=%d uptodate=%d to_read=%d"
	       " to_write=%d failed=%d failed_num=%d,%d\n",
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       s.failed_num[0], s.failed_num[1]);
	/* check if the array has lost more than max_degraded devices and,
	 * if so, some requests might need to be failed.
	 */
4344 4345 4346
	if (s.failed > conf->max_degraded) {
		sh->check_state = 0;
		sh->reconstruct_state = 0;
4347
		break_stripe_batch_list(sh, 0);
4348 4349
		if (s.to_read+s.to_write+s.written)
			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4350
		if (s.syncing + s.replacing)
4351 4352
			handle_failed_sync(conf, sh, &s);
	}
4353

4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	prexor = 0;
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
		prexor = 1;
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
		sh->reconstruct_state = reconstruct_state_idle;

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
4367 4368
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4369
		BUG_ON(sh->qd_idx >= 0 &&
4370 4371
		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4372 4373 4374 4375 4376 4377 4378 4379 4380
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || i == sh->qd_idx ||
				 dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
				if (prexor)
					continue;
4381 4382
				if (s.failed > 1)
					continue;
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
				     s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			s.dec_preread_active = 1;
	}

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[sh->pd_idx];
	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
	qdev = &sh->dev[sh->qd_idx];
	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
		|| conf->level < 6;

	if (s.written &&
	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
			     && !test_bit(R5_LOCKED, &pdev->flags)
			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
				 test_bit(R5_Discard, &pdev->flags))))) &&
	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
			     && !test_bit(R5_LOCKED, &qdev->flags)
			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
				 test_bit(R5_Discard, &qdev->flags))))))
		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
	if (s.to_read || s.non_overwrite
	    || (conf->level == 6 && s.to_write && s.failed)
	    || (s.syncing && (s.uptodate + s.compute < disks))
	    || s.replacing
	    || s.expanding)
		handle_stripe_fill(sh, &s, disks);

4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying(conf, sh, &s, disks);

	/* maybe we need to check and possibly fix the parity for this stripe
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
	 */
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state))) {
		if (conf->level == 6)
			handle_parity_checks6(conf, sh, &s, disks);
		else
			handle_parity_checks5(conf, sh, &s, disks);
	}
4450

4451 4452 4453
	if ((s.replacing || s.syncing) && s.locked == 0
	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4454 4455
		/* Write out to replacement devices where possible */
		for (i = 0; i < conf->raid_disks; i++)
4456 4457
			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4458 4459 4460 4461
				set_bit(R5_WantReplace, &sh->dev[i].flags);
				set_bit(R5_LOCKED, &sh->dev[i].flags);
				s.locked++;
			}
4462 4463 4464
		if (s.replacing)
			set_bit(STRIPE_INSYNC, &sh->state);
		set_bit(STRIPE_REPLACED, &sh->state);
4465 4466
	}
	if ((s.syncing || s.replacing) && s.locked == 0 &&
4467
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4468
	    test_bit(STRIPE_INSYNC, &sh->state)) {
4469 4470
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
		clear_bit(STRIPE_SYNCING, &sh->state);
4471 4472
		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
			wake_up(&conf->wait_for_overlap);
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			struct r5dev *dev = &sh->dev[s.failed_num[i]];
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				}
			}
		}

4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		struct stripe_head *sh_src
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
			/* sh cannot be written until sh_src has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh_src->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh_src);
			goto finish;
		}
		if (sh_src)
			release_stripe(sh_src);

		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}
4526

4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		stripe_set_idx(sh->sector, conf, 0, sh);
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
		handle_stripe_expansion(conf, sh);
4543

4544
finish:
4545
	/* wait for this device to become unblocked */
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
	if (unlikely(s.blocked_rdev)) {
		if (conf->mddev->external)
			md_wait_for_blocked_rdev(s.blocked_rdev,
						 conf->mddev);
		else
			/* Internal metadata will immediately
			 * be written by raid5d, so we don't
			 * need to wait here.
			 */
			rdev_dec_pending(s.blocked_rdev,
					 conf->mddev);
	}
4558

4559 4560
	if (s.handle_bad_blocks)
		for (i = disks; i--; ) {
4561
			struct md_rdev *rdev;
4562 4563 4564 4565 4566 4567 4568 4569 4570
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
				/* We own a safe reference to the rdev */
				rdev = conf->disks[i].rdev;
				if (!rdev_set_badblocks(rdev, sh->sector,
							STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
4571 4572 4573
			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
				rdev = conf->disks[i].rdev;
				rdev_clear_badblocks(rdev, sh->sector,
4574
						     STRIPE_SECTORS, 0);
4575 4576
				rdev_dec_pending(rdev, conf->mddev);
			}
4577 4578
			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
				rdev = conf->disks[i].replacement;
4579 4580 4581
				if (!rdev)
					/* rdev have been moved down */
					rdev = conf->disks[i].rdev;
4582
				rdev_clear_badblocks(rdev, sh->sector,
4583
						     STRIPE_SECTORS, 0);
4584 4585
				rdev_dec_pending(rdev, conf->mddev);
			}
4586 4587
		}

4588 4589 4590
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
4591
	ops_run_io(sh, &s);
4592

4593
	if (s.dec_preread_active) {
4594
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
4595
		 * is waiting on a flush, it won't continue until the writes
4596 4597 4598 4599 4600 4601 4602 4603
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

4604
	return_io(&s.return_bi);
4605

4606
	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4607 4608
}

4609
static void raid5_activate_delayed(struct r5conf *conf)
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
4620
			list_add_tail(&sh->lru, &conf->hold_list);
4621
			raid5_wakeup_stripe_thread(sh);
4622
		}
N
NeilBrown 已提交
4623
	}
4624 4625
}

4626 4627
static void activate_bit_delay(struct r5conf *conf,
	struct list_head *temp_inactive_list)
4628 4629 4630 4631 4632 4633 4634
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4635
		int hash;
4636 4637
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
4638 4639
		hash = sh->hash_lock_index;
		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4640 4641 4642
	}
}

4643
static int raid5_congested(struct mddev *mddev, int bits)
4644
{
4645
	struct r5conf *conf = mddev->private;
4646 4647 4648 4649

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
4650

4651
	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4652 4653 4654
		return 1;
	if (conf->quiesce)
		return 1;
4655
	if (atomic_read(&conf->empty_inactive_list_nr))
4656 4657 4658 4659 4660
		return 1;

	return 0;
}

4661 4662 4663
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
4664
static int raid5_mergeable_bvec(struct mddev *mddev,
4665 4666
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
4667
{
4668
	struct r5conf *conf = mddev->private;
4669
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4670
	int max;
4671
	unsigned int chunk_sectors;
4672
	unsigned int bio_sectors = bvm->bi_size >> 9;
4673

4674 4675 4676 4677 4678 4679
	/*
	 * always allow writes to be mergeable, read as well if array
	 * is degraded as we'll go through stripe cache anyway.
	 */
	if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
		return biovec->bv_len;
4680

4681
	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4682 4683 4684 4685 4686 4687 4688 4689
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

4690
static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4691
{
4692
	struct r5conf *conf = mddev->private;
4693
	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4694
	unsigned int chunk_sectors;
4695
	unsigned int bio_sectors = bio_sectors(bio);
4696

4697
	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4698 4699 4700 4701
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

4702 4703 4704 4705
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
4706
static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}

4719
static struct bio *remove_bio_from_retry(struct r5conf *conf)
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
4730
		conf->retry_read_aligned_list = bi->bi_next;
4731
		bi->bi_next = NULL;
4732 4733 4734 4735
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
4736
		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4737 4738 4739 4740 4741
	}

	return bi;
}

4742 4743 4744 4745 4746 4747
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
4748
static void raid5_align_endio(struct bio *bi, int error)
4749 4750
{
	struct bio* raid_bi  = bi->bi_private;
4751
	struct mddev *mddev;
4752
	struct r5conf *conf;
4753
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4754
	struct md_rdev *rdev;
4755

4756
	bio_put(bi);
4757 4758 4759

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
4760 4761
	mddev = rdev->mddev;
	conf = mddev->private;
4762 4763 4764 4765

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
4766 4767
		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
					 raid_bi, 0);
4768
		bio_endio(raid_bi, 0);
4769
		if (atomic_dec_and_test(&conf->active_aligned_reads))
4770
			wake_up(&conf->wait_for_quiescent);
4771
		return;
4772 4773
	}

4774
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4775 4776

	add_bio_to_retry(raid_bi, conf);
4777 4778
}

4779 4780
static int bio_fits_rdev(struct bio *bi)
{
4781
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4782

4783
	if (bio_sectors(bi) > queue_max_sectors(q))
4784 4785
		return 0;
	blk_recount_segments(q, bi);
4786
	if (bi->bi_phys_segments > queue_max_segments(q))
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}

4798
static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4799
{
4800
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
4801
	int dd_idx;
4802
	struct bio* align_bi;
4803
	struct md_rdev *rdev;
4804
	sector_t end_sector;
4805 4806

	if (!in_chunk_boundary(mddev, raid_bio)) {
4807
		pr_debug("chunk_aligned_read : non aligned\n");
4808 4809 4810
		return 0;
	}
	/*
4811
	 * use bio_clone_mddev to make a copy of the bio
4812
	 */
4813
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
4825 4826 4827
	align_bi->bi_iter.bi_sector =
		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
				     0, &dd_idx, NULL);
4828

K
Kent Overstreet 已提交
4829
	end_sector = bio_end_sector(align_bi);
4830
	rcu_read_lock();
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
	if (!rdev || test_bit(Faulty, &rdev->flags) ||
	    rdev->recovery_offset < end_sector) {
		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
		if (rdev &&
		    (test_bit(Faulty, &rdev->flags) ||
		    !(test_bit(In_sync, &rdev->flags) ||
		      rdev->recovery_offset >= end_sector)))
			rdev = NULL;
	}
	if (rdev) {
4842 4843 4844
		sector_t first_bad;
		int bad_sectors;

4845 4846
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
4847 4848
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
4849
		__clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4850

4851
		if (!bio_fits_rdev(align_bi) ||
4852 4853
		    is_badblock(rdev, align_bi->bi_iter.bi_sector,
				bio_sectors(align_bi),
4854 4855
				&first_bad, &bad_sectors)) {
			/* too big in some way, or has a known bad block */
4856 4857 4858 4859 4860
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

4861
		/* No reshape active, so we can trust rdev->data_offset */
4862
		align_bi->bi_iter.bi_sector += rdev->data_offset;
4863

4864
		spin_lock_irq(&conf->device_lock);
4865
		wait_event_lock_irq(conf->wait_for_quiescent,
4866
				    conf->quiesce == 0,
4867
				    conf->device_lock);
4868 4869 4870
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

4871 4872 4873
		if (mddev->gendisk)
			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
					      align_bi, disk_devt(mddev->gendisk),
4874
					      raid_bio->bi_iter.bi_sector);
4875 4876 4877 4878
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
4879
		bio_put(align_bi);
4880 4881 4882 4883
		return 0;
	}
}

4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
4894
static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4895
{
4896 4897
	struct stripe_head *sh = NULL, *tmp;
	struct list_head *handle_list = NULL;
4898
	struct r5worker_group *wg = NULL;
4899 4900 4901 4902 4903

	if (conf->worker_cnt_per_group == 0) {
		handle_list = &conf->handle_list;
	} else if (group != ANY_GROUP) {
		handle_list = &conf->worker_groups[group].handle_list;
4904
		wg = &conf->worker_groups[group];
4905 4906 4907 4908
	} else {
		int i;
		for (i = 0; i < conf->group_cnt; i++) {
			handle_list = &conf->worker_groups[i].handle_list;
4909
			wg = &conf->worker_groups[i];
4910 4911 4912 4913
			if (!list_empty(handle_list))
				break;
		}
	}
4914 4915 4916

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
4917
		  list_empty(handle_list) ? "empty" : "busy",
4918 4919 4920
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

4921 4922
	if (!list_empty(handle_list)) {
		sh = list_entry(handle_list->next, typeof(*sh), lru);
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955

		list_for_each_entry(tmp, &conf->hold_list,  lru) {
			if (conf->worker_cnt_per_group == 0 ||
			    group == ANY_GROUP ||
			    !cpu_online(tmp->cpu) ||
			    cpu_to_group(tmp->cpu) == group) {
				sh = tmp;
				break;
			}
		}

		if (sh) {
			conf->bypass_count -= conf->bypass_threshold;
			if (conf->bypass_count < 0)
				conf->bypass_count = 0;
		}
4956
		wg = NULL;
4957 4958 4959
	}

	if (!sh)
4960 4961
		return NULL;

4962 4963 4964 4965
	if (wg) {
		wg->stripes_cnt--;
		sh->group = NULL;
	}
4966
	list_del_init(&sh->lru);
4967
	BUG_ON(atomic_inc_return(&sh->count) != 1);
4968 4969
	return sh;
}
4970

4971 4972 4973
struct raid5_plug_cb {
	struct blk_plug_cb	cb;
	struct list_head	list;
4974
	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4975 4976 4977 4978 4979 4980 4981 4982 4983
};

static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
{
	struct raid5_plug_cb *cb = container_of(
		blk_cb, struct raid5_plug_cb, cb);
	struct stripe_head *sh;
	struct mddev *mddev = cb->cb.data;
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
4984
	int cnt = 0;
4985
	int hash;
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996

	if (cb->list.next && !list_empty(&cb->list)) {
		spin_lock_irq(&conf->device_lock);
		while (!list_empty(&cb->list)) {
			sh = list_first_entry(&cb->list, struct stripe_head, lru);
			list_del_init(&sh->lru);
			/*
			 * avoid race release_stripe_plug() sees
			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
			 * is still in our list
			 */
4997
			smp_mb__before_atomic();
4998
			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
S
Shaohua Li 已提交
4999 5000 5001 5002
			/*
			 * STRIPE_ON_RELEASE_LIST could be set here. In that
			 * case, the count is always > 1 here
			 */
5003 5004
			hash = sh->hash_lock_index;
			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
N
NeilBrown 已提交
5005
			cnt++;
5006 5007 5008
		}
		spin_unlock_irq(&conf->device_lock);
	}
5009 5010
	release_inactive_stripe_list(conf, cb->temp_inactive_list,
				     NR_STRIPE_HASH_LOCKS);
5011 5012
	if (mddev->queue)
		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
	kfree(cb);
}

static void release_stripe_plug(struct mddev *mddev,
				struct stripe_head *sh)
{
	struct blk_plug_cb *blk_cb = blk_check_plugged(
		raid5_unplug, mddev,
		sizeof(struct raid5_plug_cb));
	struct raid5_plug_cb *cb;

	if (!blk_cb) {
		release_stripe(sh);
		return;
	}

	cb = container_of(blk_cb, struct raid5_plug_cb, cb);

5031 5032
	if (cb->list.next == NULL) {
		int i;
5033
		INIT_LIST_HEAD(&cb->list);
5034 5035 5036
		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
			INIT_LIST_HEAD(cb->temp_inactive_list + i);
	}
5037 5038 5039 5040 5041 5042 5043

	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
		list_add_tail(&sh->lru, &cb->list);
	else
		release_stripe(sh);
}

S
Shaohua Li 已提交
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
static void make_discard_request(struct mddev *mddev, struct bio *bi)
{
	struct r5conf *conf = mddev->private;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
	int remaining;
	int stripe_sectors;

	if (mddev->reshape_position != MaxSector)
		/* Skip discard while reshape is happening */
		return;

5056 5057
	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
S
Shaohua Li 已提交
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078

	bi->bi_next = NULL;
	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */

	stripe_sectors = conf->chunk_sectors *
		(conf->raid_disks - conf->max_degraded);
	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
					       stripe_sectors);
	sector_div(last_sector, stripe_sectors);

	logical_sector *= conf->chunk_sectors;
	last_sector *= conf->chunk_sectors;

	for (; logical_sector < last_sector;
	     logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
		int d;
	again:
		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
		prepare_to_wait(&conf->wait_for_overlap, &w,
				TASK_UNINTERRUPTIBLE);
5079 5080 5081 5082 5083 5084 5085
		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
		if (test_bit(STRIPE_SYNCING, &sh->state)) {
			release_stripe(sh);
			schedule();
			goto again;
		}
		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
S
Shaohua Li 已提交
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
		spin_lock_irq(&sh->stripe_lock);
		for (d = 0; d < conf->raid_disks; d++) {
			if (d == sh->pd_idx || d == sh->qd_idx)
				continue;
			if (sh->dev[d].towrite || sh->dev[d].toread) {
				set_bit(R5_Overlap, &sh->dev[d].flags);
				spin_unlock_irq(&sh->stripe_lock);
				release_stripe(sh);
				schedule();
				goto again;
			}
		}
5098
		set_bit(STRIPE_DISCARD, &sh->state);
S
Shaohua Li 已提交
5099
		finish_wait(&conf->wait_for_overlap, &w);
5100
		sh->overwrite_disks = 0;
S
Shaohua Li 已提交
5101 5102 5103 5104 5105 5106
		for (d = 0; d < conf->raid_disks; d++) {
			if (d == sh->pd_idx || d == sh->qd_idx)
				continue;
			sh->dev[d].towrite = bi;
			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
			raid5_inc_bi_active_stripes(bi);
5107
			sh->overwrite_disks++;
S
Shaohua Li 已提交
5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
		}
		spin_unlock_irq(&sh->stripe_lock);
		if (conf->mddev->bitmap) {
			for (d = 0;
			     d < conf->raid_disks - conf->max_degraded;
			     d++)
				bitmap_startwrite(mddev->bitmap,
						  sh->sector,
						  STRIPE_SECTORS,
						  0);
			sh->bm_seq = conf->seq_flush + 1;
			set_bit(STRIPE_BIT_DELAY, &sh->state);
		}

		set_bit(STRIPE_HANDLE, &sh->state);
		clear_bit(STRIPE_DELAYED, &sh->state);
		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			atomic_inc(&conf->preread_active_stripes);
		release_stripe_plug(mddev, sh);
	}

	remaining = raid5_dec_bi_active_stripes(bi);
	if (remaining == 0) {
		md_write_end(mddev);
		bio_endio(bi, 0);
	}
}

5136
static void make_request(struct mddev *mddev, struct bio * bi)
L
Linus Torvalds 已提交
5137
{
5138
	struct r5conf *conf = mddev->private;
5139
	int dd_idx;
L
Linus Torvalds 已提交
5140 5141 5142
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
5143
	const int rw = bio_data_dir(bi);
5144
	int remaining;
5145 5146
	DEFINE_WAIT(w);
	bool do_prepare;
L
Linus Torvalds 已提交
5147

T
Tejun Heo 已提交
5148 5149
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
5150
		return;
5151 5152
	}

5153
	md_write_start(mddev, bi);
5154

5155 5156 5157 5158 5159 5160
	/*
	 * If array is degraded, better not do chunk aligned read because
	 * later we might have to read it again in order to reconstruct
	 * data on failed drives.
	 */
	if (rw == READ && mddev->degraded == 0 &&
5161
	     mddev->reshape_position == MaxSector &&
5162
	     chunk_aligned_read(mddev,bi))
5163
		return;
5164

S
Shaohua Li 已提交
5165 5166 5167 5168 5169
	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
		make_discard_request(mddev, bi);
		return;
	}

5170
	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
K
Kent Overstreet 已提交
5171
	last_sector = bio_end_sector(bi);
L
Linus Torvalds 已提交
5172 5173
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5174

5175
	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5176
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5177
		int previous;
5178
		int seq;
5179

5180
		do_prepare = false;
5181
	retry:
5182
		seq = read_seqcount_begin(&conf->gen_lock);
5183
		previous = 0;
5184 5185 5186
		if (do_prepare)
			prepare_to_wait(&conf->wait_for_overlap, &w,
				TASK_UNINTERRUPTIBLE);
5187
		if (unlikely(conf->reshape_progress != MaxSector)) {
5188
			/* spinlock is needed as reshape_progress may be
5189 5190
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
5191
			 * Of course reshape_progress could change after
5192 5193 5194 5195
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
5196
			spin_lock_irq(&conf->device_lock);
5197
			if (mddev->reshape_backwards
5198 5199
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
5200 5201
				previous = 1;
			} else {
5202
				if (mddev->reshape_backwards
5203 5204
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
5205 5206
					spin_unlock_irq(&conf->device_lock);
					schedule();
5207
					do_prepare = true;
5208 5209 5210
					goto retry;
				}
			}
5211 5212
			spin_unlock_irq(&conf->device_lock);
		}
5213

5214 5215
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
5216
						  &dd_idx, NULL);
5217
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
5218
			(unsigned long long)new_sector,
L
Linus Torvalds 已提交
5219 5220
			(unsigned long long)logical_sector);

5221
		sh = get_active_stripe(conf, new_sector, previous,
5222
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
5223
		if (sh) {
5224
			if (unlikely(previous)) {
5225
				/* expansion might have moved on while waiting for a
5226 5227 5228 5229 5230 5231
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
5232 5233 5234
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
5235
				if (mddev->reshape_backwards
5236 5237
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
5238 5239 5240 5241 5242
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
5243
					schedule();
5244
					do_prepare = true;
5245 5246 5247
					goto retry;
				}
			}
5248 5249 5250 5251 5252 5253 5254
			if (read_seqcount_retry(&conf->gen_lock, seq)) {
				/* Might have got the wrong stripe_head
				 * by accident
				 */
				release_stripe(sh);
				goto retry;
			}
5255

5256
			if (rw == WRITE &&
5257
			    logical_sector >= mddev->suspend_lo &&
5258 5259
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
5260 5261 5262 5263 5264 5265 5266 5267
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
5268
				    logical_sector < mddev->suspend_hi) {
5269
					schedule();
5270 5271
					do_prepare = true;
				}
5272 5273
				goto retry;
			}
5274 5275

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5276
			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5277 5278
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
5279 5280
				 * and wait a while
				 */
N
NeilBrown 已提交
5281
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
5282 5283
				release_stripe(sh);
				schedule();
5284
				do_prepare = true;
L
Linus Torvalds 已提交
5285 5286
				goto retry;
			}
5287 5288
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
5289 5290
			if ((!sh->batch_head || sh == sh->batch_head) &&
			    (bi->bi_rw & REQ_SYNC) &&
5291 5292
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
5293
			release_stripe_plug(mddev, sh);
L
Linus Torvalds 已提交
5294 5295 5296 5297 5298 5299
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			break;
		}
	}
5300
	finish_wait(&conf->wait_for_overlap, &w);
5301

5302
	remaining = raid5_dec_bi_active_stripes(bi);
5303
	if (remaining == 0) {
L
Linus Torvalds 已提交
5304

5305
		if ( rw == WRITE )
L
Linus Torvalds 已提交
5306
			md_write_end(mddev);
5307

5308 5309
		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
					 bi, 0);
5310
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
5311 5312 5313
	}
}

5314
static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
D
Dan Williams 已提交
5315

5316
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
5317
{
5318 5319 5320 5321 5322 5323 5324 5325 5326
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
5327
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5328
	struct stripe_head *sh;
5329
	sector_t first_sector, last_sector;
5330 5331 5332
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
5333 5334
	int i;
	int dd_idx;
5335
	sector_t writepos, readpos, safepos;
5336
	sector_t stripe_addr;
5337
	int reshape_sectors;
5338
	struct list_head stripes;
5339
	sector_t retn;
5340

5341 5342
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
5343
		if (mddev->reshape_backwards &&
5344 5345 5346
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
5347 5348 5349 5350
		} else if (mddev->reshape_backwards &&
			   conf->reshape_progress == MaxSector) {
			/* shouldn't happen, but just in case, finish up.*/
			sector_nr = MaxSector;
5351
		} else if (!mddev->reshape_backwards &&
5352 5353
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
5354
		sector_div(sector_nr, new_data_disks);
5355
		if (sector_nr) {
5356 5357
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5358
			*skipped = 1;
5359 5360
			retn = sector_nr;
			goto finish;
5361
		}
5362 5363
	}

5364 5365 5366 5367
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
5368 5369

	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5370

5371 5372 5373 5374 5375
	/* We update the metadata at least every 10 seconds, or when
	 * the data about to be copied would over-write the source of
	 * the data at the front of the range.  i.e. one new_stripe
	 * along from reshape_progress new_maps to after where
	 * reshape_safe old_maps to
5376
	 */
5377
	writepos = conf->reshape_progress;
5378
	sector_div(writepos, new_data_disks);
5379 5380
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
5381
	safepos = conf->reshape_safe;
5382
	sector_div(safepos, data_disks);
5383
	if (mddev->reshape_backwards) {
5384 5385
		BUG_ON(writepos < reshape_sectors);
		writepos -= reshape_sectors;
5386
		readpos += reshape_sectors;
5387
		safepos += reshape_sectors;
5388
	} else {
5389
		writepos += reshape_sectors;
5390 5391 5392 5393
		/* readpos and safepos are worst-case calculations.
		 * A negative number is overly pessimistic, and causes
		 * obvious problems for unsigned storage.  So clip to 0.
		 */
5394 5395
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
5396
	}
5397

5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
	/* Having calculated the 'writepos' possibly use it
	 * to set 'stripe_addr' which is where we will write to.
	 */
	if (mddev->reshape_backwards) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
		       != sector_nr);
	} else {
		BUG_ON(writepos != sector_nr + reshape_sectors);
		stripe_addr = sector_nr;
	}

5413 5414 5415 5416
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
5417 5418 5419 5420
	 * If there is a min_offset_diff, these are adjusted either by
	 * increasing the safepos/readpos if diff is negative, or
	 * increasing writepos if diff is positive.
	 * If 'readpos' is then behind 'writepos', there is no way that we can
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
5433 5434 5435 5436 5437 5438
	if (conf->min_offset_diff < 0) {
		safepos += -conf->min_offset_diff;
		readpos += -conf->min_offset_diff;
	} else
		writepos += conf->min_offset_diff;

5439
	if ((mddev->reshape_backwards
5440 5441 5442
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5443 5444
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
5445 5446 5447 5448
			   atomic_read(&conf->reshape_stripes)==0
			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (atomic_read(&conf->reshape_stripes) != 0)
			return 0;
5449
		mddev->reshape_position = conf->reshape_progress;
5450
		mddev->curr_resync_completed = sector_nr;
5451
		conf->reshape_checkpoint = jiffies;
5452
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5453
		md_wakeup_thread(mddev->thread);
5454
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
5455 5456 5457
			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
			return 0;
5458
		spin_lock_irq(&conf->device_lock);
5459
		conf->reshape_safe = mddev->reshape_position;
5460 5461
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
5462
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5463 5464
	}

5465
	INIT_LIST_HEAD(&stripes);
5466
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5467
		int j;
5468
		int skipped_disk = 0;
5469
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5470 5471 5472 5473 5474 5475 5476 5477 5478
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
5479
			if (conf->level == 6 &&
5480
			    j == sh->qd_idx)
5481
				continue;
5482
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
5483
			if (s < raid5_size(mddev, 0, 0)) {
5484
				skipped_disk = 1;
5485 5486 5487 5488 5489 5490
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
5491
		if (!skipped_disk) {
5492 5493 5494
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
5495
		list_add(&sh->lru, &stripes);
5496 5497
	}
	spin_lock_irq(&conf->device_lock);
5498
	if (mddev->reshape_backwards)
5499
		conf->reshape_progress -= reshape_sectors * new_data_disks;
5500
	else
5501
		conf->reshape_progress += reshape_sectors * new_data_disks;
5502 5503 5504 5505 5506 5507 5508
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
5509
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5510
				     1, &dd_idx, NULL);
5511
	last_sector =
5512
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5513
					    * new_data_disks - 1),
5514
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
5515 5516
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
5517
	while (first_sector <= last_sector) {
5518
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5519 5520 5521 5522 5523
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
5524 5525 5526 5527 5528 5529 5530 5531
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
5532 5533 5534
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
5535
	sector_nr += reshape_sectors;
5536 5537
	retn = reshape_sectors;
finish:
5538 5539
	if (mddev->curr_resync_completed > mddev->resync_max ||
	    (sector_nr - mddev->curr_resync_completed) * 2
5540
	    >= mddev->resync_max - mddev->curr_resync_completed) {
5541 5542
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
5543 5544 5545 5546
			   atomic_read(&conf->reshape_stripes) == 0
			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (atomic_read(&conf->reshape_stripes) != 0)
			goto ret;
5547
		mddev->reshape_position = conf->reshape_progress;
5548
		mddev->curr_resync_completed = sector_nr;
5549
		conf->reshape_checkpoint = jiffies;
5550 5551 5552 5553
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5554 5555 5556
			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
			goto ret;
5557
		spin_lock_irq(&conf->device_lock);
5558
		conf->reshape_safe = mddev->reshape_position;
5559 5560
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
5561
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5562
	}
5563
ret:
5564
	return retn;
5565 5566
}

5567
static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5568
{
5569
	struct r5conf *conf = mddev->private;
5570
	struct stripe_head *sh;
A
Andre Noll 已提交
5571
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
5572
	sector_t sync_blocks;
5573 5574
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
5575

5576
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
5577
		/* just being told to finish up .. nothing much to do */
5578

5579 5580 5581 5582
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
5583 5584 5585 5586

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
5587
		else /* completed sync */
5588 5589 5590
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
5591 5592
		return 0;
	}
5593

5594 5595 5596
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

5597 5598
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
5599

5600 5601 5602 5603 5604 5605
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

5606
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
5607 5608 5609
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
5610
	if (mddev->degraded >= conf->max_degraded &&
5611
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
5612
		sector_t rv = mddev->dev_sectors - sector_nr;
5613
		*skipped = 1;
L
Linus Torvalds 已提交
5614 5615
		return rv;
	}
5616 5617 5618 5619
	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
	    !conf->fullsync &&
	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
	    sync_blocks >= STRIPE_SECTORS) {
5620 5621 5622 5623 5624
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
5625

N
NeilBrown 已提交
5626 5627
	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

5628
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
5629
	if (sh == NULL) {
5630
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
5631
		/* make sure we don't swamp the stripe cache if someone else
5632
		 * is trying to get access
L
Linus Torvalds 已提交
5633
		 */
5634
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
5635
	}
5636
	/* Need to check if array will still be degraded after recovery/resync
5637 5638
	 * Note in case of > 1 drive failures it's possible we're rebuilding
	 * one drive while leaving another faulty drive in array.
5639
	 */
5640 5641 5642 5643 5644
	rcu_read_lock();
	for (i = 0; i < conf->raid_disks; i++) {
		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);

		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5645
			still_degraded = 1;
5646 5647
	}
	rcu_read_unlock();
5648 5649 5650

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

5651
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5652
	set_bit(STRIPE_HANDLE, &sh->state);
L
Linus Torvalds 已提交
5653 5654 5655 5656 5657 5658

	release_stripe(sh);

	return STRIPE_SECTORS;
}

5659
static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
5672
	int dd_idx;
5673 5674 5675 5676 5677
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

5678 5679
	logical_sector = raid_bio->bi_iter.bi_sector &
		~((sector_t)STRIPE_SECTORS-1);
5680
	sector = raid5_compute_sector(conf, logical_sector,
5681
				      0, &dd_idx, NULL);
K
Kent Overstreet 已提交
5682
	last_sector = bio_end_sector(raid_bio);
5683 5684

	for (; logical_sector < last_sector;
5685 5686 5687
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
5688

5689
		if (scnt < raid5_bi_processed_stripes(raid_bio))
5690 5691 5692
			/* already done this stripe */
			continue;

5693
		sh = get_active_stripe(conf, sector, 0, 1, 1);
5694 5695 5696

		if (!sh) {
			/* failed to get a stripe - must wait */
5697
			raid5_set_bi_processed_stripes(raid_bio, scnt);
5698 5699 5700 5701
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

5702
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5703
			release_stripe(sh);
5704
			raid5_set_bi_processed_stripes(raid_bio, scnt);
5705 5706 5707 5708
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

5709
		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5710
		handle_stripe(sh);
5711 5712 5713
		release_stripe(sh);
		handled++;
	}
5714
	remaining = raid5_dec_bi_active_stripes(raid_bio);
5715 5716 5717
	if (remaining == 0) {
		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
					 raid_bio, 0);
5718
		bio_endio(raid_bio, 0);
5719
	}
5720
	if (atomic_dec_and_test(&conf->active_aligned_reads))
5721
		wake_up(&conf->wait_for_quiescent);
5722 5723 5724
	return handled;
}

5725
static int handle_active_stripes(struct r5conf *conf, int group,
5726 5727
				 struct r5worker *worker,
				 struct list_head *temp_inactive_list)
5728 5729
{
	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5730 5731
	int i, batch_size = 0, hash;
	bool release_inactive = false;
5732 5733

	while (batch_size < MAX_STRIPE_BATCH &&
5734
			(sh = __get_priority_stripe(conf, group)) != NULL)
5735 5736
		batch[batch_size++] = sh;

5737 5738 5739 5740 5741 5742 5743 5744
	if (batch_size == 0) {
		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
			if (!list_empty(temp_inactive_list + i))
				break;
		if (i == NR_STRIPE_HASH_LOCKS)
			return batch_size;
		release_inactive = true;
	}
5745 5746
	spin_unlock_irq(&conf->device_lock);

5747 5748 5749 5750 5751 5752 5753 5754
	release_inactive_stripe_list(conf, temp_inactive_list,
				     NR_STRIPE_HASH_LOCKS);

	if (release_inactive) {
		spin_lock_irq(&conf->device_lock);
		return 0;
	}

5755 5756 5757 5758 5759 5760
	for (i = 0; i < batch_size; i++)
		handle_stripe(batch[i]);

	cond_resched();

	spin_lock_irq(&conf->device_lock);
5761 5762 5763 5764
	for (i = 0; i < batch_size; i++) {
		hash = batch[i]->hash_lock_index;
		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
	}
5765 5766
	return batch_size;
}
5767

5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
static void raid5_do_work(struct work_struct *work)
{
	struct r5worker *worker = container_of(work, struct r5worker, work);
	struct r5worker_group *group = worker->group;
	struct r5conf *conf = group->conf;
	int group_id = group - conf->worker_groups;
	int handled;
	struct blk_plug plug;

	pr_debug("+++ raid5worker active\n");

	blk_start_plug(&plug);
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
		int batch_size, released;

5785
		released = release_stripe_list(conf, worker->temp_inactive_list);
5786

5787 5788
		batch_size = handle_active_stripes(conf, group_id, worker,
						   worker->temp_inactive_list);
5789
		worker->working = false;
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801
		if (!batch_size && !released)
			break;
		handled += batch_size;
	}
	pr_debug("%d stripes handled\n", handled);

	spin_unlock_irq(&conf->device_lock);
	blk_finish_plug(&plug);

	pr_debug("--- raid5worker inactive\n");
}

L
Linus Torvalds 已提交
5802 5803 5804 5805 5806 5807 5808
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
S
Shaohua Li 已提交
5809
static void raid5d(struct md_thread *thread)
L
Linus Torvalds 已提交
5810
{
S
Shaohua Li 已提交
5811
	struct mddev *mddev = thread->mddev;
5812
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5813
	int handled;
5814
	struct blk_plug plug;
L
Linus Torvalds 已提交
5815

5816
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
5817 5818 5819

	md_check_recovery(mddev);

5820
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
5821 5822 5823
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
5824
		struct bio *bio;
S
Shaohua Li 已提交
5825 5826
		int batch_size, released;

5827
		released = release_stripe_list(conf, conf->temp_inactive_list);
5828 5829
		if (released)
			clear_bit(R5_DID_ALLOC, &conf->cache_state);
L
Linus Torvalds 已提交
5830

5831
		if (
5832 5833 5834
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
5835
			spin_unlock_irq(&conf->device_lock);
5836
			bitmap_unplug(mddev->bitmap);
5837
			spin_lock_irq(&conf->device_lock);
5838
			conf->seq_write = conf->seq_flush;
5839
			activate_bit_delay(conf, conf->temp_inactive_list);
5840
		}
5841
		raid5_activate_delayed(conf);
5842

5843 5844 5845 5846 5847 5848 5849 5850 5851 5852
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

5853 5854
		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
						   conf->temp_inactive_list);
S
Shaohua Li 已提交
5855
		if (!batch_size && !released)
L
Linus Torvalds 已提交
5856
			break;
5857
		handled += batch_size;
L
Linus Torvalds 已提交
5858

5859 5860
		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
			spin_unlock_irq(&conf->device_lock);
5861
			md_check_recovery(mddev);
5862 5863
			spin_lock_irq(&conf->device_lock);
		}
L
Linus Torvalds 已提交
5864
	}
5865
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
5866 5867

	spin_unlock_irq(&conf->device_lock);
5868 5869
	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
	    mutex_trylock(&conf->cache_size_mutex)) {
5870 5871 5872 5873 5874
		grow_one_stripe(conf, __GFP_NOWARN);
		/* Set flag even if allocation failed.  This helps
		 * slow down allocation requests when mem is short
		 */
		set_bit(R5_DID_ALLOC, &conf->cache_state);
5875
		mutex_unlock(&conf->cache_size_mutex);
5876
	}
L
Linus Torvalds 已提交
5877

5878
	async_tx_issue_pending_all();
5879
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
5880

5881
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
5882 5883
}

5884
static ssize_t
5885
raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5886
{
5887 5888 5889 5890
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
5891
	if (conf)
5892
		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5893 5894
	spin_unlock(&mddev->lock);
	return ret;
5895 5896
}

5897
int
5898
raid5_set_cache_size(struct mddev *mddev, int size)
5899
{
5900
	struct r5conf *conf = mddev->private;
5901 5902
	int err;

5903
	if (size <= 16 || size > 32768)
5904
		return -EINVAL;
5905

5906
	conf->min_nr_stripes = size;
5907
	mutex_lock(&conf->cache_size_mutex);
5908 5909 5910
	while (size < conf->max_nr_stripes &&
	       drop_one_stripe(conf))
		;
5911
	mutex_unlock(&conf->cache_size_mutex);
5912

5913

5914 5915 5916
	err = md_allow_write(mddev);
	if (err)
		return err;
5917

5918
	mutex_lock(&conf->cache_size_mutex);
5919 5920 5921
	while (size > conf->max_nr_stripes)
		if (!grow_one_stripe(conf, GFP_KERNEL))
			break;
5922
	mutex_unlock(&conf->cache_size_mutex);
5923

5924 5925 5926 5927 5928
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
5929
raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5930
{
5931
	struct r5conf *conf;
5932 5933 5934 5935 5936
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
5937
	if (kstrtoul(page, 10, &new))
5938
		return -EINVAL;
5939
	err = mddev_lock(mddev);
5940 5941
	if (err)
		return err;
5942 5943 5944 5945 5946 5947 5948 5949
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
	else
		err = raid5_set_cache_size(mddev, new);
	mddev_unlock(mddev);

	return err ?: len;
5950
}
5951

5952 5953 5954 5955
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
5956

5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
static ssize_t
raid5_show_rmw_level(struct mddev  *mddev, char *page)
{
	struct r5conf *conf = mddev->private;
	if (conf)
		return sprintf(page, "%d\n", conf->rmw_level);
	else
		return 0;
}

static ssize_t
raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
{
	struct r5conf *conf = mddev->private;
	unsigned long new;

	if (!conf)
		return -ENODEV;

	if (len >= PAGE_SIZE)
		return -EINVAL;

	if (kstrtoul(page, 10, &new))
		return -EINVAL;

	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
		return -EINVAL;

	if (new != PARITY_DISABLE_RMW &&
	    new != PARITY_ENABLE_RMW &&
	    new != PARITY_PREFER_RMW)
		return -EINVAL;

	conf->rmw_level = new;
	return len;
}

static struct md_sysfs_entry
raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
			 raid5_show_rmw_level,
			 raid5_store_rmw_level);


6000
static ssize_t
6001
raid5_show_preread_threshold(struct mddev *mddev, char *page)
6002
{
6003 6004 6005 6006
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
6007
	if (conf)
6008 6009 6010
		ret = sprintf(page, "%d\n", conf->bypass_threshold);
	spin_unlock(&mddev->lock);
	return ret;
6011 6012 6013
}

static ssize_t
6014
raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6015
{
6016
	struct r5conf *conf;
6017
	unsigned long new;
6018 6019
	int err;

6020 6021
	if (len >= PAGE_SIZE)
		return -EINVAL;
6022
	if (kstrtoul(page, 10, &new))
6023
		return -EINVAL;
6024 6025 6026 6027 6028 6029 6030

	err = mddev_lock(mddev);
	if (err)
		return err;
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
6031
	else if (new > conf->min_nr_stripes)
6032 6033 6034 6035 6036
		err = -EINVAL;
	else
		conf->bypass_threshold = new;
	mddev_unlock(mddev);
	return err ?: len;
6037 6038 6039 6040 6041 6042 6043 6044
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

6045 6046 6047
static ssize_t
raid5_show_skip_copy(struct mddev *mddev, char *page)
{
6048 6049 6050 6051
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
6052
	if (conf)
6053 6054 6055
		ret = sprintf(page, "%d\n", conf->skip_copy);
	spin_unlock(&mddev->lock);
	return ret;
6056 6057 6058 6059 6060
}

static ssize_t
raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
{
6061
	struct r5conf *conf;
6062
	unsigned long new;
6063 6064
	int err;

6065 6066 6067 6068 6069
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (kstrtoul(page, 10, &new))
		return -EINVAL;
	new = !!new;
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089

	err = mddev_lock(mddev);
	if (err)
		return err;
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
	else if (new != conf->skip_copy) {
		mddev_suspend(mddev);
		conf->skip_copy = new;
		if (new)
			mddev->queue->backing_dev_info.capabilities |=
				BDI_CAP_STABLE_WRITES;
		else
			mddev->queue->backing_dev_info.capabilities &=
				~BDI_CAP_STABLE_WRITES;
		mddev_resume(mddev);
	}
	mddev_unlock(mddev);
	return err ?: len;
6090 6091 6092 6093 6094 6095 6096
}

static struct md_sysfs_entry
raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
					raid5_show_skip_copy,
					raid5_store_skip_copy);

6097
static ssize_t
6098
stripe_cache_active_show(struct mddev *mddev, char *page)
6099
{
6100
	struct r5conf *conf = mddev->private;
6101 6102 6103 6104
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
6105 6106
}

6107 6108
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6109

6110 6111 6112
static ssize_t
raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
{
6113 6114 6115 6116
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
6117
	if (conf)
6118 6119 6120
		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
	spin_unlock(&mddev->lock);
	return ret;
6121 6122
}

6123 6124 6125 6126
static int alloc_thread_groups(struct r5conf *conf, int cnt,
			       int *group_cnt,
			       int *worker_cnt_per_group,
			       struct r5worker_group **worker_groups);
6127 6128 6129
static ssize_t
raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
{
6130
	struct r5conf *conf;
6131 6132
	unsigned long new;
	int err;
6133 6134
	struct r5worker_group *new_groups, *old_groups;
	int group_cnt, worker_cnt_per_group;
6135 6136 6137 6138 6139 6140

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (kstrtoul(page, 10, &new))
		return -EINVAL;

6141 6142 6143 6144 6145 6146 6147 6148
	err = mddev_lock(mddev);
	if (err)
		return err;
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
	else if (new != conf->worker_cnt_per_group) {
		mddev_suspend(mddev);
6149

6150 6151 6152
		old_groups = conf->worker_groups;
		if (old_groups)
			flush_workqueue(raid5_wq);
6153

6154 6155 6156 6157 6158 6159 6160 6161 6162
		err = alloc_thread_groups(conf, new,
					  &group_cnt, &worker_cnt_per_group,
					  &new_groups);
		if (!err) {
			spin_lock_irq(&conf->device_lock);
			conf->group_cnt = group_cnt;
			conf->worker_cnt_per_group = worker_cnt_per_group;
			conf->worker_groups = new_groups;
			spin_unlock_irq(&conf->device_lock);
6163

6164 6165 6166 6167 6168
			if (old_groups)
				kfree(old_groups[0].workers);
			kfree(old_groups);
		}
		mddev_resume(mddev);
6169
	}
6170
	mddev_unlock(mddev);
6171

6172
	return err ?: len;
6173 6174 6175 6176 6177 6178 6179
}

static struct md_sysfs_entry
raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
				raid5_show_group_thread_cnt,
				raid5_store_group_thread_cnt);

6180
static struct attribute *raid5_attrs[] =  {
6181 6182
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
6183
	&raid5_preread_bypass_threshold.attr,
6184
	&raid5_group_thread_cnt.attr,
6185
	&raid5_skip_copy.attr,
6186
	&raid5_rmw_level.attr,
6187 6188
	NULL,
};
6189 6190 6191
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
6192 6193
};

6194 6195 6196 6197
static int alloc_thread_groups(struct r5conf *conf, int cnt,
			       int *group_cnt,
			       int *worker_cnt_per_group,
			       struct r5worker_group **worker_groups)
6198
{
6199
	int i, j, k;
6200 6201 6202
	ssize_t size;
	struct r5worker *workers;

6203
	*worker_cnt_per_group = cnt;
6204
	if (cnt == 0) {
6205 6206
		*group_cnt = 0;
		*worker_groups = NULL;
6207 6208
		return 0;
	}
6209
	*group_cnt = num_possible_nodes();
6210
	size = sizeof(struct r5worker) * cnt;
6211 6212 6213 6214
	workers = kzalloc(size * *group_cnt, GFP_NOIO);
	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
				*group_cnt, GFP_NOIO);
	if (!*worker_groups || !workers) {
6215
		kfree(workers);
6216
		kfree(*worker_groups);
6217 6218 6219
		return -ENOMEM;
	}

6220
	for (i = 0; i < *group_cnt; i++) {
6221 6222
		struct r5worker_group *group;

6223
		group = &(*worker_groups)[i];
6224 6225 6226 6227 6228
		INIT_LIST_HEAD(&group->handle_list);
		group->conf = conf;
		group->workers = workers + i * cnt;

		for (j = 0; j < cnt; j++) {
6229 6230 6231 6232 6233 6234
			struct r5worker *worker = group->workers + j;
			worker->group = group;
			INIT_WORK(&worker->work, raid5_do_work);

			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248
		}
	}

	return 0;
}

static void free_thread_groups(struct r5conf *conf)
{
	if (conf->worker_groups)
		kfree(conf->worker_groups[0].workers);
	kfree(conf->worker_groups);
	conf->worker_groups = NULL;
}

6249
static sector_t
6250
raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6251
{
6252
	struct r5conf *conf = mddev->private;
6253 6254 6255

	if (!sectors)
		sectors = mddev->dev_sectors;
6256
	if (!raid_disks)
6257
		/* size is defined by the smallest of previous and new size */
6258
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6259

6260 6261
	sectors &= ~((sector_t)conf->chunk_sectors - 1);
	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6262 6263 6264
	return sectors * (raid_disks - conf->max_degraded);
}

6265 6266 6267
static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
{
	safe_put_page(percpu->spare_page);
6268 6269
	if (percpu->scribble)
		flex_array_free(percpu->scribble);
6270 6271 6272 6273 6274 6275 6276 6277 6278
	percpu->spare_page = NULL;
	percpu->scribble = NULL;
}

static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
{
	if (conf->level == 6 && !percpu->spare_page)
		percpu->spare_page = alloc_page(GFP_KERNEL);
	if (!percpu->scribble)
6279
		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6280 6281 6282 6283 6284
						      conf->previous_raid_disks),
						  max(conf->chunk_sectors,
						      conf->prev_chunk_sectors)
						   / STRIPE_SECTORS,
						  GFP_KERNEL);
6285 6286 6287 6288 6289 6290 6291 6292 6293

	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
		free_scratch_buffer(conf, percpu);
		return -ENOMEM;
	}

	return 0;
}

6294
static void raid5_free_percpu(struct r5conf *conf)
6295 6296 6297 6298 6299 6300 6301 6302 6303
{
	unsigned long cpu;

	if (!conf->percpu)
		return;

#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
6304 6305 6306 6307

	get_online_cpus();
	for_each_possible_cpu(cpu)
		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6308 6309 6310 6311 6312
	put_online_cpus();

	free_percpu(conf->percpu);
}

6313
static void free_conf(struct r5conf *conf)
6314
{
6315 6316
	if (conf->shrinker.seeks)
		unregister_shrinker(&conf->shrinker);
6317
	free_thread_groups(conf);
6318
	shrink_stripes(conf);
6319
	raid5_free_percpu(conf);
6320 6321 6322 6323 6324
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

6325 6326 6327 6328
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
6329
	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6330 6331 6332 6333 6334 6335
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
6336
		if (alloc_scratch_buffer(conf, percpu)) {
6337 6338
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
6339
			return notifier_from_errno(-ENOMEM);
6340 6341 6342 6343
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
6344
		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6345 6346 6347 6348 6349 6350 6351 6352
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

6353
static int raid5_alloc_percpu(struct r5conf *conf)
6354 6355
{
	unsigned long cpu;
6356
	int err = 0;
6357

6358 6359
	conf->percpu = alloc_percpu(struct raid5_percpu);
	if (!conf->percpu)
6360
		return -ENOMEM;
6361 6362 6363 6364 6365 6366 6367 6368

#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	err = register_cpu_notifier(&conf->cpu_notify);
	if (err)
		return err;
#endif
6369 6370 6371

	get_online_cpus();
	for_each_present_cpu(cpu) {
6372 6373 6374 6375
		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
		if (err) {
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
6376 6377 6378 6379 6380 6381 6382 6383
			break;
		}
	}
	put_online_cpus();

	return err;
}

6384 6385 6386 6387
static unsigned long raid5_cache_scan(struct shrinker *shrink,
				      struct shrink_control *sc)
{
	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6388 6389 6390 6391
	unsigned long ret = SHRINK_STOP;

	if (mutex_trylock(&conf->cache_size_mutex)) {
		ret= 0;
6392 6393
		while (ret < sc->nr_to_scan &&
		       conf->max_nr_stripes > conf->min_nr_stripes) {
6394 6395 6396 6397 6398 6399 6400
			if (drop_one_stripe(conf) == 0) {
				ret = SHRINK_STOP;
				break;
			}
			ret++;
		}
		mutex_unlock(&conf->cache_size_mutex);
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415
	}
	return ret;
}

static unsigned long raid5_cache_count(struct shrinker *shrink,
				       struct shrink_control *sc)
{
	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);

	if (conf->max_nr_stripes < conf->min_nr_stripes)
		/* unlikely, but not impossible */
		return 0;
	return conf->max_nr_stripes - conf->min_nr_stripes;
}

6416
static struct r5conf *setup_conf(struct mddev *mddev)
L
Linus Torvalds 已提交
6417
{
6418
	struct r5conf *conf;
6419
	int raid_disk, memory, max_disks;
6420
	struct md_rdev *rdev;
L
Linus Torvalds 已提交
6421
	struct disk_info *disk;
6422
	char pers_name[6];
6423
	int i;
6424 6425
	int group_cnt, worker_cnt_per_group;
	struct r5worker_group *new_group;
L
Linus Torvalds 已提交
6426

N
NeilBrown 已提交
6427 6428 6429
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
6430
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
6431 6432
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
6433
	}
N
NeilBrown 已提交
6434 6435 6436 6437
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
6438
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
6439 6440
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
6441
	}
N
NeilBrown 已提交
6442
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6443
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
6444 6445
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
6446 6447
	}

6448 6449 6450
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
6451 6452
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
6453
		return ERR_PTR(-EINVAL);
6454 6455
	}

6456
	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
N
NeilBrown 已提交
6457
	if (conf == NULL)
L
Linus Torvalds 已提交
6458
		goto abort;
6459
	/* Don't enable multi-threading by default*/
6460 6461 6462 6463 6464 6465
	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
				 &new_group)) {
		conf->group_cnt = group_cnt;
		conf->worker_cnt_per_group = worker_cnt_per_group;
		conf->worker_groups = new_group;
	} else
6466
		goto abort;
6467
	spin_lock_init(&conf->device_lock);
6468
	seqcount_init(&conf->gen_lock);
6469
	mutex_init(&conf->cache_size_mutex);
6470
	init_waitqueue_head(&conf->wait_for_quiescent);
6471 6472 6473
	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
		init_waitqueue_head(&conf->wait_for_stripe[i]);
	}
6474 6475 6476 6477 6478
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
S
Shaohua Li 已提交
6479
	init_llist_head(&conf->released_stripes);
6480 6481 6482 6483
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
6484
	conf->recovery_disabled = mddev->recovery_disabled - 1;
N
NeilBrown 已提交
6485 6486 6487 6488 6489

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
6490
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6491
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6492

6493
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6494 6495 6496
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
6497

L
Linus Torvalds 已提交
6498 6499
	conf->mddev = mddev;

6500
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
6501 6502
		goto abort;

6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517
	/* We init hash_locks[0] separately to that it can be used
	 * as the reference lock in the spin_lock_nest_lock() call
	 * in lock_all_device_hash_locks_irq in order to convince
	 * lockdep that we know what we are doing.
	 */
	spin_lock_init(conf->hash_locks);
	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
		spin_lock_init(conf->hash_locks + i);

	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
		INIT_LIST_HEAD(conf->inactive_list + i);

	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
		INIT_LIST_HEAD(conf->temp_inactive_list + i);

6518
	conf->level = mddev->new_level;
6519
	conf->chunk_sectors = mddev->new_chunk_sectors;
6520 6521 6522
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

6523
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
6524

N
NeilBrown 已提交
6525
	rdev_for_each(rdev, mddev) {
L
Linus Torvalds 已提交
6526
		raid_disk = rdev->raid_disk;
6527
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
6528 6529 6530 6531
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

6532 6533 6534 6535 6536 6537 6538 6539 6540
		if (test_bit(Replacement, &rdev->flags)) {
			if (disk->replacement)
				goto abort;
			disk->replacement = rdev;
		} else {
			if (disk->rdev)
				goto abort;
			disk->rdev = rdev;
		}
L
Linus Torvalds 已提交
6541

6542
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
6543
			char b[BDEVNAME_SIZE];
6544 6545 6546
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
6547
		} else if (rdev->saved_raid_disk != raid_disk)
6548 6549
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
6550 6551
	}

N
NeilBrown 已提交
6552
	conf->level = mddev->new_level;
6553
	if (conf->level == 6) {
6554
		conf->max_degraded = 2;
6555 6556 6557 6558 6559
		if (raid6_call.xor_syndrome)
			conf->rmw_level = PARITY_ENABLE_RMW;
		else
			conf->rmw_level = PARITY_DISABLE_RMW;
	} else {
6560
		conf->max_degraded = 1;
6561 6562
		conf->rmw_level = PARITY_ENABLE_RMW;
	}
N
NeilBrown 已提交
6563
	conf->algorithm = mddev->new_layout;
6564
	conf->reshape_progress = mddev->reshape_position;
6565
	if (conf->reshape_progress != MaxSector) {
6566
		conf->prev_chunk_sectors = mddev->chunk_sectors;
6567
		conf->prev_algo = mddev->layout;
6568 6569 6570
	} else {
		conf->prev_chunk_sectors = conf->chunk_sectors;
		conf->prev_algo = conf->algorithm;
6571
	}
L
Linus Torvalds 已提交
6572

6573 6574
	conf->min_nr_stripes = NR_STRIPES;
	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6575
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6576
	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6577
	if (grow_stripes(conf, conf->min_nr_stripes)) {
N
NeilBrown 已提交
6578
		printk(KERN_ERR
6579 6580
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
6581 6582
		goto abort;
	} else
6583 6584
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595
	/*
	 * Losing a stripe head costs more than the time to refill it,
	 * it reduces the queue depth and so can hurt throughput.
	 * So set it rather large, scaled by number of devices.
	 */
	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
	conf->shrinker.scan_objects = raid5_cache_scan;
	conf->shrinker.count_objects = raid5_cache_count;
	conf->shrinker.batch = 128;
	conf->shrinker.flags = 0;
	register_shrinker(&conf->shrinker);
L
Linus Torvalds 已提交
6596

6597 6598
	sprintf(pers_name, "raid%d", mddev->new_level);
	conf->thread = md_register_thread(raid5d, mddev, pers_name);
N
NeilBrown 已提交
6599 6600
	if (!conf->thread) {
		printk(KERN_ERR
6601
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
6602
		       mdname(mddev));
6603 6604
		goto abort;
	}
N
NeilBrown 已提交
6605 6606 6607 6608 6609

	return conf;

 abort:
	if (conf) {
6610
		free_conf(conf);
N
NeilBrown 已提交
6611 6612 6613 6614 6615
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
6628
		if (raid_disk == 0 ||
6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

6642
static int run(struct mddev *mddev)
N
NeilBrown 已提交
6643
{
6644
	struct r5conf *conf;
6645
	int working_disks = 0;
6646
	int dirty_parity_disks = 0;
6647
	struct md_rdev *rdev;
6648
	sector_t reshape_offset = 0;
6649
	int i;
6650 6651
	long long min_offset_diff = 0;
	int first = 1;
N
NeilBrown 已提交
6652

6653
	if (mddev->recovery_cp != MaxSector)
6654
		printk(KERN_NOTICE "md/raid:%s: not clean"
6655 6656
		       " -- starting background reconstruction\n",
		       mdname(mddev));
6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673

	rdev_for_each(rdev, mddev) {
		long long diff;
		if (rdev->raid_disk < 0)
			continue;
		diff = (rdev->new_data_offset - rdev->data_offset);
		if (first) {
			min_offset_diff = diff;
			first = 0;
		} else if (mddev->reshape_backwards &&
			 diff < min_offset_diff)
			min_offset_diff = diff;
		else if (!mddev->reshape_backwards &&
			 diff > min_offset_diff)
			min_offset_diff = diff;
	}

N
NeilBrown 已提交
6674 6675
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
6676 6677 6678 6679 6680 6681 6682 6683 6684 6685
		 * Difficulties arise if the stripe we would write to
		 * next is at or after the stripe we would read from next.
		 * For a reshape that changes the number of devices, this
		 * is only possible for a very short time, and mdadm makes
		 * sure that time appears to have past before assembling
		 * the array.  So we fail if that time hasn't passed.
		 * For a reshape that keeps the number of devices the same
		 * mdadm must be monitoring the reshape can keeping the
		 * critical areas read-only and backed up.  It will start
		 * the array in read-only mode, so we check for that.
N
NeilBrown 已提交
6686 6687 6688
		 */
		sector_t here_new, here_old;
		int old_disks;
6689
		int max_degraded = (mddev->level == 6 ? 2 : 1);
6690 6691
		int chunk_sectors;
		int new_data_disks;
N
NeilBrown 已提交
6692

6693
		if (mddev->new_level != mddev->level) {
6694
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
6695 6696 6697 6698 6699 6700 6701 6702
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
6703 6704 6705
		 * If the chunk sizes are different, then as we perform reshape
		 * in units of the largest of the two, reshape_position needs
		 * be a multiple of the largest chunk size times new data disks.
N
NeilBrown 已提交
6706 6707
		 */
		here_new = mddev->reshape_position;
6708 6709 6710
		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
		new_data_disks = mddev->raid_disks - max_degraded;
		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6711 6712
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
6713 6714
			return -EINVAL;
		}
6715
		reshape_offset = here_new * chunk_sectors;
N
NeilBrown 已提交
6716 6717
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
6718
		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
N
NeilBrown 已提交
6719 6720
		/* here_old is the first stripe that we might need to read
		 * from */
6721 6722
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
6723
			 * reshape.  It is only safe if user-space is monitoring
6724 6725 6726 6727 6728
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
6729 6730 6731 6732 6733 6734 6735
			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
				/* not really in-place - so OK */;
			else if (mddev->ro == 0) {
				printk(KERN_ERR "md/raid:%s: in-place reshape "
				       "must be started in read-only mode "
				       "- aborting\n",
6736
				       mdname(mddev));
6737 6738
				return -EINVAL;
			}
6739
		} else if (mddev->reshape_backwards
6740 6741 6742 6743
		    ? (here_new * chunk_sectors + min_offset_diff <=
		       here_old * chunk_sectors)
		    : (here_new * chunk_sectors >=
		       here_old * chunk_sectors + (-min_offset_diff))) {
N
NeilBrown 已提交
6744
			/* Reading from the same stripe as writing to - bad */
6745 6746 6747
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
6748 6749
			return -EINVAL;
		}
6750 6751
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
6752 6753 6754 6755
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
6756
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
6757
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
6758
	}
N
NeilBrown 已提交
6759

6760 6761 6762 6763 6764
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
6765 6766 6767
	if (IS_ERR(conf))
		return PTR_ERR(conf);

6768
	conf->min_offset_diff = min_offset_diff;
N
NeilBrown 已提交
6769 6770 6771 6772
	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783
	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
	     i++) {
		rdev = conf->disks[i].rdev;
		if (!rdev && conf->disks[i].replacement) {
			/* The replacement is all we have yet */
			rdev = conf->disks[i].replacement;
			conf->disks[i].replacement = NULL;
			clear_bit(Replacement, &rdev->flags);
			conf->disks[i].rdev = rdev;
		}
		if (!rdev)
6784
			continue;
6785 6786 6787 6788 6789 6790 6791
		if (conf->disks[i].replacement &&
		    conf->reshape_progress != MaxSector) {
			/* replacements and reshape simply do not mix. */
			printk(KERN_ERR "md: cannot handle concurrent "
			       "replacement and reshape.\n");
			goto abort;
		}
6792
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
6793
			working_disks++;
6794 6795
			continue;
		}
6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
6808

6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
6824

6825 6826 6827
	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
6828
	mddev->degraded = calc_degraded(conf);
N
NeilBrown 已提交
6829

6830
	if (has_failed(conf)) {
6831
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
6832
			" (%d/%d failed)\n",
6833
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
6834 6835 6836
		goto abort;
	}

N
NeilBrown 已提交
6837
	/* device size must be a multiple of chunk size */
6838
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
6839 6840
	mddev->resync_max_sectors = mddev->dev_sectors;

6841
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
6842
	    mddev->recovery_cp != MaxSector) {
6843 6844
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
6845 6846
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
6847 6848 6849
			       mdname(mddev));
		else {
			printk(KERN_ERR
6850
			       "md/raid:%s: cannot start dirty degraded array.\n",
6851 6852 6853
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
6854 6855 6856
	}

	if (mddev->degraded == 0)
6857 6858
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6859 6860
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
6861
	else
6862 6863 6864 6865 6866
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
6867 6868 6869

	print_raid5_conf(conf);

6870 6871
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
6872 6873 6874 6875 6876 6877
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6878
							"reshape");
6879 6880
	}

L
Linus Torvalds 已提交
6881
	/* Ok, everything is just fine now */
6882 6883
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
6884 6885
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6886
		printk(KERN_WARNING
6887
		       "raid5: failed to create sysfs attributes for %s\n",
6888
		       mdname(mddev));
6889
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6890

6891
	if (mddev->queue) {
6892
		int chunk_size;
S
Shaohua Li 已提交
6893
		bool discard_supported = true;
6894 6895 6896 6897 6898 6899 6900 6901 6902
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
6903

6904 6905 6906 6907
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
6908
		mddev->queue->limits.raid_partial_stripes_expensive = 1;
S
Shaohua Li 已提交
6909 6910 6911 6912 6913
		/*
		 * We can only discard a whole stripe. It doesn't make sense to
		 * discard data disk but write parity disk
		 */
		stripe = stripe * PAGE_SIZE;
6914 6915 6916 6917
		/* Round up to power of 2, as discard handling
		 * currently assumes that */
		while ((stripe-1) & stripe)
			stripe = (stripe | (stripe-1)) + 1;
S
Shaohua Li 已提交
6918 6919 6920 6921
		mddev->queue->limits.discard_alignment = stripe;
		mddev->queue->limits.discard_granularity = stripe;
		/*
		 * unaligned part of discard request will be ignored, so can't
6922
		 * guarantee discard_zeroes_data
S
Shaohua Li 已提交
6923 6924
		 */
		mddev->queue->limits.discard_zeroes_data = 0;
6925

6926 6927
		blk_queue_max_write_same_sectors(mddev->queue, 0);

6928
		rdev_for_each(rdev, mddev) {
6929 6930
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
6931 6932
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->new_data_offset << 9);
S
Shaohua Li 已提交
6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946
			/*
			 * discard_zeroes_data is required, otherwise data
			 * could be lost. Consider a scenario: discard a stripe
			 * (the stripe could be inconsistent if
			 * discard_zeroes_data is 0); write one disk of the
			 * stripe (the stripe could be inconsistent again
			 * depending on which disks are used to calculate
			 * parity); the disk is broken; The stripe data of this
			 * disk is lost.
			 */
			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
			    !bdev_get_queue(rdev->bdev)->
						limits.discard_zeroes_data)
				discard_supported = false;
6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958
			/* Unfortunately, discard_zeroes_data is not currently
			 * a guarantee - just a hint.  So we only allow DISCARD
			 * if the sysadmin has confirmed that only safe devices
			 * are in use by setting a module parameter.
			 */
			if (!devices_handle_discard_safely) {
				if (discard_supported) {
					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
				}
				discard_supported = false;
			}
6959
		}
S
Shaohua Li 已提交
6960 6961 6962 6963 6964 6965 6966 6967 6968

		if (discard_supported &&
		   mddev->queue->limits.max_discard_sectors >= stripe &&
		   mddev->queue->limits.discard_granularity >= stripe)
			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
						mddev->queue);
		else
			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
						mddev->queue);
6969
	}
6970

L
Linus Torvalds 已提交
6971 6972
	return 0;
abort:
6973
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
6974 6975
	print_raid5_conf(conf);
	free_conf(conf);
L
Linus Torvalds 已提交
6976
	mddev->private = NULL;
6977
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
6978 6979 6980
	return -EIO;
}

N
NeilBrown 已提交
6981
static void raid5_free(struct mddev *mddev, void *priv)
L
Linus Torvalds 已提交
6982
{
N
NeilBrown 已提交
6983
	struct r5conf *conf = priv;
L
Linus Torvalds 已提交
6984

6985
	free_conf(conf);
6986
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
6987 6988
}

6989
static void status(struct seq_file *seq, struct mddev *mddev)
L
Linus Torvalds 已提交
6990
{
6991
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
6992 6993
	int i;

6994
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6995
		conf->chunk_sectors / 2, mddev->layout);
6996
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
6997 6998 6999
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
7000
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
7001 7002 7003
	seq_printf (seq, "]");
}

7004
static void print_raid5_conf (struct r5conf *conf)
L
Linus Torvalds 已提交
7005 7006 7007 7008
{
	int i;
	struct disk_info *tmp;

7009
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
7010 7011 7012 7013
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
7014 7015 7016
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
7017 7018 7019 7020 7021

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
7022 7023 7024
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
7025 7026 7027
	}
}

7028
static int raid5_spare_active(struct mddev *mddev)
L
Linus Torvalds 已提交
7029 7030
{
	int i;
7031
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
7032
	struct disk_info *tmp;
7033 7034
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
7035 7036 7037

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056
		if (tmp->replacement
		    && tmp->replacement->recovery_offset == MaxSector
		    && !test_bit(Faulty, &tmp->replacement->flags)
		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
			/* Replacement has just become active. */
			if (!tmp->rdev
			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
				count++;
			if (tmp->rdev) {
				/* Replaced device not technically faulty,
				 * but we need to be sure it gets removed
				 * and never re-added.
				 */
				set_bit(Faulty, &tmp->rdev->flags);
				sysfs_notify_dirent_safe(
					tmp->rdev->sysfs_state);
			}
			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
		} else if (tmp->rdev
7057
		    && tmp->rdev->recovery_offset == MaxSector
7058
		    && !test_bit(Faulty, &tmp->rdev->flags)
7059
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7060
			count++;
7061
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
7062 7063
		}
	}
7064
	spin_lock_irqsave(&conf->device_lock, flags);
7065
	mddev->degraded = calc_degraded(conf);
7066
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
7067
	print_raid5_conf(conf);
7068
	return count;
L
Linus Torvalds 已提交
7069 7070
}

7071
static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
7072
{
7073
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
7074
	int err = 0;
7075
	int number = rdev->raid_disk;
7076
	struct md_rdev **rdevp;
L
Linus Torvalds 已提交
7077 7078 7079
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101
	if (rdev == p->rdev)
		rdevp = &p->rdev;
	else if (rdev == p->replacement)
		rdevp = &p->replacement;
	else
		return 0;

	if (number >= conf->raid_disks &&
	    conf->reshape_progress == MaxSector)
		clear_bit(In_sync, &rdev->flags);

	if (test_bit(In_sync, &rdev->flags) ||
	    atomic_read(&rdev->nr_pending)) {
		err = -EBUSY;
		goto abort;
	}
	/* Only remove non-faulty devices if recovery
	 * isn't possible.
	 */
	if (!test_bit(Faulty, &rdev->flags) &&
	    mddev->recovery_disabled != conf->recovery_disabled &&
	    !has_failed(conf) &&
7102
	    (!p->replacement || p->replacement == rdev) &&
7103 7104 7105 7106 7107 7108 7109 7110 7111 7112
	    number < conf->raid_disks) {
		err = -EBUSY;
		goto abort;
	}
	*rdevp = NULL;
	synchronize_rcu();
	if (atomic_read(&rdev->nr_pending)) {
		/* lost the race, try later */
		err = -EBUSY;
		*rdevp = rdev;
7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126
	} else if (p->replacement) {
		/* We must have just cleared 'rdev' */
		p->rdev = p->replacement;
		clear_bit(Replacement, &p->replacement->flags);
		smp_mb(); /* Make sure other CPUs may see both as identical
			   * but will never see neither - if they are careful
			   */
		p->replacement = NULL;
		clear_bit(WantReplacement, &rdev->flags);
	} else
		/* We might have just removed the Replacement as faulty-
		 * clear the bit just in case
		 */
		clear_bit(WantReplacement, &rdev->flags);
L
Linus Torvalds 已提交
7127 7128 7129 7130 7131 7132
abort:

	print_raid5_conf(conf);
	return err;
}

7133
static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
7134
{
7135
	struct r5conf *conf = mddev->private;
7136
	int err = -EEXIST;
L
Linus Torvalds 已提交
7137 7138
	int disk;
	struct disk_info *p;
7139 7140
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
7141

7142 7143 7144
	if (mddev->recovery_disabled == conf->recovery_disabled)
		return -EBUSY;

N
NeilBrown 已提交
7145
	if (rdev->saved_raid_disk < 0 && has_failed(conf))
L
Linus Torvalds 已提交
7146
		/* no point adding a device */
7147
		return -EINVAL;
L
Linus Torvalds 已提交
7148

7149 7150
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
7151 7152

	/*
7153 7154
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
7155
	 */
7156
	if (rdev->saved_raid_disk >= 0 &&
7157
	    rdev->saved_raid_disk >= first &&
7158
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7159 7160 7161
		first = rdev->saved_raid_disk;

	for (disk = first; disk <= last; disk++) {
7162 7163
		p = conf->disks + disk;
		if (p->rdev == NULL) {
7164
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
7165
			rdev->raid_disk = disk;
7166
			err = 0;
7167 7168
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
7169
			rcu_assign_pointer(p->rdev, rdev);
7170
			goto out;
L
Linus Torvalds 已提交
7171
		}
7172 7173 7174
	}
	for (disk = first; disk <= last; disk++) {
		p = conf->disks + disk;
7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185
		if (test_bit(WantReplacement, &p->rdev->flags) &&
		    p->replacement == NULL) {
			clear_bit(In_sync, &rdev->flags);
			set_bit(Replacement, &rdev->flags);
			rdev->raid_disk = disk;
			err = 0;
			conf->fullsync = 1;
			rcu_assign_pointer(p->replacement, rdev);
			break;
		}
	}
7186
out:
L
Linus Torvalds 已提交
7187
	print_raid5_conf(conf);
7188
	return err;
L
Linus Torvalds 已提交
7189 7190
}

7191
static int raid5_resize(struct mddev *mddev, sector_t sectors)
L
Linus Torvalds 已提交
7192 7193 7194 7195 7196 7197 7198 7199
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
7200
	sector_t newsize;
7201 7202 7203
	struct r5conf *conf = mddev->private;

	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7204 7205 7206
	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
	if (mddev->external_size &&
	    mddev->array_sectors > newsize)
D
Dan Williams 已提交
7207
		return -EINVAL;
7208 7209 7210 7211 7212 7213
	if (mddev->bitmap) {
		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
		if (ret)
			return ret;
	}
	md_set_array_sectors(mddev, newsize);
7214
	set_capacity(mddev->gendisk, mddev->array_sectors);
7215
	revalidate_disk(mddev->gendisk);
7216 7217
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
7218
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
7219 7220
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
7221
	mddev->dev_sectors = sectors;
7222
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
7223 7224 7225
	return 0;
}

7226
static int check_stripe_cache(struct mddev *mddev)
7227 7228 7229 7230 7231 7232 7233 7234 7235
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
7236
	struct r5conf *conf = mddev->private;
7237
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7238
	    > conf->min_nr_stripes ||
7239
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7240
	    > conf->min_nr_stripes) {
7241 7242
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
7243 7244 7245 7246 7247 7248 7249
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

7250
static int check_reshape(struct mddev *mddev)
7251
{
7252
	struct r5conf *conf = mddev->private;
7253

7254 7255
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
7256
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7257
		return 0; /* nothing to do */
7258
	if (has_failed(conf))
7259
		return -EINVAL;
7260
	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
7272

7273
	if (!check_stripe_cache(mddev))
7274 7275
		return -ENOSPC;

7276 7277 7278 7279 7280 7281 7282 7283 7284
	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
	    mddev->delta_disks > 0)
		if (resize_chunks(conf,
				  conf->previous_raid_disks
				  + max(0, mddev->delta_disks),
				  max(mddev->new_chunk_sectors,
				      mddev->chunk_sectors)
			    ) < 0)
			return -ENOMEM;
7285 7286
	return resize_stripes(conf, (conf->previous_raid_disks
				     + mddev->delta_disks));
7287 7288
}

7289
static int raid5_start_reshape(struct mddev *mddev)
7290
{
7291
	struct r5conf *conf = mddev->private;
7292
	struct md_rdev *rdev;
7293
	int spares = 0;
7294
	unsigned long flags;
7295

7296
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7297 7298
		return -EBUSY;

7299 7300 7301
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

7302 7303 7304
	if (has_failed(conf))
		return -EINVAL;

7305
	rdev_for_each(rdev, mddev) {
7306 7307
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
7308
			spares++;
7309
	}
7310

7311
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7312 7313 7314 7315 7316
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

7317 7318 7319 7320 7321 7322
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
7323
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
7324 7325 7326 7327
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

7328
	atomic_set(&conf->reshape_stripes, 0);
7329
	spin_lock_irq(&conf->device_lock);
7330
	write_seqcount_begin(&conf->gen_lock);
7331
	conf->previous_raid_disks = conf->raid_disks;
7332
	conf->raid_disks += mddev->delta_disks;
7333 7334
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
7335 7336
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
7337 7338 7339 7340 7341
	conf->generation++;
	/* Code that selects data_offset needs to see the generation update
	 * if reshape_progress has been set - so a memory barrier needed.
	 */
	smp_mb();
7342
	if (mddev->reshape_backwards)
7343 7344 7345 7346
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
7347
	write_seqcount_end(&conf->gen_lock);
7348 7349
	spin_unlock_irq(&conf->device_lock);

7350 7351 7352 7353 7354 7355 7356
	/* Now make sure any requests that proceeded on the assumption
	 * the reshape wasn't running - like Discard or Read - have
	 * completed.
	 */
	mddev_suspend(mddev);
	mddev_resume(mddev);

7357 7358
	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
7359 7360 7361 7362
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
7363
	 */
7364
	if (mddev->delta_disks >= 0) {
N
NeilBrown 已提交
7365
		rdev_for_each(rdev, mddev)
7366 7367 7368 7369
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					if (rdev->raid_disk
7370
					    >= conf->previous_raid_disks)
7371
						set_bit(In_sync, &rdev->flags);
7372
					else
7373
						rdev->recovery_offset = 0;
7374 7375

					if (sysfs_link_rdev(mddev, rdev))
7376
						/* Failure here is OK */;
7377
				}
7378 7379 7380 7381 7382
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
			}
7383

7384 7385 7386 7387
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
7388
		spin_lock_irqsave(&conf->device_lock, flags);
7389
		mddev->degraded = calc_degraded(conf);
7390 7391
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
7392
	mddev->raid_disks = conf->raid_disks;
7393
	mddev->reshape_position = conf->reshape_progress;
7394
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7395

7396 7397
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7398
	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7399 7400 7401
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7402
						"reshape");
7403 7404 7405
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
7406
		write_seqcount_begin(&conf->gen_lock);
7407
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7408 7409 7410
		mddev->new_chunk_sectors =
			conf->chunk_sectors = conf->prev_chunk_sectors;
		mddev->new_layout = conf->algorithm = conf->prev_algo;
7411 7412 7413
		rdev_for_each(rdev, mddev)
			rdev->new_data_offset = rdev->data_offset;
		smp_wmb();
7414
		conf->generation --;
7415
		conf->reshape_progress = MaxSector;
7416
		mddev->reshape_position = MaxSector;
7417
		write_seqcount_end(&conf->gen_lock);
7418 7419 7420
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
7421
	conf->reshape_checkpoint = jiffies;
7422 7423 7424 7425 7426
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

7427 7428 7429
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
7430
static void end_reshape(struct r5conf *conf)
7431 7432
{

7433
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7434
		struct md_rdev *rdev;
7435 7436

		spin_lock_irq(&conf->device_lock);
7437
		conf->previous_raid_disks = conf->raid_disks;
7438 7439 7440
		rdev_for_each(rdev, conf->mddev)
			rdev->data_offset = rdev->new_data_offset;
		smp_wmb();
7441
		conf->reshape_progress = MaxSector;
7442
		conf->mddev->reshape_position = MaxSector;
7443
		spin_unlock_irq(&conf->device_lock);
7444
		wake_up(&conf->wait_for_overlap);
7445 7446 7447 7448

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
7449
		if (conf->mddev->queue) {
7450
			int data_disks = conf->raid_disks - conf->max_degraded;
7451
			int stripe = data_disks * ((conf->chunk_sectors << 9)
7452
						   / PAGE_SIZE);
7453 7454 7455
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
7456 7457 7458
	}
}

7459 7460 7461
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
7462
static void raid5_finish_reshape(struct mddev *mddev)
7463
{
7464
	struct r5conf *conf = mddev->private;
7465 7466 7467

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

7468 7469 7470
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
7471
			revalidate_disk(mddev->gendisk);
7472 7473
		} else {
			int d;
7474 7475 7476
			spin_lock_irq(&conf->device_lock);
			mddev->degraded = calc_degraded(conf);
			spin_unlock_irq(&conf->device_lock);
7477 7478
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
7479
			     d++) {
7480
				struct md_rdev *rdev = conf->disks[d].rdev;
7481 7482 7483 7484 7485
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
				rdev = conf->disks[d].replacement;
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
7486
			}
7487
		}
7488
		mddev->layout = conf->algorithm;
7489
		mddev->chunk_sectors = conf->chunk_sectors;
7490 7491
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
7492
		mddev->reshape_backwards = 0;
7493 7494 7495
	}
}

7496
static void raid5_quiesce(struct mddev *mddev, int state)
7497
{
7498
	struct r5conf *conf = mddev->private;
7499 7500

	switch(state) {
7501 7502 7503 7504
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

7505
	case 1: /* stop all writes */
7506
		lock_all_device_hash_locks_irq(conf);
7507 7508 7509 7510
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
7511
		wait_event_cmd(conf->wait_for_quiescent,
7512 7513
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
7514 7515
				    unlock_all_device_hash_locks_irq(conf),
				    lock_all_device_hash_locks_irq(conf));
7516
		conf->quiesce = 1;
7517
		unlock_all_device_hash_locks_irq(conf);
7518 7519
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
7520 7521 7522
		break;

	case 0: /* re-enable writes */
7523
		lock_all_device_hash_locks_irq(conf);
7524
		conf->quiesce = 0;
7525
		wake_up(&conf->wait_for_quiescent);
7526
		wake_up(&conf->wait_for_overlap);
7527
		unlock_all_device_hash_locks_irq(conf);
7528 7529 7530
		break;
	}
}
7531

7532
static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7533
{
7534
	struct r0conf *raid0_conf = mddev->private;
7535
	sector_t sectors;
7536

D
Dan Williams 已提交
7537
	/* for raid0 takeover only one zone is supported */
7538
	if (raid0_conf->nr_strip_zones > 1) {
7539 7540
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
7541 7542 7543
		return ERR_PTR(-EINVAL);
	}

7544 7545
	sectors = raid0_conf->strip_zone[0].zone_end;
	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7546
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
7547
	mddev->new_level = level;
7548 7549 7550 7551 7552 7553 7554 7555 7556 7557
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}

7558
static void *raid5_takeover_raid1(struct mddev *mddev)
7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7580
	mddev->new_chunk_sectors = chunksect;
7581 7582 7583 7584

	return setup_conf(mddev);
}

7585
static void *raid5_takeover_raid6(struct mddev *mddev)
7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

7618
static int raid5_check_reshape(struct mddev *mddev)
7619
{
7620 7621 7622 7623
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
7624
	 */
7625
	struct r5conf *conf = mddev->private;
7626
	int new_chunk = mddev->new_chunk_sectors;
7627

7628
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7629 7630
		return -EINVAL;
	if (new_chunk > 0) {
7631
		if (!is_power_of_2(new_chunk))
7632
			return -EINVAL;
7633
		if (new_chunk < (PAGE_SIZE>>9))
7634
			return -EINVAL;
7635
		if (mddev->array_sectors & (new_chunk-1))
7636 7637 7638 7639 7640 7641
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

7642
	if (mddev->raid_disks == 2) {
7643 7644 7645 7646
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
7647 7648
		}
		if (new_chunk > 0) {
7649 7650
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
7651 7652 7653
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
7654
	}
7655
	return check_reshape(mddev);
7656 7657
}

7658
static int raid6_check_reshape(struct mddev *mddev)
7659
{
7660
	int new_chunk = mddev->new_chunk_sectors;
7661

7662
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7663
		return -EINVAL;
7664
	if (new_chunk > 0) {
7665
		if (!is_power_of_2(new_chunk))
7666
			return -EINVAL;
7667
		if (new_chunk < (PAGE_SIZE >> 9))
7668
			return -EINVAL;
7669
		if (mddev->array_sectors & (new_chunk-1))
7670 7671
			/* not factor of array size */
			return -EINVAL;
7672
	}
7673 7674

	/* They look valid */
7675
	return check_reshape(mddev);
7676 7677
}

7678
static void *raid5_takeover(struct mddev *mddev)
7679 7680
{
	/* raid5 can take over:
D
Dan Williams 已提交
7681
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7682 7683 7684 7685
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
7686 7687
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
7688 7689
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
7690 7691 7692 7693 7694
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
7695 7696
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
7697 7698 7699 7700

	return ERR_PTR(-EINVAL);
}

7701
static void *raid4_takeover(struct mddev *mddev)
7702
{
D
Dan Williams 已提交
7703 7704 7705
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
7706
	 */
D
Dan Williams 已提交
7707 7708
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
7709 7710 7711 7712 7713 7714 7715 7716
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
7717

7718
static struct md_personality raid5_personality;
7719

7720
static void *raid6_takeover(struct mddev *mddev)
7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}

7766
static struct md_personality raid6_personality =
7767 7768 7769 7770 7771 7772
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
N
NeilBrown 已提交
7773
	.free		= raid5_free,
7774 7775 7776 7777 7778 7779 7780
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
7781
	.size		= raid5_size,
7782
	.check_reshape	= raid6_check_reshape,
7783
	.start_reshape  = raid5_start_reshape,
7784
	.finish_reshape = raid5_finish_reshape,
7785
	.quiesce	= raid5_quiesce,
7786
	.takeover	= raid6_takeover,
7787
	.congested	= raid5_congested,
7788
	.mergeable_bvec	= raid5_mergeable_bvec,
7789
};
7790
static struct md_personality raid5_personality =
L
Linus Torvalds 已提交
7791 7792
{
	.name		= "raid5",
7793
	.level		= 5,
L
Linus Torvalds 已提交
7794 7795 7796
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
N
NeilBrown 已提交
7797
	.free		= raid5_free,
L
Linus Torvalds 已提交
7798 7799 7800 7801 7802 7803 7804
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
7805
	.size		= raid5_size,
7806 7807
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
7808
	.finish_reshape = raid5_finish_reshape,
7809
	.quiesce	= raid5_quiesce,
7810
	.takeover	= raid5_takeover,
7811
	.congested	= raid5_congested,
7812
	.mergeable_bvec	= raid5_mergeable_bvec,
L
Linus Torvalds 已提交
7813 7814
};

7815
static struct md_personality raid4_personality =
L
Linus Torvalds 已提交
7816
{
7817 7818 7819 7820 7821
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
N
NeilBrown 已提交
7822
	.free		= raid5_free,
7823 7824 7825 7826 7827 7828 7829
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
7830
	.size		= raid5_size,
7831 7832
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
7833
	.finish_reshape = raid5_finish_reshape,
7834
	.quiesce	= raid5_quiesce,
7835
	.takeover	= raid4_takeover,
7836
	.congested	= raid5_congested,
7837
	.mergeable_bvec	= raid5_mergeable_bvec,
7838 7839 7840 7841
};

static int __init raid5_init(void)
{
7842 7843 7844 7845
	raid5_wq = alloc_workqueue("raid5wq",
		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
	if (!raid5_wq)
		return -ENOMEM;
7846
	register_md_personality(&raid6_personality);
7847 7848 7849
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
7850 7851
}

7852
static void raid5_exit(void)
L
Linus Torvalds 已提交
7853
{
7854
	unregister_md_personality(&raid6_personality);
7855 7856
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
7857
	destroy_workqueue(raid5_wq);
L
Linus Torvalds 已提交
7858 7859 7860 7861 7862
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
7863
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
7864
MODULE_ALIAS("md-personality-4"); /* RAID5 */
7865 7866
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
7867 7868
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
7869 7870 7871 7872 7873 7874 7875
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");