raid5.c 183.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/module.h>
51
#include <linux/async.h>
52
#include <linux/seq_file.h>
53
#include <linux/cpu.h>
54
#include <linux/slab.h>
55
#include <linux/ratelimit.h>
N
NeilBrown 已提交
56 57
#include <trace/events/block.h>

58
#include "md.h"
59
#include "raid5.h"
60
#include "raid0.h"
61
#include "bitmap.h"
62

L
Linus Torvalds 已提交
63 64 65 66 67 68 69 70 71
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
72
#define BYPASS_THRESHOLD	1
73
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
74 75
#define HASH_MASK		(NR_HASH - 1)

76
static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
77 78 79 80
{
	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
	return &conf->stripe_hashtbl[hash];
}
L
Linus Torvalds 已提交
81 82 83 84 85 86 87

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
88
 * This function is used to determine the 'next' bio in the list, given the sector
L
Linus Torvalds 已提交
89 90
 * of the current stripe+device
 */
91 92
static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
{
93
	int sectors = bio_sectors(bio);
94 95 96 97 98
	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
		return bio->bi_next;
	else
		return NULL;
}
L
Linus Torvalds 已提交
99

100
/*
101 102
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103
 */
104
static inline int raid5_bi_processed_stripes(struct bio *bio)
105
{
106 107
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	return (atomic_read(segments) >> 16) & 0xffff;
108 109
}

110
static inline int raid5_dec_bi_active_stripes(struct bio *bio)
111
{
112 113
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	return atomic_sub_return(1, segments) & 0xffff;
114 115
}

116
static inline void raid5_inc_bi_active_stripes(struct bio *bio)
117
{
118 119
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	atomic_inc(segments);
120 121
}

122 123
static inline void raid5_set_bi_processed_stripes(struct bio *bio,
	unsigned int cnt)
124
{
125 126
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	int old, new;
127

128 129 130 131
	do {
		old = atomic_read(segments);
		new = (old & 0xffff) | (cnt << 16);
	} while (atomic_cmpxchg(segments, old, new) != old);
132 133
}

134
static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
135
{
136 137
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	atomic_set(segments, cnt);
138 139
}

140 141 142
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
143 144 145 146
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
147 148 149 150 151
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
152 153 154 155 156
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
157

158 159 160 161 162
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
163 164
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
165
{
166
	int slot = *count;
167

168
	if (sh->ddf_layout)
169
		(*count)++;
170
	if (idx == sh->pd_idx)
171
		return syndrome_disks;
172
	if (idx == sh->qd_idx)
173
		return syndrome_disks + 1;
174
	if (!sh->ddf_layout)
175
		(*count)++;
176 177 178
	return slot;
}

179 180 181 182 183 184 185 186
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
187 188
		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
					 bi, 0);
189
		bio_endio(bi, 0);
190 191 192 193
		bi = return_bi;
	}
}

194
static void print_raid5_conf (struct r5conf *conf);
L
Linus Torvalds 已提交
195

196 197 198 199 200 201 202
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

203
static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
204
{
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
	BUG_ON(!list_empty(&sh->lru));
	BUG_ON(atomic_read(&conf->active_stripes)==0);
	if (test_bit(STRIPE_HANDLE, &sh->state)) {
		if (test_bit(STRIPE_DELAYED, &sh->state) &&
		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			list_add_tail(&sh->lru, &conf->delayed_list);
		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
			   sh->bm_seq - conf->seq_write > 0)
			list_add_tail(&sh->lru, &conf->bitmap_list);
		else {
			clear_bit(STRIPE_DELAYED, &sh->state);
			clear_bit(STRIPE_BIT_DELAY, &sh->state);
			list_add_tail(&sh->lru, &conf->handle_list);
		}
		md_wakeup_thread(conf->mddev->thread);
	} else {
		BUG_ON(stripe_operations_active(sh));
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			if (atomic_dec_return(&conf->preread_active_stripes)
			    < IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		atomic_dec(&conf->active_stripes);
		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
			list_add_tail(&sh->lru, &conf->inactive_list);
			wake_up(&conf->wait_for_stripe);
			if (conf->retry_read_aligned)
				md_wakeup_thread(conf->mddev->thread);
L
Linus Torvalds 已提交
232 233 234
		}
	}
}
235

236 237 238 239 240 241
static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
{
	if (atomic_dec_and_test(&sh->count))
		do_release_stripe(conf, sh);
}

S
Shaohua Li 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255
static struct llist_node *llist_reverse_order(struct llist_node *head)
{
	struct llist_node *new_head = NULL;

	while (head) {
		struct llist_node *tmp = head;
		head = head->next;
		tmp->next = new_head;
		new_head = tmp;
	}

	return new_head;
}

S
Shaohua Li 已提交
256 257 258 259 260 261 262 263
/* should hold conf->device_lock already */
static int release_stripe_list(struct r5conf *conf)
{
	struct stripe_head *sh;
	int count = 0;
	struct llist_node *head;

	head = llist_del_all(&conf->released_stripes);
S
Shaohua Li 已提交
264
	head = llist_reverse_order(head);
S
Shaohua Li 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	while (head) {
		sh = llist_entry(head, struct stripe_head, release_list);
		head = llist_next(head);
		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
		smp_mb();
		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
		/*
		 * Don't worry the bit is set here, because if the bit is set
		 * again, the count is always > 1. This is true for
		 * STRIPE_ON_UNPLUG_LIST bit too.
		 */
		__release_stripe(conf, sh);
		count++;
	}

	return count;
}

L
Linus Torvalds 已提交
283 284
static void release_stripe(struct stripe_head *sh)
{
285
	struct r5conf *conf = sh->raid_conf;
L
Linus Torvalds 已提交
286
	unsigned long flags;
S
Shaohua Li 已提交
287
	bool wakeup;
288

S
Shaohua Li 已提交
289 290 291 292 293 294 295
	if (test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
		goto slow_path;
	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
	if (wakeup)
		md_wakeup_thread(conf->mddev->thread);
	return;
slow_path:
296
	local_irq_save(flags);
S
Shaohua Li 已提交
297
	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
298 299 300 301 302
	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
		do_release_stripe(conf, sh);
		spin_unlock(&conf->device_lock);
	}
	local_irq_restore(flags);
L
Linus Torvalds 已提交
303 304
}

305
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
306
{
307 308
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
309

310
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
311 312
}

313
static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
314
{
315
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
316

317 318
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
319

320
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
321 322 323 324
}


/* find an idle stripe, make sure it is unhashed, and return it. */
325
static struct stripe_head *get_free_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

341
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
342 343 344
{
	struct page *p;
	int i;
345
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
346

347
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
348 349 350 351
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
352
		put_page(p);
L
Linus Torvalds 已提交
353 354 355
	}
}

356
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
357 358
{
	int i;
359
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
360

361
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
362 363 364 365 366 367 368 369 370 371
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

372
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
373
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
374
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
375

376
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
377
{
378
	struct r5conf *conf = sh->raid_conf;
379
	int i;
L
Linus Torvalds 已提交
380

381 382
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
383
	BUG_ON(stripe_operations_active(sh));
384

385
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
386 387 388
		(unsigned long long)sh->sector);

	remove_hash(sh);
389

390
	sh->generation = conf->generation - previous;
391
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
392
	sh->sector = sector;
393
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
394 395
	sh->state = 0;

396 397

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
398 399
		struct r5dev *dev = &sh->dev[i];

400
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
401
		    test_bit(R5_LOCKED, &dev->flags)) {
402
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
403
			       (unsigned long long)sh->sector, i, dev->toread,
404
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
405
			       test_bit(R5_LOCKED, &dev->flags));
406
			WARN_ON(1);
L
Linus Torvalds 已提交
407 408
		}
		dev->flags = 0;
409
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
410 411 412 413
	}
	insert_hash(conf, sh);
}

414
static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
415
					 short generation)
L
Linus Torvalds 已提交
416 417 418
{
	struct stripe_head *sh;

419
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
420
	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
421
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
422
			return sh;
423
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
424 425 426
	return NULL;
}

427 428 429 430 431 432 433 434 435 436 437 438 439
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
440
static int calc_degraded(struct r5conf *conf)
441
{
442
	int degraded, degraded2;
443 444 445 446 447
	int i;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
448
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
449 450
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = rcu_dereference(conf->disks[i].replacement);
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
469 470
	if (conf->raid_disks == conf->previous_raid_disks)
		return degraded;
471
	rcu_read_lock();
472
	degraded2 = 0;
473
	for (i = 0; i < conf->raid_disks; i++) {
474
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
475 476
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = rcu_dereference(conf->disks[i].replacement);
477
		if (!rdev || test_bit(Faulty, &rdev->flags))
478
			degraded2++;
479 480 481 482 483 484 485 486 487
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
488
				degraded2++;
489 490
	}
	rcu_read_unlock();
491 492 493 494 495 496 497 498 499 500 501 502 503
	if (degraded2 > degraded)
		return degraded2;
	return degraded;
}

static int has_failed(struct r5conf *conf)
{
	int degraded;

	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	degraded = calc_degraded(conf);
504 505 506 507 508
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

509
static struct stripe_head *
510
get_active_stripe(struct r5conf *conf, sector_t sector,
511
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
512 513 514
{
	struct stripe_head *sh;

515
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
516 517 518 519

	spin_lock_irq(&conf->device_lock);

	do {
520
		wait_event_lock_irq(conf->wait_for_stripe,
521
				    conf->quiesce == 0 || noquiesce,
522
				    conf->device_lock);
523
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
524 525 526 527 528 529 530 531 532
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
533 534
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
535
						     || !conf->inactive_blocked),
536
						    conf->device_lock);
L
Linus Torvalds 已提交
537 538
				conf->inactive_blocked = 0;
			} else
539
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
540 541
		} else {
			if (atomic_read(&sh->count)) {
542
				BUG_ON(!list_empty(&sh->lru)
543
				    && !test_bit(STRIPE_EXPANDING, &sh->state)
S
Shaohua Li 已提交
544 545
				    && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)
				    && !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
L
Linus Torvalds 已提交
546 547 548
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
549 550
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
551 552
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
553 554 555 556 557 558 559 560 561 562 563
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
/* Determine if 'data_offset' or 'new_data_offset' should be used
 * in this stripe_head.
 */
static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
{
	sector_t progress = conf->reshape_progress;
	/* Need a memory barrier to make sure we see the value
	 * of conf->generation, or ->data_offset that was set before
	 * reshape_progress was updated.
	 */
	smp_rmb();
	if (progress == MaxSector)
		return 0;
	if (sh->generation == conf->generation - 1)
		return 0;
	/* We are in a reshape, and this is a new-generation stripe,
	 * so use new_data_offset.
	 */
	return 1;
}

585 586 587 588
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
589

590
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
591
{
592
	struct r5conf *conf = sh->raid_conf;
593 594 595 596 597 598
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
599
		int replace_only = 0;
600 601
		struct bio *bi, *rbi;
		struct md_rdev *rdev, *rrdev = NULL;
T
Tejun Heo 已提交
602 603 604 605 606
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
607
			if (test_bit(R5_Discard, &sh->dev[i].flags))
S
Shaohua Li 已提交
608
				rw |= REQ_DISCARD;
T
Tejun Heo 已提交
609
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
610
			rw = READ;
611 612 613 614 615
		else if (test_and_clear_bit(R5_WantReplace,
					    &sh->dev[i].flags)) {
			rw = WRITE;
			replace_only = 1;
		} else
616
			continue;
S
Shaohua Li 已提交
617 618
		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
			rw |= REQ_SYNC;
619 620

		bi = &sh->dev[i].req;
621
		rbi = &sh->dev[i].rreq; /* For writing to replacement */
622 623

		rcu_read_lock();
624
		rrdev = rcu_dereference(conf->disks[i].replacement);
625 626 627 628 629 630
		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev) {
			rdev = rrdev;
			rrdev = NULL;
		}
631 632 633
		if (rw & WRITE) {
			if (replace_only)
				rdev = NULL;
634 635 636
			if (rdev == rrdev)
				/* We raced and saw duplicates */
				rrdev = NULL;
637
		} else {
638
			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
639 640 641
				rdev = rrdev;
			rrdev = NULL;
		}
642

643 644 645 646
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
647 648 649 650
		if (rrdev && test_bit(Faulty, &rrdev->flags))
			rrdev = NULL;
		if (rrdev)
			atomic_inc(&rrdev->nr_pending);
651 652
		rcu_read_unlock();

653
		/* We have already checked bad blocks for reads.  Now
654 655
		 * need to check for writes.  We never accept write errors
		 * on the replacement, so we don't to check rrdev.
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
		 */
		while ((rw & WRITE) && rdev &&
		       test_bit(WriteErrorSeen, &rdev->flags)) {
			sector_t first_bad;
			int bad_sectors;
			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					      &first_bad, &bad_sectors);
			if (!bad)
				break;

			if (bad < 0) {
				set_bit(BlockedBadBlocks, &rdev->flags);
				if (!conf->mddev->external &&
				    conf->mddev->flags) {
					/* It is very unlikely, but we might
					 * still need to write out the
					 * bad block log - better give it
					 * a chance*/
					md_check_recovery(conf->mddev);
				}
676 677 678 679 680 681
				/*
				 * Because md_wait_for_blocked_rdev
				 * will dec nr_pending, we must
				 * increment it first.
				 */
				atomic_inc(&rdev->nr_pending);
682 683 684 685 686 687 688 689
				md_wait_for_blocked_rdev(rdev, conf->mddev);
			} else {
				/* Acknowledged bad block - skip the write */
				rdev_dec_pending(rdev, conf->mddev);
				rdev = NULL;
			}
		}

690
		if (rdev) {
691 692
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
693 694
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
695 696
			set_bit(STRIPE_IO_STARTED, &sh->state);

K
Kent Overstreet 已提交
697
			bio_reset(bi);
698
			bi->bi_bdev = rdev->bdev;
K
Kent Overstreet 已提交
699 700 701 702 703 704
			bi->bi_rw = rw;
			bi->bi_end_io = (rw & WRITE)
				? raid5_end_write_request
				: raid5_end_read_request;
			bi->bi_private = sh;

705
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
706
				__func__, (unsigned long long)sh->sector,
707 708
				bi->bi_rw, i);
			atomic_inc(&sh->count);
709 710 711 712 713 714
			if (use_new_offset(conf, sh))
				bi->bi_sector = (sh->sector
						 + rdev->new_data_offset);
			else
				bi->bi_sector = (sh->sector
						 + rdev->data_offset);
715 716 717
			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
				bi->bi_rw |= REQ_FLUSH;

K
Kent Overstreet 已提交
718
			bi->bi_vcnt = 1;
719 720 721
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
722 723
			if (rrdev)
				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
724 725 726 727 728

			if (conf->mddev->gendisk)
				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
						      bi, disk_devt(conf->mddev->gendisk),
						      sh->dev[i].sector);
729
			generic_make_request(bi);
730 731
		}
		if (rrdev) {
732 733
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
734 735 736 737
				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);

			set_bit(STRIPE_IO_STARTED, &sh->state);

K
Kent Overstreet 已提交
738
			bio_reset(rbi);
739
			rbi->bi_bdev = rrdev->bdev;
K
Kent Overstreet 已提交
740 741 742 743 744
			rbi->bi_rw = rw;
			BUG_ON(!(rw & WRITE));
			rbi->bi_end_io = raid5_end_write_request;
			rbi->bi_private = sh;

745 746 747 748 749
			pr_debug("%s: for %llu schedule op %ld on "
				 "replacement disc %d\n",
				__func__, (unsigned long long)sh->sector,
				rbi->bi_rw, i);
			atomic_inc(&sh->count);
750 751 752 753 754 755
			if (use_new_offset(conf, sh))
				rbi->bi_sector = (sh->sector
						  + rrdev->new_data_offset);
			else
				rbi->bi_sector = (sh->sector
						  + rrdev->data_offset);
K
Kent Overstreet 已提交
756
			rbi->bi_vcnt = 1;
757 758 759
			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			rbi->bi_io_vec[0].bv_offset = 0;
			rbi->bi_size = STRIPE_SIZE;
760 761 762 763
			if (conf->mddev->gendisk)
				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
						      rbi, disk_devt(conf->mddev->gendisk),
						      sh->dev[i].sector);
764 765 766
			generic_make_request(rbi);
		}
		if (!rdev && !rrdev) {
767
			if (rw & WRITE)
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
785
	struct async_submit_ctl submit;
D
Dan Williams 已提交
786
	enum async_tx_flags flags = 0;
787 788 789 790 791

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
792

D
Dan Williams 已提交
793 794 795 796
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

797
	bio_for_each_segment(bvl, bio, i) {
798
		int len = bvl->bv_len;
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
814 815
			b_offset += bvl->bv_offset;
			bio_page = bvl->bv_page;
816 817
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
818
						  b_offset, clen, &submit);
819 820
			else
				tx = async_memcpy(bio_page, page, b_offset,
821
						  page_offset, clen, &submit);
822
		}
823 824 825
		/* chain the operations */
		submit.depend_tx = tx;

826 827 828 829 830 831 832 833 834 835 836 837
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
838
	int i;
839

840
	pr_debug("%s: stripe %llu\n", __func__,
841 842 843 844 845 846 847
		(unsigned long long)sh->sector);

	/* clear completed biofills */
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
848 849
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
850
		 * !STRIPE_BIOFILL_RUN
851 852
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
853 854 855 856 857 858 859 860
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
861
				if (!raid5_dec_bi_active_stripes(rbi)) {
862 863 864 865 866 867 868
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
869
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
870 871 872

	return_io(return_bi);

873
	set_bit(STRIPE_HANDLE, &sh->state);
874 875 876 877 878 879
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
880
	struct async_submit_ctl submit;
881 882
	int i;

883
	pr_debug("%s: stripe %llu\n", __func__,
884 885 886 887 888 889
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
S
Shaohua Li 已提交
890
			spin_lock_irq(&sh->stripe_lock);
891 892
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
S
Shaohua Li 已提交
893
			spin_unlock_irq(&sh->stripe_lock);
894 895 896 897 898 899 900 901 902 903
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
904 905
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
906 907
}

908
static void mark_target_uptodate(struct stripe_head *sh, int target)
909
{
910
	struct r5dev *tgt;
911

912 913
	if (target < 0)
		return;
914

915
	tgt = &sh->dev[target];
916 917 918
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
919 920
}

921
static void ops_complete_compute(void *stripe_head_ref)
922 923 924
{
	struct stripe_head *sh = stripe_head_ref;

925
	pr_debug("%s: stripe %llu\n", __func__,
926 927
		(unsigned long long)sh->sector);

928
	/* mark the computed target(s) as uptodate */
929
	mark_target_uptodate(sh, sh->ops.target);
930
	mark_target_uptodate(sh, sh->ops.target2);
931

932 933 934
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
935 936 937 938
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

939 940 941 942 943 944 945 946 947
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
948 949
{
	int disks = sh->disks;
950
	struct page **xor_srcs = percpu->scribble;
951 952 953 954 955
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
956
	struct async_submit_ctl submit;
957 958 959
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
960
		__func__, (unsigned long long)sh->sector, target);
961 962 963 964 965 966 967 968
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
969
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
970
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
971
	if (unlikely(count == 1))
972
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
973
	else
974
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
975 976 977 978

	return tx;
}

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
997
		srcs[i] = NULL;
998 999 1000 1001 1002 1003 1004 1005 1006 1007

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

1008
	return syndrome_disks;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
1029
	else
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
1046 1047
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
1059 1060
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
1061 1062 1063
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
1064 1065 1066 1067

	return tx;
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

1089
	/* we need to open-code set_syndrome_sources to handle the
1090 1091 1092
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
1093
		blocks[i] = NULL;
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
1120 1121 1122
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
1123
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
1143 1144 1145 1146
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
1147 1148 1149 1150
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
1151 1152 1153
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
1154 1155 1156 1157
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
1172 1173 1174 1175
	}
}


1176 1177 1178 1179
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1180
	pr_debug("%s: stripe %llu\n", __func__,
1181 1182 1183 1184
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
1185 1186
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
1187 1188
{
	int disks = sh->disks;
1189
	struct page **xor_srcs = percpu->scribble;
1190
	int count = 0, pd_idx = sh->pd_idx, i;
1191
	struct async_submit_ctl submit;
1192 1193 1194 1195

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

1196
	pr_debug("%s: stripe %llu\n", __func__,
1197 1198 1199 1200 1201
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
1202
		if (test_bit(R5_Wantdrain, &dev->flags))
1203 1204 1205
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1206
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1207
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1208
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1209 1210 1211 1212 1213

	return tx;
}

static struct dma_async_tx_descriptor *
1214
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1215 1216
{
	int disks = sh->disks;
1217
	int i;
1218

1219
	pr_debug("%s: stripe %llu\n", __func__,
1220 1221 1222 1223 1224 1225
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1226
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1227 1228
			struct bio *wbi;

S
Shaohua Li 已提交
1229
			spin_lock_irq(&sh->stripe_lock);
1230 1231 1232 1233
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
S
Shaohua Li 已提交
1234
			spin_unlock_irq(&sh->stripe_lock);
1235 1236 1237

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1238 1239
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1240 1241
				if (wbi->bi_rw & REQ_SYNC)
					set_bit(R5_SyncIO, &dev->flags);
1242
				if (wbi->bi_rw & REQ_DISCARD)
S
Shaohua Li 已提交
1243
					set_bit(R5_Discard, &dev->flags);
1244
				else
S
Shaohua Li 已提交
1245 1246
					tx = async_copy_data(1, wbi, dev->page,
						dev->sector, tx);
1247 1248 1249 1250 1251 1252 1253 1254
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1255
static void ops_complete_reconstruct(void *stripe_head_ref)
1256 1257
{
	struct stripe_head *sh = stripe_head_ref;
1258 1259 1260 1261
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
1262
	bool fua = false, sync = false, discard = false;
1263

1264
	pr_debug("%s: stripe %llu\n", __func__,
1265 1266
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1267
	for (i = disks; i--; ) {
T
Tejun Heo 已提交
1268
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
S
Shaohua Li 已提交
1269
		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1270
		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
S
Shaohua Li 已提交
1271
	}
T
Tejun Heo 已提交
1272

1273 1274
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1275

T
Tejun Heo 已提交
1276
		if (dev->written || i == pd_idx || i == qd_idx) {
1277 1278
			if (!discard)
				set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1279 1280
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1281 1282
			if (sync)
				set_bit(R5_SyncIO, &dev->flags);
T
Tejun Heo 已提交
1283
		}
1284 1285
	}

1286 1287 1288 1289 1290 1291 1292 1293
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1294 1295 1296 1297 1298 1299

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1300 1301
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1302 1303
{
	int disks = sh->disks;
1304
	struct page **xor_srcs = percpu->scribble;
1305
	struct async_submit_ctl submit;
1306 1307
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1308
	int prexor = 0;
1309 1310
	unsigned long flags;

1311
	pr_debug("%s: stripe %llu\n", __func__,
1312 1313
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	for (i = 0; i < sh->disks; i++) {
		if (pd_idx == i)
			continue;
		if (!test_bit(R5_Discard, &sh->dev[i].flags))
			break;
	}
	if (i >= sh->disks) {
		atomic_inc(&sh->count);
		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
		ops_complete_reconstruct(sh);
		return;
	}
1326 1327 1328
	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1329 1330
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1351
	flags = ASYNC_TX_ACK |
1352 1353 1354 1355
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1356
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1357
			  to_addr_conv(sh, percpu));
1358 1359 1360 1361
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1362 1363
}

1364 1365 1366 1367 1368 1369
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
S
Shaohua Li 已提交
1370
	int count, i;
1371 1372 1373

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

S
Shaohua Li 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	for (i = 0; i < sh->disks; i++) {
		if (sh->pd_idx == i || sh->qd_idx == i)
			continue;
		if (!test_bit(R5_Discard, &sh->dev[i].flags))
			break;
	}
	if (i >= sh->disks) {
		atomic_inc(&sh->count);
		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
		ops_complete_reconstruct(sh);
		return;
	}

1388 1389 1390 1391 1392 1393 1394
	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1395 1396 1397 1398 1399 1400
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1401
	pr_debug("%s: stripe %llu\n", __func__,
1402 1403
		(unsigned long long)sh->sector);

1404
	sh->check_state = check_state_check_result;
1405 1406 1407 1408
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1409
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1410 1411
{
	int disks = sh->disks;
1412 1413 1414
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1415
	struct page **xor_srcs = percpu->scribble;
1416
	struct dma_async_tx_descriptor *tx;
1417
	struct async_submit_ctl submit;
1418 1419
	int count;
	int i;
1420

1421
	pr_debug("%s: stripe %llu\n", __func__,
1422 1423
		(unsigned long long)sh->sector);

1424 1425 1426
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1427
	for (i = disks; i--; ) {
1428 1429 1430
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1431 1432
	}

1433 1434
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1435
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1436
			   &sh->ops.zero_sum_result, &submit);
1437 1438

	atomic_inc(&sh->count);
1439 1440
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1441 1442
}

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1455 1456

	atomic_inc(&sh->count);
1457 1458 1459 1460
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1461 1462
}

N
NeilBrown 已提交
1463
static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1464 1465 1466
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1467
	struct r5conf *conf = sh->raid_conf;
1468
	int level = conf->level;
1469 1470
	struct raid5_percpu *percpu;
	unsigned long cpu;
1471

1472 1473
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1474
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1475 1476 1477 1478
		ops_run_biofill(sh);
		overlap_clear++;
	}

1479
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1490 1491
			async_tx_ack(tx);
	}
1492

1493
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1494
		tx = ops_run_prexor(sh, percpu, tx);
1495

1496
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1497
		tx = ops_run_biodrain(sh, tx);
1498 1499 1500
		overlap_clear++;
	}

1501 1502 1503 1504 1505 1506
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1518 1519 1520 1521 1522 1523 1524

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1525
	put_cpu();
1526 1527
}

1528
static int grow_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
1529 1530
{
	struct stripe_head *sh;
N
Namhyung Kim 已提交
1531
	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1532 1533
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
1534

1535 1536
	sh->raid_conf = conf;

S
Shaohua Li 已提交
1537 1538
	spin_lock_init(&sh->stripe_lock);

1539 1540
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

1552
static int grow_stripes(struct r5conf *conf, int num)
1553
{
1554
	struct kmem_cache *sc;
1555
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1556

1557 1558 1559 1560 1561 1562 1563 1564
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1565 1566
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1567
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1568
			       0, 0, NULL);
L
Linus Torvalds 已提交
1569 1570 1571
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1572
	conf->pool_size = devs;
1573
	while (num--)
1574
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1575 1576 1577
			return 1;
	return 0;
}
1578

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1601
static int resize_stripes(struct r5conf *conf, int newsize)
1602 1603 1604 1605 1606 1607 1608
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
M
Masanari Iida 已提交
1609
	 * 2/ gather all the old stripe_heads and transfer the pages across
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1629
	unsigned long cpu;
1630
	int err;
1631
	struct kmem_cache *sc;
1632 1633 1634 1635 1636
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1637 1638 1639
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1640

1641 1642 1643
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1644
			       0, 0, NULL);
1645 1646 1647 1648
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
N
Namhyung Kim 已提交
1649
		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1650 1651 1652 1653
		if (!nsh)
			break;

		nsh->raid_conf = conf;
1654
		spin_lock_init(&nsh->stripe_lock);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
1676
				    conf->device_lock);
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1691
	 * conf->disks and the scribble region
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1721 1722 1723 1724
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1725

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1742

1743
static int drop_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
1744 1745 1746
{
	struct stripe_head *sh;

1747 1748 1749 1750 1751
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1752
	BUG_ON(atomic_read(&sh->count));
1753
	shrink_buffers(sh);
1754 1755 1756 1757 1758
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

1759
static void shrink_stripes(struct r5conf *conf)
1760 1761 1762 1763
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1764 1765
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1766 1767 1768
	conf->slab_cache = NULL;
}

1769
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1770
{
1771
	struct stripe_head *sh = bi->bi_private;
1772
	struct r5conf *conf = sh->raid_conf;
1773
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1774
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1775
	char b[BDEVNAME_SIZE];
1776
	struct md_rdev *rdev = NULL;
1777
	sector_t s;
L
Linus Torvalds 已提交
1778 1779 1780 1781 1782

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1783 1784
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1785 1786 1787
		uptodate);
	if (i == disks) {
		BUG();
1788
		return;
L
Linus Torvalds 已提交
1789
	}
1790
	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1791 1792 1793 1794 1795
		/* If replacement finished while this request was outstanding,
		 * 'replacement' might be NULL already.
		 * In that case it moved down to 'rdev'.
		 * rdev is not removed until all requests are finished.
		 */
1796
		rdev = conf->disks[i].replacement;
1797
	if (!rdev)
1798
		rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
1799

1800 1801 1802 1803
	if (use_new_offset(conf, sh))
		s = sh->sector + rdev->new_data_offset;
	else
		s = sh->sector + rdev->data_offset;
L
Linus Torvalds 已提交
1804 1805
	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1806
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1807 1808 1809 1810
			/* Note that this cannot happen on a
			 * replacement device.  We just fail those on
			 * any error
			 */
1811 1812 1813 1814 1815
			printk_ratelimited(
				KERN_INFO
				"md/raid:%s: read error corrected"
				" (%lu sectors at %llu on %s)\n",
				mdname(conf->mddev), STRIPE_SECTORS,
1816
				(unsigned long long)s,
1817
				bdevname(rdev->bdev, b));
1818
			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1819 1820
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1821 1822 1823
		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);

1824 1825
		if (atomic_read(&rdev->read_errors))
			atomic_set(&rdev->read_errors, 0);
L
Linus Torvalds 已提交
1826
	} else {
1827
		const char *bdn = bdevname(rdev->bdev, b);
1828
		int retry = 0;
1829
		int set_bad = 0;
1830

L
Linus Torvalds 已提交
1831
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1832
		atomic_inc(&rdev->read_errors);
1833 1834 1835 1836 1837 1838
		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error on replacement device "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1839
				(unsigned long long)s,
1840
				bdn);
1841 1842
		else if (conf->mddev->degraded >= conf->max_degraded) {
			set_bad = 1;
1843 1844 1845 1846 1847
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error not correctable "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1848
				(unsigned long long)s,
1849
				bdn);
1850
		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1851
			/* Oh, no!!! */
1852
			set_bad = 1;
1853 1854 1855 1856 1857
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error NOT corrected!! "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1858
				(unsigned long long)s,
1859
				bdn);
1860
		} else if (atomic_read(&rdev->read_errors)
1861
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1862
			printk(KERN_WARNING
1863
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1864
			       mdname(conf->mddev), bdn);
1865 1866 1867
		else
			retry = 1;
		if (retry)
1868 1869 1870 1871 1872
			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
				set_bit(R5_ReadError, &sh->dev[i].flags);
				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
			} else
				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1873
		else {
1874 1875
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1876 1877 1878 1879 1880
			if (!(set_bad
			      && test_bit(In_sync, &rdev->flags)
			      && rdev_set_badblocks(
				      rdev, sh->sector, STRIPE_SECTORS, 0)))
				md_error(conf->mddev, rdev);
1881
		}
L
Linus Torvalds 已提交
1882
	}
1883
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
1884 1885 1886 1887 1888
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1889
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1890
{
1891
	struct stripe_head *sh = bi->bi_private;
1892
	struct r5conf *conf = sh->raid_conf;
1893
	int disks = sh->disks, i;
1894
	struct md_rdev *uninitialized_var(rdev);
L
Linus Torvalds 已提交
1895
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1896 1897
	sector_t first_bad;
	int bad_sectors;
1898
	int replacement = 0;
L
Linus Torvalds 已提交
1899

1900 1901 1902
	for (i = 0 ; i < disks; i++) {
		if (bi == &sh->dev[i].req) {
			rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
1903
			break;
1904 1905 1906
		}
		if (bi == &sh->dev[i].rreq) {
			rdev = conf->disks[i].replacement;
1907 1908 1909 1910 1911 1912 1913 1914
			if (rdev)
				replacement = 1;
			else
				/* rdev was removed and 'replacement'
				 * replaced it.  rdev is not removed
				 * until all requests are finished.
				 */
				rdev = conf->disks[i].rdev;
1915 1916 1917
			break;
		}
	}
1918
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1919 1920 1921 1922
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1923
		return;
L
Linus Torvalds 已提交
1924 1925
	}

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	if (replacement) {
		if (!uptodate)
			md_error(conf->mddev, rdev);
		else if (is_badblock(rdev, sh->sector,
				     STRIPE_SECTORS,
				     &first_bad, &bad_sectors))
			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
	} else {
		if (!uptodate) {
			set_bit(WriteErrorSeen, &rdev->flags);
			set_bit(R5_WriteError, &sh->dev[i].flags);
1937 1938 1939
			if (!test_and_set_bit(WantReplacement, &rdev->flags))
				set_bit(MD_RECOVERY_NEEDED,
					&rdev->mddev->recovery);
1940 1941
		} else if (is_badblock(rdev, sh->sector,
				       STRIPE_SECTORS,
1942
				       &first_bad, &bad_sectors)) {
1943
			set_bit(R5_MadeGood, &sh->dev[i].flags);
1944 1945 1946 1947 1948 1949 1950
			if (test_bit(R5_ReadError, &sh->dev[i].flags))
				/* That was a successful write so make
				 * sure it looks like we already did
				 * a re-write.
				 */
				set_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1951 1952
	}
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
1953

1954 1955
	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
L
Linus Torvalds 已提交
1956
	set_bit(STRIPE_HANDLE, &sh->state);
1957
	release_stripe(sh);
L
Linus Torvalds 已提交
1958 1959
}

1960
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1961
	
1962
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1963 1964 1965 1966 1967 1968 1969 1970
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->req.bi_private = sh;
1971
	dev->vec.bv_page = dev->page;
L
Linus Torvalds 已提交
1972

1973 1974 1975 1976 1977 1978 1979
	bio_init(&dev->rreq);
	dev->rreq.bi_io_vec = &dev->rvec;
	dev->rreq.bi_vcnt++;
	dev->rreq.bi_max_vecs++;
	dev->rreq.bi_private = sh;
	dev->rvec.bv_page = dev->page;

L
Linus Torvalds 已提交
1980
	dev->flags = 0;
1981
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1982 1983
}

1984
static void error(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
1985 1986
{
	char b[BDEVNAME_SIZE];
1987
	struct r5conf *conf = mddev->private;
1988
	unsigned long flags;
1989
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1990

1991 1992 1993 1994 1995 1996
	spin_lock_irqsave(&conf->device_lock, flags);
	clear_bit(In_sync, &rdev->flags);
	mddev->degraded = calc_degraded(conf);
	spin_unlock_irqrestore(&conf->device_lock, flags);
	set_bit(MD_RECOVERY_INTR, &mddev->recovery);

1997
	set_bit(Blocked, &rdev->flags);
1998 1999 2000 2001 2002 2003 2004 2005 2006
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
2007
}
L
Linus Torvalds 已提交
2008 2009 2010 2011 2012

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
2013
static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2014 2015
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
2016
{
N
NeilBrown 已提交
2017
	sector_t stripe, stripe2;
2018
	sector_t chunk_number;
L
Linus Torvalds 已提交
2019
	unsigned int chunk_offset;
2020
	int pd_idx, qd_idx;
2021
	int ddf_layout = 0;
L
Linus Torvalds 已提交
2022
	sector_t new_sector;
2023 2024
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
2025 2026
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2027 2028 2029
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
2042 2043
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
2044
	stripe2 = stripe;
L
Linus Torvalds 已提交
2045 2046 2047
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
2048
	pd_idx = qd_idx = -1;
2049 2050
	switch(conf->level) {
	case 4:
2051
		pd_idx = data_disks;
2052 2053
		break;
	case 5:
2054
		switch (algorithm) {
L
Linus Torvalds 已提交
2055
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
2056
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2057
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
2058 2059 2060
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
2061
			pd_idx = sector_div(stripe2, raid_disks);
2062
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
2063 2064 2065
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
2066
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2067
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
2068 2069
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2070
			pd_idx = sector_div(stripe2, raid_disks);
2071
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
2072
			break;
2073 2074 2075 2076 2077 2078 2079
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
2080
		default:
2081
			BUG();
2082 2083 2084 2085
		}
		break;
	case 6:

2086
		switch (algorithm) {
2087
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
2088
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2089 2090
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2091
				(*dd_idx)++;	/* Q D D D P */
2092 2093
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2094 2095 2096
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
2097
			pd_idx = sector_div(stripe2, raid_disks);
2098 2099
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2100
				(*dd_idx)++;	/* Q D D D P */
2101 2102
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2103 2104 2105
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
2106
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2107 2108
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2109 2110
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2111
			pd_idx = sector_div(stripe2, raid_disks);
2112 2113
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2114
			break;
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
2130
			pd_idx = sector_div(stripe2, raid_disks);
2131 2132 2133 2134 2135 2136
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2137
			ddf_layout = 1;
2138 2139 2140 2141 2142 2143 2144
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
2145 2146
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2147 2148 2149 2150 2151 2152
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2153
			ddf_layout = 1;
2154 2155 2156 2157
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
2158
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2159 2160
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2161
			ddf_layout = 1;
2162 2163 2164 2165
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
2166
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2167 2168 2169 2170 2171 2172
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
2173
			pd_idx = sector_div(stripe2, raid_disks-1);
2174 2175 2176 2177 2178 2179
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
2180
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2181 2182 2183 2184 2185
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
2186
			pd_idx = sector_div(stripe2, raid_disks-1);
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

2197
		default:
2198
			BUG();
2199 2200
		}
		break;
L
Linus Torvalds 已提交
2201 2202
	}

2203 2204 2205
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
2206
		sh->ddf_layout = ddf_layout;
2207
	}
L
Linus Torvalds 已提交
2208 2209 2210 2211 2212 2213 2214 2215
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


2216
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
2217
{
2218
	struct r5conf *conf = sh->raid_conf;
2219 2220
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2221
	sector_t new_sector = sh->sector, check;
2222 2223
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2224 2225
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
2226 2227
	sector_t stripe;
	int chunk_offset;
2228 2229
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
2230
	sector_t r_sector;
2231
	struct stripe_head sh2;
L
Linus Torvalds 已提交
2232

2233

L
Linus Torvalds 已提交
2234 2235 2236
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

2237 2238 2239 2240 2241
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
2242
		switch (algorithm) {
L
Linus Torvalds 已提交
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
2254 2255 2256 2257 2258
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
2259
		default:
2260
			BUG();
2261 2262 2263
		}
		break;
	case 6:
2264
		if (i == sh->qd_idx)
2265
			return 0; /* It is the Q disk */
2266
		switch (algorithm) {
2267 2268
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
2269 2270 2271 2272
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2287 2288 2289 2290 2291 2292
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2293
			/* Like left_symmetric, but P is before Q */
2294 2295
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2296 2297 2298 2299 2300 2301
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2317
		default:
2318
			BUG();
2319 2320
		}
		break;
L
Linus Torvalds 已提交
2321 2322 2323
	}

	chunk_number = stripe * data_disks + i;
2324
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2325

2326
	check = raid5_compute_sector(conf, r_sector,
2327
				     previous, &dummy1, &sh2);
2328 2329
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2330 2331
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2332 2333 2334 2335 2336 2337
		return 0;
	}
	return r_sector;
}


2338
static void
2339
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2340
			 int rcw, int expand)
2341 2342
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2343
	struct r5conf *conf = sh->raid_conf;
2344
	int level = conf->level;
2345 2346 2347 2348 2349 2350 2351 2352

	if (rcw) {

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2353
				set_bit(R5_Wantdrain, &dev->flags);
2354 2355
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2356
				s->locked++;
2357 2358
			}
		}
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
			if (!s->locked)
				/* False alarm, nothing to do */
				return;
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;

		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);

2374
		if (s->locked + conf->max_degraded == disks)
2375
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2376
				atomic_inc(&conf->pending_full_writes);
2377
	} else {
2378
		BUG_ON(level == 6);
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2389 2390
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2391 2392
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2393
				s->locked++;
2394 2395
			}
		}
2396 2397 2398 2399 2400 2401 2402
		if (!s->locked)
			/* False alarm - nothing to do */
			return;
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2403 2404
	}

2405
	/* keep the parity disk(s) locked while asynchronous operations
2406 2407 2408 2409
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2410
	s->locked++;
2411

2412 2413 2414 2415 2416 2417 2418 2419 2420
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2421
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2422
		__func__, (unsigned long long)sh->sector,
2423
		s->locked, s->ops_request);
2424
}
2425

L
Linus Torvalds 已提交
2426 2427
/*
 * Each stripe/dev can have one or more bion attached.
2428
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2429 2430 2431 2432 2433
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
2434
	struct r5conf *conf = sh->raid_conf;
2435
	int firstwrite=0;
L
Linus Torvalds 已提交
2436

2437
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2438 2439 2440
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449
	/*
	 * If several bio share a stripe. The bio bi_phys_segments acts as a
	 * reference count to avoid race. The reference count should already be
	 * increased before this function is called (for example, in
	 * make_request()), so other bio sharing this stripe will not free the
	 * stripe. If a stripe is owned by one stripe, the stripe lock will
	 * protect it.
	 */
	spin_lock_irq(&sh->stripe_lock);
2450
	if (forwrite) {
L
Linus Torvalds 已提交
2451
		bip = &sh->dev[dd_idx].towrite;
2452
		if (*bip == NULL)
2453 2454
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2455 2456
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
K
Kent Overstreet 已提交
2457
		if (bio_end_sector(*bip) > bi->bi_sector)
L
Linus Torvalds 已提交
2458 2459 2460
			goto overlap;
		bip = & (*bip)->bi_next;
	}
K
Kent Overstreet 已提交
2461
	if (*bip && (*bip)->bi_sector < bio_end_sector(bi))
L
Linus Torvalds 已提交
2462 2463
		goto overlap;

2464
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2465 2466 2467
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2468
	raid5_inc_bi_active_stripes(bi);
2469

L
Linus Torvalds 已提交
2470 2471 2472 2473 2474 2475 2476
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
K
Kent Overstreet 已提交
2477 2478
			if (bio_end_sector(bi) >= sector)
				sector = bio_end_sector(bi);
L
Linus Torvalds 已提交
2479 2480 2481 2482
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
2483 2484 2485 2486

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
		(unsigned long long)(*bip)->bi_sector,
		(unsigned long long)sh->sector, dd_idx);
2487
	spin_unlock_irq(&sh->stripe_lock);
2488 2489 2490 2491 2492 2493 2494

	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
		sh->bm_seq = conf->seq_flush+1;
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}
L
Linus Torvalds 已提交
2495 2496 2497 2498
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
S
Shaohua Li 已提交
2499
	spin_unlock_irq(&sh->stripe_lock);
L
Linus Torvalds 已提交
2500 2501 2502
	return 0;
}

2503
static void end_reshape(struct r5conf *conf);
2504

2505
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2506
			    struct stripe_head *sh)
2507
{
2508
	int sectors_per_chunk =
2509
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2510
	int dd_idx;
2511
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2512
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2513

2514 2515
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2516
			     *sectors_per_chunk + chunk_offset,
2517
			     previous,
2518
			     &dd_idx, sh);
2519 2520
}

2521
static void
2522
handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2523 2524 2525 2526 2527 2528 2529 2530 2531
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2532
			struct md_rdev *rdev;
2533 2534 2535
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
2536 2537 2538
				atomic_inc(&rdev->nr_pending);
			else
				rdev = NULL;
2539
			rcu_read_unlock();
2540 2541 2542 2543 2544 2545 2546 2547
			if (rdev) {
				if (!rdev_set_badblocks(
					    rdev,
					    sh->sector,
					    STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
2548
		}
S
Shaohua Li 已提交
2549
		spin_lock_irq(&sh->stripe_lock);
2550 2551 2552
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
S
Shaohua Li 已提交
2553
		spin_unlock_irq(&sh->stripe_lock);
2554
		if (bi)
2555 2556 2557 2558 2559 2560 2561 2562 2563
			bitmap_end = 1;

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2564
			if (!raid5_dec_bi_active_stripes(bi)) {
2565 2566 2567 2568 2569 2570
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
2571 2572 2573 2574
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
				STRIPE_SECTORS, 0, 0);
		bitmap_end = 0;
2575 2576 2577 2578 2579 2580 2581 2582
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2583
			if (!raid5_dec_bi_active_stripes(bi)) {
2584 2585 2586 2587 2588 2589 2590
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2591 2592 2593 2594 2595 2596
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2597
			spin_lock_irq(&sh->stripe_lock);
2598 2599
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
2600
			spin_unlock_irq(&sh->stripe_lock);
2601 2602 2603 2604 2605 2606 2607
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2608
				if (!raid5_dec_bi_active_stripes(bi)) {
2609 2610 2611 2612 2613 2614 2615 2616 2617
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
2618 2619 2620 2621
		/* If we were in the middle of a write the parity block might
		 * still be locked - so just clear all R5_LOCKED flags
		 */
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2622 2623
	}

2624 2625 2626
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2627 2628
}

2629
static void
2630
handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2631 2632 2633 2634 2635 2636
		   struct stripe_head_state *s)
{
	int abort = 0;
	int i;

	clear_bit(STRIPE_SYNCING, &sh->state);
2637 2638
	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
		wake_up(&conf->wait_for_overlap);
2639
	s->syncing = 0;
2640
	s->replacing = 0;
2641
	/* There is nothing more to do for sync/check/repair.
2642 2643 2644
	 * Don't even need to abort as that is handled elsewhere
	 * if needed, and not always wanted e.g. if there is a known
	 * bad block here.
2645
	 * For recover/replace we need to record a bad block on all
2646 2647
	 * non-sync devices, or abort the recovery
	 */
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
		/* During recovery devices cannot be removed, so
		 * locking and refcounting of rdevs is not needed
		 */
		for (i = 0; i < conf->raid_disks; i++) {
			struct md_rdev *rdev = conf->disks[i].rdev;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
			rdev = conf->disks[i].replacement;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
		}
		if (abort)
			conf->recovery_disabled =
				conf->mddev->recovery_disabled;
2671
	}
2672
	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2673 2674
}

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
static int want_replace(struct stripe_head *sh, int disk_idx)
{
	struct md_rdev *rdev;
	int rv = 0;
	/* Doing recovery so rcu locking not required */
	rdev = sh->raid_conf->disks[disk_idx].replacement;
	if (rdev
	    && !test_bit(Faulty, &rdev->flags)
	    && !test_bit(In_sync, &rdev->flags)
	    && (rdev->recovery_offset <= sh->sector
		|| rdev->mddev->recovery_cp <= sh->sector))
		rv = 1;

	return rv;
}

2691
/* fetch_block - checks the given member device to see if its data needs
2692 2693 2694
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
2695
 * 0 to tell the loop in handle_stripe_fill to continue
2696
 */
2697 2698
static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
		       int disk_idx, int disks)
2699
{
2700
	struct r5dev *dev = &sh->dev[disk_idx];
2701 2702
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
2703

2704
	/* is the data in this block needed, and can we get it? */
2705 2706 2707 2708 2709
	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
2710
	     (s->replacing && want_replace(sh, disk_idx)) ||
2711 2712
	     (s->failed >= 1 && fdev[0]->toread) ||
	     (s->failed >= 2 && fdev[1]->toread) ||
2713 2714 2715
	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2716 2717 2718 2719 2720 2721
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
2722 2723
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
2724 2725
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2726
			 */
2727 2728 2729 2730 2731 2732 2733 2734
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
2735 2736 2737 2738 2739 2740
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2754
			}
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2774 2775
		}
	}
2776 2777 2778 2779 2780

	return 0;
}

/**
2781
 * handle_stripe_fill - read or compute data to satisfy pending requests.
2782
 */
2783 2784 2785
static void handle_stripe_fill(struct stripe_head *sh,
			       struct stripe_head_state *s,
			       int disks)
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
2796
			if (fetch_block(sh, s, i, disks))
2797
				break;
2798 2799 2800 2801
	set_bit(STRIPE_HANDLE, &sh->state);
}


2802
/* handle_stripe_clean_event
2803 2804 2805 2806
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2807
static void handle_stripe_clean_event(struct r5conf *conf,
2808 2809 2810 2811
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;
2812
	int discard_pending = 0;
2813 2814 2815 2816 2817

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
2818
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2819
			     test_bit(R5_Discard, &dev->flags))) {
2820 2821
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
2822
				pr_debug("Return write for disc %d\n", i);
2823 2824
				if (test_and_clear_bit(R5_Discard, &dev->flags))
					clear_bit(R5_UPTODATE, &dev->flags);
2825 2826 2827 2828 2829
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2830
					if (!raid5_dec_bi_active_stripes(wbi)) {
2831 2832 2833 2834 2835 2836
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
2837 2838
				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
						STRIPE_SECTORS,
2839
					 !test_bit(STRIPE_DEGRADED, &sh->state),
2840
						0);
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
			} else if (test_bit(R5_Discard, &dev->flags))
				discard_pending = 1;
		}
	if (!discard_pending &&
	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
		if (sh->qd_idx >= 0) {
			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
		}
		/* now that discard is done we can proceed with any sync */
		clear_bit(STRIPE_DISCARD, &sh->state);
		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
			set_bit(STRIPE_HANDLE, &sh->state);

	}
2858 2859 2860 2861

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2862 2863
}

2864
static void handle_stripe_dirtying(struct r5conf *conf,
2865 2866 2867
				   struct stripe_head *sh,
				   struct stripe_head_state *s,
				   int disks)
2868 2869
{
	int rmw = 0, rcw = 0, i;
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
	sector_t recovery_cp = conf->mddev->recovery_cp;

	/* RAID6 requires 'rcw' in current implementation.
	 * Otherwise, check whether resync is now happening or should start.
	 * If yes, then the array is dirty (after unclean shutdown or
	 * initial creation), so parity in some stripes might be inconsistent.
	 * In this case, we need to always do reconstruct-write, to ensure
	 * that in case of drive failure or read-error correction, we
	 * generate correct data from the parity.
	 */
	if (conf->max_degraded == 2 ||
	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
		/* Calculate the real rcw later - for now make it
2883 2884 2885
		 * look like rcw is cheaper
		 */
		rcw = 1; rmw = 2;
2886 2887 2888
		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
			 conf->max_degraded, (unsigned long long)recovery_cp,
			 (unsigned long long)sh->sector);
2889
	} else for (i = disks; i--; ) {
2890 2891 2892 2893
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2894 2895
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2896 2897 2898 2899 2900 2901 2902 2903
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2904 2905 2906
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2907 2908 2909 2910
			else
				rcw += 2*disks;
		}
	}
2911
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2912 2913
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
N
NeilBrown 已提交
2914
	if (rmw < rcw && rmw > 0) {
2915
		/* prefer read-modify-write, but need to get some data */
2916 2917 2918 2919
		if (conf->mddev->queue)
			blk_add_trace_msg(conf->mddev->queue,
					  "raid5 rmw %llu %d",
					  (unsigned long long)sh->sector, rmw);
2920 2921 2922 2923
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2924 2925
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2926 2927 2928
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2929
					pr_debug("Read_old block "
N
NeilBrown 已提交
2930
						 "%d for r-m-w\n", i);
2931 2932 2933 2934 2935 2936 2937 2938 2939
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
N
NeilBrown 已提交
2940
	}
2941
	if (rcw <= rmw && rcw > 0) {
2942
		/* want reconstruct write, but need to get some data */
N
NeilBrown 已提交
2943
		int qread =0;
2944
		rcw = 0;
2945 2946 2947
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2948
			    i != sh->pd_idx && i != sh->qd_idx &&
2949
			    !test_bit(R5_LOCKED, &dev->flags) &&
2950
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2951 2952 2953 2954
			      test_bit(R5_Wantcompute, &dev->flags))) {
				rcw++;
				if (!test_bit(R5_Insync, &dev->flags))
					continue; /* it's a failed drive */
2955 2956
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2957
					pr_debug("Read_old block "
2958 2959 2960 2961
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
N
NeilBrown 已提交
2962
					qread++;
2963 2964 2965 2966 2967 2968
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2969
		if (rcw && conf->mddev->queue)
N
NeilBrown 已提交
2970 2971 2972
			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
					  (unsigned long long)sh->sector,
					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
2973
	}
2974 2975 2976
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2977 2978
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2979 2980
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2981 2982 2983
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2984 2985 2986
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2987
		schedule_reconstruction(sh, s, rcw == 0, 0);
2988 2989
}

2990
static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2991 2992
				struct stripe_head_state *s, int disks)
{
2993
	struct r5dev *dev = NULL;
2994

2995
	set_bit(STRIPE_HANDLE, &sh->state);
2996

2997 2998 2999
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
3000 3001
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
3002 3003
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3004 3005
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
3006
			break;
3007
		}
3008
		dev = &sh->dev[s->failed_num[0]];
3009 3010 3011 3012 3013 3014 3015 3016 3017
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
3018

3019 3020 3021 3022 3023
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
3024
		s->locked++;
3025
		set_bit(R5_Wantwrite, &dev->flags);
3026

3027 3028
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
3045
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3046 3047 3048 3049 3050
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
3051
			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3052 3053 3054 3055 3056
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
3057
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3058 3059 3060 3061
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
3062
				sh->ops.target2 = -1;
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3074 3075 3076 3077
	}
}


3078
static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3079
				  struct stripe_head_state *s,
3080
				  int disks)
3081 3082
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
3083
	int qd_idx = sh->qd_idx;
3084
	struct r5dev *dev;
3085 3086 3087 3088

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
3089

3090 3091 3092 3093 3094 3095
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

3096 3097 3098
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
3099
		if (s->failed == s->q_failed) {
3100
			/* The only possible failed device holds Q, so it
3101 3102 3103
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
3104
			sh->check_state = check_state_run;
3105
		}
3106
		if (!s->q_failed && s->failed < 2) {
3107
			/* Q is not failed, and we didn't use it to generate
3108 3109
			 * anything, so it makes sense to check it
			 */
3110 3111 3112 3113
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
3114 3115
		}

3116 3117
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
3118

3119 3120 3121 3122
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
3123
		}
3124 3125 3126 3127 3128 3129 3130
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
3131 3132
		}

3133 3134 3135 3136 3137
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
3138

3139 3140 3141
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
3142 3143

		/* now write out any block on a failed drive,
3144
		 * or P or Q if they were recomputed
3145
		 */
3146
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3147
		if (s->failed == 2) {
3148
			dev = &sh->dev[s->failed_num[1]];
3149 3150 3151 3152 3153
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
3154
			dev = &sh->dev[s->failed_num[0]];
3155 3156 3157 3158
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3159
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3160 3161 3162 3163 3164
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3165
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3166 3167 3168 3169 3170 3171 3172 3173
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
3203
			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3238 3239 3240
	}
}

3241
static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3242 3243 3244 3245 3246 3247
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
3248
	struct dma_async_tx_descriptor *tx = NULL;
3249 3250
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
3251
		if (i != sh->pd_idx && i != sh->qd_idx) {
3252
			int dd_idx, j;
3253
			struct stripe_head *sh2;
3254
			struct async_submit_ctl submit;
3255

3256
			sector_t bn = compute_blocknr(sh, i, 1);
3257 3258
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
3259
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
3272 3273

			/* place all the copies on one channel */
3274
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3275
			tx = async_memcpy(sh2->dev[dd_idx].page,
3276
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3277
					  &submit);
3278

3279 3280 3281 3282
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
3283
				    j != sh2->qd_idx &&
3284 3285 3286 3287 3288 3289 3290
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
3291

3292
		}
3293
	/* done submitting copies, wait for them to complete */
3294
	async_tx_quiesce(&tx);
3295
}
L
Linus Torvalds 已提交
3296 3297 3298 3299

/*
 * handle_stripe - do things to a stripe.
 *
3300 3301
 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
 * state of various bits to see what needs to be done.
L
Linus Torvalds 已提交
3302
 * Possible results:
3303 3304
 *    return some read requests which now have data
 *    return some write requests which are safely on storage
L
Linus Torvalds 已提交
3305 3306 3307 3308 3309
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 */
3310

3311
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
3312
{
3313
	struct r5conf *conf = sh->raid_conf;
3314
	int disks = sh->disks;
3315 3316
	struct r5dev *dev;
	int i;
3317
	int do_recovery = 0;
L
Linus Torvalds 已提交
3318

3319 3320 3321 3322 3323 3324
	memset(s, 0, sizeof(*s));

	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
	s->failed_num[0] = -1;
	s->failed_num[1] = -1;
L
Linus Torvalds 已提交
3325

3326
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3327
	rcu_read_lock();
3328
	for (i=disks; i--; ) {
3329
		struct md_rdev *rdev;
3330 3331 3332
		sector_t first_bad;
		int bad_sectors;
		int is_bad = 0;
3333

3334
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3335

3336
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3337 3338
			 i, dev->flags,
			 dev->toread, dev->towrite, dev->written);
3339 3340 3341 3342 3343 3344 3345 3346
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3347

3348
		/* now count some things */
3349 3350 3351 3352
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
3353
		if (test_bit(R5_Wantcompute, &dev->flags)) {
3354 3355
			s->compute++;
			BUG_ON(s->compute > 2);
3356
		}
L
Linus Torvalds 已提交
3357

3358
		if (test_bit(R5_Wantfill, &dev->flags))
3359
			s->to_fill++;
3360
		else if (dev->toread)
3361
			s->to_read++;
3362
		if (dev->towrite) {
3363
			s->to_write++;
3364
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3365
				s->non_overwrite++;
3366
		}
3367
		if (dev->written)
3368
			s->written++;
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
		/* Prefer to use the replacement for reads, but only
		 * if it is recovered enough and has no bad blocks.
		 */
		rdev = rcu_dereference(conf->disks[i].replacement);
		if (rdev && !test_bit(Faulty, &rdev->flags) &&
		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
				 &first_bad, &bad_sectors))
			set_bit(R5_ReadRepl, &dev->flags);
		else {
3379 3380
			if (rdev)
				set_bit(R5_NeedReplace, &dev->flags);
3381 3382 3383
			rdev = rcu_dereference(conf->disks[i].rdev);
			clear_bit(R5_ReadRepl, &dev->flags);
		}
3384 3385
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
		if (rdev) {
			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					     &first_bad, &bad_sectors);
			if (s->blocked_rdev == NULL
			    && (test_bit(Blocked, &rdev->flags)
				|| is_bad < 0)) {
				if (is_bad < 0)
					set_bit(BlockedBadBlocks,
						&rdev->flags);
				s->blocked_rdev = rdev;
				atomic_inc(&rdev->nr_pending);
			}
3398
		}
3399 3400 3401
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
3402 3403
		else if (is_bad) {
			/* also not in-sync */
3404 3405
			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
			    test_bit(R5_UPTODATE, &dev->flags)) {
3406 3407 3408 3409 3410 3411 3412
				/* treat as in-sync, but with a read error
				 * which we can now try to correct
				 */
				set_bit(R5_Insync, &dev->flags);
				set_bit(R5_ReadError, &dev->flags);
			}
		} else if (test_bit(In_sync, &rdev->flags))
3413
			set_bit(R5_Insync, &dev->flags);
3414
		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3415
			/* in sync if before recovery_offset */
3416 3417 3418 3419 3420 3421 3422 3423 3424
			set_bit(R5_Insync, &dev->flags);
		else if (test_bit(R5_UPTODATE, &dev->flags) &&
			 test_bit(R5_Expanded, &dev->flags))
			/* If we've reshaped into here, we assume it is Insync.
			 * We will shortly update recovery_offset to make
			 * it official.
			 */
			set_bit(R5_Insync, &dev->flags);

A
Adam Kwolek 已提交
3425
		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3426 3427 3428 3429 3430 3431 3432
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 == rdev)
				clear_bit(R5_Insync, &dev->flags);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3433
				s->handle_bad_blocks = 1;
3434
				atomic_inc(&rdev2->nr_pending);
3435 3436 3437
			} else
				clear_bit(R5_WriteError, &dev->flags);
		}
A
Adam Kwolek 已提交
3438
		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3439 3440 3441 3442 3443
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3444
				s->handle_bad_blocks = 1;
3445
				atomic_inc(&rdev2->nr_pending);
3446 3447 3448
			} else
				clear_bit(R5_MadeGood, &dev->flags);
		}
3449 3450 3451 3452 3453 3454 3455 3456 3457
		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].replacement);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
				s->handle_bad_blocks = 1;
				atomic_inc(&rdev2->nr_pending);
			} else
				clear_bit(R5_MadeGoodRepl, &dev->flags);
		}
3458
		if (!test_bit(R5_Insync, &dev->flags)) {
3459 3460 3461
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3462
		}
3463 3464 3465
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3466 3467 3468
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
3469 3470
			if (rdev && !test_bit(Faulty, &rdev->flags))
				do_recovery = 1;
3471
		}
L
Linus Torvalds 已提交
3472
	}
3473 3474 3475 3476
	if (test_bit(STRIPE_SYNCING, &sh->state)) {
		/* If there is a failed device being replaced,
		 *     we must be recovering.
		 * else if we are after recovery_cp, we must be syncing
3477
		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3478 3479 3480 3481 3482
		 * else we can only be replacing
		 * sync and recovery both need to read all devices, and so
		 * use the same flag.
		 */
		if (do_recovery ||
3483 3484
		    sh->sector >= conf->mddev->recovery_cp ||
		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3485 3486 3487 3488
			s->syncing = 1;
		else
			s->replacing = 1;
	}
L
Linus Torvalds 已提交
3489
	rcu_read_unlock();
3490 3491 3492 3493 3494
}

static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
3495
	struct r5conf *conf = sh->raid_conf;
3496
	int i;
3497 3498
	int prexor;
	int disks = sh->disks;
3499
	struct r5dev *pdev, *qdev;
3500 3501

	clear_bit(STRIPE_HANDLE, &sh->state);
3502
	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3503 3504 3505 3506 3507 3508
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

3509 3510 3511 3512 3513 3514 3515
	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
		spin_lock(&sh->stripe_lock);
		/* Cannot process 'sync' concurrently with 'discard' */
		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
			set_bit(STRIPE_SYNCING, &sh->state);
			clear_bit(STRIPE_INSYNC, &sh->state);
3516
			clear_bit(STRIPE_REPLACED, &sh->state);
3517 3518
		}
		spin_unlock(&sh->stripe_lock);
3519 3520 3521 3522 3523 3524 3525 3526
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
3527

3528
	analyse_stripe(sh, &s);
3529

3530 3531 3532 3533 3534
	if (s.handle_bad_blocks) {
		set_bit(STRIPE_HANDLE, &sh->state);
		goto finish;
	}

3535 3536
	if (unlikely(s.blocked_rdev)) {
		if (s.syncing || s.expanding || s.expanded ||
3537
		    s.replacing || s.to_write || s.written) {
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
			set_bit(STRIPE_HANDLE, &sh->state);
			goto finish;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(s.blocked_rdev, conf->mddev);
		s.blocked_rdev = NULL;
	}

	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

	pr_debug("locked=%d uptodate=%d to_read=%d"
	       " to_write=%d failed=%d failed_num=%d,%d\n",
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       s.failed_num[0], s.failed_num[1]);
	/* check if the array has lost more than max_degraded devices and,
	 * if so, some requests might need to be failed.
	 */
3558 3559 3560 3561 3562
	if (s.failed > conf->max_degraded) {
		sh->check_state = 0;
		sh->reconstruct_state = 0;
		if (s.to_read+s.to_write+s.written)
			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3563
		if (s.syncing + s.replacing)
3564 3565
			handle_failed_sync(conf, sh, &s);
	}
3566

3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	prexor = 0;
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
		prexor = 1;
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
		sh->reconstruct_state = reconstruct_state_idle;

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
3580 3581
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3582
		BUG_ON(sh->qd_idx >= 0 &&
3583 3584
		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || i == sh->qd_idx ||
				 dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
				if (prexor)
					continue;
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
				     s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			s.dec_preread_active = 1;
	}

3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[sh->pd_idx];
	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
	qdev = &sh->dev[sh->qd_idx];
	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
		|| conf->level < 6;

	if (s.written &&
	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
			     && !test_bit(R5_LOCKED, &pdev->flags)
			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
				 test_bit(R5_Discard, &pdev->flags))))) &&
	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
			     && !test_bit(R5_LOCKED, &qdev->flags)
			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
				 test_bit(R5_Discard, &qdev->flags))))))
		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
	if (s.to_read || s.non_overwrite
	    || (conf->level == 6 && s.to_write && s.failed)
	    || (s.syncing && (s.uptodate + s.compute < disks))
	    || s.replacing
	    || s.expanding)
		handle_stripe_fill(sh, &s, disks);

3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying(conf, sh, &s, disks);

	/* maybe we need to check and possibly fix the parity for this stripe
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
	 */
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state))) {
		if (conf->level == 6)
			handle_parity_checks6(conf, sh, &s, disks);
		else
			handle_parity_checks5(conf, sh, &s, disks);
	}
3661

3662 3663 3664
	if ((s.replacing || s.syncing) && s.locked == 0
	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
3665 3666
		/* Write out to replacement devices where possible */
		for (i = 0; i < conf->raid_disks; i++)
3667 3668
			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3669 3670 3671 3672
				set_bit(R5_WantReplace, &sh->dev[i].flags);
				set_bit(R5_LOCKED, &sh->dev[i].flags);
				s.locked++;
			}
3673 3674 3675
		if (s.replacing)
			set_bit(STRIPE_INSYNC, &sh->state);
		set_bit(STRIPE_REPLACED, &sh->state);
3676 3677
	}
	if ((s.syncing || s.replacing) && s.locked == 0 &&
3678
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3679
	    test_bit(STRIPE_INSYNC, &sh->state)) {
3680 3681
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
		clear_bit(STRIPE_SYNCING, &sh->state);
3682 3683
		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
			wake_up(&conf->wait_for_overlap);
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			struct r5dev *dev = &sh->dev[s.failed_num[i]];
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				}
			}
		}


3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		struct stripe_head *sh_src
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
			/* sh cannot be written until sh_src has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh_src->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh_src);
			goto finish;
		}
		if (sh_src)
			release_stripe(sh_src);

		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}
3738

3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		stripe_set_idx(sh->sector, conf, 0, sh);
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
		handle_stripe_expansion(conf, sh);
3755

3756
finish:
3757
	/* wait for this device to become unblocked */
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
	if (unlikely(s.blocked_rdev)) {
		if (conf->mddev->external)
			md_wait_for_blocked_rdev(s.blocked_rdev,
						 conf->mddev);
		else
			/* Internal metadata will immediately
			 * be written by raid5d, so we don't
			 * need to wait here.
			 */
			rdev_dec_pending(s.blocked_rdev,
					 conf->mddev);
	}
3770

3771 3772
	if (s.handle_bad_blocks)
		for (i = disks; i--; ) {
3773
			struct md_rdev *rdev;
3774 3775 3776 3777 3778 3779 3780 3781 3782
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
				/* We own a safe reference to the rdev */
				rdev = conf->disks[i].rdev;
				if (!rdev_set_badblocks(rdev, sh->sector,
							STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
3783 3784 3785
			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
				rdev = conf->disks[i].rdev;
				rdev_clear_badblocks(rdev, sh->sector,
3786
						     STRIPE_SECTORS, 0);
3787 3788
				rdev_dec_pending(rdev, conf->mddev);
			}
3789 3790
			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
				rdev = conf->disks[i].replacement;
3791 3792 3793
				if (!rdev)
					/* rdev have been moved down */
					rdev = conf->disks[i].rdev;
3794
				rdev_clear_badblocks(rdev, sh->sector,
3795
						     STRIPE_SECTORS, 0);
3796 3797
				rdev_dec_pending(rdev, conf->mddev);
			}
3798 3799
		}

3800 3801 3802
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3803
	ops_run_io(sh, &s);
3804

3805
	if (s.dec_preread_active) {
3806
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3807
		 * is waiting on a flush, it won't continue until the writes
3808 3809 3810 3811 3812 3813 3814 3815
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

3816
	return_io(s.return_bi);
3817

3818
	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3819 3820
}

3821
static void raid5_activate_delayed(struct r5conf *conf)
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3832
			list_add_tail(&sh->lru, &conf->hold_list);
3833
		}
N
NeilBrown 已提交
3834
	}
3835 3836
}

3837
static void activate_bit_delay(struct r5conf *conf)
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

3851
int md_raid5_congested(struct mddev *mddev, int bits)
3852
{
3853
	struct r5conf *conf = mddev->private;
3854 3855 3856 3857

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3858

3859 3860 3861 3862 3863 3864 3865 3866 3867
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3868 3869 3870 3871
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
3872
	struct mddev *mddev = data;
N
NeilBrown 已提交
3873 3874 3875 3876

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3877

3878 3879 3880
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3881 3882 3883
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3884
{
3885
	struct mddev *mddev = q->queuedata;
3886
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3887
	int max;
3888
	unsigned int chunk_sectors = mddev->chunk_sectors;
3889
	unsigned int bio_sectors = bvm->bi_size >> 9;
3890

3891
	if ((bvm->bi_rw & 1) == WRITE)
3892 3893
		return biovec->bv_len; /* always allow writes to be mergeable */

3894 3895
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3896 3897 3898 3899 3900 3901 3902 3903
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3904

3905
static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3906 3907
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3908
	unsigned int chunk_sectors = mddev->chunk_sectors;
3909
	unsigned int bio_sectors = bio_sectors(bio);
3910

3911 3912
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3913 3914 3915 3916
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3917 3918 3919 3920
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
3921
static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


3935
static struct bio *remove_bio_from_retry(struct r5conf *conf)
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3946
		conf->retry_read_aligned_list = bi->bi_next;
3947
		bi->bi_next = NULL;
3948 3949 3950 3951
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3952
		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3953 3954 3955 3956 3957 3958
	}

	return bi;
}


3959 3960 3961 3962 3963 3964
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3965
static void raid5_align_endio(struct bio *bi, int error)
3966 3967
{
	struct bio* raid_bi  = bi->bi_private;
3968
	struct mddev *mddev;
3969
	struct r5conf *conf;
3970
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3971
	struct md_rdev *rdev;
3972

3973
	bio_put(bi);
3974 3975 3976

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3977 3978
	mddev = rdev->mddev;
	conf = mddev->private;
3979 3980 3981 3982

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3983 3984
		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
					 raid_bi, 0);
3985
		bio_endio(raid_bi, 0);
3986 3987
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3988
		return;
3989 3990 3991
	}


3992
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3993 3994

	add_bio_to_retry(raid_bi, conf);
3995 3996
}

3997 3998
static int bio_fits_rdev(struct bio *bi)
{
3999
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4000

4001
	if (bio_sectors(bi) > queue_max_sectors(q))
4002 4003
		return 0;
	blk_recount_segments(q, bi);
4004
	if (bi->bi_phys_segments > queue_max_segments(q))
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


4017
static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4018
{
4019
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
4020
	int dd_idx;
4021
	struct bio* align_bi;
4022
	struct md_rdev *rdev;
4023
	sector_t end_sector;
4024 4025

	if (!in_chunk_boundary(mddev, raid_bio)) {
4026
		pr_debug("chunk_aligned_read : non aligned\n");
4027 4028 4029
		return 0;
	}
	/*
4030
	 * use bio_clone_mddev to make a copy of the bio
4031
	 */
4032
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
4044 4045
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
4046
						    &dd_idx, NULL);
4047

K
Kent Overstreet 已提交
4048
	end_sector = bio_end_sector(align_bi);
4049
	rcu_read_lock();
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
	if (!rdev || test_bit(Faulty, &rdev->flags) ||
	    rdev->recovery_offset < end_sector) {
		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
		if (rdev &&
		    (test_bit(Faulty, &rdev->flags) ||
		    !(test_bit(In_sync, &rdev->flags) ||
		      rdev->recovery_offset >= end_sector)))
			rdev = NULL;
	}
	if (rdev) {
4061 4062 4063
		sector_t first_bad;
		int bad_sectors;

4064 4065
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
4066 4067 4068 4069
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);

4070
		if (!bio_fits_rdev(align_bi) ||
4071
		    is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi),
4072 4073
				&first_bad, &bad_sectors)) {
			/* too big in some way, or has a known bad block */
4074 4075 4076 4077 4078
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

4079 4080 4081
		/* No reshape active, so we can trust rdev->data_offset */
		align_bi->bi_sector += rdev->data_offset;

4082 4083 4084
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
4085
				    conf->device_lock);
4086 4087 4088
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

4089 4090 4091 4092
		if (mddev->gendisk)
			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
					      align_bi, disk_devt(mddev->gendisk),
					      raid_bio->bi_sector);
4093 4094 4095 4096
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
4097
		bio_put(align_bi);
4098 4099 4100 4101
		return 0;
	}
}

4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
4112
static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
4154

4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
struct raid5_plug_cb {
	struct blk_plug_cb	cb;
	struct list_head	list;
};

static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
{
	struct raid5_plug_cb *cb = container_of(
		blk_cb, struct raid5_plug_cb, cb);
	struct stripe_head *sh;
	struct mddev *mddev = cb->cb.data;
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
4167
	int cnt = 0;
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180

	if (cb->list.next && !list_empty(&cb->list)) {
		spin_lock_irq(&conf->device_lock);
		while (!list_empty(&cb->list)) {
			sh = list_first_entry(&cb->list, struct stripe_head, lru);
			list_del_init(&sh->lru);
			/*
			 * avoid race release_stripe_plug() sees
			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
			 * is still in our list
			 */
			smp_mb__before_clear_bit();
			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
S
Shaohua Li 已提交
4181 4182 4183 4184
			/*
			 * STRIPE_ON_RELEASE_LIST could be set here. In that
			 * case, the count is always > 1 here
			 */
4185
			__release_stripe(conf, sh);
N
NeilBrown 已提交
4186
			cnt++;
4187 4188 4189
		}
		spin_unlock_irq(&conf->device_lock);
	}
4190 4191
	if (mddev->queue)
		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
	kfree(cb);
}

static void release_stripe_plug(struct mddev *mddev,
				struct stripe_head *sh)
{
	struct blk_plug_cb *blk_cb = blk_check_plugged(
		raid5_unplug, mddev,
		sizeof(struct raid5_plug_cb));
	struct raid5_plug_cb *cb;

	if (!blk_cb) {
		release_stripe(sh);
		return;
	}

	cb = container_of(blk_cb, struct raid5_plug_cb, cb);

	if (cb->list.next == NULL)
		INIT_LIST_HEAD(&cb->list);

	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
		list_add_tail(&sh->lru, &cb->list);
	else
		release_stripe(sh);
}

S
Shaohua Li 已提交
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
static void make_discard_request(struct mddev *mddev, struct bio *bi)
{
	struct r5conf *conf = mddev->private;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
	int remaining;
	int stripe_sectors;

	if (mddev->reshape_position != MaxSector)
		/* Skip discard while reshape is happening */
		return;

	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);

	bi->bi_next = NULL;
	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */

	stripe_sectors = conf->chunk_sectors *
		(conf->raid_disks - conf->max_degraded);
	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
					       stripe_sectors);
	sector_div(last_sector, stripe_sectors);

	logical_sector *= conf->chunk_sectors;
	last_sector *= conf->chunk_sectors;

	for (; logical_sector < last_sector;
	     logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
		int d;
	again:
		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
		prepare_to_wait(&conf->wait_for_overlap, &w,
				TASK_UNINTERRUPTIBLE);
4254 4255 4256 4257 4258 4259 4260
		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
		if (test_bit(STRIPE_SYNCING, &sh->state)) {
			release_stripe(sh);
			schedule();
			goto again;
		}
		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
S
Shaohua Li 已提交
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
		spin_lock_irq(&sh->stripe_lock);
		for (d = 0; d < conf->raid_disks; d++) {
			if (d == sh->pd_idx || d == sh->qd_idx)
				continue;
			if (sh->dev[d].towrite || sh->dev[d].toread) {
				set_bit(R5_Overlap, &sh->dev[d].flags);
				spin_unlock_irq(&sh->stripe_lock);
				release_stripe(sh);
				schedule();
				goto again;
			}
		}
4273
		set_bit(STRIPE_DISCARD, &sh->state);
S
Shaohua Li 已提交
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
		finish_wait(&conf->wait_for_overlap, &w);
		for (d = 0; d < conf->raid_disks; d++) {
			if (d == sh->pd_idx || d == sh->qd_idx)
				continue;
			sh->dev[d].towrite = bi;
			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
			raid5_inc_bi_active_stripes(bi);
		}
		spin_unlock_irq(&sh->stripe_lock);
		if (conf->mddev->bitmap) {
			for (d = 0;
			     d < conf->raid_disks - conf->max_degraded;
			     d++)
				bitmap_startwrite(mddev->bitmap,
						  sh->sector,
						  STRIPE_SECTORS,
						  0);
			sh->bm_seq = conf->seq_flush + 1;
			set_bit(STRIPE_BIT_DELAY, &sh->state);
		}

		set_bit(STRIPE_HANDLE, &sh->state);
		clear_bit(STRIPE_DELAYED, &sh->state);
		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			atomic_inc(&conf->preread_active_stripes);
		release_stripe_plug(mddev, sh);
	}

	remaining = raid5_dec_bi_active_stripes(bi);
	if (remaining == 0) {
		md_write_end(mddev);
		bio_endio(bi, 0);
	}
}

4309
static void make_request(struct mddev *mddev, struct bio * bi)
L
Linus Torvalds 已提交
4310
{
4311
	struct r5conf *conf = mddev->private;
4312
	int dd_idx;
L
Linus Torvalds 已提交
4313 4314 4315
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
4316
	const int rw = bio_data_dir(bi);
4317
	int remaining;
L
Linus Torvalds 已提交
4318

T
Tejun Heo 已提交
4319 4320
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
4321
		return;
4322 4323
	}

4324
	md_write_start(mddev, bi);
4325

4326
	if (rw == READ &&
4327
	     mddev->reshape_position == MaxSector &&
4328
	     chunk_aligned_read(mddev,bi))
4329
		return;
4330

S
Shaohua Li 已提交
4331 4332 4333 4334 4335
	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
		make_discard_request(mddev, bi);
		return;
	}

L
Linus Torvalds 已提交
4336
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
K
Kent Overstreet 已提交
4337
	last_sector = bio_end_sector(bi);
L
Linus Torvalds 已提交
4338 4339
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4340

L
Linus Torvalds 已提交
4341 4342
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
4343
		int previous;
4344

4345
	retry:
4346
		previous = 0;
4347
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4348
		if (unlikely(conf->reshape_progress != MaxSector)) {
4349
			/* spinlock is needed as reshape_progress may be
4350 4351
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
4352
			 * Of course reshape_progress could change after
4353 4354 4355 4356
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
4357
			spin_lock_irq(&conf->device_lock);
4358
			if (mddev->reshape_backwards
4359 4360
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
4361 4362
				previous = 1;
			} else {
4363
				if (mddev->reshape_backwards
4364 4365
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
4366 4367 4368 4369 4370
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
4371 4372
			spin_unlock_irq(&conf->device_lock);
		}
4373

4374 4375
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
4376
						  &dd_idx, NULL);
4377
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
4378 4379 4380
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

4381
		sh = get_active_stripe(conf, new_sector, previous,
4382
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
4383
		if (sh) {
4384
			if (unlikely(previous)) {
4385
				/* expansion might have moved on while waiting for a
4386 4387 4388 4389 4390 4391
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
4392 4393 4394
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
4395
				if (mddev->reshape_backwards
4396 4397
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
4398 4399 4400 4401 4402
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
4403
					schedule();
4404 4405 4406
					goto retry;
				}
			}
4407

4408
			if (rw == WRITE &&
4409
			    logical_sector >= mddev->suspend_lo &&
4410 4411
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
4422 4423
				goto retry;
			}
4424 4425

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4426
			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4427 4428
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
4429 4430
				 * and wait a while
				 */
N
NeilBrown 已提交
4431
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
4432 4433 4434 4435 4436
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
4437 4438
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
4439
			if ((bi->bi_rw & REQ_SYNC) &&
4440 4441
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
4442
			release_stripe_plug(mddev, sh);
L
Linus Torvalds 已提交
4443 4444 4445 4446 4447 4448 4449
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
	}
4450

4451
	remaining = raid5_dec_bi_active_stripes(bi);
4452
	if (remaining == 0) {
L
Linus Torvalds 已提交
4453

4454
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4455
			md_write_end(mddev);
4456

4457 4458
		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
					 bi, 0);
4459
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4460 4461 4462
	}
}

4463
static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
D
Dan Williams 已提交
4464

4465
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4466
{
4467 4468 4469 4470 4471 4472 4473 4474 4475
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4476
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
4477
	struct stripe_head *sh;
4478
	sector_t first_sector, last_sector;
4479 4480 4481
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4482 4483
	int i;
	int dd_idx;
4484
	sector_t writepos, readpos, safepos;
4485
	sector_t stripe_addr;
4486
	int reshape_sectors;
4487
	struct list_head stripes;
4488

4489 4490
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
4491
		if (mddev->reshape_backwards &&
4492 4493 4494
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4495
		} else if (!mddev->reshape_backwards &&
4496 4497
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4498
		sector_div(sector_nr, new_data_disks);
4499
		if (sector_nr) {
4500 4501
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4502 4503 4504
			*skipped = 1;
			return sector_nr;
		}
4505 4506
	}

4507 4508 4509 4510
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4511 4512
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4513
	else
4514
		reshape_sectors = mddev->chunk_sectors;
4515

4516 4517 4518 4519 4520
	/* We update the metadata at least every 10 seconds, or when
	 * the data about to be copied would over-write the source of
	 * the data at the front of the range.  i.e. one new_stripe
	 * along from reshape_progress new_maps to after where
	 * reshape_safe old_maps to
4521
	 */
4522
	writepos = conf->reshape_progress;
4523
	sector_div(writepos, new_data_disks);
4524 4525
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4526
	safepos = conf->reshape_safe;
4527
	sector_div(safepos, data_disks);
4528
	if (mddev->reshape_backwards) {
4529
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4530
		readpos += reshape_sectors;
4531
		safepos += reshape_sectors;
4532
	} else {
4533
		writepos += reshape_sectors;
4534 4535
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4536
	}
4537

4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
	/* Having calculated the 'writepos' possibly use it
	 * to set 'stripe_addr' which is where we will write to.
	 */
	if (mddev->reshape_backwards) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
		       != sector_nr);
	} else {
		BUG_ON(writepos != sector_nr + reshape_sectors);
		stripe_addr = sector_nr;
	}

4553 4554 4555 4556
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
4557 4558 4559 4560
	 * If there is a min_offset_diff, these are adjusted either by
	 * increasing the safepos/readpos if diff is negative, or
	 * increasing writepos if diff is positive.
	 * If 'readpos' is then behind 'writepos', there is no way that we can
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4573 4574 4575 4576 4577 4578
	if (conf->min_offset_diff < 0) {
		safepos += -conf->min_offset_diff;
		readpos += -conf->min_offset_diff;
	} else
		writepos += conf->min_offset_diff;

4579
	if ((mddev->reshape_backwards
4580 4581 4582
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4583 4584 4585
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4586
		mddev->reshape_position = conf->reshape_progress;
4587
		mddev->curr_resync_completed = sector_nr;
4588
		conf->reshape_checkpoint = jiffies;
4589
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4590
		md_wakeup_thread(mddev->thread);
4591
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4592 4593
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4594
		conf->reshape_safe = mddev->reshape_position;
4595 4596
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4597
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4598 4599
	}

4600
	INIT_LIST_HEAD(&stripes);
4601
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4602
		int j;
4603
		int skipped_disk = 0;
4604
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4605 4606 4607 4608 4609 4610 4611 4612 4613
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4614
			if (conf->level == 6 &&
4615
			    j == sh->qd_idx)
4616
				continue;
4617
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4618
			if (s < raid5_size(mddev, 0, 0)) {
4619
				skipped_disk = 1;
4620 4621 4622 4623 4624 4625
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4626
		if (!skipped_disk) {
4627 4628 4629
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4630
		list_add(&sh->lru, &stripes);
4631 4632
	}
	spin_lock_irq(&conf->device_lock);
4633
	if (mddev->reshape_backwards)
4634
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4635
	else
4636
		conf->reshape_progress += reshape_sectors * new_data_disks;
4637 4638 4639 4640 4641 4642 4643
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4644
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4645
				     1, &dd_idx, NULL);
4646
	last_sector =
4647
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4648
					    * new_data_disks - 1),
4649
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4650 4651
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4652
	while (first_sector <= last_sector) {
4653
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4654 4655 4656 4657 4658
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4659 4660 4661 4662 4663 4664 4665 4666
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4667 4668 4669
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4670
	sector_nr += reshape_sectors;
4671 4672
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4673 4674 4675
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4676
		mddev->reshape_position = conf->reshape_progress;
4677
		mddev->curr_resync_completed = sector_nr;
4678
		conf->reshape_checkpoint = jiffies;
4679 4680 4681 4682 4683 4684
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4685
		conf->reshape_safe = mddev->reshape_position;
4686 4687
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4688
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4689
	}
4690
	return reshape_sectors;
4691 4692 4693
}

/* FIXME go_faster isn't used */
4694
static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4695
{
4696
	struct r5conf *conf = mddev->private;
4697
	struct stripe_head *sh;
A
Andre Noll 已提交
4698
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
4699
	sector_t sync_blocks;
4700 4701
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4702

4703
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4704
		/* just being told to finish up .. nothing much to do */
4705

4706 4707 4708 4709
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4710 4711 4712 4713

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4714
		else /* completed sync */
4715 4716 4717
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4718 4719
		return 0;
	}
4720

4721 4722 4723
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4724 4725
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4726

4727 4728 4729 4730 4731 4732
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4733
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4734 4735 4736
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4737
	if (mddev->degraded >= conf->max_degraded &&
4738
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4739
		sector_t rv = mddev->dev_sectors - sector_nr;
4740
		*skipped = 1;
L
Linus Torvalds 已提交
4741 4742
		return rv;
	}
4743 4744 4745 4746
	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
	    !conf->fullsync &&
	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
	    sync_blocks >= STRIPE_SECTORS) {
4747 4748 4749 4750 4751
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4752

N
NeilBrown 已提交
4753 4754
	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4755
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4756
	if (sh == NULL) {
4757
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4758
		/* make sure we don't swamp the stripe cache if someone else
4759
		 * is trying to get access
L
Linus Torvalds 已提交
4760
		 */
4761
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4762
	}
4763 4764 4765 4766
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4767
	for (i = 0; i < conf->raid_disks; i++)
4768 4769 4770 4771 4772
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

4773
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
L
Linus Torvalds 已提交
4774

4775
	handle_stripe(sh);
L
Linus Torvalds 已提交
4776 4777 4778 4779 4780
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4781
static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4794
	int dd_idx;
4795 4796 4797 4798 4799 4800
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4801
	sector = raid5_compute_sector(conf, logical_sector,
4802
				      0, &dd_idx, NULL);
K
Kent Overstreet 已提交
4803
	last_sector = bio_end_sector(raid_bio);
4804 4805

	for (; logical_sector < last_sector;
4806 4807 4808
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4809

4810
		if (scnt < raid5_bi_processed_stripes(raid_bio))
4811 4812 4813
			/* already done this stripe */
			continue;

4814
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4815 4816 4817

		if (!sh) {
			/* failed to get a stripe - must wait */
4818
			raid5_set_bi_processed_stripes(raid_bio, scnt);
4819 4820 4821 4822
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4823 4824
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4825
			raid5_set_bi_processed_stripes(raid_bio, scnt);
4826 4827 4828 4829
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4830
		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4831
		handle_stripe(sh);
4832 4833 4834
		release_stripe(sh);
		handled++;
	}
4835
	remaining = raid5_dec_bi_active_stripes(raid_bio);
4836 4837 4838
	if (remaining == 0) {
		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
					 raid_bio, 0);
4839
		bio_endio(raid_bio, 0);
4840
	}
4841 4842 4843 4844 4845
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}

4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
#define MAX_STRIPE_BATCH 8
static int handle_active_stripes(struct r5conf *conf)
{
	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
	int i, batch_size = 0;

	while (batch_size < MAX_STRIPE_BATCH &&
			(sh = __get_priority_stripe(conf)) != NULL)
		batch[batch_size++] = sh;

	if (batch_size == 0)
		return batch_size;
	spin_unlock_irq(&conf->device_lock);

	for (i = 0; i < batch_size; i++)
		handle_stripe(batch[i]);

	cond_resched();

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < batch_size; i++)
		__release_stripe(conf, batch[i]);
	return batch_size;
}
4870

L
Linus Torvalds 已提交
4871 4872 4873 4874 4875 4876 4877
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
S
Shaohua Li 已提交
4878
static void raid5d(struct md_thread *thread)
L
Linus Torvalds 已提交
4879
{
S
Shaohua Li 已提交
4880
	struct mddev *mddev = thread->mddev;
4881
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
4882
	int handled;
4883
	struct blk_plug plug;
L
Linus Torvalds 已提交
4884

4885
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4886 4887 4888

	md_check_recovery(mddev);

4889
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
4890 4891 4892
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4893
		struct bio *bio;
S
Shaohua Li 已提交
4894 4895 4896
		int batch_size, released;

		released = release_stripe_list(conf);
L
Linus Torvalds 已提交
4897

4898
		if (
4899 4900 4901
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
4902
			spin_unlock_irq(&conf->device_lock);
4903
			bitmap_unplug(mddev->bitmap);
4904
			spin_lock_irq(&conf->device_lock);
4905
			conf->seq_write = conf->seq_flush;
4906 4907
			activate_bit_delay(conf);
		}
4908
		raid5_activate_delayed(conf);
4909

4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4920
		batch_size = handle_active_stripes(conf);
S
Shaohua Li 已提交
4921
		if (!batch_size && !released)
L
Linus Torvalds 已提交
4922
			break;
4923
		handled += batch_size;
L
Linus Torvalds 已提交
4924

4925 4926
		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
			spin_unlock_irq(&conf->device_lock);
4927
			md_check_recovery(mddev);
4928 4929
			spin_lock_irq(&conf->device_lock);
		}
L
Linus Torvalds 已提交
4930
	}
4931
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4932 4933 4934

	spin_unlock_irq(&conf->device_lock);

4935
	async_tx_issue_pending_all();
4936
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
4937

4938
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4939 4940
}

4941
static ssize_t
4942
raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4943
{
4944
	struct r5conf *conf = mddev->private;
4945 4946 4947 4948
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4949 4950
}

4951
int
4952
raid5_set_cache_size(struct mddev *mddev, int size)
4953
{
4954
	struct r5conf *conf = mddev->private;
4955 4956
	int err;

4957
	if (size <= 16 || size > 32768)
4958
		return -EINVAL;
4959
	while (size < conf->max_nr_stripes) {
4960 4961 4962 4963 4964
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4965 4966 4967
	err = md_allow_write(mddev);
	if (err)
		return err;
4968
	while (size > conf->max_nr_stripes) {
4969 4970 4971 4972
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4973 4974 4975 4976 4977
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
4978
raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4979
{
4980
	struct r5conf *conf = mddev->private;
4981 4982 4983 4984 4985 4986 4987 4988
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4989
	if (kstrtoul(page, 10, &new))
4990 4991 4992 4993
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4994 4995
	return len;
}
4996

4997 4998 4999 5000
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
5001

5002
static ssize_t
5003
raid5_show_preread_threshold(struct mddev *mddev, char *page)
5004
{
5005
	struct r5conf *conf = mddev->private;
5006 5007 5008 5009 5010 5011 5012
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
5013
raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5014
{
5015
	struct r5conf *conf = mddev->private;
5016
	unsigned long new;
5017 5018 5019 5020 5021
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

5022
	if (kstrtoul(page, 10, &new))
5023
		return -EINVAL;
5024
	if (new > conf->max_nr_stripes)
5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

5036
static ssize_t
5037
stripe_cache_active_show(struct mddev *mddev, char *page)
5038
{
5039
	struct r5conf *conf = mddev->private;
5040 5041 5042 5043
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
5044 5045
}

5046 5047
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5048

5049
static struct attribute *raid5_attrs[] =  {
5050 5051
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
5052
	&raid5_preread_bypass_threshold.attr,
5053 5054
	NULL,
};
5055 5056 5057
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
5058 5059
};

5060
static sector_t
5061
raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5062
{
5063
	struct r5conf *conf = mddev->private;
5064 5065 5066

	if (!sectors)
		sectors = mddev->dev_sectors;
5067
	if (!raid_disks)
5068
		/* size is defined by the smallest of previous and new size */
5069
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5070

5071
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5072
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5073 5074 5075
	return sectors * (raid_disks - conf->max_degraded);
}

5076
static void raid5_free_percpu(struct r5conf *conf)
5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
5088
		kfree(percpu->scribble);
5089 5090 5091 5092 5093 5094 5095 5096 5097
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

5098
static void free_conf(struct r5conf *conf)
5099 5100
{
	shrink_stripes(conf);
5101
	raid5_free_percpu(conf);
5102 5103 5104 5105 5106
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

5107 5108 5109 5110
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
5111
	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5112 5113 5114 5115 5116 5117
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5118
		if (conf->level == 6 && !percpu->spare_page)
5119
			percpu->spare_page = alloc_page(GFP_KERNEL);
5120 5121 5122 5123 5124 5125 5126
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
5127 5128
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
5129
			return notifier_from_errno(-ENOMEM);
5130 5131 5132 5133 5134
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
5135
		kfree(percpu->scribble);
5136
		percpu->spare_page = NULL;
5137
		percpu->scribble = NULL;
5138 5139 5140 5141 5142 5143 5144 5145
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

5146
static int raid5_alloc_percpu(struct r5conf *conf)
5147 5148 5149
{
	unsigned long cpu;
	struct page *spare_page;
5150
	struct raid5_percpu __percpu *allcpus;
5151
	void *scribble;
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
5162 5163 5164 5165 5166 5167 5168 5169
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
5170
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5171
		if (!scribble) {
5172 5173 5174
			err = -ENOMEM;
			break;
		}
5175
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

5188
static struct r5conf *setup_conf(struct mddev *mddev)
L
Linus Torvalds 已提交
5189
{
5190
	struct r5conf *conf;
5191
	int raid_disk, memory, max_disks;
5192
	struct md_rdev *rdev;
L
Linus Torvalds 已提交
5193
	struct disk_info *disk;
5194
	char pers_name[6];
L
Linus Torvalds 已提交
5195

N
NeilBrown 已提交
5196 5197 5198
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
5199
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
5200 5201
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
5202
	}
N
NeilBrown 已提交
5203 5204 5205 5206
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
5207
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
5208 5209
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
5210
	}
N
NeilBrown 已提交
5211
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5212
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
5213 5214
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
5215 5216
	}

5217 5218 5219
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
5220 5221
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
5222
		return ERR_PTR(-EINVAL);
5223 5224
	}

5225
	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
N
NeilBrown 已提交
5226
	if (conf == NULL)
L
Linus Torvalds 已提交
5227
		goto abort;
5228 5229 5230 5231 5232 5233 5234 5235
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
S
Shaohua Li 已提交
5236
	init_llist_head(&conf->released_stripes);
5237 5238 5239 5240
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
5241
	conf->recovery_disabled = mddev->recovery_disabled - 1;
N
NeilBrown 已提交
5242 5243 5244 5245 5246

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
5247
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5248 5249
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
5250

5251
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5252 5253 5254
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
5255

L
Linus Torvalds 已提交
5256 5257
	conf->mddev = mddev;

5258
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
5259 5260
		goto abort;

5261 5262 5263 5264
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

5265
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
5266

N
NeilBrown 已提交
5267
	rdev_for_each(rdev, mddev) {
L
Linus Torvalds 已提交
5268
		raid_disk = rdev->raid_disk;
5269
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
5270 5271 5272 5273
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

5274 5275 5276 5277 5278 5279 5280 5281 5282
		if (test_bit(Replacement, &rdev->flags)) {
			if (disk->replacement)
				goto abort;
			disk->replacement = rdev;
		} else {
			if (disk->rdev)
				goto abort;
			disk->rdev = rdev;
		}
L
Linus Torvalds 已提交
5283

5284
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
5285
			char b[BDEVNAME_SIZE];
5286 5287 5288
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
5289
		} else if (rdev->saved_raid_disk != raid_disk)
5290 5291
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
5292 5293
	}

5294
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
5295
	conf->level = mddev->new_level;
5296 5297 5298 5299
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
5300
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
5301
	conf->max_nr_stripes = NR_STRIPES;
5302
	conf->reshape_progress = mddev->reshape_position;
5303
	if (conf->reshape_progress != MaxSector) {
5304
		conf->prev_chunk_sectors = mddev->chunk_sectors;
5305 5306
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
5307

N
NeilBrown 已提交
5308
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5309
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
5310 5311
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
5312 5313
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
5314 5315
		goto abort;
	} else
5316 5317
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
5318

5319 5320
	sprintf(pers_name, "raid%d", mddev->new_level);
	conf->thread = md_register_thread(raid5d, mddev, pers_name);
N
NeilBrown 已提交
5321 5322
	if (!conf->thread) {
		printk(KERN_ERR
5323
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
5324
		       mdname(mddev));
5325 5326
		goto abort;
	}
N
NeilBrown 已提交
5327 5328 5329 5330 5331

	return conf;

 abort:
	if (conf) {
5332
		free_conf(conf);
N
NeilBrown 已提交
5333 5334 5335 5336 5337
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

5365
static int run(struct mddev *mddev)
N
NeilBrown 已提交
5366
{
5367
	struct r5conf *conf;
5368
	int working_disks = 0;
5369
	int dirty_parity_disks = 0;
5370
	struct md_rdev *rdev;
5371
	sector_t reshape_offset = 0;
5372
	int i;
5373 5374
	long long min_offset_diff = 0;
	int first = 1;
N
NeilBrown 已提交
5375

5376
	if (mddev->recovery_cp != MaxSector)
5377
		printk(KERN_NOTICE "md/raid:%s: not clean"
5378 5379
		       " -- starting background reconstruction\n",
		       mdname(mddev));
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396

	rdev_for_each(rdev, mddev) {
		long long diff;
		if (rdev->raid_disk < 0)
			continue;
		diff = (rdev->new_data_offset - rdev->data_offset);
		if (first) {
			min_offset_diff = diff;
			first = 0;
		} else if (mddev->reshape_backwards &&
			 diff < min_offset_diff)
			min_offset_diff = diff;
		else if (!mddev->reshape_backwards &&
			 diff > min_offset_diff)
			min_offset_diff = diff;
	}

N
NeilBrown 已提交
5397 5398
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
		 * Difficulties arise if the stripe we would write to
		 * next is at or after the stripe we would read from next.
		 * For a reshape that changes the number of devices, this
		 * is only possible for a very short time, and mdadm makes
		 * sure that time appears to have past before assembling
		 * the array.  So we fail if that time hasn't passed.
		 * For a reshape that keeps the number of devices the same
		 * mdadm must be monitoring the reshape can keeping the
		 * critical areas read-only and backed up.  It will start
		 * the array in read-only mode, so we check for that.
N
NeilBrown 已提交
5409 5410 5411
		 */
		sector_t here_new, here_old;
		int old_disks;
5412
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
5413

5414
		if (mddev->new_level != mddev->level) {
5415
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
5426
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
5427
			       (mddev->raid_disks - max_degraded))) {
5428 5429
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
5430 5431
			return -EINVAL;
		}
5432
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
5433 5434
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
5435
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
5436 5437 5438
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
5439
		if (mddev->delta_disks == 0) {
5440 5441 5442 5443 5444 5445
			if ((here_new * mddev->new_chunk_sectors !=
			     here_old * mddev->chunk_sectors)) {
				printk(KERN_ERR "md/raid:%s: reshape position is"
				       " confused - aborting\n", mdname(mddev));
				return -EINVAL;
			}
5446
			/* We cannot be sure it is safe to start an in-place
5447
			 * reshape.  It is only safe if user-space is monitoring
5448 5449 5450 5451 5452
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
5453 5454 5455 5456 5457 5458 5459
			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
				/* not really in-place - so OK */;
			else if (mddev->ro == 0) {
				printk(KERN_ERR "md/raid:%s: in-place reshape "
				       "must be started in read-only mode "
				       "- aborting\n",
5460
				       mdname(mddev));
5461 5462
				return -EINVAL;
			}
5463
		} else if (mddev->reshape_backwards
5464
		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5465 5466
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
5467
		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
N
NeilBrown 已提交
5468
			/* Reading from the same stripe as writing to - bad */
5469 5470 5471
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
5472 5473
			return -EINVAL;
		}
5474 5475
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
5476 5477 5478 5479
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
5480
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
5481
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
5482
	}
N
NeilBrown 已提交
5483

5484 5485 5486 5487 5488
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
5489 5490 5491
	if (IS_ERR(conf))
		return PTR_ERR(conf);

5492
	conf->min_offset_diff = min_offset_diff;
N
NeilBrown 已提交
5493 5494 5495 5496
	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
	     i++) {
		rdev = conf->disks[i].rdev;
		if (!rdev && conf->disks[i].replacement) {
			/* The replacement is all we have yet */
			rdev = conf->disks[i].replacement;
			conf->disks[i].replacement = NULL;
			clear_bit(Replacement, &rdev->flags);
			conf->disks[i].rdev = rdev;
		}
		if (!rdev)
5508
			continue;
5509 5510 5511 5512 5513 5514 5515
		if (conf->disks[i].replacement &&
		    conf->reshape_progress != MaxSector) {
			/* replacements and reshape simply do not mix. */
			printk(KERN_ERR "md: cannot handle concurrent "
			       "replacement and reshape.\n");
			goto abort;
		}
5516
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
5517
			working_disks++;
5518 5519
			continue;
		}
5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
5532

5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
5548

5549 5550 5551
	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
5552
	mddev->degraded = calc_degraded(conf);
N
NeilBrown 已提交
5553

5554
	if (has_failed(conf)) {
5555
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
5556
			" (%d/%d failed)\n",
5557
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
5558 5559 5560
		goto abort;
	}

N
NeilBrown 已提交
5561
	/* device size must be a multiple of chunk size */
5562
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
5563 5564
	mddev->resync_max_sectors = mddev->dev_sectors;

5565
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
5566
	    mddev->recovery_cp != MaxSector) {
5567 5568
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
5569 5570
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
5571 5572 5573
			       mdname(mddev));
		else {
			printk(KERN_ERR
5574
			       "md/raid:%s: cannot start dirty degraded array.\n",
5575 5576 5577
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
5578 5579 5580
	}

	if (mddev->degraded == 0)
5581 5582
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5583 5584
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
5585
	else
5586 5587 5588 5589 5590
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
5591 5592 5593

	print_raid5_conf(conf);

5594 5595
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
5596 5597 5598 5599 5600 5601
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5602
							"reshape");
5603 5604
	}

L
Linus Torvalds 已提交
5605 5606

	/* Ok, everything is just fine now */
5607 5608
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
5609 5610
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5611
		printk(KERN_WARNING
5612
		       "raid5: failed to create sysfs attributes for %s\n",
5613
		       mdname(mddev));
5614
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5615

5616
	if (mddev->queue) {
5617
		int chunk_size;
S
Shaohua Li 已提交
5618
		bool discard_supported = true;
5619 5620 5621 5622 5623 5624 5625 5626 5627
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
5628

5629
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5630

N
NeilBrown 已提交
5631 5632
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5633

5634 5635 5636 5637
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
S
Shaohua Li 已提交
5638 5639 5640 5641 5642
		/*
		 * We can only discard a whole stripe. It doesn't make sense to
		 * discard data disk but write parity disk
		 */
		stripe = stripe * PAGE_SIZE;
5643 5644 5645 5646
		/* Round up to power of 2, as discard handling
		 * currently assumes that */
		while ((stripe-1) & stripe)
			stripe = (stripe | (stripe-1)) + 1;
S
Shaohua Li 已提交
5647 5648 5649 5650 5651 5652 5653
		mddev->queue->limits.discard_alignment = stripe;
		mddev->queue->limits.discard_granularity = stripe;
		/*
		 * unaligned part of discard request will be ignored, so can't
		 * guarantee discard_zerors_data
		 */
		mddev->queue->limits.discard_zeroes_data = 0;
5654

5655 5656
		blk_queue_max_write_same_sectors(mddev->queue, 0);

5657
		rdev_for_each(rdev, mddev) {
5658 5659
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
5660 5661
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->new_data_offset << 9);
S
Shaohua Li 已提交
5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
			/*
			 * discard_zeroes_data is required, otherwise data
			 * could be lost. Consider a scenario: discard a stripe
			 * (the stripe could be inconsistent if
			 * discard_zeroes_data is 0); write one disk of the
			 * stripe (the stripe could be inconsistent again
			 * depending on which disks are used to calculate
			 * parity); the disk is broken; The stripe data of this
			 * disk is lost.
			 */
			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
			    !bdev_get_queue(rdev->bdev)->
						limits.discard_zeroes_data)
				discard_supported = false;
5676
		}
S
Shaohua Li 已提交
5677 5678 5679 5680 5681 5682 5683 5684 5685

		if (discard_supported &&
		   mddev->queue->limits.max_discard_sectors >= stripe &&
		   mddev->queue->limits.discard_granularity >= stripe)
			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
						mddev->queue);
		else
			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
						mddev->queue);
5686
	}
5687

L
Linus Torvalds 已提交
5688 5689
	return 0;
abort:
5690
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
5691 5692
	print_raid5_conf(conf);
	free_conf(conf);
L
Linus Torvalds 已提交
5693
	mddev->private = NULL;
5694
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
5695 5696 5697
	return -EIO;
}

5698
static int stop(struct mddev *mddev)
L
Linus Torvalds 已提交
5699
{
5700
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5701

5702
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
5703 5704
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
5705
	free_conf(conf);
5706 5707
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5708 5709 5710
	return 0;
}

5711
static void status(struct seq_file *seq, struct mddev *mddev)
L
Linus Torvalds 已提交
5712
{
5713
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5714 5715
	int i;

5716 5717
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5718
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5719 5720 5721
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5722
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5723 5724 5725
	seq_printf (seq, "]");
}

5726
static void print_raid5_conf (struct r5conf *conf)
L
Linus Torvalds 已提交
5727 5728 5729 5730
{
	int i;
	struct disk_info *tmp;

5731
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
5732 5733 5734 5735
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5736 5737 5738
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5739 5740 5741 5742 5743

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
5744 5745 5746
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
5747 5748 5749
	}
}

5750
static int raid5_spare_active(struct mddev *mddev)
L
Linus Torvalds 已提交
5751 5752
{
	int i;
5753
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5754
	struct disk_info *tmp;
5755 5756
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
5757 5758 5759

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
		if (tmp->replacement
		    && tmp->replacement->recovery_offset == MaxSector
		    && !test_bit(Faulty, &tmp->replacement->flags)
		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
			/* Replacement has just become active. */
			if (!tmp->rdev
			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
				count++;
			if (tmp->rdev) {
				/* Replaced device not technically faulty,
				 * but we need to be sure it gets removed
				 * and never re-added.
				 */
				set_bit(Faulty, &tmp->rdev->flags);
				sysfs_notify_dirent_safe(
					tmp->rdev->sysfs_state);
			}
			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
		} else if (tmp->rdev
5779
		    && tmp->rdev->recovery_offset == MaxSector
5780
		    && !test_bit(Faulty, &tmp->rdev->flags)
5781
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5782
			count++;
5783
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
5784 5785
		}
	}
5786
	spin_lock_irqsave(&conf->device_lock, flags);
5787
	mddev->degraded = calc_degraded(conf);
5788
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5789
	print_raid5_conf(conf);
5790
	return count;
L
Linus Torvalds 已提交
5791 5792
}

5793
static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
5794
{
5795
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5796
	int err = 0;
5797
	int number = rdev->raid_disk;
5798
	struct md_rdev **rdevp;
L
Linus Torvalds 已提交
5799 5800 5801
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823
	if (rdev == p->rdev)
		rdevp = &p->rdev;
	else if (rdev == p->replacement)
		rdevp = &p->replacement;
	else
		return 0;

	if (number >= conf->raid_disks &&
	    conf->reshape_progress == MaxSector)
		clear_bit(In_sync, &rdev->flags);

	if (test_bit(In_sync, &rdev->flags) ||
	    atomic_read(&rdev->nr_pending)) {
		err = -EBUSY;
		goto abort;
	}
	/* Only remove non-faulty devices if recovery
	 * isn't possible.
	 */
	if (!test_bit(Faulty, &rdev->flags) &&
	    mddev->recovery_disabled != conf->recovery_disabled &&
	    !has_failed(conf) &&
5824
	    (!p->replacement || p->replacement == rdev) &&
5825 5826 5827 5828 5829 5830 5831 5832 5833 5834
	    number < conf->raid_disks) {
		err = -EBUSY;
		goto abort;
	}
	*rdevp = NULL;
	synchronize_rcu();
	if (atomic_read(&rdev->nr_pending)) {
		/* lost the race, try later */
		err = -EBUSY;
		*rdevp = rdev;
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
	} else if (p->replacement) {
		/* We must have just cleared 'rdev' */
		p->rdev = p->replacement;
		clear_bit(Replacement, &p->replacement->flags);
		smp_mb(); /* Make sure other CPUs may see both as identical
			   * but will never see neither - if they are careful
			   */
		p->replacement = NULL;
		clear_bit(WantReplacement, &rdev->flags);
	} else
		/* We might have just removed the Replacement as faulty-
		 * clear the bit just in case
		 */
		clear_bit(WantReplacement, &rdev->flags);
L
Linus Torvalds 已提交
5849 5850 5851 5852 5853 5854
abort:

	print_raid5_conf(conf);
	return err;
}

5855
static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
5856
{
5857
	struct r5conf *conf = mddev->private;
5858
	int err = -EEXIST;
L
Linus Torvalds 已提交
5859 5860
	int disk;
	struct disk_info *p;
5861 5862
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5863

5864 5865 5866
	if (mddev->recovery_disabled == conf->recovery_disabled)
		return -EBUSY;

N
NeilBrown 已提交
5867
	if (rdev->saved_raid_disk < 0 && has_failed(conf))
L
Linus Torvalds 已提交
5868
		/* no point adding a device */
5869
		return -EINVAL;
L
Linus Torvalds 已提交
5870

5871 5872
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5873 5874

	/*
5875 5876
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5877
	 */
5878
	if (rdev->saved_raid_disk >= 0 &&
5879
	    rdev->saved_raid_disk >= first &&
5880
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5881 5882 5883
		first = rdev->saved_raid_disk;

	for (disk = first; disk <= last; disk++) {
5884 5885
		p = conf->disks + disk;
		if (p->rdev == NULL) {
5886
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5887
			rdev->raid_disk = disk;
5888
			err = 0;
5889 5890
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5891
			rcu_assign_pointer(p->rdev, rdev);
5892
			goto out;
L
Linus Torvalds 已提交
5893
		}
5894 5895 5896
	}
	for (disk = first; disk <= last; disk++) {
		p = conf->disks + disk;
5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
		if (test_bit(WantReplacement, &p->rdev->flags) &&
		    p->replacement == NULL) {
			clear_bit(In_sync, &rdev->flags);
			set_bit(Replacement, &rdev->flags);
			rdev->raid_disk = disk;
			err = 0;
			conf->fullsync = 1;
			rcu_assign_pointer(p->replacement, rdev);
			break;
		}
	}
5908
out:
L
Linus Torvalds 已提交
5909
	print_raid5_conf(conf);
5910
	return err;
L
Linus Torvalds 已提交
5911 5912
}

5913
static int raid5_resize(struct mddev *mddev, sector_t sectors)
L
Linus Torvalds 已提交
5914 5915 5916 5917 5918 5919 5920 5921
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5922
	sector_t newsize;
5923
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5924 5925 5926
	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
	if (mddev->external_size &&
	    mddev->array_sectors > newsize)
D
Dan Williams 已提交
5927
		return -EINVAL;
5928 5929 5930 5931 5932 5933
	if (mddev->bitmap) {
		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
		if (ret)
			return ret;
	}
	md_set_array_sectors(mddev, newsize);
5934
	set_capacity(mddev->gendisk, mddev->array_sectors);
5935
	revalidate_disk(mddev->gendisk);
5936 5937
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
5938
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5939 5940
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5941
	mddev->dev_sectors = sectors;
5942
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5943 5944 5945
	return 0;
}

5946
static int check_stripe_cache(struct mddev *mddev)
5947 5948 5949 5950 5951 5952 5953 5954 5955
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
5956
	struct r5conf *conf = mddev->private;
5957 5958 5959 5960
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5961 5962
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5963 5964 5965 5966 5967 5968 5969
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5970
static int check_reshape(struct mddev *mddev)
5971
{
5972
	struct r5conf *conf = mddev->private;
5973

5974 5975
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5976
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5977
		return 0; /* nothing to do */
5978
	if (has_failed(conf))
5979
		return -EINVAL;
5980
	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5992

5993
	if (!check_stripe_cache(mddev))
5994 5995
		return -ENOSPC;

5996 5997
	return resize_stripes(conf, (conf->previous_raid_disks
				     + mddev->delta_disks));
5998 5999
}

6000
static int raid5_start_reshape(struct mddev *mddev)
6001
{
6002
	struct r5conf *conf = mddev->private;
6003
	struct md_rdev *rdev;
6004
	int spares = 0;
6005
	unsigned long flags;
6006

6007
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6008 6009
		return -EBUSY;

6010 6011 6012
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

6013 6014 6015
	if (has_failed(conf))
		return -EINVAL;

6016
	rdev_for_each(rdev, mddev) {
6017 6018
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
6019
			spares++;
6020
	}
6021

6022
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6023 6024 6025 6026 6027
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

6028 6029 6030 6031 6032 6033
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
6034
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
6035 6036 6037 6038
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

6039
	atomic_set(&conf->reshape_stripes, 0);
6040 6041
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
6042
	conf->raid_disks += mddev->delta_disks;
6043 6044
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
6045 6046
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
6047 6048 6049 6050 6051
	conf->generation++;
	/* Code that selects data_offset needs to see the generation update
	 * if reshape_progress has been set - so a memory barrier needed.
	 */
	smp_mb();
6052
	if (mddev->reshape_backwards)
6053 6054 6055 6056
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
6057 6058 6059 6060
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
6061 6062 6063 6064
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
6065
	 */
6066
	if (mddev->delta_disks >= 0) {
N
NeilBrown 已提交
6067
		rdev_for_each(rdev, mddev)
6068 6069 6070 6071
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					if (rdev->raid_disk
6072
					    >= conf->previous_raid_disks)
6073
						set_bit(In_sync, &rdev->flags);
6074
					else
6075
						rdev->recovery_offset = 0;
6076 6077

					if (sysfs_link_rdev(mddev, rdev))
6078
						/* Failure here is OK */;
6079
				}
6080 6081 6082 6083 6084
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
			}
6085

6086 6087 6088 6089
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
6090
		spin_lock_irqsave(&conf->device_lock, flags);
6091
		mddev->degraded = calc_degraded(conf);
6092 6093
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
6094
	mddev->raid_disks = conf->raid_disks;
6095
	mddev->reshape_position = conf->reshape_progress;
6096
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6097

6098 6099 6100 6101 6102
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6103
						"reshape");
6104 6105 6106 6107
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6108 6109 6110
		rdev_for_each(rdev, mddev)
			rdev->new_data_offset = rdev->data_offset;
		smp_wmb();
6111
		conf->reshape_progress = MaxSector;
6112
		mddev->reshape_position = MaxSector;
6113 6114 6115
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
6116
	conf->reshape_checkpoint = jiffies;
6117 6118 6119 6120 6121
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

6122 6123 6124
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
6125
static void end_reshape(struct r5conf *conf)
6126 6127
{

6128
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6129
		struct md_rdev *rdev;
6130 6131

		spin_lock_irq(&conf->device_lock);
6132
		conf->previous_raid_disks = conf->raid_disks;
6133 6134 6135
		rdev_for_each(rdev, conf->mddev)
			rdev->data_offset = rdev->new_data_offset;
		smp_wmb();
6136
		conf->reshape_progress = MaxSector;
6137
		spin_unlock_irq(&conf->device_lock);
6138
		wake_up(&conf->wait_for_overlap);
6139 6140 6141 6142

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
6143
		if (conf->mddev->queue) {
6144
			int data_disks = conf->raid_disks - conf->max_degraded;
6145
			int stripe = data_disks * ((conf->chunk_sectors << 9)
6146
						   / PAGE_SIZE);
6147 6148 6149
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
6150 6151 6152
	}
}

6153 6154 6155
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
6156
static void raid5_finish_reshape(struct mddev *mddev)
6157
{
6158
	struct r5conf *conf = mddev->private;
6159 6160 6161

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

6162 6163 6164
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
6165
			revalidate_disk(mddev->gendisk);
6166 6167
		} else {
			int d;
6168 6169 6170
			spin_lock_irq(&conf->device_lock);
			mddev->degraded = calc_degraded(conf);
			spin_unlock_irq(&conf->device_lock);
6171 6172
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
6173
			     d++) {
6174
				struct md_rdev *rdev = conf->disks[d].rdev;
6175 6176 6177 6178 6179
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
				rdev = conf->disks[d].replacement;
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
6180
			}
6181
		}
6182
		mddev->layout = conf->algorithm;
6183
		mddev->chunk_sectors = conf->chunk_sectors;
6184 6185
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
6186
		mddev->reshape_backwards = 0;
6187 6188 6189
	}
}

6190
static void raid5_quiesce(struct mddev *mddev, int state)
6191
{
6192
	struct r5conf *conf = mddev->private;
6193 6194

	switch(state) {
6195 6196 6197 6198
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

6199 6200
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
6201 6202 6203 6204
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
6205
		wait_event_lock_irq(conf->wait_for_stripe,
6206 6207
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
6208
				    conf->device_lock);
6209
		conf->quiesce = 1;
6210
		spin_unlock_irq(&conf->device_lock);
6211 6212
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
6213 6214 6215 6216 6217 6218
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
6219
		wake_up(&conf->wait_for_overlap);
6220 6221 6222 6223
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
6224

6225

6226
static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6227
{
6228
	struct r0conf *raid0_conf = mddev->private;
6229
	sector_t sectors;
6230

D
Dan Williams 已提交
6231
	/* for raid0 takeover only one zone is supported */
6232
	if (raid0_conf->nr_strip_zones > 1) {
6233 6234
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
6235 6236 6237
		return ERR_PTR(-EINVAL);
	}

6238 6239
	sectors = raid0_conf->strip_zone[0].zone_end;
	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6240
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
6241
	mddev->new_level = level;
6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


6253
static void *raid5_takeover_raid1(struct mddev *mddev)
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6275
	mddev->new_chunk_sectors = chunksect;
6276 6277 6278 6279

	return setup_conf(mddev);
}

6280
static void *raid5_takeover_raid6(struct mddev *mddev)
6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

6313

6314
static int raid5_check_reshape(struct mddev *mddev)
6315
{
6316 6317 6318 6319
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
6320
	 */
6321
	struct r5conf *conf = mddev->private;
6322
	int new_chunk = mddev->new_chunk_sectors;
6323

6324
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6325 6326
		return -EINVAL;
	if (new_chunk > 0) {
6327
		if (!is_power_of_2(new_chunk))
6328
			return -EINVAL;
6329
		if (new_chunk < (PAGE_SIZE>>9))
6330
			return -EINVAL;
6331
		if (mddev->array_sectors & (new_chunk-1))
6332 6333 6334 6335 6336 6337
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

6338
	if (mddev->raid_disks == 2) {
6339 6340 6341 6342
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
6343 6344
		}
		if (new_chunk > 0) {
6345 6346
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
6347 6348 6349
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
6350
	}
6351
	return check_reshape(mddev);
6352 6353
}

6354
static int raid6_check_reshape(struct mddev *mddev)
6355
{
6356
	int new_chunk = mddev->new_chunk_sectors;
6357

6358
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6359
		return -EINVAL;
6360
	if (new_chunk > 0) {
6361
		if (!is_power_of_2(new_chunk))
6362
			return -EINVAL;
6363
		if (new_chunk < (PAGE_SIZE >> 9))
6364
			return -EINVAL;
6365
		if (mddev->array_sectors & (new_chunk-1))
6366 6367
			/* not factor of array size */
			return -EINVAL;
6368
	}
6369 6370

	/* They look valid */
6371
	return check_reshape(mddev);
6372 6373
}

6374
static void *raid5_takeover(struct mddev *mddev)
6375 6376
{
	/* raid5 can take over:
D
Dan Williams 已提交
6377
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6378 6379 6380 6381
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
6382 6383
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
6384 6385
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
6386 6387 6388 6389 6390
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
6391 6392
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
6393 6394 6395 6396

	return ERR_PTR(-EINVAL);
}

6397
static void *raid4_takeover(struct mddev *mddev)
6398
{
D
Dan Williams 已提交
6399 6400 6401
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
6402
	 */
D
Dan Williams 已提交
6403 6404
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
6405 6406 6407 6408 6409 6410 6411 6412
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
6413

6414
static struct md_personality raid5_personality;
6415

6416
static void *raid6_takeover(struct mddev *mddev)
6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


6463
static struct md_personality raid6_personality =
6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6478
	.size		= raid5_size,
6479
	.check_reshape	= raid6_check_reshape,
6480
	.start_reshape  = raid5_start_reshape,
6481
	.finish_reshape = raid5_finish_reshape,
6482
	.quiesce	= raid5_quiesce,
6483
	.takeover	= raid6_takeover,
6484
};
6485
static struct md_personality raid5_personality =
L
Linus Torvalds 已提交
6486 6487
{
	.name		= "raid5",
6488
	.level		= 5,
L
Linus Torvalds 已提交
6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6500
	.size		= raid5_size,
6501 6502
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6503
	.finish_reshape = raid5_finish_reshape,
6504
	.quiesce	= raid5_quiesce,
6505
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
6506 6507
};

6508
static struct md_personality raid4_personality =
L
Linus Torvalds 已提交
6509
{
6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6523
	.size		= raid5_size,
6524 6525
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6526
	.finish_reshape = raid5_finish_reshape,
6527
	.quiesce	= raid5_quiesce,
6528
	.takeover	= raid4_takeover,
6529 6530 6531 6532
};

static int __init raid5_init(void)
{
6533
	register_md_personality(&raid6_personality);
6534 6535 6536
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
6537 6538
}

6539
static void raid5_exit(void)
L
Linus Torvalds 已提交
6540
{
6541
	unregister_md_personality(&raid6_personality);
6542 6543
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
6544 6545 6546 6547 6548
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
6549
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
6550
MODULE_ALIAS("md-personality-4"); /* RAID5 */
6551 6552
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
6553 6554
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
6555 6556 6557 6558 6559 6560 6561
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");