raid5.c 152.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
 * conf->bm_write is the number of the last batch successfully written.
 * conf->bm_flush is the number of the last batch that was closed to
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
 * the number of the batch it will be in. This is bm_flush+1.
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/seq_file.h>
51
#include <linux/cpu.h>
52
#include "md.h"
53
#include "raid5.h"
54
#include "bitmap.h"
55

L
Linus Torvalds 已提交
56 57 58 59 60 61 62 63 64
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
65
#define BYPASS_THRESHOLD	1
66
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
67 68
#define HASH_MASK		(NR_HASH - 1)

69
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

91
#ifdef DEBUG
L
Linus Torvalds 已提交
92 93 94 95
#define inline
#define __inline__
#endif

96 97
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

98
/*
99 100
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101 102 103
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
104
	return bio->bi_phys_segments & 0xffff;
105 106 107 108
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
109
	return (bio->bi_phys_segments >> 16) & 0xffff;
110 111 112 113 114 115 116 117 118 119 120 121 122
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
123
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124 125 126 127 128
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
129
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
130 131
}

132 133 134
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
135 136 137 138
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
139 140 141 142 143
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
144 145 146 147 148
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
149

150 151 152 153 154
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
155 156
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
157 158
{
	int slot;
159

160
	if (idx == sh->pd_idx)
161
		return syndrome_disks;
162
	if (idx == sh->qd_idx)
163
		return syndrome_disks + 1;
164 165 166 167
	slot = (*count)++;
	return slot;
}

168 169 170 171 172 173 174 175
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
176
		bio_endio(bi, 0);
177 178 179 180
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
181 182
static void print_raid5_conf (raid5_conf_t *conf);

183 184 185 186 187 188 189
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

190
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
191 192
{
	if (atomic_dec_and_test(&sh->count)) {
193 194
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
195
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
196
			if (test_bit(STRIPE_DELAYED, &sh->state)) {
L
Linus Torvalds 已提交
197
				list_add_tail(&sh->lru, &conf->delayed_list);
198 199
				blk_plug_device(conf->mddev->queue);
			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
200
				   sh->bm_seq - conf->seq_write > 0) {
201
				list_add_tail(&sh->lru, &conf->bitmap_list);
202 203
				blk_plug_device(conf->mddev->queue);
			} else {
204
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
205
				list_add_tail(&sh->lru, &conf->handle_list);
206
			}
L
Linus Torvalds 已提交
207 208
			md_wakeup_thread(conf->mddev->thread);
		} else {
209
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
210 211 212 213 214 215
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
216 217
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
218
				wake_up(&conf->wait_for_stripe);
219 220
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
221
			}
L
Linus Torvalds 已提交
222 223 224
		}
	}
}
225

L
Linus Torvalds 已提交
226 227 228 229
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
230

L
Linus Torvalds 已提交
231 232 233 234 235
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

236
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
237
{
238 239
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
240

241
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
242 243
}

244
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
245
{
246
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
247

248 249
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
250 251

	CHECK_DEVLOCK();
252
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

static void shrink_buffers(struct stripe_head *sh, int num)
{
	struct page *p;
	int i;

	for (i=0; i<num ; i++) {
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
284
		put_page(p);
L
Linus Torvalds 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	}
}

static int grow_buffers(struct stripe_head *sh, int num)
{
	int i;

	for (i=0; i<num; i++) {
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

303
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
304 305
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
306

307
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
308 309
{
	raid5_conf_t *conf = sh->raid_conf;
310
	int i;
L
Linus Torvalds 已提交
311

312 313
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
314
	BUG_ON(stripe_operations_active(sh));
315

L
Linus Torvalds 已提交
316
	CHECK_DEVLOCK();
317
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
318 319 320
		(unsigned long long)sh->sector);

	remove_hash(sh);
321

322
	sh->generation = conf->generation - previous;
323
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
324
	sh->sector = sector;
325
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
326 327
	sh->state = 0;

328 329

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
330 331
		struct r5dev *dev = &sh->dev[i];

332
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
333
		    test_bit(R5_LOCKED, &dev->flags)) {
334
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
335
			       (unsigned long long)sh->sector, i, dev->toread,
336
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
337 338 339 340
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
341
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
342 343 344 345
	}
	insert_hash(conf, sh);
}

346 347
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
348 349
{
	struct stripe_head *sh;
350
	struct hlist_node *hn;
L
Linus Torvalds 已提交
351 352

	CHECK_DEVLOCK();
353
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
354
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
355
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
356
			return sh;
357
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
358 359 360 361
	return NULL;
}

static void unplug_slaves(mddev_t *mddev);
362
static void raid5_unplug_device(struct request_queue *q);
L
Linus Torvalds 已提交
363

364 365 366
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
		  int previous, int noblock)
L
Linus Torvalds 已提交
367 368 369
{
	struct stripe_head *sh;

370
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
371 372 373 374

	spin_lock_irq(&conf->device_lock);

	do {
375 376 377
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
378
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
379 380 381 382 383 384 385 386 387
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
388 389
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
390 391
						     || !conf->inactive_blocked),
						    conf->device_lock,
392
						    raid5_unplug_device(conf->mddev->queue)
L
Linus Torvalds 已提交
393 394 395
					);
				conf->inactive_blocked = 0;
			} else
396
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
397 398
		} else {
			if (atomic_read(&sh->count)) {
399 400
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
401 402 403
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
404 405
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
406 407
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
408 409 410 411 412 413 414 415 416 417 418
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

419 420 421 422
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
423

424
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
			rw = WRITE;
		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
459
			if (s->syncing || s->expanding || s->expanded)
460 461
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
462 463
			set_bit(STRIPE_IO_STARTED, &sh->state);

464 465
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
466
				__func__, (unsigned long long)sh->sector,
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
503
	struct async_submit_ctl submit;
504 505 506 507 508

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
509 510

	init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
532
						  b_offset, clen, &submit);
533 534
			else
				tx = async_memcpy(bio_page, page, b_offset,
535
						  page_offset, clen, &submit);
536
		}
537 538 539
		/* chain the operations */
		submit.depend_tx = tx;

540 541 542 543 544 545 546 547 548 549 550 551 552
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
553
	int i;
554

555
	pr_debug("%s: stripe %llu\n", __func__,
556 557 558
		(unsigned long long)sh->sector);

	/* clear completed biofills */
559
	spin_lock_irq(&conf->device_lock);
560 561 562 563
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
564 565
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
566
		 * !STRIPE_BIOFILL_RUN
567 568
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
569 570 571 572 573 574 575 576
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
577
				if (!raid5_dec_bi_phys_segments(rbi)) {
578 579 580 581 582 583 584
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
585 586
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
587 588 589

	return_io(return_bi);

590
	set_bit(STRIPE_HANDLE, &sh->state);
591 592 593 594 595 596 597
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
598
	struct async_submit_ctl submit;
599 600
	int i;

601
	pr_debug("%s: stripe %llu\n", __func__,
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
622 623
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
624 625
}

626 627 628 629 630 631 632 633 634 635 636 637 638
static void mark_target_uptodate(struct stripe_head *sh, int target)
{
	struct r5dev *tgt;

	if (target < 0)
		return;

	tgt = &sh->dev[target];
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
}

639 640 641 642
static void ops_complete_compute5(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

643
	pr_debug("%s: stripe %llu\n", __func__,
644 645
		(unsigned long long)sh->sector);

646 647 648
	/* mark the computed target as uptodate */
	mark_target_uptodate(sh, sh->ops.target);

649 650 651
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
652 653 654 655
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

656 657 658 659 660 661 662 663 664
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
665 666
{
	int disks = sh->disks;
667
	struct page **xor_srcs = percpu->scribble;
668 669 670 671 672
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
673
	struct async_submit_ctl submit;
674 675 676
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
677
		__func__, (unsigned long long)sh->sector, target);
678 679 680 681 682 683 684 685
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

686
	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL,
687
			  ops_complete_compute5, sh, to_addr_conv(sh, percpu));
688
	if (unlikely(count == 1))
689
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
690
	else
691
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
692 693 694 695 696 697 698 699

	return tx;
}

static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

700
	pr_debug("%s: stripe %llu\n", __func__,
701 702 703 704
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
705 706
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
707 708
{
	int disks = sh->disks;
709
	struct page **xor_srcs = percpu->scribble;
710
	int count = 0, pd_idx = sh->pd_idx, i;
711
	struct async_submit_ctl submit;
712 713 714 715

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

716
	pr_debug("%s: stripe %llu\n", __func__,
717 718 719 720 721
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
722
		if (test_bit(R5_Wantdrain, &dev->flags))
723 724 725
			xor_srcs[count++] = dev->page;
	}

726
	init_async_submit(&submit, ASYNC_TX_XOR_DROP_DST, tx,
727
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
728
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
729 730 731 732 733

	return tx;
}

static struct dma_async_tx_descriptor *
734
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
735 736
{
	int disks = sh->disks;
737
	int i;
738

739
	pr_debug("%s: stripe %llu\n", __func__,
740 741 742 743 744 745
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

746
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

static void ops_complete_postxor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	int disks = sh->disks, i, pd_idx = sh->pd_idx;

773
	pr_debug("%s: stripe %llu\n", __func__,
774 775 776 777 778 779 780 781
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (dev->written || i == pd_idx)
			set_bit(R5_UPTODATE, &dev->flags);
	}

782 783 784 785 786 787 788 789
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
790 791 792 793 794 795

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
796 797
ops_run_postxor(struct stripe_head *sh, struct raid5_percpu *percpu,
		struct dma_async_tx_descriptor *tx)
798 799
{
	int disks = sh->disks;
800
	struct page **xor_srcs = percpu->scribble;
801
	struct async_submit_ctl submit;
802 803
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
804
	int prexor = 0;
805 806
	unsigned long flags;

807
	pr_debug("%s: stripe %llu\n", __func__,
808 809 810 811 812
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
813 814
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
835
	flags = ASYNC_TX_ACK |
836 837 838 839
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

840 841
	init_async_submit(&submit, flags, tx, ops_complete_postxor, sh,
			  to_addr_conv(sh, percpu));
842 843 844 845
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
846 847 848 849 850 851
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

852
	pr_debug("%s: stripe %llu\n", __func__,
853 854
		(unsigned long long)sh->sector);

855
	sh->check_state = check_state_check_result;
856 857 858 859
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

860
static void ops_run_check(struct stripe_head *sh, struct raid5_percpu *percpu)
861 862
{
	int disks = sh->disks;
863
	struct page **xor_srcs = percpu->scribble;
864
	struct dma_async_tx_descriptor *tx;
865
	struct async_submit_ctl submit;
866 867 868 869

	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

870
	pr_debug("%s: stripe %llu\n", __func__,
871 872 873 874 875 876 877 878
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (i != pd_idx)
			xor_srcs[count++] = dev->page;
	}

879 880
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
881
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
882
			   &sh->ops.zero_sum_result, &submit);
883 884

	atomic_inc(&sh->count);
885 886
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
887 888
}

889
static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
890 891 892
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
893 894 895
	raid5_conf_t *conf = sh->raid_conf;
	struct raid5_percpu *percpu;
	unsigned long cpu;
896

897 898
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
899
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
900 901 902 903
		ops_run_biofill(sh);
		overlap_clear++;
	}

904
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
905
		tx = ops_run_compute5(sh, percpu);
906 907 908 909
		/* terminate the chain if postxor is not set to be run */
		if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
			async_tx_ack(tx);
	}
910

911
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
912
		tx = ops_run_prexor(sh, percpu, tx);
913

914
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
915
		tx = ops_run_biodrain(sh, tx);
916 917 918
		overlap_clear++;
	}

919
	if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
920
		ops_run_postxor(sh, percpu, tx);
921

922
	if (test_bit(STRIPE_OP_CHECK, &ops_request))
923
		ops_run_check(sh, percpu);
924 925 926 927 928 929 930

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
931
	put_cpu();
932 933
}

934
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
935 936
{
	struct stripe_head *sh;
937 938 939 940 941 942 943 944 945 946 947 948
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);

	if (grow_buffers(sh, conf->raid_disks)) {
		shrink_buffers(sh, conf->raid_disks);
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
949
	sh->disks = conf->raid_disks;
950 951 952 953 954 955 956 957 958 959
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
960
	struct kmem_cache *sc;
L
Linus Torvalds 已提交
961 962
	int devs = conf->raid_disks;

963 964 965 966
	sprintf(conf->cache_name[0],
		"raid%d-%s", conf->level, mdname(conf->mddev));
	sprintf(conf->cache_name[1],
		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
967 968
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
969
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
970
			       0, 0, NULL);
L
Linus Torvalds 已提交
971 972 973
	if (!sc)
		return 1;
	conf->slab_cache = sc;
974
	conf->pool_size = devs;
975
	while (num--)
976
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
977 978 979
			return 1;
	return 0;
}
980

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1031
	unsigned long cpu;
1032
	int err;
1033
	struct kmem_cache *sc;
1034 1035 1036 1037 1038
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1039 1040 1041
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1042

1043 1044 1045
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1046
			       0, 0, NULL);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
1081
				    unplug_slaves(conf->mddev)
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
			);
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1097
	 * conf->disks and the scribble region
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1127 1128 1129 1130
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1148

1149
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1150 1151 1152
{
	struct stripe_head *sh;

1153 1154 1155 1156 1157
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1158
	BUG_ON(atomic_read(&sh->count));
1159
	shrink_buffers(sh, conf->pool_size);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1170 1171
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1172 1173 1174
	conf->slab_cache = NULL;
}

1175
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1176
{
1177
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1178
	raid5_conf_t *conf = sh->raid_conf;
1179
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1180
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1181 1182
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1183 1184 1185 1186 1187 1188


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1189 1190
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1191 1192 1193
		uptodate);
	if (i == disks) {
		BUG();
1194
		return;
L
Linus Torvalds 已提交
1195 1196 1197 1198
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1199
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1200
			rdev = conf->disks[i].rdev;
1201 1202 1203 1204 1205 1206
			printk_rl(KERN_INFO "raid5:%s: read error corrected"
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1207 1208 1209
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1210 1211
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1212
	} else {
1213
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1214
		int retry = 0;
1215 1216
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1217
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1218
		atomic_inc(&rdev->read_errors);
1219
		if (conf->mddev->degraded)
1220 1221 1222 1223 1224 1225 1226
			printk_rl(KERN_WARNING
				  "raid5:%s: read error not correctable "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1227
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1228
			/* Oh, no!!! */
1229 1230 1231 1232 1233 1234 1235
			printk_rl(KERN_WARNING
				  "raid5:%s: read error NOT corrected!! "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1236
		else if (atomic_read(&rdev->read_errors)
1237
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1238
			printk(KERN_WARNING
1239 1240
			       "raid5:%s: Too many read errors, failing device %s.\n",
			       mdname(conf->mddev), bdn);
1241 1242 1243 1244 1245
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1246 1247
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1248
			md_error(conf->mddev, rdev);
1249
		}
L
Linus Torvalds 已提交
1250 1251 1252 1253 1254 1255 1256
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1257
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1258
{
1259
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1260
	raid5_conf_t *conf = sh->raid_conf;
1261
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1262 1263 1264 1265 1266 1267
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1268
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1269 1270 1271 1272
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1273
		return;
L
Linus Torvalds 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1283
	release_stripe(sh);
L
Linus Torvalds 已提交
1284 1285 1286
}


1287
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1288
	
1289
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1305
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1306 1307 1308 1309 1310 1311
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1312
	pr_debug("raid5: error called\n");
L
Linus Torvalds 已提交
1313

1314
	if (!test_bit(Faulty, &rdev->flags)) {
1315
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1316 1317 1318
		if (test_and_clear_bit(In_sync, &rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1319
			mddev->degraded++;
1320
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1321 1322 1323
			/*
			 * if recovery was running, make sure it aborts.
			 */
1324
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1325
		}
1326
		set_bit(Faulty, &rdev->flags);
1327 1328 1329 1330
		printk(KERN_ALERT
		       "raid5: Disk failure on %s, disabling device.\n"
		       "raid5: Operation continuing on %d devices.\n",
		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
1331
	}
1332
}
L
Linus Torvalds 已提交
1333 1334 1335 1336 1337

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1338
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1339 1340
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1341 1342 1343 1344
{
	long stripe;
	unsigned long chunk_number;
	unsigned int chunk_offset;
1345
	int pd_idx, qd_idx;
1346
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1347
	sector_t new_sector;
1348 1349
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1350 1351
	int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
					 : (conf->chunk_size >> 9);
1352 1353 1354
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;
	BUG_ON(r_sector != chunk_number);

	/*
	 * Compute the stripe number
	 */
	stripe = chunk_number / data_disks;

	/*
	 * Compute the data disk and parity disk indexes inside the stripe
	 */
	*dd_idx = chunk_number % data_disks;

	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1378
	pd_idx = qd_idx = ~0;
1379 1380
	switch(conf->level) {
	case 4:
1381
		pd_idx = data_disks;
1382 1383
		break;
	case 5:
1384
		switch (algorithm) {
L
Linus Torvalds 已提交
1385
		case ALGORITHM_LEFT_ASYMMETRIC:
1386 1387
			pd_idx = data_disks - stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1388 1389 1390
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1391 1392
			pd_idx = stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1393 1394 1395
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1396 1397
			pd_idx = data_disks - stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1398 1399
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1400 1401
			pd_idx = stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1402
			break;
1403 1404 1405 1406 1407 1408 1409
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1410
		default:
N
NeilBrown 已提交
1411
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1412
				algorithm);
1413
			BUG();
1414 1415 1416 1417
		}
		break;
	case 6:

1418
		switch (algorithm) {
1419
		case ALGORITHM_LEFT_ASYMMETRIC:
1420 1421 1422
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1423
				(*dd_idx)++;	/* Q D D D P */
1424 1425
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1426 1427 1428
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1429 1430 1431
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1432
				(*dd_idx)++;	/* Q D D D P */
1433 1434
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1435 1436 1437
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1438 1439 1440
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1441 1442
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1443 1444 1445
			pd_idx = stripe % raid_disks;
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1446
			break;
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1469
			ddf_layout = 1;
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1484
			ddf_layout = 1;
1485 1486 1487 1488 1489 1490 1491
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1492
			ddf_layout = 1;
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
			pd_idx = data_disks - stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
			pd_idx = data_disks - stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;


1529
		default:
1530
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1531
			       algorithm);
1532
			BUG();
1533 1534
		}
		break;
L
Linus Torvalds 已提交
1535 1536
	}

1537 1538 1539
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1540
		sh->ddf_layout = ddf_layout;
1541
	}
L
Linus Torvalds 已提交
1542 1543 1544 1545 1546 1547 1548 1549
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1550
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1551 1552
{
	raid5_conf_t *conf = sh->raid_conf;
1553 1554
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1555
	sector_t new_sector = sh->sector, check;
1556 1557
	int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
					 : (conf->chunk_size >> 9);
1558 1559
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1560 1561
	sector_t stripe;
	int chunk_offset;
1562
	int chunk_number, dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1563
	sector_t r_sector;
1564
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1565

1566

L
Linus Torvalds 已提交
1567 1568 1569 1570
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;
	BUG_ON(new_sector != stripe);

1571 1572 1573 1574 1575
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1576
		switch (algorithm) {
L
Linus Torvalds 已提交
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1588 1589 1590 1591 1592
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1593
		default:
N
NeilBrown 已提交
1594
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1595
			       algorithm);
1596
			BUG();
1597 1598 1599
		}
		break;
	case 6:
1600
		if (i == sh->qd_idx)
1601
			return 0; /* It is the Q disk */
1602
		switch (algorithm) {
1603 1604
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1605 1606 1607 1608
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
			else if (i > sh->pd_idx)
				i -= 2; /* D D Q P D */
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
1648
		default:
1649
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1650
			       algorithm);
1651
			BUG();
1652 1653
		}
		break;
L
Linus Torvalds 已提交
1654 1655 1656 1657 1658
	}

	chunk_number = stripe * data_disks + i;
	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;

1659
	check = raid5_compute_sector(conf, r_sector,
1660
				     previous, &dummy1, &sh2);
1661 1662
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
N
NeilBrown 已提交
1663
		printk(KERN_ERR "compute_blocknr: map not correct\n");
L
Linus Torvalds 已提交
1664 1665 1666 1667 1668 1669 1670 1671
		return 0;
	}
	return r_sector;
}



/*
1672 1673 1674 1675 1676
 * Copy data between a page in the stripe cache, and one or more bion
 * The page could align with the middle of the bio, or there could be
 * several bion, each with several bio_vecs, which cover part of the page
 * Multiple bion are linked together on bi_next.  There may be extras
 * at the end of this list.  We ignore them.
L
Linus Torvalds 已提交
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
 */
static void copy_data(int frombio, struct bio *bio,
		     struct page *page,
		     sector_t sector)
{
	char *pa = page_address(page);
	struct bio_vec *bvl;
	int i;
	int page_offset;

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio,i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else clen = len;
1705

L
Linus Torvalds 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
		if (clen > 0) {
			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
			if (frombio)
				memcpy(pa+page_offset, ba+b_offset, clen);
			else
				memcpy(ba+b_offset, pa+page_offset, clen);
			__bio_kunmap_atomic(ba, KM_USER0);
		}
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}
}

D
Dan Williams 已提交
1720 1721 1722 1723 1724
#define check_xor()	do {						  \
				if (count == MAX_XOR_BLOCKS) {		  \
				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
				count = 0;				  \
			   }						  \
L
Linus Torvalds 已提交
1725 1726
			} while(0)

1727 1728
static void compute_parity6(struct stripe_head *sh, int method)
{
1729
	raid5_conf_t *conf = sh->raid_conf;
1730
	int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1731
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1732 1733
	struct bio *chosen;
	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1734
	void *ptrs[syndrome_disks+2];
1735

1736 1737 1738
	pd_idx = sh->pd_idx;
	qd_idx = sh->qd_idx;
	d0_idx = raid6_d0(sh);
1739

1740
	pr_debug("compute_parity, stripe %llu, method %d\n",
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
		(unsigned long long)sh->sector, method);

	switch(method) {
	case READ_MODIFY_WRITE:
		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
	case RECONSTRUCT_WRITE:
		for (i= disks; i-- ;)
			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
				chosen = sh->dev[i].towrite;
				sh->dev[i].towrite = NULL;

				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
					wake_up(&conf->wait_for_overlap);

E
Eric Sesterhenn 已提交
1755
				BUG_ON(sh->dev[i].written);
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
				sh->dev[i].written = chosen;
			}
		break;
	case CHECK_PARITY:
		BUG();		/* Not implemented yet */
	}

	for (i = disks; i--;)
		if (sh->dev[i].written) {
			sector_t sector = sh->dev[i].sector;
			struct bio *wbi = sh->dev[i].written;
			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
				copy_data(1, wbi, sh->dev[i].page, sector);
				wbi = r5_next_bio(wbi, sector);
			}

			set_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(R5_UPTODATE, &sh->dev[i].flags);
		}

1776
	/* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1777 1778 1779 1780

	for (i = 0; i < disks; i++)
		ptrs[i] = (void *)raid6_empty_zero_page;

1781 1782 1783
	count = 0;
	i = d0_idx;
	do {
1784 1785
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

1786
		ptrs[slot] = page_address(sh->dev[i].page);
1787
		if (slot < syndrome_disks &&
1788 1789 1790 1791 1792
		    !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
			printk(KERN_ERR "block %d/%d not uptodate "
			       "on parity calc\n", i, count);
			BUG();
		}
1793

1794 1795
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);
1796
	BUG_ON(count != syndrome_disks);
1797

1798
	raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

	switch(method) {
	case RECONSTRUCT_WRITE:
		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
		break;
	case UPDATE_PARITY:
		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
		break;
	}
}


/* Compute one missing block */
static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
{
1818
	int i, count, disks = sh->disks;
D
Dan Williams 已提交
1819
	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1820
	int qd_idx = sh->qd_idx;
1821

1822
	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1823 1824 1825 1826 1827 1828
		(unsigned long long)sh->sector, dd_idx);

	if ( dd_idx == qd_idx ) {
		/* We're actually computing the Q drive */
		compute_parity6(sh, UPDATE_PARITY);
	} else {
D
Dan Williams 已提交
1829 1830 1831
		dest = page_address(sh->dev[dd_idx].page);
		if (!nozero) memset(dest, 0, STRIPE_SIZE);
		count = 0;
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
		for (i = disks ; i--; ) {
			if (i == dd_idx || i == qd_idx)
				continue;
			p = page_address(sh->dev[i].page);
			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
				ptr[count++] = p;
			else
				printk("compute_block() %d, stripe %llu, %d"
				       " not present\n", dd_idx,
				       (unsigned long long)sh->sector, i);

			check_xor();
		}
D
Dan Williams 已提交
1845 1846
		if (count)
			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1847 1848 1849 1850 1851 1852 1853 1854
		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
	}
}

/* Compute two missing blocks */
static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
{
1855
	int i, count, disks = sh->disks;
1856
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1857 1858 1859
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1860
	void *ptrs[syndrome_disks+2];
1861

1862 1863
	for (i = 0; i < disks ; i++)
		ptrs[i] = (void *)raid6_empty_zero_page;
1864 1865 1866
	count = 0;
	i = d0_idx;
	do {
1867 1868
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

1869
		ptrs[slot] = page_address(sh->dev[i].page);
1870

1871 1872 1873 1874 1875 1876
		if (i == dd_idx1)
			faila = slot;
		if (i == dd_idx2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);
1877
	BUG_ON(count != syndrome_disks);
1878 1879 1880 1881

	BUG_ON(faila == failb);
	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }

1882
	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1883 1884
		 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
		 faila, failb);
1885

1886
	if (failb == syndrome_disks+1) {
1887
		/* Q disk is one of the missing disks */
1888
		if (faila == syndrome_disks) {
1889 1890 1891 1892 1893
			/* Missing P+Q, just recompute */
			compute_parity6(sh, UPDATE_PARITY);
			return;
		} else {
			/* We're missing D+Q; recompute D from P */
1894 1895 1896
			compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
					     dd_idx2 : dd_idx1),
					0);
1897 1898 1899 1900 1901
			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
			return;
		}
	}

1902
	/* We're missing D+P or D+D; */
1903
	if (failb == syndrome_disks) {
1904
		/* We're missing D+P. */
1905
		raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1906 1907
	} else {
		/* We're missing D+D. */
1908 1909
		raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
				  ptrs);
1910
	}
1911 1912 1913 1914

	/* Both the above update both missing blocks */
	set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
	set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1915 1916
}

1917
static void
1918
schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1919
			 int rcw, int expand)
1920 1921 1922 1923 1924 1925 1926 1927 1928
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
1929 1930 1931 1932
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
1933

1934
		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1935 1936 1937 1938 1939 1940

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
1941
				set_bit(R5_Wantdrain, &dev->flags);
1942 1943
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
1944
				s->locked++;
1945 1946
			}
		}
1947
		if (s->locked + 1 == disks)
1948 1949
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
				atomic_inc(&sh->raid_conf->pending_full_writes);
1950 1951 1952 1953
	} else {
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

1954
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1955 1956 1957
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1958 1959 1960 1961 1962 1963 1964 1965

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
1966 1967
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
1968 1969
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
1970
				s->locked++;
1971 1972 1973 1974 1975 1976 1977 1978 1979
			}
		}
	}

	/* keep the parity disk locked while asynchronous operations
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1980
	s->locked++;
1981

1982
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1983
		__func__, (unsigned long long)sh->sector,
1984
		s->locked, s->ops_request);
1985
}
1986

L
Linus Torvalds 已提交
1987 1988
/*
 * Each stripe/dev can have one or more bion attached.
1989
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
1990 1991 1992 1993 1994 1995
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
1996
	int firstwrite=0;
L
Linus Torvalds 已提交
1997

1998
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
1999 2000 2001 2002 2003 2004
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
2005
	if (forwrite) {
L
Linus Torvalds 已提交
2006
		bip = &sh->dev[dd_idx].towrite;
2007 2008 2009
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2019
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2020 2021 2022
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2023
	bi->bi_phys_segments++;
L
Linus Torvalds 已提交
2024 2025 2026
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

2027
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
2028 2029 2030
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

2031 2032 2033
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
2034
		sh->bm_seq = conf->seq_flush+1;
2035 2036 2037
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

2060 2061
static void end_reshape(raid5_conf_t *conf);

2062 2063 2064 2065 2066 2067 2068
static int page_is_zero(struct page *p)
{
	char *a = page_address(p);
	return ((*(u32*)a) == 0 &&
		memcmp(a, a+4, STRIPE_SIZE-4)==0);
}

2069 2070
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2071
{
2072 2073 2074
	int sectors_per_chunk =
		previous ? (conf->prev_chunk >> 9)
			 : (conf->chunk_size >> 9);
2075
	int dd_idx;
2076
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2077
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2078

2079 2080
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2081
			     *sectors_per_chunk + chunk_offset,
2082
			     previous,
2083
			     &dd_idx, sh);
2084 2085
}

2086
static void
2087
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2121
			if (!raid5_dec_bi_phys_segments(bi)) {
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2136
			if (!raid5_dec_bi_phys_segments(bi)) {
2137 2138 2139 2140 2141 2142 2143
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2144 2145 2146 2147 2148 2149
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2160
				if (!raid5_dec_bi_phys_segments(bi)) {
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2173 2174 2175
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2176 2177
}

2178 2179 2180 2181 2182
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2183
 */
2184 2185
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2186 2187 2188 2189 2190 2191
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2192 2193 2194 2195 2196 2197 2198 2199
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2200 2201
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2202 2203
		 */
		if ((s->uptodate == disks - 1) &&
2204
		    (s->failed && disk_idx == s->failed_num)) {
2205 2206
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid5_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2217
			return 1; /* uptodate + compute == disks */
2218
		} else if (test_bit(R5_Insync, &dev->flags)) {
2219 2220 2221 2222 2223 2224 2225 2226
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2227
	return 0;
2228 2229
}

2230 2231 2232 2233
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2234 2235 2236
			struct stripe_head_state *s, int disks)
{
	int i;
2237 2238 2239 2240 2241

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2242
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2243
	    !sh->reconstruct_state)
2244
		for (i = disks; i--; )
2245
			if (fetch_block5(sh, s, i, disks))
2246
				break;
2247 2248 2249
	set_bit(STRIPE_HANDLE, &sh->state);
}

2250
static void handle_stripe_fill6(struct stripe_head *sh,
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (!test_bit(R5_LOCKED, &dev->flags) &&
		    !test_bit(R5_UPTODATE, &dev->flags) &&
		    (dev->toread || (dev->towrite &&
		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
		     s->syncing || s->expanding ||
		     (s->failed >= 1 &&
		      (sh->dev[r6s->failed_num[0]].toread ||
		       s->to_write)) ||
		     (s->failed >= 2 &&
		      (sh->dev[r6s->failed_num[1]].toread ||
		       s->to_write)))) {
			/* we would like to get this block, possibly
			 * by computing it, but we might not be able to
			 */
2271 2272 2273
			if ((s->uptodate == disks - 1) &&
			    (s->failed && (i == r6s->failed_num[0] ||
					   i == r6s->failed_num[1]))) {
2274
				pr_debug("Computing stripe %llu block %d\n",
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
				       (unsigned long long)sh->sector, i);
				compute_block_1(sh, i, 0);
				s->uptodate++;
			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
				/* Computing 2-failure is *very* expensive; only
				 * do it if failed >= 2
				 */
				int other;
				for (other = disks; other--; ) {
					if (other == i)
						continue;
					if (!test_bit(R5_UPTODATE,
					      &sh->dev[other].flags))
						break;
				}
				BUG_ON(other < 0);
2291
				pr_debug("Computing stripe %llu blocks %d,%d\n",
2292 2293 2294 2295 2296 2297 2298 2299
				       (unsigned long long)sh->sector,
				       i, other);
				compute_block_2(sh, i, other);
				s->uptodate += 2;
			} else if (test_bit(R5_Insync, &dev->flags)) {
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
2300
				pr_debug("Reading block %d (sync=%d)\n",
2301 2302 2303 2304 2305 2306 2307 2308
					i, s->syncing);
			}
		}
	}
	set_bit(STRIPE_HANDLE, &sh->state);
}


2309
/* handle_stripe_clean_event
2310 2311 2312 2313
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2314
static void handle_stripe_clean_event(raid5_conf_t *conf,
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2328
				pr_debug("Return write for disc %d\n", i);
2329 2330 2331 2332 2333 2334
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2335
					if (!raid5_dec_bi_phys_segments(wbi)) {
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2353 2354 2355 2356

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2357 2358
}

2359
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2360 2361 2362 2363 2364 2365 2366 2367
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2368 2369
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2370 2371 2372 2373 2374 2375 2376 2377
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2378 2379 2380
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2381 2382 2383 2384
			else
				rcw += 2*disks;
		}
	}
2385
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2386 2387 2388 2389 2390 2391 2392 2393
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2394 2395
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2396 2397 2398
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2399
					pr_debug("Read_old block "
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2417 2418
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2419 2420 2421
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2422
					pr_debug("Read_old block "
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2436 2437 2438 2439 2440 2441 2442
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
	 * subsequent call wants to start a write request.  raid5_run_ops only
	 * handles the case where compute block and postxor are requested
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2443 2444 2445
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2446
		schedule_reconstruction5(sh, s, rcw == 0, 0);
2447 2448
}

2449
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2450 2451 2452 2453
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2454
	int qd_idx = sh->qd_idx;
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags)
		    && i != pd_idx && i != qd_idx
		    && (!test_bit(R5_LOCKED, &dev->flags)
			    ) &&
		    !test_bit(R5_UPTODATE, &dev->flags)) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
			else {
2465
				pr_debug("raid6: must_compute: "
2466 2467 2468 2469 2470
					"disk %d flags=%#lx\n", i, dev->flags);
				must_compute++;
			}
		}
	}
2471
	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
	       (unsigned long long)sh->sector, rcw, must_compute);
	set_bit(STRIPE_HANDLE, &sh->state);

	if (rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags)
			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
			    && !test_bit(R5_LOCKED, &dev->flags) &&
			    !test_bit(R5_UPTODATE, &dev->flags) &&
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2486
					pr_debug("Read_old stripe %llu "
2487 2488 2489 2490 2491 2492
						"block %d for Reconstruct\n",
					     (unsigned long long)sh->sector, i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
2493
					pr_debug("Request delayed stripe %llu "
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
						"block %d for Reconstruct\n",
					     (unsigned long long)sh->sector, i);
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
	if (s->locked == 0 && rcw == 0 &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
		if (must_compute > 0) {
			/* We have failed blocks and need to compute them */
			switch (s->failed) {
			case 0:
				BUG();
			case 1:
				compute_block_1(sh, r6s->failed_num[0], 0);
				break;
			case 2:
				compute_block_2(sh, r6s->failed_num[0],
						r6s->failed_num[1]);
				break;
			default: /* This request should have been failed? */
				BUG();
			}
		}

2523
		pr_debug("Computing parity for stripe %llu\n",
2524 2525 2526 2527 2528
			(unsigned long long)sh->sector);
		compute_parity6(sh, RECONSTRUCT_WRITE);
		/* now every locked buffer is ready to be written */
		for (i = disks; i--; )
			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2529
				pr_debug("Writing stripe %llu block %d\n",
2530 2531 2532 2533
				       (unsigned long long)sh->sector, i);
				s->locked++;
				set_bit(R5_Wantwrite, &sh->dev[i].flags);
			}
2534 2535 2536
		if (s->locked == disks)
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
				atomic_inc(&conf->pending_full_writes);
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
		set_bit(STRIPE_INSYNC, &sh->state);

		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
			    IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2552
	struct r5dev *dev = NULL;
2553

2554
	set_bit(STRIPE_HANDLE, &sh->state);
2555

2556 2557 2558
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2559 2560
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2561 2562
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2563 2564
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2565
			break;
2566
		}
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
		dev = &sh->dev[s->failed_num];
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2577

2578 2579 2580 2581 2582
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2583
		s->locked++;
2584
		set_bit(R5_Wantwrite, &dev->flags);
2585

2586 2587
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2604
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2616
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2632 2633 2634 2635 2636
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2637 2638
				  struct stripe_head_state *s,
				  struct r6_state *r6s, int disks)
2639 2640 2641 2642
{
	int update_p = 0, update_q = 0;
	struct r5dev *dev;
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2643
	int qd_idx = sh->qd_idx;
2644 2645
	unsigned long cpu;
	struct page *tmp_page;
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
	BUG_ON(s->uptodate < disks);
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
	cpu = get_cpu();
	tmp_page = per_cpu_ptr(conf->percpu, cpu)->spare_page;
	if (s->failed == r6s->q_failed) {
		/* The only possible failed device holds 'Q', so it
		 * makes sense to check P (If anything else were failed,
		 * we would have used P to recreate it).
		 */
		compute_block_1(sh, pd_idx, 1);
		if (!page_is_zero(sh->dev[pd_idx].page)) {
			compute_block_1(sh, pd_idx, 0);
			update_p = 1;
2667
		}
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
	}
	if (!r6s->q_failed && s->failed < 2) {
		/* q is not failed, and we didn't use it to generate
		 * anything, so it makes sense to check it
		 */
		memcpy(page_address(tmp_page),
		       page_address(sh->dev[qd_idx].page),
		       STRIPE_SIZE);
		compute_parity6(sh, UPDATE_PARITY);
		if (memcmp(page_address(tmp_page),
			   page_address(sh->dev[qd_idx].page),
			   STRIPE_SIZE) != 0) {
			clear_bit(STRIPE_INSYNC, &sh->state);
			update_q = 1;
2682
		}
2683 2684
	}
	put_cpu();
2685

2686 2687 2688 2689 2690 2691
	if (update_p || update_q) {
		conf->mddev->resync_mismatches += STRIPE_SECTORS;
		if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
			/* don't try to repair!! */
			update_p = update_q = 0;
	}
2692

2693 2694 2695
	/* now write out any block on a failed drive,
	 * or P or Q if they need it
	 */
2696

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
	if (s->failed == 2) {
		dev = &sh->dev[r6s->failed_num[1]];
		s->locked++;
		set_bit(R5_LOCKED, &dev->flags);
		set_bit(R5_Wantwrite, &dev->flags);
	}
	if (s->failed >= 1) {
		dev = &sh->dev[r6s->failed_num[0]];
		s->locked++;
		set_bit(R5_LOCKED, &dev->flags);
		set_bit(R5_Wantwrite, &dev->flags);
	}
2709

2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	if (update_p) {
		dev = &sh->dev[pd_idx];
		s->locked++;
		set_bit(R5_LOCKED, &dev->flags);
		set_bit(R5_Wantwrite, &dev->flags);
	}
	if (update_q) {
		dev = &sh->dev[qd_idx];
		s->locked++;
		set_bit(R5_LOCKED, &dev->flags);
		set_bit(R5_Wantwrite, &dev->flags);
2721
	}
2722 2723 2724
	clear_bit(STRIPE_DEGRADED, &sh->state);

	set_bit(STRIPE_INSYNC, &sh->state);
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2735
	struct dma_async_tx_descriptor *tx = NULL;
2736 2737
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2738
		if (i != sh->pd_idx && i != sh->qd_idx) {
2739
			int dd_idx, j;
2740
			struct stripe_head *sh2;
2741
			struct async_submit_ctl submit;
2742

2743
			sector_t bn = compute_blocknr(sh, i, 1);
2744 2745
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2746
			sh2 = get_active_stripe(conf, s, 0, 1);
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2759 2760

			/* place all the copies on one channel */
2761
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2762
			tx = async_memcpy(sh2->dev[dd_idx].page,
2763
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2764
					  &submit);
2765

2766 2767 2768 2769
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2770
				    (!r6s || j != sh2->qd_idx) &&
2771 2772 2773 2774 2775 2776 2777
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2778

2779
		}
2780 2781 2782 2783 2784
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2785
}
L
Linus Torvalds 已提交
2786

2787

L
Linus Torvalds 已提交
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
2804

2805
static bool handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
2806 2807
{
	raid5_conf_t *conf = sh->raid_conf;
2808 2809 2810
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
2811
	struct r5dev *dev;
2812
	mdk_rdev_t *blocked_rdev = NULL;
2813
	int prexor;
L
Linus Torvalds 已提交
2814

2815
	memset(&s, 0, sizeof(s));
2816 2817 2818 2819
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
		 sh->reconstruct_state);
L
Linus Torvalds 已提交
2820 2821 2822 2823 2824

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

2825 2826 2827
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
N
Neil Brown 已提交
2828

2829
	/* Now to look around and see what can be done */
2830
	rcu_read_lock();
L
Linus Torvalds 已提交
2831 2832
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
2833
		struct r5dev *dev = &sh->dev[i];
L
Linus Torvalds 已提交
2834 2835
		clear_bit(R5_Insync, &dev->flags);

2836 2837 2838 2839 2840 2841 2842
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
2843
		 * ops_complete_biofill is guaranteed to be inactive
2844 2845
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2846
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2847
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
2848 2849

		/* now count some things */
2850 2851
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2852
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
2853

2854 2855 2856
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
2857
			s.to_read++;
L
Linus Torvalds 已提交
2858
		if (dev->towrite) {
2859
			s.to_write++;
L
Linus Torvalds 已提交
2860
			if (!test_bit(R5_OVERWRITE, &dev->flags))
2861
				s.non_overwrite++;
L
Linus Torvalds 已提交
2862
		}
2863 2864
		if (dev->written)
			s.written++;
2865
		rdev = rcu_dereference(conf->disks[i].rdev);
2866 2867
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2868 2869 2870
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
2871
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
2872
			/* The ReadError flag will just be confusing now */
2873 2874 2875
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
2876
		if (!rdev || !test_bit(In_sync, &rdev->flags)
2877
		    || test_bit(R5_ReadError, &dev->flags)) {
2878 2879
			s.failed++;
			s.failed_num = i;
L
Linus Torvalds 已提交
2880 2881 2882
		} else
			set_bit(R5_Insync, &dev->flags);
	}
2883
	rcu_read_unlock();
2884

2885
	if (unlikely(blocked_rdev)) {
2886 2887 2888 2889 2890 2891 2892 2893
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
2894 2895
	}

2896 2897 2898 2899
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
2900

2901
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
2902
		" to_write=%d failed=%d failed_num=%d\n",
2903 2904
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
2905 2906 2907
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
2908
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
2909
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2910
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
2911 2912
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
2913
		s.syncing = 0;
L
Linus Torvalds 已提交
2914 2915 2916 2917 2918 2919
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
2920 2921 2922 2923 2924
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
2925
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
2926 2927 2928 2929 2930

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
2931
	if (s.to_read || s.non_overwrite ||
2932
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2933
		handle_stripe_fill5(sh, &s, disks);
L
Linus Torvalds 已提交
2934

2935 2936 2937
	/* Now we check to see if any write operations have recently
	 * completed
	 */
2938
	prexor = 0;
2939
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2940
		prexor = 1;
2941 2942
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2943
		sh->reconstruct_state = reconstruct_state_idle;
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
2955 2956
				if (prexor)
					continue;
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
				IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
2976
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2977
		handle_stripe_dirtying5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
2978 2979

	/* maybe we need to check and possibly fix the parity for this stripe
2980 2981 2982
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
2983
	 */
2984 2985
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
2986
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2987
	     !test_bit(STRIPE_INSYNC, &sh->state)))
2988
		handle_parity_checks5(conf, sh, &s, disks);
2989

2990
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
2991 2992 2993
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
2994 2995 2996 2997

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
2998 2999 3000 3001
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3002
		) {
3003
		dev = &sh->dev[s.failed_num];
3004 3005 3006 3007
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3008
			s.locked++;
3009 3010 3011 3012
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3013
			s.locked++;
3014 3015 3016
		}
	}

3017 3018
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
		struct stripe_head *sh2
			= get_active_stripe(conf, sh->sector, 1, 1);
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3036
		sh->reconstruct_state = reconstruct_state_idle;
3037
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
3038
		for (i = conf->raid_disks; i--; ) {
3039
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
3040
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3041
			s.locked++;
D
Dan Williams 已提交
3042
		}
3043 3044 3045
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3046
	    !sh->reconstruct_state) {
3047 3048
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
3049
		stripe_set_idx(sh->sector, conf, 0, sh);
3050
		schedule_reconstruction5(sh, &s, 1, 1);
3051
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3052
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3053
		atomic_dec(&conf->reshape_stripes);
3054 3055 3056 3057
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3058
	if (s.expanding && s.locked == 0 &&
3059
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3060
		handle_stripe_expansion(conf, sh, NULL);
3061

3062
 unlock:
L
Linus Torvalds 已提交
3063 3064
	spin_unlock(&sh->lock);

3065 3066 3067 3068
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3069 3070
	if (s.ops_request)
		raid5_run_ops(sh, s.ops_request);
3071

3072
	ops_run_io(sh, &s);
L
Linus Torvalds 已提交
3073

3074
	return_io(return_bi);
3075 3076

	return blocked_rdev == NULL;
L
Linus Torvalds 已提交
3077 3078
}

3079
static bool handle_stripe6(struct stripe_head *sh)
L
Linus Torvalds 已提交
3080
{
3081
	raid5_conf_t *conf = sh->raid_conf;
3082
	int disks = sh->disks;
3083
	struct bio *return_bi = NULL;
N
NeilBrown 已提交
3084
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3085 3086
	struct stripe_head_state s;
	struct r6_state r6s;
3087
	struct r5dev *dev, *pdev, *qdev;
3088
	mdk_rdev_t *blocked_rdev = NULL;
L
Linus Torvalds 已提交
3089

3090
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3091 3092
		"pd_idx=%d, qd_idx=%d\n",
	       (unsigned long long)sh->sector, sh->state,
N
NeilBrown 已提交
3093
	       atomic_read(&sh->count), pd_idx, qd_idx);
3094
	memset(&s, 0, sizeof(s));
3095

3096 3097 3098 3099
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3100 3101 3102
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3103
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3104 3105

	rcu_read_lock();
3106 3107 3108 3109
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
		clear_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3110

3111
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3112 3113 3114 3115
			i, dev->flags, dev->toread, dev->towrite, dev->written);
		/* maybe we can reply to a read */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
			struct bio *rbi, *rbi2;
3116
			pr_debug("Return read for disc %d\n", i);
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
			spin_lock_irq(&conf->device_lock);
			rbi = dev->toread;
			dev->toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&conf->wait_for_overlap);
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
				copy_data(0, rbi, dev->page, dev->sector);
				rbi2 = r5_next_bio(rbi, dev->sector);
				spin_lock_irq(&conf->device_lock);
3127
				if (!raid5_dec_bi_phys_segments(rbi)) {
3128 3129 3130 3131 3132 3133 3134
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				spin_unlock_irq(&conf->device_lock);
				rbi = rbi2;
			}
		}
L
Linus Torvalds 已提交
3135

3136
		/* now count some things */
3137 3138
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
L
Linus Torvalds 已提交
3139

3140

3141 3142
		if (dev->toread)
			s.to_read++;
3143
		if (dev->towrite) {
3144
			s.to_write++;
3145
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3146
				s.non_overwrite++;
3147
		}
3148 3149
		if (dev->written)
			s.written++;
3150
		rdev = rcu_dereference(conf->disks[i].rdev);
3151 3152
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3153 3154 3155
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3156 3157 3158 3159
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3160
		}
3161 3162
		if (!rdev || !test_bit(In_sync, &rdev->flags)
		    || test_bit(R5_ReadError, &dev->flags)) {
3163 3164 3165
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3166 3167
		} else
			set_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3168 3169
	}
	rcu_read_unlock();
3170 3171

	if (unlikely(blocked_rdev)) {
3172 3173 3174 3175 3176 3177 3178 3179
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3180
	}
3181

3182
	pr_debug("locked=%d uptodate=%d to_read=%d"
3183
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3184 3185 3186 3187
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3188
	 */
3189
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3190
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3191
	if (s.failed > 2 && s.syncing) {
3192 3193
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3194
		s.syncing = 0;
3195 3196 3197 3198 3199 3200 3201
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3202 3203
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
N
NeilBrown 已提交
3204 3205 3206
	qdev = &sh->dev[qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3207 3208 3209

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3210
			     && !test_bit(R5_LOCKED, &pdev->flags)
3211 3212
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3213
			     && !test_bit(R5_LOCKED, &qdev->flags)
3214
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3215
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3216 3217 3218 3219 3220

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3221 3222
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
	    (s.syncing && (s.uptodate < disks)) || s.expanding)
3223
		handle_stripe_fill6(sh, &s, &r6s, disks);
3224 3225

	/* now to consider writing and what else, if anything should be read */
3226
	if (s.to_write)
3227
		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3228 3229

	/* maybe we need to check and possibly fix the parity for this stripe
3230 3231
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available
3232
	 */
3233
	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3234
		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3235

3236
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3237 3238 3239 3240 3241 3242 3243
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3244 3245 3246
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
				}
			}
		}
3262

3263
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
		struct stripe_head *sh2
			= get_active_stripe(conf, sh->sector, 1, 1);
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3281 3282
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3283
		stripe_set_idx(sh->sector, conf, 0, sh);
3284 3285 3286
		compute_parity6(sh, RECONSTRUCT_WRITE);
		for (i = conf->raid_disks ; i-- ;  ) {
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3287
			s.locked++;
3288 3289 3290
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
		}
		clear_bit(STRIPE_EXPANDING, &sh->state);
3291
	} else if (s.expanded) {
3292 3293 3294 3295 3296 3297
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3298
	if (s.expanding && s.locked == 0 &&
3299
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3300
		handle_stripe_expansion(conf, sh, &r6s);
3301

3302
 unlock:
3303 3304
	spin_unlock(&sh->lock);

3305 3306 3307 3308
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

D
Dan Williams 已提交
3309
	ops_run_io(sh, &s);
3310

D
Dan Williams 已提交
3311
	return_io(return_bi);
3312 3313

	return blocked_rdev == NULL;
3314 3315
}

3316
/* returns true if the stripe was handled */
3317
static bool handle_stripe(struct stripe_head *sh)
3318 3319
{
	if (sh->raid_conf->level == 6)
3320
		return handle_stripe6(sh);
3321
	else
3322
		return handle_stripe5(sh);
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3336
			list_add_tail(&sh->lru, &conf->hold_list);
3337
		}
3338 3339
	} else
		blk_plug_device(conf->mddev->queue);
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

static void unplug_slaves(mddev_t *mddev)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	int i;

	rcu_read_lock();
	for (i=0; i<mddev->raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3365
			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3366 3367 3368 3369

			atomic_inc(&rdev->nr_pending);
			rcu_read_unlock();

3370
			blk_unplug(r_queue);
3371 3372 3373 3374 3375 3376 3377 3378

			rdev_dec_pending(rdev, mddev);
			rcu_read_lock();
		}
	}
	rcu_read_unlock();
}

3379
static void raid5_unplug_device(struct request_queue *q)
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
{
	mddev_t *mddev = q->queuedata;
	raid5_conf_t *conf = mddev_to_conf(mddev);
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	if (blk_remove_plug(q)) {
		conf->seq_flush++;
		raid5_activate_delayed(conf);
3390
	}
L
Linus Torvalds 已提交
3391 3392 3393 3394 3395 3396 3397
	md_wakeup_thread(mddev->thread);

	spin_unlock_irqrestore(&conf->device_lock, flags);

	unplug_slaves(mddev);
}

3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;
	raid5_conf_t *conf = mddev_to_conf(mddev);

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}

3416 3417 3418
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3419 3420 3421
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3422 3423
{
	mddev_t *mddev = q->queuedata;
3424
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3425 3426
	int max;
	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3427
	unsigned int bio_sectors = bvm->bi_size >> 9;
3428

3429
	if ((bvm->bi_rw & 1) == WRITE)
3430 3431
		return biovec->bv_len; /* always allow writes to be mergeable */

3432 3433
	if (mddev->new_chunk < mddev->chunk_size)
		chunk_sectors = mddev->new_chunk >> 9;
3434 3435 3436 3437 3438 3439 3440 3441
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3442 3443 3444 3445 3446 3447 3448

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
	unsigned int chunk_sectors = mddev->chunk_size >> 9;
	unsigned int bio_sectors = bio->bi_size >> 9;

3449 3450
	if (mddev->new_chunk < mddev->chunk_size)
		chunk_sectors = mddev->new_chunk >> 9;
3451 3452 3453 3454
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3484
		conf->retry_read_aligned_list = bi->bi_next;
3485
		bi->bi_next = NULL;
3486 3487 3488 3489
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3490 3491 3492 3493 3494 3495 3496
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3497 3498 3499 3500 3501 3502
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3503
static void raid5_align_endio(struct bio *bi, int error)
3504 3505
{
	struct bio* raid_bi  = bi->bi_private;
3506 3507 3508 3509 3510
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3511
	bio_put(bi);
3512 3513 3514 3515 3516 3517 3518 3519 3520

	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
	conf = mddev_to_conf(mddev);
	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3521
		bio_endio(raid_bi, 0);
3522 3523
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3524
		return;
3525 3526 3527
	}


3528
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3529 3530

	add_bio_to_retry(raid_bi, conf);
3531 3532
}

3533 3534
static int bio_fits_rdev(struct bio *bi)
{
3535
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3536 3537 3538 3539

	if ((bi->bi_size>>9) > q->max_sectors)
		return 0;
	blk_recount_segments(q, bi);
3540
	if (bi->bi_phys_segments > q->max_phys_segments)
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3553
static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3554 3555 3556
{
	mddev_t *mddev = q->queuedata;
	raid5_conf_t *conf = mddev_to_conf(mddev);
3557
	unsigned int dd_idx;
3558 3559 3560 3561
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3562
		pr_debug("chunk_aligned_read : non aligned\n");
3563 3564 3565
		return 0;
	}
	/*
3566
	 * use bio_clone to make a copy of the bio
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
	 */
	align_bi = bio_clone(raid_bio, GFP_NOIO);
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3580 3581
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3582
						    &dd_idx, NULL);
3583 3584 3585 3586 3587 3588

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3589 3590 3591 3592 3593
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3594 3595 3596 3597 3598 3599 3600
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3601 3602 3603 3604 3605 3606 3607
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3608 3609 3610 3611
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3612
		bio_put(align_bi);
3613 3614 3615 3616
		return 0;
	}
}

3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3669

3670
static int make_request(struct request_queue *q, struct bio * bi)
L
Linus Torvalds 已提交
3671 3672 3673
{
	mddev_t *mddev = q->queuedata;
	raid5_conf_t *conf = mddev_to_conf(mddev);
3674
	int dd_idx;
L
Linus Torvalds 已提交
3675 3676 3677
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3678
	const int rw = bio_data_dir(bi);
T
Tejun Heo 已提交
3679
	int cpu, remaining;
L
Linus Torvalds 已提交
3680

3681
	if (unlikely(bio_barrier(bi))) {
3682
		bio_endio(bi, -EOPNOTSUPP);
3683 3684 3685
		return 0;
	}

3686
	md_write_start(mddev, bi);
3687

T
Tejun Heo 已提交
3688 3689 3690 3691 3692
	cpu = part_stat_lock();
	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
		      bio_sectors(bi));
	part_stat_unlock();
L
Linus Torvalds 已提交
3693

3694
	if (rw == READ &&
3695 3696
	     mddev->reshape_position == MaxSector &&
	     chunk_aligned_read(q,bi))
3697
		return 0;
3698

L
Linus Torvalds 已提交
3699 3700 3701 3702
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3703

L
Linus Torvalds 已提交
3704 3705
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3706
		int disks, data_disks;
3707
		int previous;
3708

3709
	retry:
3710
		previous = 0;
3711
		disks = conf->raid_disks;
3712
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3713
		if (unlikely(conf->reshape_progress != MaxSector)) {
3714
			/* spinlock is needed as reshape_progress may be
3715 3716
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3717
			 * Ofcourse reshape_progress could change after
3718 3719 3720 3721
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3722
			spin_lock_irq(&conf->device_lock);
3723 3724 3725
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3726
				disks = conf->previous_raid_disks;
3727 3728
				previous = 1;
			} else {
3729 3730 3731
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3732 3733 3734 3735 3736
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3737 3738
			spin_unlock_irq(&conf->device_lock);
		}
3739 3740
		data_disks = disks - conf->max_degraded;

3741 3742
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3743
						  &dd_idx, NULL);
3744
		pr_debug("raid5: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3745 3746 3747
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3748 3749
		sh = get_active_stripe(conf, new_sector, previous,
				       (bi->bi_rw&RWA_MASK));
L
Linus Torvalds 已提交
3750
		if (sh) {
3751
			if (unlikely(previous)) {
3752
				/* expansion might have moved on while waiting for a
3753 3754 3755 3756 3757 3758
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
3759 3760 3761
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
3762 3763 3764
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
3765 3766 3767 3768 3769 3770 3771 3772
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
					goto retry;
				}
			}
3773 3774 3775 3776 3777 3778 3779 3780 3781
			/* FIXME what if we get a false positive because these
			 * are being updated.
			 */
			if (logical_sector >= mddev->suspend_lo &&
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
				schedule();
				goto retry;
			}
3782 3783 3784 3785 3786

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
3787 3788 3789 3790 3791 3792 3793 3794
				 * and wait a while
				 */
				raid5_unplug_device(mddev->queue);
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
3795 3796
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
L
Linus Torvalds 已提交
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
	spin_lock_irq(&conf->device_lock);
3807
	remaining = raid5_dec_bi_phys_segments(bi);
3808 3809
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
3810

3811
		if ( rw == WRITE )
L
Linus Torvalds 已提交
3812
			md_write_end(mddev);
3813

3814
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
3815 3816 3817 3818
	}
	return 0;
}

D
Dan Williams 已提交
3819 3820
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

3821
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
3822
{
3823 3824 3825 3826 3827 3828 3829 3830 3831
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
L
Linus Torvalds 已提交
3832 3833
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
3834
	sector_t first_sector, last_sector;
3835 3836 3837
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
3838 3839
	int i;
	int dd_idx;
3840
	sector_t writepos, readpos, safepos;
3841
	sector_t stripe_addr;
3842
	int reshape_sectors;
3843
	struct list_head stripes;
3844

3845 3846 3847 3848 3849 3850 3851 3852 3853
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
		} else if (mddev->delta_disks > 0 &&
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
3854
		sector_div(sector_nr, new_data_disks);
3855 3856 3857 3858
		if (sector_nr) {
			*skipped = 1;
			return sector_nr;
		}
3859 3860
	}

3861 3862 3863 3864 3865 3866 3867 3868 3869
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
	if (mddev->new_chunk > mddev->chunk_size)
		reshape_sectors = mddev->new_chunk / 512;
	else
		reshape_sectors = mddev->chunk_size / 512;

3870 3871 3872 3873 3874
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
3875 3876
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
3877
	 */
3878
	writepos = conf->reshape_progress;
3879
	sector_div(writepos, new_data_disks);
3880 3881
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
3882
	safepos = conf->reshape_safe;
3883
	sector_div(safepos, data_disks);
3884
	if (mddev->delta_disks < 0) {
3885
		writepos -= reshape_sectors;
3886
		readpos += reshape_sectors;
3887
		safepos += reshape_sectors;
3888
	} else {
3889
		writepos += reshape_sectors;
3890
		readpos -= reshape_sectors;
3891
		safepos -= reshape_sectors;
3892
	}
3893

3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
3911
	if ((mddev->delta_disks < 0
3912 3913 3914
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3915 3916 3917
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
3918
		mddev->reshape_position = conf->reshape_progress;
3919
		conf->reshape_checkpoint = jiffies;
3920
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3921
		md_wakeup_thread(mddev->thread);
3922
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3923 3924
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
3925
		conf->reshape_safe = mddev->reshape_position;
3926 3927 3928 3929
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
	}

3930 3931 3932 3933
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
3934 3935
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
3936 3937
		       != sector_nr);
	} else {
3938
		BUG_ON(writepos != sector_nr + reshape_sectors);
3939 3940
		stripe_addr = sector_nr;
	}
3941
	INIT_LIST_HEAD(&stripes);
3942
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3943 3944
		int j;
		int skipped = 0;
3945
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0);
3946 3947 3948 3949 3950 3951 3952 3953 3954
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
3955
			if (conf->level == 6 &&
3956
			    j == sh->qd_idx)
3957
				continue;
3958
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
3959
			if (s < raid5_size(mddev, 0, 0)) {
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
				skipped = 1;
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
		if (!skipped) {
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
3971
		list_add(&sh->lru, &stripes);
3972 3973
	}
	spin_lock_irq(&conf->device_lock);
3974
	if (mddev->delta_disks < 0)
3975
		conf->reshape_progress -= reshape_sectors * new_data_disks;
3976
	else
3977
		conf->reshape_progress += reshape_sectors * new_data_disks;
3978 3979 3980 3981 3982 3983 3984
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
3985
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3986
				     1, &dd_idx, NULL);
3987
	last_sector =
3988
		raid5_compute_sector(conf, ((stripe_addr+conf->chunk_size/512)
3989
					    *(new_data_disks) - 1),
3990
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
3991 3992
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
3993
	while (first_sector <= last_sector) {
3994
		sh = get_active_stripe(conf, first_sector, 1, 0);
3995 3996 3997 3998 3999
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4000 4001 4002 4003 4004 4005 4006 4007
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4008 4009 4010
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4011
	sector_nr += reshape_sectors;
4012 4013 4014 4015
	if (sector_nr >= mddev->resync_max) {
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4016
		mddev->reshape_position = conf->reshape_progress;
4017
		conf->reshape_checkpoint = jiffies;
4018 4019 4020 4021 4022 4023
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4024
		conf->reshape_safe = mddev->reshape_position;
4025 4026 4027
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
	}
4028
	return reshape_sectors;
4029 4030 4031 4032 4033 4034 4035
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
A
Andre Noll 已提交
4036
	sector_t max_sector = mddev->dev_sectors;
4037
	int sync_blocks;
4038 4039
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4040

4041
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4042 4043
		/* just being told to finish up .. nothing much to do */
		unplug_slaves(mddev);
4044

4045 4046 4047 4048
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4049 4050 4051 4052

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4053
		else /* completed sync */
4054 4055 4056
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4057 4058
		return 0;
	}
4059

4060 4061
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4062

4063 4064 4065 4066 4067 4068
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4069
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4070 4071 4072
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4073
	if (mddev->degraded >= conf->max_degraded &&
4074
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4075
		sector_t rv = mddev->dev_sectors - sector_nr;
4076
		*skipped = 1;
L
Linus Torvalds 已提交
4077 4078
		return rv;
	}
4079
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4080
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4081 4082 4083 4084 4085 4086
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4087

N
NeilBrown 已提交
4088 4089 4090

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4091
	sh = get_active_stripe(conf, sector_nr, 0, 1);
L
Linus Torvalds 已提交
4092
	if (sh == NULL) {
4093
		sh = get_active_stripe(conf, sector_nr, 0, 0);
L
Linus Torvalds 已提交
4094
		/* make sure we don't swamp the stripe cache if someone else
4095
		 * is trying to get access
L
Linus Torvalds 已提交
4096
		 */
4097
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4098
	}
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
	for (i=0; i<mddev->raid_disks; i++)
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
4110 4111 4112 4113
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

4114
	/* wait for any blocked device to be handled */
4115
	while (unlikely(!handle_stripe(sh)))
4116
		;
L
Linus Torvalds 已提交
4117 4118 4119 4120 4121
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4135
	int dd_idx;
4136 4137 4138 4139 4140 4141
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4142
	sector = raid5_compute_sector(conf, logical_sector,
4143
				      0, &dd_idx, NULL);
4144 4145 4146
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4147 4148 4149
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4150

4151
		if (scnt < raid5_bi_hw_segments(raid_bio))
4152 4153 4154
			/* already done this stripe */
			continue;

4155
		sh = get_active_stripe(conf, sector, 0, 1);
4156 4157 4158

		if (!sh) {
			/* failed to get a stripe - must wait */
4159
			raid5_set_bi_hw_segments(raid_bio, scnt);
4160 4161 4162 4163 4164
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4165 4166
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4167
			raid5_set_bi_hw_segments(raid_bio, scnt);
4168 4169 4170 4171
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4172
		handle_stripe(sh);
4173 4174 4175 4176
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4177
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4178
	spin_unlock_irq(&conf->device_lock);
4179 4180
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4181 4182 4183 4184 4185 4186 4187
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}



L
Linus Torvalds 已提交
4188 4189 4190 4191 4192 4193 4194
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4195
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4196 4197 4198 4199 4200
{
	struct stripe_head *sh;
	raid5_conf_t *conf = mddev_to_conf(mddev);
	int handled;

4201
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4202 4203 4204 4205 4206 4207

	md_check_recovery(mddev);

	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4208
		struct bio *bio;
L
Linus Torvalds 已提交
4209

4210
		if (conf->seq_flush != conf->seq_write) {
4211
			int seq = conf->seq_flush;
4212
			spin_unlock_irq(&conf->device_lock);
4213
			bitmap_unplug(mddev->bitmap);
4214
			spin_lock_irq(&conf->device_lock);
4215 4216 4217 4218
			conf->seq_write = seq;
			activate_bit_delay(conf);
		}

4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4229 4230
		sh = __get_priority_stripe(conf);

4231
		if (!sh)
L
Linus Torvalds 已提交
4232 4233 4234 4235
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4236
		handle_stripe(sh);
L
Linus Torvalds 已提交
4237 4238 4239 4240
		release_stripe(sh);

		spin_lock_irq(&conf->device_lock);
	}
4241
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4242 4243 4244

	spin_unlock_irq(&conf->device_lock);

4245
	async_tx_issue_pending_all();
L
Linus Torvalds 已提交
4246 4247
	unplug_slaves(mddev);

4248
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4249 4250
}

4251
static ssize_t
4252
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4253
{
4254
	raid5_conf_t *conf = mddev_to_conf(mddev);
4255 4256 4257 4258
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4259 4260 4261
}

static ssize_t
4262
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4263
{
4264
	raid5_conf_t *conf = mddev_to_conf(mddev);
4265
	unsigned long new;
4266 4267
	int err;

4268 4269
	if (len >= PAGE_SIZE)
		return -EINVAL;
4270 4271
	if (!conf)
		return -ENODEV;
4272

4273
	if (strict_strtoul(page, 10, &new))
4274 4275 4276 4277 4278 4279 4280 4281 4282
		return -EINVAL;
	if (new <= 16 || new > 32768)
		return -EINVAL;
	while (new < conf->max_nr_stripes) {
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4283 4284 4285
	err = md_allow_write(mddev);
	if (err)
		return err;
4286 4287 4288 4289 4290 4291 4292
	while (new > conf->max_nr_stripes) {
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
	return len;
}
4293

4294 4295 4296 4297
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4298

4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
4313
	unsigned long new;
4314 4315 4316 4317 4318
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4319
	if (strict_strtoul(page, 10, &new))
4320
		return -EINVAL;
4321
	if (new > conf->max_nr_stripes)
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4333
static ssize_t
4334
stripe_cache_active_show(mddev_t *mddev, char *page)
4335
{
4336
	raid5_conf_t *conf = mddev_to_conf(mddev);
4337 4338 4339 4340
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4341 4342
}

4343 4344
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4345

4346
static struct attribute *raid5_attrs[] =  {
4347 4348
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4349
	&raid5_preread_bypass_threshold.attr,
4350 4351
	NULL,
};
4352 4353 4354
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4355 4356
};

4357 4358 4359 4360 4361 4362 4363
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);

	if (!sectors)
		sectors = mddev->dev_sectors;
4364 4365 4366 4367 4368 4369 4370
	if (!raid_disks) {
		/* size is defined by the smallest of previous and new size */
		if (conf->raid_disks < conf->previous_raid_disks)
			raid_disks = conf->raid_disks;
		else
			raid_disks = conf->previous_raid_disks;
	}
4371 4372

	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4373
	sectors &= ~((sector_t)mddev->new_chunk/512 - 1);
4374 4375 4376
	return sectors * (raid_disks - conf->max_degraded);
}

4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4389
		kfree(percpu->scribble);
4390 4391 4392 4393 4394 4395 4396 4397 4398
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4399 4400 4401
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4402
	raid5_free_percpu(conf);
4403 4404 4405 4406 4407
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4419
		if (conf->level == 6 && !percpu->spare_page)
4420
			percpu->spare_page = alloc_page(GFP_KERNEL);
4421 4422 4423 4424 4425 4426 4427
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4428 4429 4430 4431 4432 4433 4434 4435
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
			return NOTIFY_BAD;
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4436
		kfree(percpu->scribble);
4437
		percpu->spare_page = NULL;
4438
		percpu->scribble = NULL;
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
	struct raid5_percpu *allcpus;
4452
	void *scribble;
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
		scribble = kmalloc(scribble_len(conf->raid_disks), GFP_KERNEL);
		if (!scribble) {
4473 4474 4475
			err = -ENOMEM;
			break;
		}
4476
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4489
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4490 4491 4492 4493 4494 4495
{
	raid5_conf_t *conf;
	int raid_disk, memory;
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4496 4497 4498
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4499
		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4500 4501
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4502
	}
N
NeilBrown 已提交
4503 4504 4505 4506
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4507
		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
N
NeilBrown 已提交
4508 4509
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4510
	}
N
NeilBrown 已提交
4511 4512 4513 4514
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4515 4516
	}

N
NeilBrown 已提交
4517 4518 4519 4520
	if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
			mddev->new_chunk, mdname(mddev));
		return ERR_PTR(-EINVAL);
4521 4522
	}

N
NeilBrown 已提交
4523 4524
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4525
		goto abort;
N
NeilBrown 已提交
4526 4527

	conf->raid_disks = mddev->raid_disks;
4528
	conf->scribble_len = scribble_len(conf->raid_disks);
N
NeilBrown 已提交
4529 4530 4531
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4532 4533 4534
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;

	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4535 4536 4537
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4538

L
Linus Torvalds 已提交
4539 4540
	conf->mddev = mddev;

4541
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4542 4543
		goto abort;

4544 4545 4546 4547
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

L
Linus Torvalds 已提交
4548 4549 4550 4551
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
4552
	INIT_LIST_HEAD(&conf->hold_list);
L
Linus Torvalds 已提交
4553
	INIT_LIST_HEAD(&conf->delayed_list);
4554
	INIT_LIST_HEAD(&conf->bitmap_list);
L
Linus Torvalds 已提交
4555 4556 4557
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
4558
	atomic_set(&conf->active_aligned_reads, 0);
4559
	conf->bypass_threshold = BYPASS_THRESHOLD;
L
Linus Torvalds 已提交
4560

4561
	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4562

4563
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4564
		raid_disk = rdev->raid_disk;
4565
		if (raid_disk >= conf->raid_disks
L
Linus Torvalds 已提交
4566 4567 4568 4569 4570 4571
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4572
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4573 4574 4575 4576
			char b[BDEVNAME_SIZE];
			printk(KERN_INFO "raid5: device %s operational as raid"
				" disk %d\n", bdevname(rdev->bdev,b),
				raid_disk);
4577 4578 4579
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4580 4581
	}

N
NeilBrown 已提交
4582
	conf->chunk_size = mddev->new_chunk;
4583 4584 4585 4586
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4587
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4588
	conf->max_nr_stripes = NR_STRIPES;
4589
	conf->reshape_progress = mddev->reshape_position;
4590
	if (conf->reshape_progress != MaxSector) {
4591
		conf->prev_chunk = mddev->chunk_size;
4592 4593
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4594

N
NeilBrown 已提交
4595 4596 4597 4598 4599 4600 4601 4602 4603
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
			"raid5: couldn't allocate %dkB for buffers\n", memory);
		goto abort;
	} else
		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
			memory, mdname(mddev));
L
Linus Torvalds 已提交
4604

N
NeilBrown 已提交
4605 4606 4607 4608 4609
	conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
	if (!conf->thread) {
		printk(KERN_ERR
		       "raid5: couldn't allocate thread for %s\n",
		       mdname(mddev));
4610 4611
		goto abort;
	}
N
NeilBrown 已提交
4612 4613 4614 4615 4616

	return conf;

 abort:
	if (conf) {
4617
		free_conf(conf);
N
NeilBrown 已提交
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
	int working_disks = 0;
	mdk_rdev_t *rdev;

	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4637
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4638

4639
		if (mddev->new_level != mddev->level) {
N
NeilBrown 已提交
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
			printk(KERN_ERR "raid5: %s: unsupported reshape "
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4651
		if (sector_div(here_new, (mddev->new_chunk>>9)*
N
NeilBrown 已提交
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
			       (mddev->raid_disks - max_degraded))) {
			printk(KERN_ERR "raid5: reshape_position not "
			       "on a stripe boundary\n");
			return -EINVAL;
		}
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
		sector_div(here_old, (mddev->chunk_size>>9)*
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
		if (here_new >= here_old) {
			/* Reading from the same stripe as writing to - bad */
			printk(KERN_ERR "raid5: reshape_position too early for "
			       "auto-recovery - aborting.\n");
			return -EINVAL;
		}
		printk(KERN_INFO "raid5: reshape will continue\n");
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
		BUG_ON(mddev->chunk_size != mddev->new_chunk);
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
4676
	}
N
NeilBrown 已提交
4677

4678 4679 4680 4681 4682
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
	list_for_each_entry(rdev, &mddev->disks, same_set)
		if (rdev->raid_disk >= 0 &&
		    test_bit(In_sync, &rdev->flags))
			working_disks++;

	mddev->degraded = conf->raid_disks - working_disks;

4700
	if (mddev->degraded > conf->max_degraded) {
L
Linus Torvalds 已提交
4701 4702
		printk(KERN_ERR "raid5: not enough operational devices for %s"
			" (%d/%d failed)\n",
4703
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
4704 4705 4706
		goto abort;
	}

N
NeilBrown 已提交
4707 4708 4709 4710
	/* device size must be a multiple of chunk size */
	mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
	mddev->resync_max_sectors = mddev->dev_sectors;

4711
	if (mddev->degraded > 0 &&
L
Linus Torvalds 已提交
4712
	    mddev->recovery_cp != MaxSector) {
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
			       "raid5: starting dirty degraded array: %s"
			       "- data corruption possible.\n",
			       mdname(mddev));
		else {
			printk(KERN_ERR
			       "raid5: cannot start dirty degraded array for %s\n",
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
4724 4725 4726 4727
	}

	if (mddev->degraded == 0)
		printk("raid5: raid level %d set %s active with %d out of %d"
4728 4729 4730
		       " devices, algorithm %d\n", conf->level, mdname(mddev),
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
4731 4732 4733 4734
	else
		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
			" out of %d devices, algorithm %d\n", conf->level,
			mdname(mddev), mddev->raid_disks - mddev->degraded,
4735
			mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
4736 4737 4738

	print_raid5_conf(conf);

4739
	if (conf->reshape_progress != MaxSector) {
4740
		printk("...ok start reshape thread\n");
4741
		conf->reshape_safe = conf->reshape_progress;
4742 4743 4744 4745 4746 4747 4748 4749 4750
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
							"%s_reshape");
	}

L
Linus Torvalds 已提交
4751
	/* read-ahead size must cover two whole stripes, which is
4752
	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
L
Linus Torvalds 已提交
4753 4754
	 */
	{
4755 4756
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
4757
			(mddev->chunk_size / PAGE_SIZE);
L
Linus Torvalds 已提交
4758 4759 4760 4761 4762
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
	}

	/* Ok, everything is just fine now */
4763 4764 4765 4766
	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
		printk(KERN_WARNING
		       "raid5: failed to create sysfs attributes for %s\n",
		       mdname(mddev));
4767

N
NeilBrown 已提交
4768 4769
	mddev->queue->queue_lock = &conf->device_lock;

4770
	mddev->queue->unplug_fn = raid5_unplug_device;
4771
	mddev->queue->backing_dev_info.congested_data = mddev;
4772
	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4773

4774
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4775

4776 4777
	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);

L
Linus Torvalds 已提交
4778 4779
	return 0;
abort:
4780
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
4781
	mddev->thread = NULL;
L
Linus Torvalds 已提交
4782 4783
	if (conf) {
		print_raid5_conf(conf);
4784
		free_conf(conf);
L
Linus Torvalds 已提交
4785 4786 4787 4788 4789 4790 4791 4792
	}
	mddev->private = NULL;
	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
	return -EIO;
}



4793
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
4794 4795 4796 4797 4798
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
4799
	mddev->queue->backing_dev_info.congested_fn = NULL;
L
Linus Torvalds 已提交
4800
	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4801
	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4802
	free_conf(conf);
L
Linus Torvalds 已提交
4803 4804 4805 4806
	mddev->private = NULL;
	return 0;
}

4807
#ifdef DEBUG
4808
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
4809 4810 4811
{
	int i;

4812 4813 4814 4815 4816
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4817
	for (i = 0; i < sh->disks; i++) {
4818 4819
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
4820
	}
4821
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
4822 4823
}

4824
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
4825 4826
{
	struct stripe_head *sh;
4827
	struct hlist_node *hn;
L
Linus Torvalds 已提交
4828 4829 4830 4831
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
4832
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
4833 4834
			if (sh->raid_conf != conf)
				continue;
4835
			print_sh(seq, sh);
L
Linus Torvalds 已提交
4836 4837 4838 4839 4840 4841
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

4842
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
4843 4844 4845 4846 4847
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	int i;

	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4848
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
4849 4850 4851
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
4852
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
4853
	seq_printf (seq, "]");
4854
#ifdef DEBUG
4855 4856
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

	printk("RAID5 conf printout:\n");
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
4870 4871
	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
		 conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
4872 4873 4874 4875 4876 4877

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
		printk(" disk %d, o:%d, dev:%s\n",
4878
			i, !test_bit(Faulty, &tmp->rdev->flags),
L
Linus Torvalds 已提交
4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
			bdevname(tmp->rdev->bdev,b));
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
4892
		    && !test_bit(Faulty, &tmp->rdev->flags)
4893 4894 4895
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
4896
			mddev->degraded--;
4897
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
		}
	}
	print_raid5_conf(conf);
	return 0;
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
4914 4915 4916 4917
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

4918
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
4919 4920 4921 4922
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
4923 4924 4925 4926
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
4927 4928
		    mddev->degraded <= conf->max_degraded &&
		    number < conf->raid_disks) {
4929 4930 4931
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
4932
		p->rdev = NULL;
4933
		synchronize_rcu();
L
Linus Torvalds 已提交
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
4949
	int err = -EEXIST;
L
Linus Torvalds 已提交
4950 4951
	int disk;
	struct disk_info *p;
4952 4953
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
4954

4955
	if (mddev->degraded > conf->max_degraded)
L
Linus Torvalds 已提交
4956
		/* no point adding a device */
4957
		return -EINVAL;
L
Linus Torvalds 已提交
4958

4959 4960
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
4961 4962

	/*
4963 4964
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
4965
	 */
4966
	if (rdev->saved_raid_disk >= 0 &&
4967
	    rdev->saved_raid_disk >= first &&
4968 4969 4970
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
4971 4972
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
4973
		if ((p=conf->disks + disk)->rdev == NULL) {
4974
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
4975
			rdev->raid_disk = disk;
4976
			err = 0;
4977 4978
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
4979
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
4980 4981 4982
			break;
		}
	print_raid5_conf(conf);
4983
	return err;
L
Linus Torvalds 已提交
4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4996 4997
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
4998 4999 5000
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5001
	set_capacity(mddev->gendisk, mddev->array_sectors);
5002
	mddev->changed = 1;
A
Andre Noll 已提交
5003 5004
	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5005 5006
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5007
	mddev->dev_sectors = sectors;
5008
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5009 5010 5011
	return 0;
}

5012
static int raid5_check_reshape(mddev_t *mddev)
5013 5014 5015
{
	raid5_conf_t *conf = mddev_to_conf(mddev);

5016 5017 5018 5019
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
	    mddev->new_chunk == mddev->chunk_size)
		return -EINVAL; /* nothing to do */
5020 5021 5022
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
	if (mddev->degraded > conf->max_degraded)
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5037 5038 5039 5040 5041 5042 5043 5044 5045

	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
5046 5047
	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
5048
		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
5049 5050
		       (max(mddev->chunk_size, mddev->new_chunk)
			/ STRIPE_SIZE)*4);
5051 5052 5053
		return -ENOSPC;
	}

5054
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5055 5056 5057 5058 5059 5060 5061 5062
}

static int raid5_start_reshape(mddev_t *mddev)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	mdk_rdev_t *rdev;
	int spares = 0;
	int added_devices = 0;
5063
	unsigned long flags;
5064

5065
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5066 5067
		return -EBUSY;

5068
	list_for_each_entry(rdev, &mddev->disks, same_set)
5069 5070 5071
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags))
			spares++;
5072

5073
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5074 5075 5076 5077 5078
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
		printk(KERN_ERR "md: %s: array size must be reduced "
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5090
	atomic_set(&conf->reshape_stripes, 0);
5091 5092
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5093
	conf->raid_disks += mddev->delta_disks;
5094 5095 5096 5097
	conf->prev_chunk = conf->chunk_size;
	conf->chunk_size = mddev->new_chunk;
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5098 5099 5100 5101 5102
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5103
	conf->generation++;
5104 5105 5106 5107 5108
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
	 */
5109
	list_for_each_entry(rdev, &mddev->disks, same_set)
5110 5111
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags)) {
5112
			if (raid5_add_disk(mddev, rdev) == 0) {
5113 5114 5115
				char nm[20];
				set_bit(In_sync, &rdev->flags);
				added_devices++;
5116
				rdev->recovery_offset = 0;
5117
				sprintf(nm, "rd%d", rdev->raid_disk);
5118 5119 5120 5121 5122 5123
				if (sysfs_create_link(&mddev->kobj,
						      &rdev->kobj, nm))
					printk(KERN_WARNING
					       "raid5: failed to create "
					       " link %s for %s\n",
					       nm, mdname(mddev));
5124 5125 5126 5127
			} else
				break;
		}

5128 5129 5130 5131 5132 5133
	if (mddev->delta_disks > 0) {
		spin_lock_irqsave(&conf->device_lock, flags);
		mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5134
	mddev->raid_disks = conf->raid_disks;
5135
	mddev->reshape_position = 0;
5136
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5137

5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
						"%s_reshape");
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5148
		conf->reshape_progress = MaxSector;
5149 5150 5151
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5152
	conf->reshape_checkpoint = jiffies;
5153 5154 5155 5156 5157
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5158 5159 5160
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5161 5162 5163
static void end_reshape(raid5_conf_t *conf)
{

5164 5165 5166
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5167
		conf->previous_raid_disks = conf->raid_disks;
5168
		conf->reshape_progress = MaxSector;
5169
		spin_unlock_irq(&conf->device_lock);
5170
		wake_up(&conf->wait_for_overlap);
5171 5172 5173 5174 5175

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
		{
5176 5177 5178
			int data_disks = conf->raid_disks - conf->max_degraded;
			int stripe = data_disks * (conf->chunk_size
						   / PAGE_SIZE);
5179 5180 5181
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5182 5183 5184
	}
}

5185 5186 5187
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5188 5189 5190
static void raid5_finish_reshape(mddev_t *mddev)
{
	struct block_device *bdev;
5191
	raid5_conf_t *conf = mddev_to_conf(mddev);
5192 5193 5194

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
			mddev->changed = 1;

			bdev = bdget_disk(mddev->gendisk, 0);
			if (bdev) {
				mutex_lock(&bdev->bd_inode->i_mutex);
				i_size_write(bdev->bd_inode,
					     (loff_t)mddev->array_sectors << 9);
				mutex_unlock(&bdev->bd_inode->i_mutex);
				bdput(bdev);
			}
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
			     d++)
				raid5_remove_disk(mddev, d);
5220
		}
5221 5222
		mddev->layout = conf->algorithm;
		mddev->chunk_size = conf->chunk_size;
5223 5224
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5225 5226 5227
	}
}

5228 5229 5230 5231 5232
static void raid5_quiesce(mddev_t *mddev, int state)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);

	switch(state) {
5233 5234 5235 5236
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5237 5238 5239 5240
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 1;
		wait_event_lock_irq(conf->wait_for_stripe,
5241 5242
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5243 5244 5245 5246 5247 5248 5249 5250
				    conf->device_lock, /* nothing */);
		spin_unlock_irq(&conf->device_lock);
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5251
		wake_up(&conf->wait_for_overlap);
5252 5253 5254 5255
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5256

5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284

static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
	mddev->new_chunk = chunksect << 9;

	return setup_conf(mddev);
}

5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5318

5319 5320
static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
{
5321 5322 5323 5324
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
	 */
	raid5_conf_t *conf = mddev_to_conf(mddev);

	if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
		return -EINVAL;
	if (new_chunk > 0) {
		if (new_chunk & (new_chunk-1))
			/* not a power of 2 */
			return -EINVAL;
		if (new_chunk < PAGE_SIZE)
			return -EINVAL;
		if (mddev->array_sectors & ((new_chunk>>9)-1))
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5343
	if (mddev->raid_disks == 2) {
5344

5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
		if (new_layout >= 0) {
			conf->algorithm = new_layout;
			mddev->layout = mddev->new_layout = new_layout;
		}
		if (new_chunk > 0) {
			conf->chunk_size = new_chunk;
			mddev->chunk_size = mddev->new_chunk = new_chunk;
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
	} else {
		if (new_layout >= 0)
			mddev->new_layout = new_layout;
		if (new_chunk > 0)
			mddev->new_chunk = new_chunk;
5360
	}
5361 5362 5363 5364 5365 5366 5367
	return 0;
}

static int raid6_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
{
	if (new_layout >= 0 && !algorithm_valid_raid6(new_layout))
		return -EINVAL;
5368
	if (new_chunk > 0) {
5369 5370 5371 5372 5373 5374 5375 5376
		if (new_chunk & (new_chunk-1))
			/* not a power of 2 */
			return -EINVAL;
		if (new_chunk < PAGE_SIZE)
			return -EINVAL;
		if (mddev->array_sectors & ((new_chunk>>9)-1))
			/* not factor of array size */
			return -EINVAL;
5377
	}
5378 5379 5380 5381 5382 5383 5384 5385

	/* They look valid */

	if (new_layout >= 0)
		mddev->new_layout = new_layout;
	if (new_chunk > 0)
		mddev->new_chunk = new_chunk;

5386 5387 5388
	return 0;
}

5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
	 *  raid0 - if all devices are the same - make it a raid4 layout
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 *
	 * For now, just do raid1
	 */

	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5402 5403 5404 5405 5406
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5407 5408
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5409 5410 5411 5412 5413

	return ERR_PTR(-EINVAL);
}


5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5478
	.size		= raid5_size,
5479 5480
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5481
	.finish_reshape = raid5_finish_reshape,
5482
	.quiesce	= raid5_quiesce,
5483
	.takeover	= raid6_takeover,
5484
	.reconfig	= raid6_reconfig,
5485
};
5486
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5487 5488
{
	.name		= "raid5",
5489
	.level		= 5,
L
Linus Torvalds 已提交
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5501
	.size		= raid5_size,
5502 5503
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5504
	.finish_reshape = raid5_finish_reshape,
5505
	.quiesce	= raid5_quiesce,
5506
	.takeover	= raid5_takeover,
5507
	.reconfig	= raid5_reconfig,
L
Linus Torvalds 已提交
5508 5509
};

5510
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5511
{
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5525
	.size		= raid5_size,
5526 5527
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5528
	.finish_reshape = raid5_finish_reshape,
5529 5530 5531 5532 5533
	.quiesce	= raid5_quiesce,
};

static int __init raid5_init(void)
{
5534
	register_md_personality(&raid6_personality);
5535 5536 5537
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5538 5539
}

5540
static void raid5_exit(void)
L
Linus Torvalds 已提交
5541
{
5542
	unregister_md_personality(&raid6_personality);
5543 5544
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5545 5546 5547 5548 5549 5550
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS("md-personality-4"); /* RAID5 */
5551 5552
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
5553 5554
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
5555 5556 5557 5558 5559 5560 5561
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");