raid5.c 161.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
 * conf->bm_write is the number of the last batch successfully written.
 * conf->bm_flush is the number of the last batch that was closed to
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
 * the number of the batch it will be in. This is bm_flush+1.
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/async.h>
51
#include <linux/seq_file.h>
52
#include <linux/cpu.h>
53
#include "md.h"
54
#include "raid5.h"
55
#include "bitmap.h"
56

L
Linus Torvalds 已提交
57 58 59 60 61 62 63 64 65
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
66
#define BYPASS_THRESHOLD	1
67
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
68 69
#define HASH_MASK		(NR_HASH - 1)

70
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

92
#ifdef DEBUG
L
Linus Torvalds 已提交
93 94 95 96
#define inline
#define __inline__
#endif

97 98
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

99
/*
100 101
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
102 103 104
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
105
	return bio->bi_phys_segments & 0xffff;
106 107 108 109
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
110
	return (bio->bi_phys_segments >> 16) & 0xffff;
111 112 113 114 115 116 117 118 119 120 121 122 123
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
124
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
125 126 127 128 129
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
130
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
131 132
}

133 134 135
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
136 137 138 139
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
140 141 142 143 144
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
145 146 147 148 149
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
150

151 152 153 154 155
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
156 157
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
158 159
{
	int slot;
160

161 162
	if (sh->ddf_layout)
		slot = (*count)++;
163
	if (idx == sh->pd_idx)
164
		return syndrome_disks;
165
	if (idx == sh->qd_idx)
166
		return syndrome_disks + 1;
167 168
	if (!sh->ddf_layout)
		slot = (*count)++;
169 170 171
	return slot;
}

172 173 174 175 176 177 178 179
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
180
		bio_endio(bi, 0);
181 182 183 184
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
185 186
static void print_raid5_conf (raid5_conf_t *conf);

187 188 189 190 191 192 193
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

194
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
195 196
{
	if (atomic_dec_and_test(&sh->count)) {
197 198
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
199
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
200
			if (test_bit(STRIPE_DELAYED, &sh->state)) {
L
Linus Torvalds 已提交
201
				list_add_tail(&sh->lru, &conf->delayed_list);
202 203
				blk_plug_device(conf->mddev->queue);
			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204
				   sh->bm_seq - conf->seq_write > 0) {
205
				list_add_tail(&sh->lru, &conf->bitmap_list);
206 207
				blk_plug_device(conf->mddev->queue);
			} else {
208
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
209
				list_add_tail(&sh->lru, &conf->handle_list);
210
			}
L
Linus Torvalds 已提交
211 212
			md_wakeup_thread(conf->mddev->thread);
		} else {
213
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
214 215 216 217 218 219
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
220 221
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
222
				wake_up(&conf->wait_for_stripe);
223 224
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
225
			}
L
Linus Torvalds 已提交
226 227 228
		}
	}
}
229

L
Linus Torvalds 已提交
230 231 232 233
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
234

L
Linus Torvalds 已提交
235 236 237 238 239
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

240
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
241
{
242 243
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
244

245
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
246 247
}

248
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
249
{
250
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
251

252 253
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
254 255

	CHECK_DEVLOCK();
256
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

static void shrink_buffers(struct stripe_head *sh, int num)
{
	struct page *p;
	int i;

	for (i=0; i<num ; i++) {
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
288
		put_page(p);
L
Linus Torvalds 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	}
}

static int grow_buffers(struct stripe_head *sh, int num)
{
	int i;

	for (i=0; i<num; i++) {
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

307
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
308 309
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
310

311
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
312 313
{
	raid5_conf_t *conf = sh->raid_conf;
314
	int i;
L
Linus Torvalds 已提交
315

316 317
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
318
	BUG_ON(stripe_operations_active(sh));
319

L
Linus Torvalds 已提交
320
	CHECK_DEVLOCK();
321
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
322 323 324
		(unsigned long long)sh->sector);

	remove_hash(sh);
325

326
	sh->generation = conf->generation - previous;
327
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
328
	sh->sector = sector;
329
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
330 331
	sh->state = 0;

332 333

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
334 335
		struct r5dev *dev = &sh->dev[i];

336
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
337
		    test_bit(R5_LOCKED, &dev->flags)) {
338
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
339
			       (unsigned long long)sh->sector, i, dev->toread,
340
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
341 342 343 344
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
345
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
346 347 348 349
	}
	insert_hash(conf, sh);
}

350 351
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
352 353
{
	struct stripe_head *sh;
354
	struct hlist_node *hn;
L
Linus Torvalds 已提交
355 356

	CHECK_DEVLOCK();
357
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
358
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
359
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
360
			return sh;
361
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
362 363 364 365
	return NULL;
}

static void unplug_slaves(mddev_t *mddev);
366
static void raid5_unplug_device(struct request_queue *q);
L
Linus Torvalds 已提交
367

368 369
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
370
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
371 372 373
{
	struct stripe_head *sh;

374
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
375 376 377 378

	spin_lock_irq(&conf->device_lock);

	do {
379
		wait_event_lock_irq(conf->wait_for_stripe,
380
				    conf->quiesce == 0 || noquiesce,
381
				    conf->device_lock, /* nothing */);
382
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
383 384 385 386 387 388 389 390 391
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
392 393
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
394 395
						     || !conf->inactive_blocked),
						    conf->device_lock,
396
						    raid5_unplug_device(conf->mddev->queue)
L
Linus Torvalds 已提交
397 398 399
					);
				conf->inactive_blocked = 0;
			} else
400
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
401 402
		} else {
			if (atomic_read(&sh->count)) {
403 404
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
405 406 407
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
408 409
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
410 411
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
412 413 414 415 416 417 418 419 420 421 422
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

423 424 425 426
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
427

428
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
			rw = WRITE;
		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
463
			if (s->syncing || s->expanding || s->expanded)
464 465
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
466 467
			set_bit(STRIPE_IO_STARTED, &sh->state);

468 469
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
470
				__func__, (unsigned long long)sh->sector,
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
507
	struct async_submit_ctl submit;
D
Dan Williams 已提交
508
	enum async_tx_flags flags = 0;
509 510 511 512 513

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
514

D
Dan Williams 已提交
515 516 517 518
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
540
						  b_offset, clen, &submit);
541 542
			else
				tx = async_memcpy(bio_page, page, b_offset,
543
						  page_offset, clen, &submit);
544
		}
545 546 547
		/* chain the operations */
		submit.depend_tx = tx;

548 549 550 551 552 553 554 555 556 557 558 559 560
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
561
	int i;
562

563
	pr_debug("%s: stripe %llu\n", __func__,
564 565 566
		(unsigned long long)sh->sector);

	/* clear completed biofills */
567
	spin_lock_irq(&conf->device_lock);
568 569 570 571
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
572 573
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
574
		 * !STRIPE_BIOFILL_RUN
575 576
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
577 578 579 580 581 582 583 584
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
585
				if (!raid5_dec_bi_phys_segments(rbi)) {
586 587 588 589 590 591 592
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
593 594
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
595 596 597

	return_io(return_bi);

598
	set_bit(STRIPE_HANDLE, &sh->state);
599 600 601 602 603 604 605
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
606
	struct async_submit_ctl submit;
607 608
	int i;

609
	pr_debug("%s: stripe %llu\n", __func__,
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
630 631
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
632 633
}

634
static void mark_target_uptodate(struct stripe_head *sh, int target)
635
{
636
	struct r5dev *tgt;
637

638 639
	if (target < 0)
		return;
640

641
	tgt = &sh->dev[target];
642 643 644
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
645 646
}

647
static void ops_complete_compute(void *stripe_head_ref)
648 649 650
{
	struct stripe_head *sh = stripe_head_ref;

651
	pr_debug("%s: stripe %llu\n", __func__,
652 653
		(unsigned long long)sh->sector);

654
	/* mark the computed target(s) as uptodate */
655
	mark_target_uptodate(sh, sh->ops.target);
656
	mark_target_uptodate(sh, sh->ops.target2);
657

658 659 660
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
661 662 663 664
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

665 666 667 668 669 670 671 672 673
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
674 675
{
	int disks = sh->disks;
676
	struct page **xor_srcs = percpu->scribble;
677 678 679 680 681
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
682
	struct async_submit_ctl submit;
683 684 685
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
686
		__func__, (unsigned long long)sh->sector, target);
687 688 689 690 691 692 693 694
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
695
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
696
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
697
	if (unlikely(count == 1))
698
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
699
	else
700
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
701 702 703 704

	return tx;
}

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
		srcs[i] = (void *)raid6_empty_zero_page;

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

734
	return syndrome_disks;
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
755
	else
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
772 773
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
774 775 776 777 778 779 780 781 782 783 784
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
785 786
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
787 788 789
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
790 791 792 793

	return tx;
}

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

815
	/* we need to open-code set_syndrome_sources to handle the
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
		blocks[i] = (void *)raid6_empty_zero_page;
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
846 847 848
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
849
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
869 870 871 872
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
873 874 875 876
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
877 878 879
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
880 881 882 883
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
884 885 886 887 888 889 890 891 892 893 894 895 896 897
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
898 899 900 901
	}
}


902 903 904 905
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

906
	pr_debug("%s: stripe %llu\n", __func__,
907 908 909 910
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
911 912
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
913 914
{
	int disks = sh->disks;
915
	struct page **xor_srcs = percpu->scribble;
916
	int count = 0, pd_idx = sh->pd_idx, i;
917
	struct async_submit_ctl submit;
918 919 920 921

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

922
	pr_debug("%s: stripe %llu\n", __func__,
923 924 925 926 927
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
928
		if (test_bit(R5_Wantdrain, &dev->flags))
929 930 931
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
932
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
933
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
934
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
935 936 937 938 939

	return tx;
}

static struct dma_async_tx_descriptor *
940
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
941 942
{
	int disks = sh->disks;
943
	int i;
944

945
	pr_debug("%s: stripe %llu\n", __func__,
946 947 948 949 950 951
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

952
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

974
static void ops_complete_reconstruct(void *stripe_head_ref)
975 976
{
	struct stripe_head *sh = stripe_head_ref;
977 978 979 980
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
981

982
	pr_debug("%s: stripe %llu\n", __func__,
983 984 985 986
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
987 988

		if (dev->written || i == pd_idx || i == qd_idx)
989 990 991
			set_bit(R5_UPTODATE, &dev->flags);
	}

992 993 994 995 996 997 998 999
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1000 1001 1002 1003 1004 1005

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1006 1007
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1008 1009
{
	int disks = sh->disks;
1010
	struct page **xor_srcs = percpu->scribble;
1011
	struct async_submit_ctl submit;
1012 1013
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1014
	int prexor = 0;
1015 1016
	unsigned long flags;

1017
	pr_debug("%s: stripe %llu\n", __func__,
1018 1019 1020 1021 1022
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1023 1024
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1045
	flags = ASYNC_TX_ACK |
1046 1047 1048 1049
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1050
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1051
			  to_addr_conv(sh, percpu));
1052 1053 1054 1055
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1056 1057
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1075 1076 1077 1078 1079 1080
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1081
	pr_debug("%s: stripe %llu\n", __func__,
1082 1083
		(unsigned long long)sh->sector);

1084
	sh->check_state = check_state_check_result;
1085 1086 1087 1088
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1089
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1090 1091
{
	int disks = sh->disks;
1092 1093 1094
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1095
	struct page **xor_srcs = percpu->scribble;
1096
	struct dma_async_tx_descriptor *tx;
1097
	struct async_submit_ctl submit;
1098 1099
	int count;
	int i;
1100

1101
	pr_debug("%s: stripe %llu\n", __func__,
1102 1103
		(unsigned long long)sh->sector);

1104 1105 1106
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1107
	for (i = disks; i--; ) {
1108 1109 1110
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1111 1112
	}

1113 1114
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1115
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1116
			   &sh->ops.zero_sum_result, &submit);
1117 1118

	atomic_inc(&sh->count);
1119 1120
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1121 1122
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1135 1136

	atomic_inc(&sh->count);
1137 1138 1139 1140
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1141 1142
}

1143
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1144 1145 1146
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1147
	raid5_conf_t *conf = sh->raid_conf;
1148
	int level = conf->level;
1149 1150
	struct raid5_percpu *percpu;
	unsigned long cpu;
1151

1152 1153
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1154
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1155 1156 1157 1158
		ops_run_biofill(sh);
		overlap_clear++;
	}

1159
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1170 1171
			async_tx_ack(tx);
	}
1172

1173
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1174
		tx = ops_run_prexor(sh, percpu, tx);
1175

1176
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1177
		tx = ops_run_biodrain(sh, tx);
1178 1179 1180
		overlap_clear++;
	}

1181 1182 1183 1184 1185 1186
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1187

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1198 1199 1200 1201 1202 1203 1204

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1205
	put_cpu();
1206 1207
}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1238
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1239 1240
{
	struct stripe_head *sh;
1241
	int disks = max(conf->raid_disks, conf->previous_raid_disks);
1242 1243 1244
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
1245
	memset(sh, 0, sizeof(*sh) + (disks-1)*sizeof(struct r5dev));
1246 1247
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);
1248 1249 1250
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1251

1252 1253
	if (grow_buffers(sh, disks)) {
		shrink_buffers(sh, disks);
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
1267
	struct kmem_cache *sc;
1268
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1269

1270 1271 1272 1273
	sprintf(conf->cache_name[0],
		"raid%d-%s", conf->level, mdname(conf->mddev));
	sprintf(conf->cache_name[1],
		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
1274 1275
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1276
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1277
			       0, 0, NULL);
L
Linus Torvalds 已提交
1278 1279 1280
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1281
	conf->pool_size = devs;
1282
	while (num--)
1283
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1284 1285 1286
			return 1;
	return 0;
}
1287

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1338
	unsigned long cpu;
1339
	int err;
1340
	struct kmem_cache *sc;
1341 1342 1343 1344 1345
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1346 1347 1348
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1349

1350 1351 1352
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1353
			       0, 0, NULL);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);
1366 1367 1368
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
1391
				    unplug_slaves(conf->mddev)
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
			);
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1407
	 * conf->disks and the scribble region
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1437 1438 1439 1440
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1441

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1458

1459
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1460 1461 1462
{
	struct stripe_head *sh;

1463 1464 1465 1466 1467
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1468
	BUG_ON(atomic_read(&sh->count));
1469
	shrink_buffers(sh, conf->pool_size);
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1480 1481
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1482 1483 1484
	conf->slab_cache = NULL;
}

1485
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1486
{
1487
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1488
	raid5_conf_t *conf = sh->raid_conf;
1489
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1490
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1491 1492
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1493 1494 1495 1496 1497 1498


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1499 1500
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1501 1502 1503
		uptodate);
	if (i == disks) {
		BUG();
1504
		return;
L
Linus Torvalds 已提交
1505 1506 1507 1508
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1509
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1510
			rdev = conf->disks[i].rdev;
1511 1512 1513 1514 1515 1516
			printk_rl(KERN_INFO "raid5:%s: read error corrected"
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1517 1518 1519
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1520 1521
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1522
	} else {
1523
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1524
		int retry = 0;
1525 1526
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1527
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1528
		atomic_inc(&rdev->read_errors);
1529
		if (conf->mddev->degraded)
1530 1531 1532 1533 1534 1535 1536
			printk_rl(KERN_WARNING
				  "raid5:%s: read error not correctable "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1537
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1538
			/* Oh, no!!! */
1539 1540 1541 1542 1543 1544 1545
			printk_rl(KERN_WARNING
				  "raid5:%s: read error NOT corrected!! "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1546
		else if (atomic_read(&rdev->read_errors)
1547
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1548
			printk(KERN_WARNING
1549 1550
			       "raid5:%s: Too many read errors, failing device %s.\n",
			       mdname(conf->mddev), bdn);
1551 1552 1553 1554 1555
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1556 1557
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1558
			md_error(conf->mddev, rdev);
1559
		}
L
Linus Torvalds 已提交
1560 1561 1562 1563 1564 1565 1566
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1567
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1568
{
1569
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1570
	raid5_conf_t *conf = sh->raid_conf;
1571
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1572 1573 1574 1575 1576 1577
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1578
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1579 1580 1581 1582
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1583
		return;
L
Linus Torvalds 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1593
	release_stripe(sh);
L
Linus Torvalds 已提交
1594 1595 1596
}


1597
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1598
	
1599
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1615
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1616 1617 1618 1619 1620 1621
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1622
	pr_debug("raid5: error called\n");
L
Linus Torvalds 已提交
1623

1624
	if (!test_bit(Faulty, &rdev->flags)) {
1625
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1626 1627 1628
		if (test_and_clear_bit(In_sync, &rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1629
			mddev->degraded++;
1630
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1631 1632 1633
			/*
			 * if recovery was running, make sure it aborts.
			 */
1634
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1635
		}
1636
		set_bit(Faulty, &rdev->flags);
1637 1638 1639 1640
		printk(KERN_ALERT
		       "raid5: Disk failure on %s, disabling device.\n"
		       "raid5: Operation continuing on %d devices.\n",
		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
1641
	}
1642
}
L
Linus Torvalds 已提交
1643 1644 1645 1646 1647

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1648
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1649 1650
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1651 1652 1653 1654
{
	long stripe;
	unsigned long chunk_number;
	unsigned int chunk_offset;
1655
	int pd_idx, qd_idx;
1656
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1657
	sector_t new_sector;
1658 1659
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1660 1661
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1662 1663 1664
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;
	BUG_ON(r_sector != chunk_number);

	/*
	 * Compute the stripe number
	 */
	stripe = chunk_number / data_disks;

	/*
	 * Compute the data disk and parity disk indexes inside the stripe
	 */
	*dd_idx = chunk_number % data_disks;

	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1688
	pd_idx = qd_idx = ~0;
1689 1690
	switch(conf->level) {
	case 4:
1691
		pd_idx = data_disks;
1692 1693
		break;
	case 5:
1694
		switch (algorithm) {
L
Linus Torvalds 已提交
1695
		case ALGORITHM_LEFT_ASYMMETRIC:
1696 1697
			pd_idx = data_disks - stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1698 1699 1700
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1701 1702
			pd_idx = stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1703 1704 1705
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1706 1707
			pd_idx = data_disks - stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1708 1709
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1710 1711
			pd_idx = stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1712
			break;
1713 1714 1715 1716 1717 1718 1719
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1720
		default:
N
NeilBrown 已提交
1721
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1722
				algorithm);
1723
			BUG();
1724 1725 1726 1727
		}
		break;
	case 6:

1728
		switch (algorithm) {
1729
		case ALGORITHM_LEFT_ASYMMETRIC:
1730 1731 1732
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1733
				(*dd_idx)++;	/* Q D D D P */
1734 1735
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1736 1737 1738
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1739 1740 1741
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1742
				(*dd_idx)++;	/* Q D D D P */
1743 1744
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1745 1746 1747
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1748 1749 1750
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1751 1752
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1753 1754 1755
			pd_idx = stripe % raid_disks;
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1756
			break;
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1779
			ddf_layout = 1;
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1794
			ddf_layout = 1;
1795 1796 1797 1798 1799 1800 1801
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1802
			ddf_layout = 1;
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
			pd_idx = data_disks - stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
			pd_idx = data_disks - stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;


1839
		default:
1840
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1841
			       algorithm);
1842
			BUG();
1843 1844
		}
		break;
L
Linus Torvalds 已提交
1845 1846
	}

1847 1848 1849
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1850
		sh->ddf_layout = ddf_layout;
1851
	}
L
Linus Torvalds 已提交
1852 1853 1854 1855 1856 1857 1858 1859
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1860
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1861 1862
{
	raid5_conf_t *conf = sh->raid_conf;
1863 1864
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1865
	sector_t new_sector = sh->sector, check;
1866 1867
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1868 1869
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1870 1871
	sector_t stripe;
	int chunk_offset;
1872
	int chunk_number, dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1873
	sector_t r_sector;
1874
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1875

1876

L
Linus Torvalds 已提交
1877 1878 1879 1880
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;
	BUG_ON(new_sector != stripe);

1881 1882 1883 1884 1885
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1886
		switch (algorithm) {
L
Linus Torvalds 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1898 1899 1900 1901 1902
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1903
		default:
N
NeilBrown 已提交
1904
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1905
			       algorithm);
1906
			BUG();
1907 1908 1909
		}
		break;
	case 6:
1910
		if (i == sh->qd_idx)
1911
			return 0; /* It is the Q disk */
1912
		switch (algorithm) {
1913 1914
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1915 1916 1917 1918
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
1933 1934 1935 1936 1937 1938
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
1939
			/* Like left_symmetric, but P is before Q */
1940 1941
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
1942 1943 1944 1945 1946 1947
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
1963
		default:
1964
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1965
			       algorithm);
1966
			BUG();
1967 1968
		}
		break;
L
Linus Torvalds 已提交
1969 1970 1971 1972 1973
	}

	chunk_number = stripe * data_disks + i;
	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;

1974
	check = raid5_compute_sector(conf, r_sector,
1975
				     previous, &dummy1, &sh2);
1976 1977
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
N
NeilBrown 已提交
1978
		printk(KERN_ERR "compute_blocknr: map not correct\n");
L
Linus Torvalds 已提交
1979 1980 1981 1982 1983 1984
		return 0;
	}
	return r_sector;
}


1985
static void
1986
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1987
			 int rcw, int expand)
1988 1989
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1990 1991
	raid5_conf_t *conf = sh->raid_conf;
	int level = conf->level;
1992 1993 1994 1995 1996 1997 1998

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
1999 2000 2001 2002
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2003

2004
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2005 2006 2007 2008 2009 2010

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2011
				set_bit(R5_Wantdrain, &dev->flags);
2012 2013
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2014
				s->locked++;
2015 2016
			}
		}
2017
		if (s->locked + conf->max_degraded == disks)
2018
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2019
				atomic_inc(&conf->pending_full_writes);
2020
	} else {
2021
		BUG_ON(level == 6);
2022 2023 2024
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2025
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2026 2027
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2028
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2029 2030 2031 2032 2033 2034 2035 2036

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2037 2038
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2039 2040
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2041
				s->locked++;
2042 2043 2044 2045
			}
		}
	}

2046
	/* keep the parity disk(s) locked while asynchronous operations
2047 2048 2049 2050
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2051
	s->locked++;
2052

2053 2054 2055 2056 2057 2058 2059 2060 2061
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2062
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2063
		__func__, (unsigned long long)sh->sector,
2064
		s->locked, s->ops_request);
2065
}
2066

L
Linus Torvalds 已提交
2067 2068
/*
 * Each stripe/dev can have one or more bion attached.
2069
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2070 2071 2072 2073 2074 2075
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
2076
	int firstwrite=0;
L
Linus Torvalds 已提交
2077

2078
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2079 2080 2081 2082 2083 2084
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
2085
	if (forwrite) {
L
Linus Torvalds 已提交
2086
		bip = &sh->dev[dd_idx].towrite;
2087 2088 2089
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2090 2091 2092 2093 2094 2095 2096 2097 2098
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2099
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2100 2101 2102
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2103
	bi->bi_phys_segments++;
L
Linus Torvalds 已提交
2104 2105 2106
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

2107
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
2108 2109 2110
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

2111 2112 2113
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
2114
		sh->bm_seq = conf->seq_flush+1;
2115 2116 2117
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

2140 2141
static void end_reshape(raid5_conf_t *conf);

2142 2143
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2144
{
2145
	int sectors_per_chunk =
2146
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2147
	int dd_idx;
2148
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2149
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2150

2151 2152
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2153
			     *sectors_per_chunk + chunk_offset,
2154
			     previous,
2155
			     &dd_idx, sh);
2156 2157
}

2158
static void
2159
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2193
			if (!raid5_dec_bi_phys_segments(bi)) {
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2208
			if (!raid5_dec_bi_phys_segments(bi)) {
2209 2210 2211 2212 2213 2214 2215
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2216 2217 2218 2219 2220 2221
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2232
				if (!raid5_dec_bi_phys_segments(bi)) {
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2245 2246 2247
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2248 2249
}

2250 2251 2252 2253 2254
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2255
 */
2256 2257
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2258 2259 2260 2261 2262 2263
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2264 2265 2266 2267 2268 2269 2270 2271
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2272 2273
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2274 2275
		 */
		if ((s->uptodate == disks - 1) &&
2276
		    (s->failed && disk_idx == s->failed_num)) {
2277 2278
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2279 2280
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
2281
			sh->ops.target2 = -1;
2282 2283
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
2284
			 * of raid_run_ops which services 'compute' operations
2285 2286 2287 2288 2289
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2290
			return 1; /* uptodate + compute == disks */
2291
		} else if (test_bit(R5_Insync, &dev->flags)) {
2292 2293 2294 2295 2296 2297 2298 2299
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2300
	return 0;
2301 2302
}

2303 2304 2305 2306
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2307 2308 2309
			struct stripe_head_state *s, int disks)
{
	int i;
2310 2311 2312 2313 2314

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2315
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2316
	    !sh->reconstruct_state)
2317
		for (i = disks; i--; )
2318
			if (fetch_block5(sh, s, i, disks))
2319
				break;
2320 2321 2322
	set_bit(STRIPE_HANDLE, &sh->state);
}

2323 2324 2325 2326 2327 2328 2329 2330
/* fetch_block6 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill6 to continue
 */
static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
			 struct r6_state *r6s, int disk_idx, int disks)
2331
{
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
				  &sh->dev[r6s->failed_num[1]] };

	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed >= 1 &&
	      (fdev[0]->toread || s->to_write)) ||
	     (s->failed >= 2 &&
	      (fdev[1]->toread || s->to_write)))) {
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
		    (s->failed && (disk_idx == r6s->failed_num[0] ||
				   disk_idx == r6s->failed_num[1]))) {
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2355
			 */
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2377
			}
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2397 2398
		}
	}
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420

	return 0;
}

/**
 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill6(struct stripe_head *sh,
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
			if (fetch_block6(sh, s, r6s, i, disks))
				break;
2421 2422 2423 2424
	set_bit(STRIPE_HANDLE, &sh->state);
}


2425
/* handle_stripe_clean_event
2426 2427 2428 2429
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2430
static void handle_stripe_clean_event(raid5_conf_t *conf,
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2444
				pr_debug("Return write for disc %d\n", i);
2445 2446 2447 2448 2449 2450
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2451
					if (!raid5_dec_bi_phys_segments(wbi)) {
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2469 2470 2471 2472

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2473 2474
}

2475
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2476 2477 2478 2479 2480 2481 2482 2483
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2484 2485
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2486 2487 2488 2489 2490 2491 2492 2493
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2494 2495 2496
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2497 2498 2499 2500
			else
				rcw += 2*disks;
		}
	}
2501
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2502 2503 2504 2505 2506 2507 2508 2509
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2510 2511
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2512 2513 2514
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2515
					pr_debug("Read_old block "
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2533 2534
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2535 2536 2537
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2538
					pr_debug("Read_old block "
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2552 2553
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2554 2555
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2556 2557 2558
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2559 2560 2561
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2562
		schedule_reconstruction(sh, s, rcw == 0, 0);
2563 2564
}

2565
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2566 2567 2568
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
2569
	int rcw = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2570
	int qd_idx = sh->qd_idx;
2571 2572

	set_bit(STRIPE_HANDLE, &sh->state);
2573 2574
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
		/* check if we haven't enough data */
		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
		    i != pd_idx && i != qd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
			rcw++;
			if (!test_bit(R5_Insync, &dev->flags))
				continue; /* it's a failed drive */

			if (
			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				pr_debug("Read_old stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
			} else {
				pr_debug("Request delayed stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(STRIPE_DELAYED, &sh->state);
				set_bit(STRIPE_HANDLE, &sh->state);
2599 2600 2601 2602 2603 2604
			}
		}
	}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
2605 2606
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    s->locked == 0 && rcw == 0 &&
2607
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2608
		schedule_reconstruction(sh, s, 1, 0);
2609 2610 2611 2612 2613 2614
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2615
	struct r5dev *dev = NULL;
2616

2617
	set_bit(STRIPE_HANDLE, &sh->state);
2618

2619 2620 2621
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2622 2623
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2624 2625
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2626 2627
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2628
			break;
2629
		}
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
		dev = &sh->dev[s->failed_num];
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2640

2641 2642 2643 2644 2645
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2646
		s->locked++;
2647
		set_bit(R5_Wantwrite, &dev->flags);
2648

2649 2650
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2667
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2679
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2680 2681 2682 2683
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2684
				sh->ops.target2 = -1;
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2696 2697 2698 2699 2700
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2701 2702
				  struct stripe_head_state *s,
				  struct r6_state *r6s, int disks)
2703 2704
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2705
	int qd_idx = sh->qd_idx;
2706
	struct r5dev *dev;
2707 2708 2709 2710

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2711

2712 2713 2714 2715 2716 2717
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2718 2719 2720
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2721
		if (s->failed == r6s->q_failed) {
2722
			/* The only possible failed device holds Q, so it
2723 2724 2725
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2726
			sh->check_state = check_state_run;
2727 2728
		}
		if (!r6s->q_failed && s->failed < 2) {
2729
			/* Q is not failed, and we didn't use it to generate
2730 2731
			 * anything, so it makes sense to check it
			 */
2732 2733 2734 2735
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2736 2737
		}

2738 2739
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2740

2741 2742 2743 2744
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2745
		}
2746 2747 2748 2749 2750 2751 2752
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2753 2754
		}

2755 2756 2757 2758 2759
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2760

2761 2762 2763
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2764 2765

		/* now write out any block on a failed drive,
2766
		 * or P or Q if they were recomputed
2767
		 */
2768
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
		if (s->failed == 2) {
			dev = &sh->dev[r6s->failed_num[1]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
			dev = &sh->dev[r6s->failed_num[0]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2781
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2782 2783 2784 2785 2786
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2787
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2788 2789 2790 2791 2792 2793 2794 2795
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
	}
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2871
	struct dma_async_tx_descriptor *tx = NULL;
2872 2873
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2874
		if (i != sh->pd_idx && i != sh->qd_idx) {
2875
			int dd_idx, j;
2876
			struct stripe_head *sh2;
2877
			struct async_submit_ctl submit;
2878

2879
			sector_t bn = compute_blocknr(sh, i, 1);
2880 2881
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2882
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2895 2896

			/* place all the copies on one channel */
2897
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2898
			tx = async_memcpy(sh2->dev[dd_idx].page,
2899
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2900
					  &submit);
2901

2902 2903 2904 2905
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2906
				    (!r6s || j != sh2->qd_idx) &&
2907 2908 2909 2910 2911 2912 2913
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2914

2915
		}
2916 2917 2918 2919 2920
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2921
}
L
Linus Torvalds 已提交
2922

2923

L
Linus Torvalds 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
2940

2941
static void handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
2942 2943
{
	raid5_conf_t *conf = sh->raid_conf;
2944 2945 2946
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
2947
	struct r5dev *dev;
2948
	mdk_rdev_t *blocked_rdev = NULL;
2949
	int prexor;
L
Linus Torvalds 已提交
2950

2951
	memset(&s, 0, sizeof(s));
2952 2953 2954 2955
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
		 sh->reconstruct_state);
L
Linus Torvalds 已提交
2956 2957 2958 2959 2960

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

2961 2962 2963
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
N
Neil Brown 已提交
2964

2965
	/* Now to look around and see what can be done */
2966
	rcu_read_lock();
L
Linus Torvalds 已提交
2967 2968
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
2969 2970

		dev = &sh->dev[i];
L
Linus Torvalds 已提交
2971 2972
		clear_bit(R5_Insync, &dev->flags);

2973 2974 2975 2976 2977 2978 2979
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
2980
		 * ops_complete_biofill is guaranteed to be inactive
2981 2982
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2983
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2984
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
2985 2986

		/* now count some things */
2987 2988
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2989
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
2990

2991 2992 2993
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
2994
			s.to_read++;
L
Linus Torvalds 已提交
2995
		if (dev->towrite) {
2996
			s.to_write++;
L
Linus Torvalds 已提交
2997
			if (!test_bit(R5_OVERWRITE, &dev->flags))
2998
				s.non_overwrite++;
L
Linus Torvalds 已提交
2999
		}
3000 3001
		if (dev->written)
			s.written++;
3002
		rdev = rcu_dereference(conf->disks[i].rdev);
3003 3004
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3005 3006 3007
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3008
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
3009
			/* The ReadError flag will just be confusing now */
3010 3011 3012
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
3013
		if (!rdev || !test_bit(In_sync, &rdev->flags)
3014
		    || test_bit(R5_ReadError, &dev->flags)) {
3015 3016
			s.failed++;
			s.failed_num = i;
L
Linus Torvalds 已提交
3017 3018 3019
		} else
			set_bit(R5_Insync, &dev->flags);
	}
3020
	rcu_read_unlock();
3021

3022
	if (unlikely(blocked_rdev)) {
3023 3024 3025 3026 3027 3028 3029 3030
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3031 3032
	}

3033 3034 3035 3036
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
3037

3038
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
3039
		" to_write=%d failed=%d failed_num=%d\n",
3040 3041
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
3042 3043 3044
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
3045
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3046
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3047
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
3048 3049
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3050
		s.syncing = 0;
L
Linus Torvalds 已提交
3051 3052 3053 3054 3055 3056
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
3057 3058 3059 3060 3061
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3062
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
3063 3064 3065 3066 3067

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3068
	if (s.to_read || s.non_overwrite ||
3069
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3070
		handle_stripe_fill5(sh, &s, disks);
L
Linus Torvalds 已提交
3071

3072 3073 3074
	/* Now we check to see if any write operations have recently
	 * completed
	 */
3075
	prexor = 0;
3076
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3077
		prexor = 1;
3078 3079
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3080
		sh->reconstruct_state = reconstruct_state_idle;
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
3092 3093
				if (prexor)
					continue;
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
				IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
3113
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3114
		handle_stripe_dirtying5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
3115 3116

	/* maybe we need to check and possibly fix the parity for this stripe
3117 3118 3119
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
3120
	 */
3121 3122
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
3123
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3124
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3125
		handle_parity_checks5(conf, sh, &s, disks);
3126

3127
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
3128 3129 3130
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
3131 3132 3133 3134

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
3135 3136 3137 3138
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3139
		) {
3140
		dev = &sh->dev[s.failed_num];
3141 3142 3143 3144
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3145
			s.locked++;
3146 3147 3148 3149
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3150
			s.locked++;
3151 3152 3153
		}
	}

3154 3155
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
3156
		struct stripe_head *sh2
3157
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3173
		sh->reconstruct_state = reconstruct_state_idle;
3174
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
3175
		for (i = conf->raid_disks; i--; ) {
3176
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
3177
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3178
			s.locked++;
D
Dan Williams 已提交
3179
		}
3180 3181 3182
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3183
	    !sh->reconstruct_state) {
3184 3185
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
3186
		stripe_set_idx(sh->sector, conf, 0, sh);
3187
		schedule_reconstruction(sh, &s, 1, 1);
3188
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3189
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3190
		atomic_dec(&conf->reshape_stripes);
3191 3192 3193 3194
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3195
	if (s.expanding && s.locked == 0 &&
3196
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3197
		handle_stripe_expansion(conf, sh, NULL);
3198

3199
 unlock:
L
Linus Torvalds 已提交
3200 3201
	spin_unlock(&sh->lock);

3202 3203 3204 3205
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3206
	if (s.ops_request)
3207
		raid_run_ops(sh, s.ops_request);
3208

3209
	ops_run_io(sh, &s);
L
Linus Torvalds 已提交
3210

3211
	return_io(return_bi);
L
Linus Torvalds 已提交
3212 3213
}

3214
static void handle_stripe6(struct stripe_head *sh)
L
Linus Torvalds 已提交
3215
{
3216
	raid5_conf_t *conf = sh->raid_conf;
3217
	int disks = sh->disks;
3218
	struct bio *return_bi = NULL;
N
NeilBrown 已提交
3219
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3220 3221
	struct stripe_head_state s;
	struct r6_state r6s;
3222
	struct r5dev *dev, *pdev, *qdev;
3223
	mdk_rdev_t *blocked_rdev = NULL;
L
Linus Torvalds 已提交
3224

3225
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3226
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3227
	       (unsigned long long)sh->sector, sh->state,
3228 3229
	       atomic_read(&sh->count), pd_idx, qd_idx,
	       sh->check_state, sh->reconstruct_state);
3230
	memset(&s, 0, sizeof(s));
3231

3232 3233 3234 3235
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3236 3237 3238
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3239
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3240 3241

	rcu_read_lock();
3242 3243 3244 3245
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
		clear_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3246

3247
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3248
			i, dev->flags, dev->toread, dev->towrite, dev->written);
3249 3250 3251 3252 3253 3254 3255 3256
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3257

3258
		/* now count some things */
3259 3260
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3261 3262 3263 3264
		if (test_bit(R5_Wantcompute, &dev->flags)) {
			s.compute++;
			BUG_ON(s.compute > 2);
		}
L
Linus Torvalds 已提交
3265

3266 3267 3268
		if (test_bit(R5_Wantfill, &dev->flags)) {
			s.to_fill++;
		} else if (dev->toread)
3269
			s.to_read++;
3270
		if (dev->towrite) {
3271
			s.to_write++;
3272
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3273
				s.non_overwrite++;
3274
		}
3275 3276
		if (dev->written)
			s.written++;
3277
		rdev = rcu_dereference(conf->disks[i].rdev);
3278 3279
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3280 3281 3282
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3283 3284 3285 3286
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3287
		}
3288 3289
		if (!rdev || !test_bit(In_sync, &rdev->flags)
		    || test_bit(R5_ReadError, &dev->flags)) {
3290 3291 3292
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3293 3294
		} else
			set_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3295 3296
	}
	rcu_read_unlock();
3297 3298

	if (unlikely(blocked_rdev)) {
3299 3300 3301 3302 3303 3304 3305 3306
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3307
	}
3308

3309 3310 3311 3312 3313
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

3314
	pr_debug("locked=%d uptodate=%d to_read=%d"
3315
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3316 3317 3318 3319
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3320
	 */
3321
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3322
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3323
	if (s.failed > 2 && s.syncing) {
3324 3325
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3326
		s.syncing = 0;
3327 3328 3329 3330 3331 3332 3333
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3334 3335
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
N
NeilBrown 已提交
3336 3337 3338
	qdev = &sh->dev[qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3339 3340 3341

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3342
			     && !test_bit(R5_LOCKED, &pdev->flags)
3343 3344
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3345
			     && !test_bit(R5_LOCKED, &qdev->flags)
3346
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3347
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3348 3349 3350 3351 3352

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3353
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3354
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3355
		handle_stripe_fill6(sh, &s, &r6s, disks);
3356

3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	if (sh->reconstruct_state == reconstruct_state_drain_result) {
		int qd_idx = sh->qd_idx;

		sh->reconstruct_state = reconstruct_state_idle;
		/* All the 'written' buffers and the parity blocks are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
			    (i == sh->pd_idx || i == qd_idx ||
			     dev->written)) {
				pr_debug("Writing block %d\n", i);
				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
				set_bit(R5_Wantwrite, &dev->flags);
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == qd_idx) &&
				      s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
				IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}

3391 3392 3393 3394 3395 3396 3397
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3398
		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3399 3400

	/* maybe we need to check and possibly fix the parity for this stripe
3401
	 * Any reads will already have been scheduled, so we just see if enough
3402 3403
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
3404
	 */
3405 3406 3407 3408
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3409
		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3410

3411
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3412 3413 3414 3415 3416 3417 3418
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3419 3420 3421
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3422 3423 3424 3425 3426 3427 3428 3429
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3430
					s.locked++;
3431 3432 3433 3434
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3435
					s.locked++;
3436 3437 3438
				}
			}
		}
3439

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
3453
		struct stripe_head *sh2
3454
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3470 3471
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3472
		stripe_set_idx(sh->sector, conf, 0, sh);
3473 3474
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3475 3476 3477 3478 3479 3480
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3481
	if (s.expanding && s.locked == 0 &&
3482
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3483
		handle_stripe_expansion(conf, sh, &r6s);
3484

3485
 unlock:
3486 3487
	spin_unlock(&sh->lock);

3488 3489 3490 3491
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3492 3493 3494
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3495
	ops_run_io(sh, &s);
3496

D
Dan Williams 已提交
3497
	return_io(return_bi);
3498 3499
}

3500
static void handle_stripe(struct stripe_head *sh)
3501 3502
{
	if (sh->raid_conf->level == 6)
3503
		handle_stripe6(sh);
3504
	else
3505
		handle_stripe5(sh);
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3519
			list_add_tail(&sh->lru, &conf->hold_list);
3520
		}
3521 3522
	} else
		blk_plug_device(conf->mddev->queue);
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

static void unplug_slaves(mddev_t *mddev)
{
3541
	raid5_conf_t *conf = mddev->private;
3542
	int i;
3543
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
3544 3545

	rcu_read_lock();
3546
	for (i = 0; i < devs; i++) {
3547 3548
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3549
			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3550 3551 3552 3553

			atomic_inc(&rdev->nr_pending);
			rcu_read_unlock();

3554
			blk_unplug(r_queue);
3555 3556 3557 3558 3559 3560 3561 3562

			rdev_dec_pending(rdev, mddev);
			rcu_read_lock();
		}
	}
	rcu_read_unlock();
}

3563
static void raid5_unplug_device(struct request_queue *q)
3564 3565
{
	mddev_t *mddev = q->queuedata;
3566
	raid5_conf_t *conf = mddev->private;
3567 3568 3569 3570 3571 3572 3573
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	if (blk_remove_plug(q)) {
		conf->seq_flush++;
		raid5_activate_delayed(conf);
3574
	}
L
Linus Torvalds 已提交
3575 3576 3577 3578 3579 3580 3581
	md_wakeup_thread(mddev->thread);

	spin_unlock_irqrestore(&conf->device_lock, flags);

	unplug_slaves(mddev);
}

3582 3583 3584
static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;
3585
	raid5_conf_t *conf = mddev->private;
3586 3587 3588 3589

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3590 3591 3592

	if (mddev_congested(mddev, bits))
		return 1;
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}

3603 3604 3605
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3606 3607 3608
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3609 3610
{
	mddev_t *mddev = q->queuedata;
3611
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3612
	int max;
3613
	unsigned int chunk_sectors = mddev->chunk_sectors;
3614
	unsigned int bio_sectors = bvm->bi_size >> 9;
3615

3616
	if ((bvm->bi_rw & 1) == WRITE)
3617 3618
		return biovec->bv_len; /* always allow writes to be mergeable */

3619 3620
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3621 3622 3623 3624 3625 3626 3627 3628
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3629 3630 3631 3632

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3633
	unsigned int chunk_sectors = mddev->chunk_sectors;
3634 3635
	unsigned int bio_sectors = bio->bi_size >> 9;

3636 3637
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3638 3639 3640 3641
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3671
		conf->retry_read_aligned_list = bi->bi_next;
3672
		bi->bi_next = NULL;
3673 3674 3675 3676
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3677 3678 3679 3680 3681 3682 3683
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3684 3685 3686 3687 3688 3689
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3690
static void raid5_align_endio(struct bio *bi, int error)
3691 3692
{
	struct bio* raid_bi  = bi->bi_private;
3693 3694 3695 3696 3697
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3698
	bio_put(bi);
3699 3700

	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3701
	conf = mddev->private;
3702 3703 3704 3705 3706 3707
	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3708
		bio_endio(raid_bi, 0);
3709 3710
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3711
		return;
3712 3713 3714
	}


3715
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3716 3717

	add_bio_to_retry(raid_bi, conf);
3718 3719
}

3720 3721
static int bio_fits_rdev(struct bio *bi)
{
3722
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3723

3724
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3725 3726
		return 0;
	blk_recount_segments(q, bi);
3727
	if (bi->bi_phys_segments > queue_max_phys_segments(q))
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3740
static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3741 3742
{
	mddev_t *mddev = q->queuedata;
3743
	raid5_conf_t *conf = mddev->private;
3744
	unsigned int dd_idx;
3745 3746 3747 3748
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3749
		pr_debug("chunk_aligned_read : non aligned\n");
3750 3751 3752
		return 0;
	}
	/*
3753
	 * use bio_clone to make a copy of the bio
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
	 */
	align_bi = bio_clone(raid_bio, GFP_NOIO);
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3767 3768
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3769
						    &dd_idx, NULL);
3770 3771 3772 3773 3774 3775

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3776 3777 3778 3779 3780
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3781 3782 3783 3784 3785 3786 3787
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3788 3789 3790 3791 3792 3793 3794
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3795 3796 3797 3798
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3799
		bio_put(align_bi);
3800 3801 3802 3803
		return 0;
	}
}

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3856

3857
static int make_request(struct request_queue *q, struct bio * bi)
L
Linus Torvalds 已提交
3858 3859
{
	mddev_t *mddev = q->queuedata;
3860
	raid5_conf_t *conf = mddev->private;
3861
	int dd_idx;
L
Linus Torvalds 已提交
3862 3863 3864
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3865
	const int rw = bio_data_dir(bi);
T
Tejun Heo 已提交
3866
	int cpu, remaining;
L
Linus Torvalds 已提交
3867

3868
	if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3869
		bio_endio(bi, -EOPNOTSUPP);
3870 3871 3872
		return 0;
	}

3873
	md_write_start(mddev, bi);
3874

T
Tejun Heo 已提交
3875 3876 3877 3878 3879
	cpu = part_stat_lock();
	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
		      bio_sectors(bi));
	part_stat_unlock();
L
Linus Torvalds 已提交
3880

3881
	if (rw == READ &&
3882 3883
	     mddev->reshape_position == MaxSector &&
	     chunk_aligned_read(q,bi))
3884
		return 0;
3885

L
Linus Torvalds 已提交
3886 3887 3888 3889
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3890

L
Linus Torvalds 已提交
3891 3892
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3893
		int disks, data_disks;
3894
		int previous;
3895

3896
	retry:
3897
		previous = 0;
3898
		disks = conf->raid_disks;
3899
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3900
		if (unlikely(conf->reshape_progress != MaxSector)) {
3901
			/* spinlock is needed as reshape_progress may be
3902 3903
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3904
			 * Ofcourse reshape_progress could change after
3905 3906 3907 3908
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3909
			spin_lock_irq(&conf->device_lock);
3910 3911 3912
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3913
				disks = conf->previous_raid_disks;
3914 3915
				previous = 1;
			} else {
3916 3917 3918
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3919 3920 3921 3922 3923
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3924 3925
			spin_unlock_irq(&conf->device_lock);
		}
3926 3927
		data_disks = disks - conf->max_degraded;

3928 3929
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3930
						  &dd_idx, NULL);
3931
		pr_debug("raid5: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3932 3933 3934
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3935
		sh = get_active_stripe(conf, new_sector, previous,
3936
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
3937
		if (sh) {
3938
			if (unlikely(previous)) {
3939
				/* expansion might have moved on while waiting for a
3940 3941 3942 3943 3944 3945
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
3946 3947 3948
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
3949 3950 3951
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
3952 3953 3954 3955 3956
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
3957
					schedule();
3958 3959 3960
					goto retry;
				}
			}
3961

3962 3963
			if (bio_data_dir(bi) == WRITE &&
			    logical_sector >= mddev->suspend_lo &&
3964 3965
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
3976 3977
				goto retry;
			}
3978 3979 3980 3981 3982

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
3983 3984 3985 3986 3987 3988 3989 3990
				 * and wait a while
				 */
				raid5_unplug_device(mddev->queue);
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
3991 3992
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
L
Linus Torvalds 已提交
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
	spin_lock_irq(&conf->device_lock);
4003
	remaining = raid5_dec_bi_phys_segments(bi);
4004 4005
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
4006

4007
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4008
			md_write_end(mddev);
4009

4010
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4011 4012 4013 4014
	}
	return 0;
}

D
Dan Williams 已提交
4015 4016
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

4017
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4018
{
4019 4020 4021 4022 4023 4024 4025 4026 4027
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
L
Linus Torvalds 已提交
4028 4029
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
4030
	sector_t first_sector, last_sector;
4031 4032 4033
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4034 4035
	int i;
	int dd_idx;
4036
	sector_t writepos, readpos, safepos;
4037
	sector_t stripe_addr;
4038
	int reshape_sectors;
4039
	struct list_head stripes;
4040

4041 4042 4043 4044 4045 4046
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4047
		} else if (mddev->delta_disks >= 0 &&
4048 4049
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4050
		sector_div(sector_nr, new_data_disks);
4051 4052 4053 4054
		if (sector_nr) {
			*skipped = 1;
			return sector_nr;
		}
4055 4056
	}

4057 4058 4059 4060
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4061 4062
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4063
	else
4064
		reshape_sectors = mddev->chunk_sectors;
4065

4066 4067 4068 4069 4070
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
4071 4072
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
4073
	 */
4074
	writepos = conf->reshape_progress;
4075
	sector_div(writepos, new_data_disks);
4076 4077
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4078
	safepos = conf->reshape_safe;
4079
	sector_div(safepos, data_disks);
4080
	if (mddev->delta_disks < 0) {
4081
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4082
		readpos += reshape_sectors;
4083
		safepos += reshape_sectors;
4084
	} else {
4085
		writepos += reshape_sectors;
4086 4087
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4088
	}
4089

4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4107
	if ((mddev->delta_disks < 0
4108 4109 4110
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4111 4112 4113
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4114
		mddev->reshape_position = conf->reshape_progress;
4115
		mddev->curr_resync_completed = mddev->curr_resync;
4116
		conf->reshape_checkpoint = jiffies;
4117
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4118
		md_wakeup_thread(mddev->thread);
4119
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4120 4121
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4122
		conf->reshape_safe = mddev->reshape_position;
4123 4124
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4125
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4126 4127
	}

4128 4129 4130 4131
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
4132 4133
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
4134 4135
		       != sector_nr);
	} else {
4136
		BUG_ON(writepos != sector_nr + reshape_sectors);
4137 4138
		stripe_addr = sector_nr;
	}
4139
	INIT_LIST_HEAD(&stripes);
4140
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4141
		int j;
4142
		int skipped_disk = 0;
4143
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4144 4145 4146 4147 4148 4149 4150 4151 4152
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4153
			if (conf->level == 6 &&
4154
			    j == sh->qd_idx)
4155
				continue;
4156
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4157
			if (s < raid5_size(mddev, 0, 0)) {
4158
				skipped_disk = 1;
4159 4160 4161 4162 4163 4164
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4165
		if (!skipped_disk) {
4166 4167 4168
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4169
		list_add(&sh->lru, &stripes);
4170 4171
	}
	spin_lock_irq(&conf->device_lock);
4172
	if (mddev->delta_disks < 0)
4173
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4174
	else
4175
		conf->reshape_progress += reshape_sectors * new_data_disks;
4176 4177 4178 4179 4180 4181 4182
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4183
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4184
				     1, &dd_idx, NULL);
4185
	last_sector =
4186
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4187
					    * new_data_disks - 1),
4188
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4189 4190
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4191
	while (first_sector <= last_sector) {
4192
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4193 4194 4195 4196 4197
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4198 4199 4200 4201 4202 4203 4204 4205
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4206 4207 4208
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4209
	sector_nr += reshape_sectors;
4210 4211
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4212 4213 4214
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4215
		mddev->reshape_position = conf->reshape_progress;
4216
		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4217
		conf->reshape_checkpoint = jiffies;
4218 4219 4220 4221 4222 4223
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4224
		conf->reshape_safe = mddev->reshape_position;
4225 4226
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4227
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4228
	}
4229
	return reshape_sectors;
4230 4231 4232 4233 4234 4235 4236
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
A
Andre Noll 已提交
4237
	sector_t max_sector = mddev->dev_sectors;
4238
	int sync_blocks;
4239 4240
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4241

4242
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4243 4244
		/* just being told to finish up .. nothing much to do */
		unplug_slaves(mddev);
4245

4246 4247 4248 4249
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4250 4251 4252 4253

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4254
		else /* completed sync */
4255 4256 4257
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4258 4259
		return 0;
	}
4260

4261 4262 4263
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4264 4265
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4266

4267 4268 4269 4270 4271 4272
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4273
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4274 4275 4276
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4277
	if (mddev->degraded >= conf->max_degraded &&
4278
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4279
		sector_t rv = mddev->dev_sectors - sector_nr;
4280
		*skipped = 1;
L
Linus Torvalds 已提交
4281 4282
		return rv;
	}
4283
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4284
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4285 4286 4287 4288 4289 4290
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4291

N
NeilBrown 已提交
4292 4293 4294

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4295
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4296
	if (sh == NULL) {
4297
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4298
		/* make sure we don't swamp the stripe cache if someone else
4299
		 * is trying to get access
L
Linus Torvalds 已提交
4300
		 */
4301
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4302
	}
4303 4304 4305 4306
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4307
	for (i = 0; i < conf->raid_disks; i++)
4308 4309 4310 4311 4312 4313
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
4314 4315 4316 4317
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

4318
	handle_stripe(sh);
L
Linus Torvalds 已提交
4319 4320 4321 4322 4323
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4337
	int dd_idx;
4338 4339 4340 4341 4342 4343
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4344
	sector = raid5_compute_sector(conf, logical_sector,
4345
				      0, &dd_idx, NULL);
4346 4347 4348
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4349 4350 4351
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4352

4353
		if (scnt < raid5_bi_hw_segments(raid_bio))
4354 4355 4356
			/* already done this stripe */
			continue;

4357
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4358 4359 4360

		if (!sh) {
			/* failed to get a stripe - must wait */
4361
			raid5_set_bi_hw_segments(raid_bio, scnt);
4362 4363 4364 4365 4366
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4367 4368
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4369
			raid5_set_bi_hw_segments(raid_bio, scnt);
4370 4371 4372 4373
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4374
		handle_stripe(sh);
4375 4376 4377 4378
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4379
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4380
	spin_unlock_irq(&conf->device_lock);
4381 4382
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4383 4384 4385 4386 4387 4388
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4389 4390 4391 4392 4393 4394 4395
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4396
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4397 4398
{
	struct stripe_head *sh;
4399
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4400 4401
	int handled;

4402
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4403 4404 4405 4406 4407 4408

	md_check_recovery(mddev);

	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4409
		struct bio *bio;
L
Linus Torvalds 已提交
4410

4411
		if (conf->seq_flush != conf->seq_write) {
4412
			int seq = conf->seq_flush;
4413
			spin_unlock_irq(&conf->device_lock);
4414
			bitmap_unplug(mddev->bitmap);
4415
			spin_lock_irq(&conf->device_lock);
4416 4417 4418 4419
			conf->seq_write = seq;
			activate_bit_delay(conf);
		}

4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4430 4431
		sh = __get_priority_stripe(conf);

4432
		if (!sh)
L
Linus Torvalds 已提交
4433 4434 4435 4436
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4437 4438 4439
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4440 4441 4442

		spin_lock_irq(&conf->device_lock);
	}
4443
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4444 4445 4446

	spin_unlock_irq(&conf->device_lock);

4447
	async_tx_issue_pending_all();
L
Linus Torvalds 已提交
4448 4449
	unplug_slaves(mddev);

4450
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4451 4452
}

4453
static ssize_t
4454
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4455
{
4456
	raid5_conf_t *conf = mddev->private;
4457 4458 4459 4460
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4461 4462 4463
}

static ssize_t
4464
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4465
{
4466
	raid5_conf_t *conf = mddev->private;
4467
	unsigned long new;
4468 4469
	int err;

4470 4471
	if (len >= PAGE_SIZE)
		return -EINVAL;
4472 4473
	if (!conf)
		return -ENODEV;
4474

4475
	if (strict_strtoul(page, 10, &new))
4476 4477 4478 4479 4480 4481 4482 4483 4484
		return -EINVAL;
	if (new <= 16 || new > 32768)
		return -EINVAL;
	while (new < conf->max_nr_stripes) {
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4485 4486 4487
	err = md_allow_write(mddev);
	if (err)
		return err;
4488 4489 4490 4491 4492 4493 4494
	while (new > conf->max_nr_stripes) {
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
	return len;
}
4495

4496 4497 4498 4499
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4500

4501 4502 4503
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4504
	raid5_conf_t *conf = mddev->private;
4505 4506 4507 4508 4509 4510 4511 4512 4513
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4514
	raid5_conf_t *conf = mddev->private;
4515
	unsigned long new;
4516 4517 4518 4519 4520
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4521
	if (strict_strtoul(page, 10, &new))
4522
		return -EINVAL;
4523
	if (new > conf->max_nr_stripes)
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4535
static ssize_t
4536
stripe_cache_active_show(mddev_t *mddev, char *page)
4537
{
4538
	raid5_conf_t *conf = mddev->private;
4539 4540 4541 4542
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4543 4544
}

4545 4546
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4547

4548
static struct attribute *raid5_attrs[] =  {
4549 4550
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4551
	&raid5_preread_bypass_threshold.attr,
4552 4553
	NULL,
};
4554 4555 4556
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4557 4558
};

4559 4560 4561
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4562
	raid5_conf_t *conf = mddev->private;
4563 4564 4565

	if (!sectors)
		sectors = mddev->dev_sectors;
4566
	if (!raid_disks)
4567
		/* size is defined by the smallest of previous and new size */
4568
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4569

4570
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4571
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4572 4573 4574
	return sectors * (raid_disks - conf->max_degraded);
}

4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4587
		kfree(percpu->scribble);
4588 4589 4590 4591 4592 4593 4594 4595 4596
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4597 4598 4599
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4600
	raid5_free_percpu(conf);
4601 4602 4603 4604 4605
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4617
		if (conf->level == 6 && !percpu->spare_page)
4618
			percpu->spare_page = alloc_page(GFP_KERNEL);
4619 4620 4621 4622 4623 4624 4625
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4626 4627 4628 4629 4630 4631 4632 4633
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
			return NOTIFY_BAD;
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4634
		kfree(percpu->scribble);
4635
		percpu->spare_page = NULL;
4636
		percpu->scribble = NULL;
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
	struct raid5_percpu *allcpus;
4650
	void *scribble;
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4661 4662 4663 4664 4665 4666 4667 4668
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4669
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4670
		if (!scribble) {
4671 4672 4673
			err = -ENOMEM;
			break;
		}
4674
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4687
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4688 4689
{
	raid5_conf_t *conf;
4690
	int raid_disk, memory, max_disks;
L
Linus Torvalds 已提交
4691 4692 4693
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4694 4695 4696
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4697
		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4698 4699
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4700
	}
N
NeilBrown 已提交
4701 4702 4703 4704
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4705
		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
N
NeilBrown 已提交
4706 4707
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4708
	}
N
NeilBrown 已提交
4709 4710 4711 4712
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4713 4714
	}

4715 4716 4717
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
N
NeilBrown 已提交
4718
		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4719
		       mddev->new_chunk_sectors << 9, mdname(mddev));
N
NeilBrown 已提交
4720
		return ERR_PTR(-EINVAL);
4721 4722
	}

N
NeilBrown 已提交
4723 4724
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4725
		goto abort;
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
N
NeilBrown 已提交
4738 4739 4740 4741 4742

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4743
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4744 4745
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4746

4747
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4748 4749 4750
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4751

L
Linus Torvalds 已提交
4752 4753
	conf->mddev = mddev;

4754
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4755 4756
		goto abort;

4757 4758 4759 4760
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4761
	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4762

4763
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4764
		raid_disk = rdev->raid_disk;
4765
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4766 4767 4768 4769 4770 4771
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4772
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4773 4774 4775 4776
			char b[BDEVNAME_SIZE];
			printk(KERN_INFO "raid5: device %s operational as raid"
				" disk %d\n", bdevname(rdev->bdev,b),
				raid_disk);
4777 4778 4779
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4780 4781
	}

4782
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4783
	conf->level = mddev->new_level;
4784 4785 4786 4787
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4788
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4789
	conf->max_nr_stripes = NR_STRIPES;
4790
	conf->reshape_progress = mddev->reshape_position;
4791
	if (conf->reshape_progress != MaxSector) {
4792
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4793 4794
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4795

N
NeilBrown 已提交
4796
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4797
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4798 4799 4800 4801 4802 4803 4804
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
			"raid5: couldn't allocate %dkB for buffers\n", memory);
		goto abort;
	} else
		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
			memory, mdname(mddev));
L
Linus Torvalds 已提交
4805

4806
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4807 4808 4809 4810
	if (!conf->thread) {
		printk(KERN_ERR
		       "raid5: couldn't allocate thread for %s\n",
		       mdname(mddev));
4811 4812
		goto abort;
	}
N
NeilBrown 已提交
4813 4814 4815 4816 4817

	return conf;

 abort:
	if (conf) {
4818
		free_conf(conf);
N
NeilBrown 已提交
4819 4820 4821 4822 4823 4824 4825 4826
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
4827
	int working_disks = 0, chunk_size;
N
NeilBrown 已提交
4828 4829
	mdk_rdev_t *rdev;

4830 4831 4832 4833
	if (mddev->recovery_cp != MaxSector)
		printk(KERN_NOTICE "raid5: %s is not clean"
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
4834 4835 4836 4837 4838 4839 4840 4841
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4842
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4843

4844
		if (mddev->new_level != mddev->level) {
N
NeilBrown 已提交
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
			printk(KERN_ERR "raid5: %s: unsupported reshape "
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4856
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
4857 4858 4859 4860 4861 4862 4863
			       (mddev->raid_disks - max_degraded))) {
			printk(KERN_ERR "raid5: reshape_position not "
			       "on a stripe boundary\n");
			return -EINVAL;
		}
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
4864
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
4865 4866 4867
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
				printk(KERN_ERR "raid5: in-place reshape must be started"
				       " in read-only mode - aborting\n");
				return -EINVAL;
			}
		} else if (mddev->delta_disks < 0
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
			/* Reading from the same stripe as writing to - bad */
			printk(KERN_ERR "raid5: reshape_position too early for "
			       "auto-recovery - aborting.\n");
			return -EINVAL;
		}
		printk(KERN_INFO "raid5: reshape will continue\n");
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
4898
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
4899
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
4900
	}
N
NeilBrown 已提交
4901

4902 4903 4904 4905 4906
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
	list_for_each_entry(rdev, &mddev->disks, same_set)
		if (rdev->raid_disk >= 0 &&
		    test_bit(In_sync, &rdev->flags))
			working_disks++;

4922 4923
	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
			   - working_disks);
N
NeilBrown 已提交
4924

4925
	if (mddev->degraded > conf->max_degraded) {
L
Linus Torvalds 已提交
4926 4927
		printk(KERN_ERR "raid5: not enough operational devices for %s"
			" (%d/%d failed)\n",
4928
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
4929 4930 4931
		goto abort;
	}

N
NeilBrown 已提交
4932
	/* device size must be a multiple of chunk size */
4933
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
4934 4935
	mddev->resync_max_sectors = mddev->dev_sectors;

4936
	if (mddev->degraded > 0 &&
L
Linus Torvalds 已提交
4937
	    mddev->recovery_cp != MaxSector) {
4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
			       "raid5: starting dirty degraded array: %s"
			       "- data corruption possible.\n",
			       mdname(mddev));
		else {
			printk(KERN_ERR
			       "raid5: cannot start dirty degraded array for %s\n",
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
4949 4950 4951 4952
	}

	if (mddev->degraded == 0)
		printk("raid5: raid level %d set %s active with %d out of %d"
4953 4954 4955
		       " devices, algorithm %d\n", conf->level, mdname(mddev),
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
4956 4957 4958 4959
	else
		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
			" out of %d devices, algorithm %d\n", conf->level,
			mdname(mddev), mddev->raid_disks - mddev->degraded,
4960
			mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
4961 4962 4963

	print_raid5_conf(conf);

4964
	if (conf->reshape_progress != MaxSector) {
4965
		printk("...ok start reshape thread\n");
4966
		conf->reshape_safe = conf->reshape_progress;
4967 4968 4969 4970 4971 4972
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4973
							"reshape");
4974 4975
	}

L
Linus Torvalds 已提交
4976
	/* read-ahead size must cover two whole stripes, which is
4977
	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
L
Linus Torvalds 已提交
4978 4979
	 */
	{
4980 4981
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
4982
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
L
Linus Torvalds 已提交
4983 4984 4985 4986 4987
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
	}

	/* Ok, everything is just fine now */
4988 4989 4990 4991
	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
		printk(KERN_WARNING
		       "raid5: failed to create sysfs attributes for %s\n",
		       mdname(mddev));
4992

N
NeilBrown 已提交
4993 4994
	mddev->queue->queue_lock = &conf->device_lock;

4995
	mddev->queue->unplug_fn = raid5_unplug_device;
4996
	mddev->queue->backing_dev_info.congested_data = mddev;
4997
	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4998

4999
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5000

5001
	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5002 5003 5004 5005 5006 5007 5008 5009
	chunk_size = mddev->chunk_sectors << 9;
	blk_queue_io_min(mddev->queue, chunk_size);
	blk_queue_io_opt(mddev->queue, chunk_size *
			 (conf->raid_disks - conf->max_degraded));

	list_for_each_entry(rdev, &mddev->disks, same_set)
		disk_stack_limits(mddev->gendisk, rdev->bdev,
				  rdev->data_offset << 9);
5010

L
Linus Torvalds 已提交
5011 5012
	return 0;
abort:
5013
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
5014
	mddev->thread = NULL;
L
Linus Torvalds 已提交
5015 5016
	if (conf) {
		print_raid5_conf(conf);
5017
		free_conf(conf);
L
Linus Torvalds 已提交
5018 5019 5020 5021 5022 5023 5024 5025
	}
	mddev->private = NULL;
	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
	return -EIO;
}



5026
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
5027 5028 5029 5030 5031
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
5032
	mddev->queue->backing_dev_info.congested_fn = NULL;
L
Linus Torvalds 已提交
5033
	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5034
	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
5035
	free_conf(conf);
L
Linus Torvalds 已提交
5036 5037 5038 5039
	mddev->private = NULL;
	return 0;
}

5040
#ifdef DEBUG
5041
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
5042 5043 5044
{
	int i;

5045 5046 5047 5048 5049
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5050
	for (i = 0; i < sh->disks; i++) {
5051 5052
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
5053
	}
5054
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
5055 5056
}

5057
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
5058 5059
{
	struct stripe_head *sh;
5060
	struct hlist_node *hn;
L
Linus Torvalds 已提交
5061 5062 5063 5064
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
5065
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
5066 5067
			if (sh->raid_conf != conf)
				continue;
5068
			print_sh(seq, sh);
L
Linus Torvalds 已提交
5069 5070 5071 5072 5073 5074
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

5075
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
5076 5077 5078 5079
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	int i;

5080 5081
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5082
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5083 5084 5085
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5086
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5087
	seq_printf (seq, "]");
5088
#ifdef DEBUG
5089 5090
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

	printk("RAID5 conf printout:\n");
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5104 5105
	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
		 conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5106 5107 5108 5109 5110 5111

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
		printk(" disk %d, o:%d, dev:%s\n",
5112
			i, !test_bit(Faulty, &tmp->rdev->flags),
L
Linus Torvalds 已提交
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
			bdevname(tmp->rdev->bdev,b));
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
5126
		    && !test_bit(Faulty, &tmp->rdev->flags)
5127 5128 5129
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5130
			mddev->degraded--;
5131
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
		}
	}
	print_raid5_conf(conf);
	return 0;
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
5148 5149 5150 5151
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

5152
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
5153 5154 5155 5156
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
5157 5158 5159 5160
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
5161 5162
		    mddev->degraded <= conf->max_degraded &&
		    number < conf->raid_disks) {
5163 5164 5165
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
5166
		p->rdev = NULL;
5167
		synchronize_rcu();
L
Linus Torvalds 已提交
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
5183
	int err = -EEXIST;
L
Linus Torvalds 已提交
5184 5185
	int disk;
	struct disk_info *p;
5186 5187
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5188

5189
	if (mddev->degraded > conf->max_degraded)
L
Linus Torvalds 已提交
5190
		/* no point adding a device */
5191
		return -EINVAL;
L
Linus Torvalds 已提交
5192

5193 5194
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5195 5196

	/*
5197 5198
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5199
	 */
5200
	if (rdev->saved_raid_disk >= 0 &&
5201
	    rdev->saved_raid_disk >= first &&
5202 5203 5204
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
5205 5206
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
5207
		if ((p=conf->disks + disk)->rdev == NULL) {
5208
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5209
			rdev->raid_disk = disk;
5210
			err = 0;
5211 5212
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5213
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5214 5215 5216
			break;
		}
	print_raid5_conf(conf);
5217
	return err;
L
Linus Torvalds 已提交
5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5229
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5230 5231
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5232 5233 5234
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5235
	set_capacity(mddev->gendisk, mddev->array_sectors);
5236
	mddev->changed = 1;
5237
	revalidate_disk(mddev->gendisk);
A
Andre Noll 已提交
5238 5239
	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5240 5241
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5242
	mddev->dev_sectors = sectors;
5243
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5244 5245 5246
	return 0;
}

5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
static int check_stripe_cache(mddev_t *mddev)
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
	raid5_conf_t *conf = mddev->private;
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5270
static int check_reshape(mddev_t *mddev)
5271
{
5272
	raid5_conf_t *conf = mddev->private;
5273

5274 5275
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5276
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5277
		return 0; /* nothing to do */
5278 5279 5280
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294
	if (mddev->degraded > conf->max_degraded)
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5295

5296
	if (!check_stripe_cache(mddev))
5297 5298
		return -ENOSPC;

5299
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5300 5301 5302 5303
}

static int raid5_start_reshape(mddev_t *mddev)
{
5304
	raid5_conf_t *conf = mddev->private;
5305 5306 5307
	mdk_rdev_t *rdev;
	int spares = 0;
	int added_devices = 0;
5308
	unsigned long flags;
5309

5310
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5311 5312
		return -EBUSY;

5313 5314 5315
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5316
	list_for_each_entry(rdev, &mddev->disks, same_set)
5317 5318 5319
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags))
			spares++;
5320

5321
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5322 5323 5324 5325 5326
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
		printk(KERN_ERR "md: %s: array size must be reduced "
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5338
	atomic_set(&conf->reshape_stripes, 0);
5339 5340
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5341
	conf->raid_disks += mddev->delta_disks;
5342 5343
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5344 5345
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5346 5347 5348 5349 5350
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5351
	conf->generation++;
5352 5353 5354 5355 5356
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
	 */
5357
	list_for_each_entry(rdev, &mddev->disks, same_set)
5358 5359
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags)) {
5360
			if (raid5_add_disk(mddev, rdev) == 0) {
5361 5362 5363
				char nm[20];
				set_bit(In_sync, &rdev->flags);
				added_devices++;
5364
				rdev->recovery_offset = 0;
5365
				sprintf(nm, "rd%d", rdev->raid_disk);
5366 5367 5368 5369 5370 5371
				if (sysfs_create_link(&mddev->kobj,
						      &rdev->kobj, nm))
					printk(KERN_WARNING
					       "raid5: failed to create "
					       " link %s for %s\n",
					       nm, mdname(mddev));
5372 5373 5374 5375
			} else
				break;
		}

5376 5377 5378 5379 5380 5381
	if (mddev->delta_disks > 0) {
		spin_lock_irqsave(&conf->device_lock, flags);
		mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5382
	mddev->raid_disks = conf->raid_disks;
5383
	mddev->reshape_position = conf->reshape_progress;
5384
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5385

5386 5387 5388 5389 5390
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5391
						"reshape");
5392 5393 5394 5395
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5396
		conf->reshape_progress = MaxSector;
5397 5398 5399
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5400
	conf->reshape_checkpoint = jiffies;
5401 5402 5403 5404 5405
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5406 5407 5408
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5409 5410 5411
static void end_reshape(raid5_conf_t *conf)
{

5412 5413 5414
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5415
		conf->previous_raid_disks = conf->raid_disks;
5416
		conf->reshape_progress = MaxSector;
5417
		spin_unlock_irq(&conf->device_lock);
5418
		wake_up(&conf->wait_for_overlap);
5419 5420 5421 5422 5423

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
		{
5424
			int data_disks = conf->raid_disks - conf->max_degraded;
5425
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5426
						   / PAGE_SIZE);
5427 5428 5429
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5430 5431 5432
	}
}

5433 5434 5435
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5436 5437
static void raid5_finish_reshape(mddev_t *mddev)
{
5438
	raid5_conf_t *conf = mddev->private;
5439 5440 5441

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5442 5443 5444 5445
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
			mddev->changed = 1;
5446
			revalidate_disk(mddev->gendisk);
5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5457 5458 5459 5460 5461 5462 5463 5464 5465
			     d++) {
				mdk_rdev_t *rdev = conf->disks[d].rdev;
				if (rdev && raid5_remove_disk(mddev, d) == 0) {
					char nm[20];
					sprintf(nm, "rd%d", rdev->raid_disk);
					sysfs_remove_link(&mddev->kobj, nm);
					rdev->raid_disk = -1;
				}
			}
5466
		}
5467
		mddev->layout = conf->algorithm;
5468
		mddev->chunk_sectors = conf->chunk_sectors;
5469 5470
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5471 5472 5473
	}
}

5474 5475
static void raid5_quiesce(mddev_t *mddev, int state)
{
5476
	raid5_conf_t *conf = mddev->private;
5477 5478

	switch(state) {
5479 5480 5481 5482
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5483 5484
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5485 5486 5487 5488
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5489
		wait_event_lock_irq(conf->wait_for_stripe,
5490 5491
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5492
				    conf->device_lock, /* nothing */);
5493
		conf->quiesce = 1;
5494
		spin_unlock_irq(&conf->device_lock);
5495 5496
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5497 5498 5499 5500 5501 5502
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5503
		wake_up(&conf->wait_for_overlap);
5504 5505 5506 5507
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5508

5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531

static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5532
	mddev->new_chunk_sectors = chunksect;
5533 5534 5535 5536

	return setup_conf(mddev);
}

5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5570

5571
static int raid5_check_reshape(mddev_t *mddev)
5572
{
5573 5574 5575 5576
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5577
	 */
5578
	raid5_conf_t *conf = mddev->private;
5579
	int new_chunk = mddev->new_chunk_sectors;
5580

5581
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5582 5583
		return -EINVAL;
	if (new_chunk > 0) {
5584
		if (!is_power_of_2(new_chunk))
5585
			return -EINVAL;
5586
		if (new_chunk < (PAGE_SIZE>>9))
5587
			return -EINVAL;
5588
		if (mddev->array_sectors & (new_chunk-1))
5589 5590 5591 5592 5593 5594
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5595
	if (mddev->raid_disks == 2) {
5596 5597 5598 5599
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5600 5601
		}
		if (new_chunk > 0) {
5602 5603
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5604 5605 5606
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5607
	}
5608
	return check_reshape(mddev);
5609 5610
}

5611
static int raid6_check_reshape(mddev_t *mddev)
5612
{
5613
	int new_chunk = mddev->new_chunk_sectors;
5614

5615
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5616
		return -EINVAL;
5617
	if (new_chunk > 0) {
5618
		if (!is_power_of_2(new_chunk))
5619
			return -EINVAL;
5620
		if (new_chunk < (PAGE_SIZE >> 9))
5621
			return -EINVAL;
5622
		if (mddev->array_sectors & (new_chunk-1))
5623 5624
			/* not factor of array size */
			return -EINVAL;
5625
	}
5626 5627

	/* They look valid */
5628
	return check_reshape(mddev);
5629 5630
}

5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
	 *  raid0 - if all devices are the same - make it a raid4 layout
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */

	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5642 5643 5644 5645 5646
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5647 5648
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5649 5650 5651 5652 5653

	return ERR_PTR(-EINVAL);
}


5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5718
	.size		= raid5_size,
5719
	.check_reshape	= raid6_check_reshape,
5720
	.start_reshape  = raid5_start_reshape,
5721
	.finish_reshape = raid5_finish_reshape,
5722
	.quiesce	= raid5_quiesce,
5723
	.takeover	= raid6_takeover,
5724
};
5725
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5726 5727
{
	.name		= "raid5",
5728
	.level		= 5,
L
Linus Torvalds 已提交
5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5740
	.size		= raid5_size,
5741 5742
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5743
	.finish_reshape = raid5_finish_reshape,
5744
	.quiesce	= raid5_quiesce,
5745
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
5746 5747
};

5748
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5749
{
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5763
	.size		= raid5_size,
5764 5765
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5766
	.finish_reshape = raid5_finish_reshape,
5767 5768 5769 5770 5771
	.quiesce	= raid5_quiesce,
};

static int __init raid5_init(void)
{
5772
	register_md_personality(&raid6_personality);
5773 5774 5775
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5776 5777
}

5778
static void raid5_exit(void)
L
Linus Torvalds 已提交
5779
{
5780
	unregister_md_personality(&raid6_personality);
5781 5782
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5783 5784 5785 5786 5787 5788
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS("md-personality-4"); /* RAID5 */
5789 5790
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
5791 5792
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
5793 5794 5795 5796 5797 5798 5799
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");