raid5.c 170.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/module.h>
51
#include <linux/async.h>
52
#include <linux/seq_file.h>
53
#include <linux/cpu.h>
54
#include <linux/slab.h>
55
#include <linux/ratelimit.h>
56
#include "md.h"
57
#include "raid5.h"
58
#include "raid0.h"
59
#include "bitmap.h"
60

L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68 69
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
70
#define BYPASS_THRESHOLD	1
71
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
72 73
#define HASH_MASK		(NR_HASH - 1)

74
static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 76 77 78
{
	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
	return &conf->stripe_hashtbl[hash];
}
L
Linus Torvalds 已提交
79 80 81 82 83 84 85

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
86
 * This function is used to determine the 'next' bio in the list, given the sector
L
Linus Torvalds 已提交
87 88
 * of the current stripe+device
 */
89 90 91 92 93 94 95 96
static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
{
	int sectors = bio->bi_size >> 9;
	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
		return bio->bi_next;
	else
		return NULL;
}
L
Linus Torvalds 已提交
97

98
/*
99 100
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101 102 103
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
104
	return bio->bi_phys_segments & 0xffff;
105 106 107 108
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
109
	return (bio->bi_phys_segments >> 16) & 0xffff;
110 111 112 113 114 115 116 117 118 119 120 121 122
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
123
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124 125 126 127 128
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
129
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130 131
}

132 133 134
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
135 136 137 138
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
139 140 141 142 143
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
144 145 146 147 148
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
149

150 151 152 153 154
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
155 156
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
157
{
158
	int slot = *count;
159

160
	if (sh->ddf_layout)
161
		(*count)++;
162
	if (idx == sh->pd_idx)
163
		return syndrome_disks;
164
	if (idx == sh->qd_idx)
165
		return syndrome_disks + 1;
166
	if (!sh->ddf_layout)
167
		(*count)++;
168 169 170
	return slot;
}

171 172 173 174 175 176 177 178
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
179
		bio_endio(bi, 0);
180 181 182 183
		bi = return_bi;
	}
}

184
static void print_raid5_conf (struct r5conf *conf);
L
Linus Torvalds 已提交
185

186 187 188 189 190 191 192
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

193
static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
194 195
{
	if (atomic_dec_and_test(&sh->count)) {
196 197
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
198
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
N
NeilBrown 已提交
199
			if (test_bit(STRIPE_DELAYED, &sh->state))
L
Linus Torvalds 已提交
200
				list_add_tail(&sh->lru, &conf->delayed_list);
N
NeilBrown 已提交
201 202
			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
				   sh->bm_seq - conf->seq_write > 0)
203
				list_add_tail(&sh->lru, &conf->bitmap_list);
N
NeilBrown 已提交
204
			else {
205
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
206
				list_add_tail(&sh->lru, &conf->handle_list);
207
			}
L
Linus Torvalds 已提交
208 209
			md_wakeup_thread(conf->mddev->thread);
		} else {
210
			BUG_ON(stripe_operations_active(sh));
211 212 213
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				if (atomic_dec_return(&conf->preread_active_stripes)
				    < IO_THRESHOLD)
L
Linus Torvalds 已提交
214 215
					md_wakeup_thread(conf->mddev->thread);
			atomic_dec(&conf->active_stripes);
216 217
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
218
				wake_up(&conf->wait_for_stripe);
219 220
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
221
			}
L
Linus Torvalds 已提交
222 223 224
		}
	}
}
225

L
Linus Torvalds 已提交
226 227
static void release_stripe(struct stripe_head *sh)
{
228
	struct r5conf *conf = sh->raid_conf;
L
Linus Torvalds 已提交
229
	unsigned long flags;
230

L
Linus Torvalds 已提交
231 232 233 234 235
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

236
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
237
{
238 239
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
240

241
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
242 243
}

244
static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
245
{
246
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
247

248 249
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
250

251
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
252 253 254 255
}


/* find an idle stripe, make sure it is unhashed, and return it. */
256
static struct stripe_head *get_free_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

272
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
273 274 275
{
	struct page *p;
	int i;
276
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
277

278
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
279 280 281 282
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
283
		put_page(p);
L
Linus Torvalds 已提交
284 285 286
	}
}

287
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
288 289
{
	int i;
290
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
291

292
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
293 294 295 296 297 298 299 300 301 302
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

303
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
304
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
305
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
306

307
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
308
{
309
	struct r5conf *conf = sh->raid_conf;
310
	int i;
L
Linus Torvalds 已提交
311

312 313
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
314
	BUG_ON(stripe_operations_active(sh));
315

316
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
317 318 319
		(unsigned long long)sh->sector);

	remove_hash(sh);
320

321
	sh->generation = conf->generation - previous;
322
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
323
	sh->sector = sector;
324
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
325 326
	sh->state = 0;

327 328

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
329 330
		struct r5dev *dev = &sh->dev[i];

331
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
332
		    test_bit(R5_LOCKED, &dev->flags)) {
333
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
334
			       (unsigned long long)sh->sector, i, dev->toread,
335
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
336
			       test_bit(R5_LOCKED, &dev->flags));
337
			WARN_ON(1);
L
Linus Torvalds 已提交
338 339
		}
		dev->flags = 0;
340
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
341 342 343 344
	}
	insert_hash(conf, sh);
}

345
static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
346
					 short generation)
L
Linus Torvalds 已提交
347 348
{
	struct stripe_head *sh;
349
	struct hlist_node *hn;
L
Linus Torvalds 已提交
350

351
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
352
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
353
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
354
			return sh;
355
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
356 357 358
	return NULL;
}

359 360 361 362 363 364 365 366 367 368 369 370 371
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
372
static int calc_degraded(struct r5conf *conf)
373
{
374
	int degraded, degraded2;
375 376 377 378 379
	int i;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
380
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
399 400
	if (conf->raid_disks == conf->previous_raid_disks)
		return degraded;
401
	rcu_read_lock();
402
	degraded2 = 0;
403
	for (i = 0; i < conf->raid_disks; i++) {
404
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
405
		if (!rdev || test_bit(Faulty, &rdev->flags))
406
			degraded2++;
407 408 409 410 411 412 413 414 415
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
416
				degraded2++;
417 418
	}
	rcu_read_unlock();
419 420 421 422 423 424 425 426 427 428 429 430 431
	if (degraded2 > degraded)
		return degraded2;
	return degraded;
}

static int has_failed(struct r5conf *conf)
{
	int degraded;

	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	degraded = calc_degraded(conf);
432 433 434 435 436
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

437
static struct stripe_head *
438
get_active_stripe(struct r5conf *conf, sector_t sector,
439
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
440 441 442
{
	struct stripe_head *sh;

443
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
444 445 446 447

	spin_lock_irq(&conf->device_lock);

	do {
448
		wait_event_lock_irq(conf->wait_for_stripe,
449
				    conf->quiesce == 0 || noquiesce,
450
				    conf->device_lock, /* nothing */);
451
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
452 453 454 455 456 457 458 459 460
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
461 462
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
463 464
						     || !conf->inactive_blocked),
						    conf->device_lock,
465
						    );
L
Linus Torvalds 已提交
466 467
				conf->inactive_blocked = 0;
			} else
468
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
469 470
		} else {
			if (atomic_read(&sh->count)) {
471 472
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
473 474 475
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
476 477
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
478 479
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
480 481 482 483 484 485 486 487 488 489 490
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
/* Determine if 'data_offset' or 'new_data_offset' should be used
 * in this stripe_head.
 */
static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
{
	sector_t progress = conf->reshape_progress;
	/* Need a memory barrier to make sure we see the value
	 * of conf->generation, or ->data_offset that was set before
	 * reshape_progress was updated.
	 */
	smp_rmb();
	if (progress == MaxSector)
		return 0;
	if (sh->generation == conf->generation - 1)
		return 0;
	/* We are in a reshape, and this is a new-generation stripe,
	 * so use new_data_offset.
	 */
	return 1;
}

512 513 514 515
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
516

517
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
518
{
519
	struct r5conf *conf = sh->raid_conf;
520 521 522 523 524 525
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
526
		int replace_only = 0;
527 528
		struct bio *bi, *rbi;
		struct md_rdev *rdev, *rrdev = NULL;
T
Tejun Heo 已提交
529 530 531 532 533 534
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
535
			rw = READ;
536 537 538 539 540
		else if (test_and_clear_bit(R5_WantReplace,
					    &sh->dev[i].flags)) {
			rw = WRITE;
			replace_only = 1;
		} else
541
			continue;
S
Shaohua Li 已提交
542 543
		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
			rw |= REQ_SYNC;
544 545

		bi = &sh->dev[i].req;
546
		rbi = &sh->dev[i].rreq; /* For writing to replacement */
547 548

		bi->bi_rw = rw;
549 550
		rbi->bi_rw = rw;
		if (rw & WRITE) {
551
			bi->bi_end_io = raid5_end_write_request;
552 553
			rbi->bi_end_io = raid5_end_write_request;
		} else
554 555 556
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
557
		rrdev = rcu_dereference(conf->disks[i].replacement);
558 559 560 561 562 563
		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev) {
			rdev = rrdev;
			rrdev = NULL;
		}
564 565 566
		if (rw & WRITE) {
			if (replace_only)
				rdev = NULL;
567 568 569
			if (rdev == rrdev)
				/* We raced and saw duplicates */
				rrdev = NULL;
570
		} else {
571
			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
572 573 574
				rdev = rrdev;
			rrdev = NULL;
		}
575

576 577 578 579
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
580 581 582 583
		if (rrdev && test_bit(Faulty, &rrdev->flags))
			rrdev = NULL;
		if (rrdev)
			atomic_inc(&rrdev->nr_pending);
584 585
		rcu_read_unlock();

586
		/* We have already checked bad blocks for reads.  Now
587 588
		 * need to check for writes.  We never accept write errors
		 * on the replacement, so we don't to check rrdev.
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
		 */
		while ((rw & WRITE) && rdev &&
		       test_bit(WriteErrorSeen, &rdev->flags)) {
			sector_t first_bad;
			int bad_sectors;
			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					      &first_bad, &bad_sectors);
			if (!bad)
				break;

			if (bad < 0) {
				set_bit(BlockedBadBlocks, &rdev->flags);
				if (!conf->mddev->external &&
				    conf->mddev->flags) {
					/* It is very unlikely, but we might
					 * still need to write out the
					 * bad block log - better give it
					 * a chance*/
					md_check_recovery(conf->mddev);
				}
				md_wait_for_blocked_rdev(rdev, conf->mddev);
			} else {
				/* Acknowledged bad block - skip the write */
				rdev_dec_pending(rdev, conf->mddev);
				rdev = NULL;
			}
		}

617
		if (rdev) {
618 619
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
620 621
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
622 623
			set_bit(STRIPE_IO_STARTED, &sh->state);

624 625
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
626
				__func__, (unsigned long long)sh->sector,
627 628
				bi->bi_rw, i);
			atomic_inc(&sh->count);
629 630 631 632 633 634
			if (use_new_offset(conf, sh))
				bi->bi_sector = (sh->sector
						 + rdev->new_data_offset);
			else
				bi->bi_sector = (sh->sector
						 + rdev->data_offset);
635 636 637 638 639 640
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_idx = 0;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
641 642
			if (rrdev)
				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
643
			generic_make_request(bi);
644 645
		}
		if (rrdev) {
646 647
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
648 649 650 651 652 653 654 655 656 657
				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);

			set_bit(STRIPE_IO_STARTED, &sh->state);

			rbi->bi_bdev = rrdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on "
				 "replacement disc %d\n",
				__func__, (unsigned long long)sh->sector,
				rbi->bi_rw, i);
			atomic_inc(&sh->count);
658 659 660 661 662 663
			if (use_new_offset(conf, sh))
				rbi->bi_sector = (sh->sector
						  + rrdev->new_data_offset);
			else
				rbi->bi_sector = (sh->sector
						  + rrdev->data_offset);
664 665 666 667 668 669 670 671 672
			rbi->bi_flags = 1 << BIO_UPTODATE;
			rbi->bi_idx = 0;
			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			rbi->bi_io_vec[0].bv_offset = 0;
			rbi->bi_size = STRIPE_SIZE;
			rbi->bi_next = NULL;
			generic_make_request(rbi);
		}
		if (!rdev && !rrdev) {
673
			if (rw & WRITE)
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
691
	struct async_submit_ctl submit;
D
Dan Williams 已提交
692
	enum async_tx_flags flags = 0;
693 694 695 696 697

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
698

D
Dan Williams 已提交
699 700 701 702
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

703
	bio_for_each_segment(bvl, bio, i) {
704
		int len = bvl->bv_len;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
720 721
			b_offset += bvl->bv_offset;
			bio_page = bvl->bv_page;
722 723
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
724
						  b_offset, clen, &submit);
725 726
			else
				tx = async_memcpy(bio_page, page, b_offset,
727
						  page_offset, clen, &submit);
728
		}
729 730 731
		/* chain the operations */
		submit.depend_tx = tx;

732 733 734 735 736 737 738 739 740 741 742 743
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
744
	struct r5conf *conf = sh->raid_conf;
745
	int i;
746

747
	pr_debug("%s: stripe %llu\n", __func__,
748 749 750
		(unsigned long long)sh->sector);

	/* clear completed biofills */
751
	spin_lock_irq(&conf->device_lock);
752 753 754 755
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
756 757
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
758
		 * !STRIPE_BIOFILL_RUN
759 760
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
761 762 763 764 765 766 767 768
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
769
				if (!raid5_dec_bi_phys_segments(rbi)) {
770 771 772 773 774 775 776
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
777 778
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
779 780 781

	return_io(return_bi);

782
	set_bit(STRIPE_HANDLE, &sh->state);
783 784 785 786 787 788
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
789
	struct r5conf *conf = sh->raid_conf;
790
	struct async_submit_ctl submit;
791 792
	int i;

793
	pr_debug("%s: stripe %llu\n", __func__,
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
814 815
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
816 817
}

818
static void mark_target_uptodate(struct stripe_head *sh, int target)
819
{
820
	struct r5dev *tgt;
821

822 823
	if (target < 0)
		return;
824

825
	tgt = &sh->dev[target];
826 827 828
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
829 830
}

831
static void ops_complete_compute(void *stripe_head_ref)
832 833 834
{
	struct stripe_head *sh = stripe_head_ref;

835
	pr_debug("%s: stripe %llu\n", __func__,
836 837
		(unsigned long long)sh->sector);

838
	/* mark the computed target(s) as uptodate */
839
	mark_target_uptodate(sh, sh->ops.target);
840
	mark_target_uptodate(sh, sh->ops.target2);
841

842 843 844
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
845 846 847 848
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

849 850 851 852 853 854 855 856 857
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
858 859
{
	int disks = sh->disks;
860
	struct page **xor_srcs = percpu->scribble;
861 862 863 864 865
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
866
	struct async_submit_ctl submit;
867 868 869
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
870
		__func__, (unsigned long long)sh->sector, target);
871 872 873 874 875 876 877 878
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
879
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
880
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
881
	if (unlikely(count == 1))
882
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
883
	else
884
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
885 886 887 888

	return tx;
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
907
		srcs[i] = NULL;
908 909 910 911 912 913 914 915 916 917

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

918
	return syndrome_disks;
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
939
	else
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
956 957
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
958 959 960 961 962 963 964 965 966 967 968
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
969 970
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
971 972 973
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
974 975 976 977

	return tx;
}

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

999
	/* we need to open-code set_syndrome_sources to handle the
1000 1001 1002
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
1003
		blocks[i] = NULL;
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
1030 1031 1032
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
1033
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
1053 1054 1055 1056
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
1057 1058 1059 1060
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
1061 1062 1063
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
1064 1065 1066 1067
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
1082 1083 1084 1085
	}
}


1086 1087 1088 1089
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1090
	pr_debug("%s: stripe %llu\n", __func__,
1091 1092 1093 1094
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
1095 1096
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
1097 1098
{
	int disks = sh->disks;
1099
	struct page **xor_srcs = percpu->scribble;
1100
	int count = 0, pd_idx = sh->pd_idx, i;
1101
	struct async_submit_ctl submit;
1102 1103 1104 1105

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

1106
	pr_debug("%s: stripe %llu\n", __func__,
1107 1108 1109 1110 1111
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
1112
		if (test_bit(R5_Wantdrain, &dev->flags))
1113 1114 1115
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1116
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1117
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1118
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1119 1120 1121 1122 1123

	return tx;
}

static struct dma_async_tx_descriptor *
1124
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1125 1126
{
	int disks = sh->disks;
1127
	int i;
1128

1129
	pr_debug("%s: stripe %llu\n", __func__,
1130 1131 1132 1133 1134 1135
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1136
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1137 1138
			struct bio *wbi;

1139
			spin_lock_irq(&sh->raid_conf->device_lock);
1140 1141 1142 1143
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
1144
			spin_unlock_irq(&sh->raid_conf->device_lock);
1145 1146 1147

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1148 1149
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1150 1151
				if (wbi->bi_rw & REQ_SYNC)
					set_bit(R5_SyncIO, &dev->flags);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1162
static void ops_complete_reconstruct(void *stripe_head_ref)
1163 1164
{
	struct stripe_head *sh = stripe_head_ref;
1165 1166 1167 1168
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
S
Shaohua Li 已提交
1169
	bool fua = false, sync = false;
1170

1171
	pr_debug("%s: stripe %llu\n", __func__,
1172 1173
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1174
	for (i = disks; i--; ) {
T
Tejun Heo 已提交
1175
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
S
Shaohua Li 已提交
1176 1177
		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
	}
T
Tejun Heo 已提交
1178

1179 1180
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1181

T
Tejun Heo 已提交
1182
		if (dev->written || i == pd_idx || i == qd_idx) {
1183
			set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1184 1185
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1186 1187
			if (sync)
				set_bit(R5_SyncIO, &dev->flags);
T
Tejun Heo 已提交
1188
		}
1189 1190
	}

1191 1192 1193 1194 1195 1196 1197 1198
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1199 1200 1201 1202 1203 1204

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1205 1206
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1207 1208
{
	int disks = sh->disks;
1209
	struct page **xor_srcs = percpu->scribble;
1210
	struct async_submit_ctl submit;
1211 1212
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1213
	int prexor = 0;
1214 1215
	unsigned long flags;

1216
	pr_debug("%s: stripe %llu\n", __func__,
1217 1218 1219 1220 1221
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1222 1223
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1244
	flags = ASYNC_TX_ACK |
1245 1246 1247 1248
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1249
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1250
			  to_addr_conv(sh, percpu));
1251 1252 1253 1254
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1255 1256
}

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1274 1275 1276 1277 1278 1279
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1280
	pr_debug("%s: stripe %llu\n", __func__,
1281 1282
		(unsigned long long)sh->sector);

1283
	sh->check_state = check_state_check_result;
1284 1285 1286 1287
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1288
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1289 1290
{
	int disks = sh->disks;
1291 1292 1293
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1294
	struct page **xor_srcs = percpu->scribble;
1295
	struct dma_async_tx_descriptor *tx;
1296
	struct async_submit_ctl submit;
1297 1298
	int count;
	int i;
1299

1300
	pr_debug("%s: stripe %llu\n", __func__,
1301 1302
		(unsigned long long)sh->sector);

1303 1304 1305
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1306
	for (i = disks; i--; ) {
1307 1308 1309
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1310 1311
	}

1312 1313
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1314
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1315
			   &sh->ops.zero_sum_result, &submit);
1316 1317

	atomic_inc(&sh->count);
1318 1319
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1320 1321
}

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1334 1335

	atomic_inc(&sh->count);
1336 1337 1338 1339
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1340 1341
}

1342
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1343 1344 1345
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1346
	struct r5conf *conf = sh->raid_conf;
1347
	int level = conf->level;
1348 1349
	struct raid5_percpu *percpu;
	unsigned long cpu;
1350

1351 1352
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1353
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1354 1355 1356 1357
		ops_run_biofill(sh);
		overlap_clear++;
	}

1358
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1369 1370
			async_tx_ack(tx);
	}
1371

1372
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1373
		tx = ops_run_prexor(sh, percpu, tx);
1374

1375
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1376
		tx = ops_run_biodrain(sh, tx);
1377 1378 1379
		overlap_clear++;
	}

1380 1381 1382 1383 1384 1385
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1386

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1397 1398 1399 1400 1401 1402 1403

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1404
	put_cpu();
1405 1406
}

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1437
static int grow_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
1438 1439
{
	struct stripe_head *sh;
N
Namhyung Kim 已提交
1440
	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1441 1442
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
1443

1444
	sh->raid_conf = conf;
1445 1446 1447
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1448

1449 1450
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

1462
static int grow_stripes(struct r5conf *conf, int num)
1463
{
1464
	struct kmem_cache *sc;
1465
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1466

1467 1468 1469 1470 1471 1472 1473 1474
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1475 1476
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1477
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1478
			       0, 0, NULL);
L
Linus Torvalds 已提交
1479 1480 1481
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1482
	conf->pool_size = devs;
1483
	while (num--)
1484
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1485 1486 1487
			return 1;
	return 0;
}
1488

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1511
static int resize_stripes(struct r5conf *conf, int newsize)
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1539
	unsigned long cpu;
1540
	int err;
1541
	struct kmem_cache *sc;
1542 1543 1544 1545 1546
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1547 1548 1549
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1550

1551 1552 1553
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1554
			       0, 0, NULL);
1555 1556 1557 1558
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
N
Namhyung Kim 已提交
1559
		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1560 1561 1562 1563
		if (!nsh)
			break;

		nsh->raid_conf = conf;
1564 1565 1566
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
N
NeilBrown 已提交
1589
				    );
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1604
	 * conf->disks and the scribble region
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1634 1635 1636 1637
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1638

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1655

1656
static int drop_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
1657 1658 1659
{
	struct stripe_head *sh;

1660 1661 1662 1663 1664
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1665
	BUG_ON(atomic_read(&sh->count));
1666
	shrink_buffers(sh);
1667 1668 1669 1670 1671
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

1672
static void shrink_stripes(struct r5conf *conf)
1673 1674 1675 1676
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1677 1678
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1679 1680 1681
	conf->slab_cache = NULL;
}

1682
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1683
{
1684
	struct stripe_head *sh = bi->bi_private;
1685
	struct r5conf *conf = sh->raid_conf;
1686
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1687
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1688
	char b[BDEVNAME_SIZE];
1689
	struct md_rdev *rdev = NULL;
1690
	sector_t s;
L
Linus Torvalds 已提交
1691 1692 1693 1694 1695

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1696 1697
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1698 1699 1700
		uptodate);
	if (i == disks) {
		BUG();
1701
		return;
L
Linus Torvalds 已提交
1702
	}
1703
	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1704 1705 1706 1707 1708
		/* If replacement finished while this request was outstanding,
		 * 'replacement' might be NULL already.
		 * In that case it moved down to 'rdev'.
		 * rdev is not removed until all requests are finished.
		 */
1709
		rdev = conf->disks[i].replacement;
1710
	if (!rdev)
1711
		rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
1712

1713 1714 1715 1716
	if (use_new_offset(conf, sh))
		s = sh->sector + rdev->new_data_offset;
	else
		s = sh->sector + rdev->data_offset;
L
Linus Torvalds 已提交
1717 1718
	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1719
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1720 1721 1722 1723
			/* Note that this cannot happen on a
			 * replacement device.  We just fail those on
			 * any error
			 */
1724 1725 1726 1727 1728
			printk_ratelimited(
				KERN_INFO
				"md/raid:%s: read error corrected"
				" (%lu sectors at %llu on %s)\n",
				mdname(conf->mddev), STRIPE_SECTORS,
1729
				(unsigned long long)s,
1730
				bdevname(rdev->bdev, b));
1731
			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1732 1733 1734
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1735 1736
		if (atomic_read(&rdev->read_errors))
			atomic_set(&rdev->read_errors, 0);
L
Linus Torvalds 已提交
1737
	} else {
1738
		const char *bdn = bdevname(rdev->bdev, b);
1739
		int retry = 0;
1740

L
Linus Torvalds 已提交
1741
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1742
		atomic_inc(&rdev->read_errors);
1743 1744 1745 1746 1747 1748
		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error on replacement device "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1749
				(unsigned long long)s,
1750 1751
				bdn);
		else if (conf->mddev->degraded >= conf->max_degraded)
1752 1753 1754 1755 1756
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error not correctable "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1757
				(unsigned long long)s,
1758
				bdn);
1759
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1760
			/* Oh, no!!! */
1761 1762 1763 1764 1765
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error NOT corrected!! "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1766
				(unsigned long long)s,
1767
				bdn);
1768
		else if (atomic_read(&rdev->read_errors)
1769
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1770
			printk(KERN_WARNING
1771
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1772
			       mdname(conf->mddev), bdn);
1773 1774 1775 1776 1777
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1778 1779
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1780
			md_error(conf->mddev, rdev);
1781
		}
L
Linus Torvalds 已提交
1782
	}
1783
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1789
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1790
{
1791
	struct stripe_head *sh = bi->bi_private;
1792
	struct r5conf *conf = sh->raid_conf;
1793
	int disks = sh->disks, i;
1794
	struct md_rdev *uninitialized_var(rdev);
L
Linus Torvalds 已提交
1795
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1796 1797
	sector_t first_bad;
	int bad_sectors;
1798
	int replacement = 0;
L
Linus Torvalds 已提交
1799

1800 1801 1802
	for (i = 0 ; i < disks; i++) {
		if (bi == &sh->dev[i].req) {
			rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
1803
			break;
1804 1805 1806
		}
		if (bi == &sh->dev[i].rreq) {
			rdev = conf->disks[i].replacement;
1807 1808 1809 1810 1811 1812 1813 1814
			if (rdev)
				replacement = 1;
			else
				/* rdev was removed and 'replacement'
				 * replaced it.  rdev is not removed
				 * until all requests are finished.
				 */
				rdev = conf->disks[i].rdev;
1815 1816 1817
			break;
		}
	}
1818
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1819 1820 1821 1822
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1823
		return;
L
Linus Torvalds 已提交
1824 1825
	}

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	if (replacement) {
		if (!uptodate)
			md_error(conf->mddev, rdev);
		else if (is_badblock(rdev, sh->sector,
				     STRIPE_SECTORS,
				     &first_bad, &bad_sectors))
			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
	} else {
		if (!uptodate) {
			set_bit(WriteErrorSeen, &rdev->flags);
			set_bit(R5_WriteError, &sh->dev[i].flags);
1837 1838 1839
			if (!test_and_set_bit(WantReplacement, &rdev->flags))
				set_bit(MD_RECOVERY_NEEDED,
					&rdev->mddev->recovery);
1840 1841 1842 1843 1844 1845
		} else if (is_badblock(rdev, sh->sector,
				       STRIPE_SECTORS,
				       &first_bad, &bad_sectors))
			set_bit(R5_MadeGood, &sh->dev[i].flags);
	}
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
1846

1847 1848
	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
L
Linus Torvalds 已提交
1849
	set_bit(STRIPE_HANDLE, &sh->state);
1850
	release_stripe(sh);
L
Linus Torvalds 已提交
1851 1852
}

1853
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1854
	
1855
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1856 1857 1858 1859 1860 1861 1862 1863
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->req.bi_private = sh;
1864
	dev->vec.bv_page = dev->page;
L
Linus Torvalds 已提交
1865

1866 1867 1868 1869 1870 1871 1872
	bio_init(&dev->rreq);
	dev->rreq.bi_io_vec = &dev->rvec;
	dev->rreq.bi_vcnt++;
	dev->rreq.bi_max_vecs++;
	dev->rreq.bi_private = sh;
	dev->rvec.bv_page = dev->page;

L
Linus Torvalds 已提交
1873
	dev->flags = 0;
1874
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1875 1876
}

1877
static void error(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
1878 1879
{
	char b[BDEVNAME_SIZE];
1880
	struct r5conf *conf = mddev->private;
1881
	unsigned long flags;
1882
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1883

1884 1885 1886 1887 1888 1889
	spin_lock_irqsave(&conf->device_lock, flags);
	clear_bit(In_sync, &rdev->flags);
	mddev->degraded = calc_degraded(conf);
	spin_unlock_irqrestore(&conf->device_lock, flags);
	set_bit(MD_RECOVERY_INTR, &mddev->recovery);

1890
	set_bit(Blocked, &rdev->flags);
1891 1892 1893 1894 1895 1896 1897 1898 1899
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
1900
}
L
Linus Torvalds 已提交
1901 1902 1903 1904 1905

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1906
static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1907 1908
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1909
{
N
NeilBrown 已提交
1910
	sector_t stripe, stripe2;
1911
	sector_t chunk_number;
L
Linus Torvalds 已提交
1912
	unsigned int chunk_offset;
1913
	int pd_idx, qd_idx;
1914
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1915
	sector_t new_sector;
1916 1917
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1918 1919
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1920 1921 1922
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1935 1936
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1937
	stripe2 = stripe;
L
Linus Torvalds 已提交
1938 1939 1940
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1941
	pd_idx = qd_idx = -1;
1942 1943
	switch(conf->level) {
	case 4:
1944
		pd_idx = data_disks;
1945 1946
		break;
	case 5:
1947
		switch (algorithm) {
L
Linus Torvalds 已提交
1948
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1949
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1950
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1951 1952 1953
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1954
			pd_idx = sector_div(stripe2, raid_disks);
1955
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1956 1957 1958
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1959
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1960
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1961 1962
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1963
			pd_idx = sector_div(stripe2, raid_disks);
1964
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1965
			break;
1966 1967 1968 1969 1970 1971 1972
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1973
		default:
1974
			BUG();
1975 1976 1977 1978
		}
		break;
	case 6:

1979
		switch (algorithm) {
1980
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1981
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1982 1983
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1984
				(*dd_idx)++;	/* Q D D D P */
1985 1986
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1987 1988 1989
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1990
			pd_idx = sector_div(stripe2, raid_disks);
1991 1992
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1993
				(*dd_idx)++;	/* Q D D D P */
1994 1995
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1996 1997 1998
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1999
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2000 2001
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2002 2003
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2004
			pd_idx = sector_div(stripe2, raid_disks);
2005 2006
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2007
			break;
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
2023
			pd_idx = sector_div(stripe2, raid_disks);
2024 2025 2026 2027 2028 2029
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2030
			ddf_layout = 1;
2031 2032 2033 2034 2035 2036 2037
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
2038 2039
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2040 2041 2042 2043 2044 2045
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2046
			ddf_layout = 1;
2047 2048 2049 2050
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
2051
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2052 2053
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2054
			ddf_layout = 1;
2055 2056 2057 2058
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
2059
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2060 2061 2062 2063 2064 2065
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
2066
			pd_idx = sector_div(stripe2, raid_disks-1);
2067 2068 2069 2070 2071 2072
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
2073
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2074 2075 2076 2077 2078
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
2079
			pd_idx = sector_div(stripe2, raid_disks-1);
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

2090
		default:
2091
			BUG();
2092 2093
		}
		break;
L
Linus Torvalds 已提交
2094 2095
	}

2096 2097 2098
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
2099
		sh->ddf_layout = ddf_layout;
2100
	}
L
Linus Torvalds 已提交
2101 2102 2103 2104 2105 2106 2107 2108
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


2109
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
2110
{
2111
	struct r5conf *conf = sh->raid_conf;
2112 2113
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2114
	sector_t new_sector = sh->sector, check;
2115 2116
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2117 2118
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
2119 2120
	sector_t stripe;
	int chunk_offset;
2121 2122
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
2123
	sector_t r_sector;
2124
	struct stripe_head sh2;
L
Linus Torvalds 已提交
2125

2126

L
Linus Torvalds 已提交
2127 2128 2129
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

2130 2131 2132 2133 2134
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
2135
		switch (algorithm) {
L
Linus Torvalds 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
2147 2148 2149 2150 2151
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
2152
		default:
2153
			BUG();
2154 2155 2156
		}
		break;
	case 6:
2157
		if (i == sh->qd_idx)
2158
			return 0; /* It is the Q disk */
2159
		switch (algorithm) {
2160 2161
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
2162 2163 2164 2165
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2180 2181 2182 2183 2184 2185
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2186
			/* Like left_symmetric, but P is before Q */
2187 2188
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2189 2190 2191 2192 2193 2194
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2210
		default:
2211
			BUG();
2212 2213
		}
		break;
L
Linus Torvalds 已提交
2214 2215 2216
	}

	chunk_number = stripe * data_disks + i;
2217
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2218

2219
	check = raid5_compute_sector(conf, r_sector,
2220
				     previous, &dummy1, &sh2);
2221 2222
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2223 2224
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2225 2226 2227 2228 2229 2230
		return 0;
	}
	return r_sector;
}


2231
static void
2232
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2233
			 int rcw, int expand)
2234 2235
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2236
	struct r5conf *conf = sh->raid_conf;
2237
	int level = conf->level;
2238 2239 2240 2241 2242 2243 2244

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2245 2246 2247 2248
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2249

2250
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2251 2252 2253 2254 2255 2256

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2257
				set_bit(R5_Wantdrain, &dev->flags);
2258 2259
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2260
				s->locked++;
2261 2262
			}
		}
2263
		if (s->locked + conf->max_degraded == disks)
2264
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2265
				atomic_inc(&conf->pending_full_writes);
2266
	} else {
2267
		BUG_ON(level == 6);
2268 2269 2270
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2271
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2272 2273
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2274
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2275 2276 2277 2278 2279 2280 2281 2282

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2283 2284
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2285 2286
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2287
				s->locked++;
2288 2289 2290 2291
			}
		}
	}

2292
	/* keep the parity disk(s) locked while asynchronous operations
2293 2294 2295 2296
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2297
	s->locked++;
2298

2299 2300 2301 2302 2303 2304 2305 2306 2307
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2308
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2309
		__func__, (unsigned long long)sh->sector,
2310
		s->locked, s->ops_request);
2311
}
2312

L
Linus Torvalds 已提交
2313 2314
/*
 * Each stripe/dev can have one or more bion attached.
2315
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2316 2317 2318 2319 2320
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
2321
	struct r5conf *conf = sh->raid_conf;
2322
	int firstwrite=0;
L
Linus Torvalds 已提交
2323

2324
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2325 2326 2327 2328 2329
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock_irq(&conf->device_lock);
2330
	if (forwrite) {
L
Linus Torvalds 已提交
2331
		bip = &sh->dev[dd_idx].towrite;
2332 2333 2334
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2335 2336 2337 2338 2339 2340 2341 2342 2343
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2344
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2345 2346 2347
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2348
	bi->bi_phys_segments++;
2349

L
Linus Torvalds 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
	spin_unlock_irq(&conf->device_lock);

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
		(unsigned long long)(*bip)->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
		sh->bm_seq = conf->seq_flush+1;
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}
L
Linus Torvalds 已提交
2375 2376 2377 2378 2379 2380 2381 2382
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	return 0;
}

2383
static void end_reshape(struct r5conf *conf);
2384

2385
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2386
			    struct stripe_head *sh)
2387
{
2388
	int sectors_per_chunk =
2389
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2390
	int dd_idx;
2391
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2392
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2393

2394 2395
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2396
			     *sectors_per_chunk + chunk_offset,
2397
			     previous,
2398
			     &dd_idx, sh);
2399 2400
}

2401
static void
2402
handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2403 2404 2405 2406 2407 2408 2409 2410 2411
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2412
			struct md_rdev *rdev;
2413 2414 2415
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
2416 2417 2418
				atomic_inc(&rdev->nr_pending);
			else
				rdev = NULL;
2419
			rcu_read_unlock();
2420 2421 2422 2423 2424 2425 2426 2427
			if (rdev) {
				if (!rdev_set_badblocks(
					    rdev,
					    sh->sector,
					    STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2445
			if (!raid5_dec_bi_phys_segments(bi)) {
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2460
			if (!raid5_dec_bi_phys_segments(bi)) {
2461 2462 2463 2464 2465 2466 2467
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2468 2469 2470 2471 2472 2473
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2484
				if (!raid5_dec_bi_phys_segments(bi)) {
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
2495 2496 2497 2498
		/* If we were in the middle of a write the parity block might
		 * still be locked - so just clear all R5_LOCKED flags
		 */
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2499 2500
	}

2501 2502 2503
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2504 2505
}

2506
static void
2507
handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2508 2509 2510 2511 2512 2513 2514
		   struct stripe_head_state *s)
{
	int abort = 0;
	int i;

	clear_bit(STRIPE_SYNCING, &sh->state);
	s->syncing = 0;
2515
	s->replacing = 0;
2516
	/* There is nothing more to do for sync/check/repair.
2517 2518 2519
	 * Don't even need to abort as that is handled elsewhere
	 * if needed, and not always wanted e.g. if there is a known
	 * bad block here.
2520
	 * For recover/replace we need to record a bad block on all
2521 2522
	 * non-sync devices, or abort the recovery
	 */
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
		/* During recovery devices cannot be removed, so
		 * locking and refcounting of rdevs is not needed
		 */
		for (i = 0; i < conf->raid_disks; i++) {
			struct md_rdev *rdev = conf->disks[i].rdev;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
			rdev = conf->disks[i].replacement;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
		}
		if (abort)
			conf->recovery_disabled =
				conf->mddev->recovery_disabled;
2546
	}
2547
	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2548 2549
}

2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
static int want_replace(struct stripe_head *sh, int disk_idx)
{
	struct md_rdev *rdev;
	int rv = 0;
	/* Doing recovery so rcu locking not required */
	rdev = sh->raid_conf->disks[disk_idx].replacement;
	if (rdev
	    && !test_bit(Faulty, &rdev->flags)
	    && !test_bit(In_sync, &rdev->flags)
	    && (rdev->recovery_offset <= sh->sector
		|| rdev->mddev->recovery_cp <= sh->sector))
		rv = 1;

	return rv;
}

2566
/* fetch_block - checks the given member device to see if its data needs
2567 2568 2569
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
2570
 * 0 to tell the loop in handle_stripe_fill to continue
2571
 */
2572 2573
static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
		       int disk_idx, int disks)
2574
{
2575
	struct r5dev *dev = &sh->dev[disk_idx];
2576 2577
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
2578

2579
	/* is the data in this block needed, and can we get it? */
2580 2581 2582 2583 2584
	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
2585
	     (s->replacing && want_replace(sh, disk_idx)) ||
2586 2587
	     (s->failed >= 1 && fdev[0]->toread) ||
	     (s->failed >= 2 && fdev[1]->toread) ||
2588 2589 2590
	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2591 2592 2593 2594 2595 2596
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
2597 2598
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
2599 2600
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2601
			 */
2602 2603 2604 2605 2606 2607 2608 2609
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
2610 2611 2612 2613 2614 2615
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2629
			}
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2649 2650
		}
	}
2651 2652 2653 2654 2655

	return 0;
}

/**
2656
 * handle_stripe_fill - read or compute data to satisfy pending requests.
2657
 */
2658 2659 2660
static void handle_stripe_fill(struct stripe_head *sh,
			       struct stripe_head_state *s,
			       int disks)
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
2671
			if (fetch_block(sh, s, i, disks))
2672
				break;
2673 2674 2675 2676
	set_bit(STRIPE_HANDLE, &sh->state);
}


2677
/* handle_stripe_clean_event
2678 2679 2680 2681
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2682
static void handle_stripe_clean_event(struct r5conf *conf,
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2696
				pr_debug("Return write for disc %d\n", i);
2697 2698 2699 2700 2701 2702
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2703
					if (!raid5_dec_bi_phys_segments(wbi)) {
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2721 2722 2723 2724

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2725 2726
}

2727
static void handle_stripe_dirtying(struct r5conf *conf,
2728 2729 2730
				   struct stripe_head *sh,
				   struct stripe_head_state *s,
				   int disks)
2731 2732
{
	int rmw = 0, rcw = 0, i;
2733 2734 2735 2736 2737 2738 2739
	if (conf->max_degraded == 2) {
		/* RAID6 requires 'rcw' in current implementation
		 * Calculate the real rcw later - for now fake it
		 * look like rcw is cheaper
		 */
		rcw = 1; rmw = 2;
	} else for (i = disks; i--; ) {
2740 2741 2742 2743
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2744 2745
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2746 2747 2748 2749 2750 2751 2752 2753
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2754 2755 2756
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2757 2758 2759 2760
			else
				rcw += 2*disks;
		}
	}
2761
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2762 2763 2764 2765 2766 2767 2768 2769
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2770 2771
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2772 2773 2774
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2775
					pr_debug("Read_old block "
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2786
	if (rcw <= rmw && rcw > 0) {
2787
		/* want reconstruct write, but need to get some data */
2788
		rcw = 0;
2789 2790 2791
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2792
			    i != sh->pd_idx && i != sh->qd_idx &&
2793
			    !test_bit(R5_LOCKED, &dev->flags) &&
2794
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2795 2796 2797 2798
			      test_bit(R5_Wantcompute, &dev->flags))) {
				rcw++;
				if (!test_bit(R5_Insync, &dev->flags))
					continue; /* it's a failed drive */
2799 2800
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2801
					pr_debug("Read_old block "
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2812
	}
2813 2814 2815
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2816 2817
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2818 2819
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2820 2821 2822
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2823 2824 2825
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2826
		schedule_reconstruction(sh, s, rcw == 0, 0);
2827 2828
}

2829
static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2830 2831
				struct stripe_head_state *s, int disks)
{
2832
	struct r5dev *dev = NULL;
2833

2834
	set_bit(STRIPE_HANDLE, &sh->state);
2835

2836 2837 2838
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2839 2840
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2841 2842
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2843 2844
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2845
			break;
2846
		}
2847
		dev = &sh->dev[s->failed_num[0]];
2848 2849 2850 2851 2852 2853 2854 2855 2856
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2857

2858 2859 2860 2861 2862
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2863
		s->locked++;
2864
		set_bit(R5_Wantwrite, &dev->flags);
2865

2866 2867
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2884
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2896
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2897 2898 2899 2900
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2901
				sh->ops.target2 = -1;
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2913 2914 2915 2916
	}
}


2917
static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2918
				  struct stripe_head_state *s,
2919
				  int disks)
2920 2921
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2922
	int qd_idx = sh->qd_idx;
2923
	struct r5dev *dev;
2924 2925 2926 2927

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2928

2929 2930 2931 2932 2933 2934
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2935 2936 2937
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2938
		if (s->failed == s->q_failed) {
2939
			/* The only possible failed device holds Q, so it
2940 2941 2942
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2943
			sh->check_state = check_state_run;
2944
		}
2945
		if (!s->q_failed && s->failed < 2) {
2946
			/* Q is not failed, and we didn't use it to generate
2947 2948
			 * anything, so it makes sense to check it
			 */
2949 2950 2951 2952
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2953 2954
		}

2955 2956
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2957

2958 2959 2960 2961
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2962
		}
2963 2964 2965 2966 2967 2968 2969
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2970 2971
		}

2972 2973 2974 2975 2976
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2977

2978 2979 2980
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2981 2982

		/* now write out any block on a failed drive,
2983
		 * or P or Q if they were recomputed
2984
		 */
2985
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2986
		if (s->failed == 2) {
2987
			dev = &sh->dev[s->failed_num[1]];
2988 2989 2990 2991 2992
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
2993
			dev = &sh->dev[s->failed_num[0]];
2994 2995 2996 2997
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2998
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2999 3000 3001 3002 3003
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3004
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3005 3006 3007 3008 3009 3010 3011 3012
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3077 3078 3079
	}
}

3080
static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3081 3082 3083 3084 3085 3086
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
3087
	struct dma_async_tx_descriptor *tx = NULL;
3088 3089
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
3090
		if (i != sh->pd_idx && i != sh->qd_idx) {
3091
			int dd_idx, j;
3092
			struct stripe_head *sh2;
3093
			struct async_submit_ctl submit;
3094

3095
			sector_t bn = compute_blocknr(sh, i, 1);
3096 3097
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
3098
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
3111 3112

			/* place all the copies on one channel */
3113
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3114
			tx = async_memcpy(sh2->dev[dd_idx].page,
3115
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3116
					  &submit);
3117

3118 3119 3120 3121
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
3122
				    j != sh2->qd_idx &&
3123 3124 3125 3126 3127 3128 3129
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
3130

3131
		}
3132 3133 3134 3135 3136
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
3137
}
L
Linus Torvalds 已提交
3138 3139 3140 3141

/*
 * handle_stripe - do things to a stripe.
 *
3142 3143
 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
 * state of various bits to see what needs to be done.
L
Linus Torvalds 已提交
3144
 * Possible results:
3145 3146
 *    return some read requests which now have data
 *    return some write requests which are safely on storage
L
Linus Torvalds 已提交
3147 3148 3149 3150 3151
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 */
3152

3153
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
3154
{
3155
	struct r5conf *conf = sh->raid_conf;
3156
	int disks = sh->disks;
3157 3158
	struct r5dev *dev;
	int i;
3159
	int do_recovery = 0;
L
Linus Torvalds 已提交
3160

3161 3162 3163 3164 3165 3166
	memset(s, 0, sizeof(*s));

	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
	s->failed_num[0] = -1;
	s->failed_num[1] = -1;
L
Linus Torvalds 已提交
3167

3168
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3169
	rcu_read_lock();
3170
	spin_lock_irq(&conf->device_lock);
3171
	for (i=disks; i--; ) {
3172
		struct md_rdev *rdev;
3173 3174 3175
		sector_t first_bad;
		int bad_sectors;
		int is_bad = 0;
3176

3177
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3178

3179
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3180 3181
			 i, dev->flags,
			 dev->toread, dev->towrite, dev->written);
3182 3183 3184 3185 3186 3187 3188 3189
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3190

3191
		/* now count some things */
3192 3193 3194 3195
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
3196
		if (test_bit(R5_Wantcompute, &dev->flags)) {
3197 3198
			s->compute++;
			BUG_ON(s->compute > 2);
3199
		}
L
Linus Torvalds 已提交
3200

3201
		if (test_bit(R5_Wantfill, &dev->flags))
3202
			s->to_fill++;
3203
		else if (dev->toread)
3204
			s->to_read++;
3205
		if (dev->towrite) {
3206
			s->to_write++;
3207
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3208
				s->non_overwrite++;
3209
		}
3210
		if (dev->written)
3211
			s->written++;
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
		/* Prefer to use the replacement for reads, but only
		 * if it is recovered enough and has no bad blocks.
		 */
		rdev = rcu_dereference(conf->disks[i].replacement);
		if (rdev && !test_bit(Faulty, &rdev->flags) &&
		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
				 &first_bad, &bad_sectors))
			set_bit(R5_ReadRepl, &dev->flags);
		else {
3222 3223
			if (rdev)
				set_bit(R5_NeedReplace, &dev->flags);
3224 3225 3226
			rdev = rcu_dereference(conf->disks[i].rdev);
			clear_bit(R5_ReadRepl, &dev->flags);
		}
3227 3228
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
		if (rdev) {
			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					     &first_bad, &bad_sectors);
			if (s->blocked_rdev == NULL
			    && (test_bit(Blocked, &rdev->flags)
				|| is_bad < 0)) {
				if (is_bad < 0)
					set_bit(BlockedBadBlocks,
						&rdev->flags);
				s->blocked_rdev = rdev;
				atomic_inc(&rdev->nr_pending);
			}
3241
		}
3242 3243 3244
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
3245 3246
		else if (is_bad) {
			/* also not in-sync */
3247 3248
			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
			    test_bit(R5_UPTODATE, &dev->flags)) {
3249 3250 3251 3252 3253 3254 3255
				/* treat as in-sync, but with a read error
				 * which we can now try to correct
				 */
				set_bit(R5_Insync, &dev->flags);
				set_bit(R5_ReadError, &dev->flags);
			}
		} else if (test_bit(In_sync, &rdev->flags))
3256
			set_bit(R5_Insync, &dev->flags);
3257
		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3258
			/* in sync if before recovery_offset */
3259 3260 3261 3262 3263 3264 3265 3266 3267
			set_bit(R5_Insync, &dev->flags);
		else if (test_bit(R5_UPTODATE, &dev->flags) &&
			 test_bit(R5_Expanded, &dev->flags))
			/* If we've reshaped into here, we assume it is Insync.
			 * We will shortly update recovery_offset to make
			 * it official.
			 */
			set_bit(R5_Insync, &dev->flags);

A
Adam Kwolek 已提交
3268
		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3269 3270 3271 3272 3273 3274 3275
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 == rdev)
				clear_bit(R5_Insync, &dev->flags);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3276
				s->handle_bad_blocks = 1;
3277
				atomic_inc(&rdev2->nr_pending);
3278 3279 3280
			} else
				clear_bit(R5_WriteError, &dev->flags);
		}
A
Adam Kwolek 已提交
3281
		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3282 3283 3284 3285 3286
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3287
				s->handle_bad_blocks = 1;
3288
				atomic_inc(&rdev2->nr_pending);
3289 3290 3291
			} else
				clear_bit(R5_MadeGood, &dev->flags);
		}
3292 3293 3294 3295 3296 3297 3298 3299 3300
		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].replacement);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
				s->handle_bad_blocks = 1;
				atomic_inc(&rdev2->nr_pending);
			} else
				clear_bit(R5_MadeGoodRepl, &dev->flags);
		}
3301
		if (!test_bit(R5_Insync, &dev->flags)) {
3302 3303 3304
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3305
		}
3306 3307 3308
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3309 3310 3311
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
3312 3313
			if (rdev && !test_bit(Faulty, &rdev->flags))
				do_recovery = 1;
3314
		}
L
Linus Torvalds 已提交
3315
	}
3316
	spin_unlock_irq(&conf->device_lock);
3317 3318 3319 3320
	if (test_bit(STRIPE_SYNCING, &sh->state)) {
		/* If there is a failed device being replaced,
		 *     we must be recovering.
		 * else if we are after recovery_cp, we must be syncing
3321
		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3322 3323 3324 3325 3326
		 * else we can only be replacing
		 * sync and recovery both need to read all devices, and so
		 * use the same flag.
		 */
		if (do_recovery ||
3327 3328
		    sh->sector >= conf->mddev->recovery_cp ||
		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3329 3330 3331 3332
			s->syncing = 1;
		else
			s->replacing = 1;
	}
L
Linus Torvalds 已提交
3333
	rcu_read_unlock();
3334 3335 3336 3337 3338
}

static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
3339
	struct r5conf *conf = sh->raid_conf;
3340
	int i;
3341 3342
	int prexor;
	int disks = sh->disks;
3343
	struct r5dev *pdev, *qdev;
3344 3345

	clear_bit(STRIPE_HANDLE, &sh->state);
3346
	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
		set_bit(STRIPE_SYNCING, &sh->state);
		clear_bit(STRIPE_INSYNC, &sh->state);
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
3364

3365
	analyse_stripe(sh, &s);
3366

3367 3368 3369 3370 3371
	if (s.handle_bad_blocks) {
		set_bit(STRIPE_HANDLE, &sh->state);
		goto finish;
	}

3372 3373
	if (unlikely(s.blocked_rdev)) {
		if (s.syncing || s.expanding || s.expanded ||
3374
		    s.replacing || s.to_write || s.written) {
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
			set_bit(STRIPE_HANDLE, &sh->state);
			goto finish;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(s.blocked_rdev, conf->mddev);
		s.blocked_rdev = NULL;
	}

	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

	pr_debug("locked=%d uptodate=%d to_read=%d"
	       " to_write=%d failed=%d failed_num=%d,%d\n",
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       s.failed_num[0], s.failed_num[1]);
	/* check if the array has lost more than max_degraded devices and,
	 * if so, some requests might need to be failed.
	 */
3395 3396 3397 3398 3399
	if (s.failed > conf->max_degraded) {
		sh->check_state = 0;
		sh->reconstruct_state = 0;
		if (s.to_read+s.to_write+s.written)
			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3400
		if (s.syncing + s.replacing)
3401 3402
			handle_failed_sync(conf, sh, &s);
	}
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[sh->pd_idx];
	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
	qdev = &sh->dev[sh->qd_idx];
	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
		|| conf->level < 6;

	if (s.written &&
	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
			     && !test_bit(R5_LOCKED, &pdev->flags)
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
			     && !test_bit(R5_LOCKED, &qdev->flags)
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
	if (s.to_read || s.non_overwrite
	    || (conf->level == 6 && s.to_write && s.failed)
3431 3432 3433
	    || (s.syncing && (s.uptodate + s.compute < disks))
	    || s.replacing
	    || s.expanding)
3434 3435
		handle_stripe_fill(sh, &s, disks);

3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	prexor = 0;
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
		prexor = 1;
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
		sh->reconstruct_state = reconstruct_state_idle;

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(sh->qd_idx >= 0 &&
		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || i == sh->qd_idx ||
				 dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
				if (prexor)
					continue;
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
				     s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			s.dec_preread_active = 1;
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying(conf, sh, &s, disks);

	/* maybe we need to check and possibly fix the parity for this stripe
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
	 */
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state))) {
		if (conf->level == 6)
			handle_parity_checks6(conf, sh, &s, disks);
		else
			handle_parity_checks5(conf, sh, &s, disks);
	}
3494

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
	if (s.replacing && s.locked == 0
	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
		/* Write out to replacement devices where possible */
		for (i = 0; i < conf->raid_disks; i++)
			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
				set_bit(R5_WantReplace, &sh->dev[i].flags);
				set_bit(R5_LOCKED, &sh->dev[i].flags);
				s.locked++;
			}
		set_bit(STRIPE_INSYNC, &sh->state);
	}
	if ((s.syncing || s.replacing) && s.locked == 0 &&
	    test_bit(STRIPE_INSYNC, &sh->state)) {
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			struct r5dev *dev = &sh->dev[s.failed_num[i]];
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				}
			}
		}


3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		struct stripe_head *sh_src
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
			/* sh cannot be written until sh_src has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh_src->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh_src);
			goto finish;
		}
		if (sh_src)
			release_stripe(sh_src);

		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}
3565

3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		stripe_set_idx(sh->sector, conf, 0, sh);
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
		handle_stripe_expansion(conf, sh);
3582

3583
finish:
3584
	/* wait for this device to become unblocked */
3585
	if (conf->mddev->external && unlikely(s.blocked_rdev))
3586
		md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3587

3588 3589
	if (s.handle_bad_blocks)
		for (i = disks; i--; ) {
3590
			struct md_rdev *rdev;
3591 3592 3593 3594 3595 3596 3597 3598 3599
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
				/* We own a safe reference to the rdev */
				rdev = conf->disks[i].rdev;
				if (!rdev_set_badblocks(rdev, sh->sector,
							STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
3600 3601 3602
			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
				rdev = conf->disks[i].rdev;
				rdev_clear_badblocks(rdev, sh->sector,
3603
						     STRIPE_SECTORS, 0);
3604 3605
				rdev_dec_pending(rdev, conf->mddev);
			}
3606 3607
			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
				rdev = conf->disks[i].replacement;
3608 3609 3610
				if (!rdev)
					/* rdev have been moved down */
					rdev = conf->disks[i].rdev;
3611
				rdev_clear_badblocks(rdev, sh->sector,
3612
						     STRIPE_SECTORS, 0);
3613 3614
				rdev_dec_pending(rdev, conf->mddev);
			}
3615 3616
		}

3617 3618 3619
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3620
	ops_run_io(sh, &s);
3621

3622
	if (s.dec_preread_active) {
3623
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3624
		 * is waiting on a flush, it won't continue until the writes
3625 3626 3627 3628 3629 3630 3631 3632
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

3633
	return_io(s.return_bi);
3634

3635
	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3636 3637
}

3638
static void raid5_activate_delayed(struct r5conf *conf)
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3649
			list_add_tail(&sh->lru, &conf->hold_list);
3650
		}
N
NeilBrown 已提交
3651
	}
3652 3653
}

3654
static void activate_bit_delay(struct r5conf *conf)
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

3668
int md_raid5_congested(struct mddev *mddev, int bits)
3669
{
3670
	struct r5conf *conf = mddev->private;
3671 3672 3673 3674

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3675

3676 3677 3678 3679 3680 3681 3682 3683 3684
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3685 3686 3687 3688
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
3689
	struct mddev *mddev = data;
N
NeilBrown 已提交
3690 3691 3692 3693

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3694

3695 3696 3697
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3698 3699 3700
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3701
{
3702
	struct mddev *mddev = q->queuedata;
3703
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3704
	int max;
3705
	unsigned int chunk_sectors = mddev->chunk_sectors;
3706
	unsigned int bio_sectors = bvm->bi_size >> 9;
3707

3708
	if ((bvm->bi_rw & 1) == WRITE)
3709 3710
		return biovec->bv_len; /* always allow writes to be mergeable */

3711 3712
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3713 3714 3715 3716 3717 3718 3719 3720
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3721

3722
static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3723 3724
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3725
	unsigned int chunk_sectors = mddev->chunk_sectors;
3726 3727
	unsigned int bio_sectors = bio->bi_size >> 9;

3728 3729
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3730 3731 3732 3733
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3734 3735 3736 3737
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
3738
static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


3752
static struct bio *remove_bio_from_retry(struct r5conf *conf)
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3763
		conf->retry_read_aligned_list = bi->bi_next;
3764
		bi->bi_next = NULL;
3765 3766 3767 3768
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3769 3770 3771 3772 3773 3774 3775
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3776 3777 3778 3779 3780 3781
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3782
static void raid5_align_endio(struct bio *bi, int error)
3783 3784
{
	struct bio* raid_bi  = bi->bi_private;
3785
	struct mddev *mddev;
3786
	struct r5conf *conf;
3787
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3788
	struct md_rdev *rdev;
3789

3790
	bio_put(bi);
3791 3792 3793

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3794 3795
	mddev = rdev->mddev;
	conf = mddev->private;
3796 3797 3798 3799

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3800
		bio_endio(raid_bi, 0);
3801 3802
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3803
		return;
3804 3805 3806
	}


3807
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3808 3809

	add_bio_to_retry(raid_bi, conf);
3810 3811
}

3812 3813
static int bio_fits_rdev(struct bio *bi)
{
3814
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3815

3816
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3817 3818
		return 0;
	blk_recount_segments(q, bi);
3819
	if (bi->bi_phys_segments > queue_max_segments(q))
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3832
static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3833
{
3834
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
3835
	int dd_idx;
3836
	struct bio* align_bi;
3837
	struct md_rdev *rdev;
3838
	sector_t end_sector;
3839 3840

	if (!in_chunk_boundary(mddev, raid_bio)) {
3841
		pr_debug("chunk_aligned_read : non aligned\n");
3842 3843 3844
		return 0;
	}
	/*
3845
	 * use bio_clone_mddev to make a copy of the bio
3846
	 */
3847
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3859 3860
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3861
						    &dd_idx, NULL);
3862

3863
	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3864
	rcu_read_lock();
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
	if (!rdev || test_bit(Faulty, &rdev->flags) ||
	    rdev->recovery_offset < end_sector) {
		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
		if (rdev &&
		    (test_bit(Faulty, &rdev->flags) ||
		    !(test_bit(In_sync, &rdev->flags) ||
		      rdev->recovery_offset >= end_sector)))
			rdev = NULL;
	}
	if (rdev) {
3876 3877 3878
		sector_t first_bad;
		int bad_sectors;

3879 3880
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3881 3882 3883 3884
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);

3885 3886 3887 3888
		if (!bio_fits_rdev(align_bi) ||
		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
				&first_bad, &bad_sectors)) {
			/* too big in some way, or has a known bad block */
3889 3890 3891 3892 3893
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3894 3895 3896
		/* No reshape active, so we can trust rdev->data_offset */
		align_bi->bi_sector += rdev->data_offset;

3897 3898 3899 3900 3901 3902 3903
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3904 3905 3906 3907
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3908
		bio_put(align_bi);
3909 3910 3911 3912
		return 0;
	}
}

3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
3923
static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3965

3966
static void make_request(struct mddev *mddev, struct bio * bi)
L
Linus Torvalds 已提交
3967
{
3968
	struct r5conf *conf = mddev->private;
3969
	int dd_idx;
L
Linus Torvalds 已提交
3970 3971 3972
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3973
	const int rw = bio_data_dir(bi);
3974
	int remaining;
3975
	int plugged;
L
Linus Torvalds 已提交
3976

T
Tejun Heo 已提交
3977 3978
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
3979
		return;
3980 3981
	}

3982
	md_write_start(mddev, bi);
3983

3984
	if (rw == READ &&
3985
	     mddev->reshape_position == MaxSector &&
3986
	     chunk_aligned_read(mddev,bi))
3987
		return;
3988

L
Linus Torvalds 已提交
3989 3990 3991 3992
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3993

3994
	plugged = mddev_check_plugged(mddev);
L
Linus Torvalds 已提交
3995 3996
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3997
		int previous;
3998

3999
	retry:
4000
		previous = 0;
4001
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4002
		if (unlikely(conf->reshape_progress != MaxSector)) {
4003
			/* spinlock is needed as reshape_progress may be
4004 4005
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
4006
			 * Of course reshape_progress could change after
4007 4008 4009 4010
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
4011
			spin_lock_irq(&conf->device_lock);
4012
			if (mddev->reshape_backwards
4013 4014
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
4015 4016
				previous = 1;
			} else {
4017
				if (mddev->reshape_backwards
4018 4019
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
4020 4021 4022 4023 4024
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
4025 4026
			spin_unlock_irq(&conf->device_lock);
		}
4027

4028 4029
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
4030
						  &dd_idx, NULL);
4031
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
4032 4033 4034
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

4035
		sh = get_active_stripe(conf, new_sector, previous,
4036
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
4037
		if (sh) {
4038
			if (unlikely(previous)) {
4039
				/* expansion might have moved on while waiting for a
4040 4041 4042 4043 4044 4045
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
4046 4047 4048
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
4049
				if (mddev->reshape_backwards
4050 4051
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
4052 4053 4054 4055 4056
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
4057
					schedule();
4058 4059 4060
					goto retry;
				}
			}
4061

4062
			if (rw == WRITE &&
4063
			    logical_sector >= mddev->suspend_lo &&
4064 4065
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
4076 4077
				goto retry;
			}
4078 4079

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4080
			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4081 4082
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
4083 4084
				 * and wait a while
				 */
N
NeilBrown 已提交
4085
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
4086 4087 4088 4089 4090
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
4091 4092
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
T
Tejun Heo 已提交
4093
			if ((bi->bi_rw & REQ_SYNC) &&
4094 4095
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
L
Linus Torvalds 已提交
4096 4097 4098 4099 4100 4101 4102 4103 4104
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
4105 4106 4107
	if (!plugged)
		md_wakeup_thread(mddev->thread);

L
Linus Torvalds 已提交
4108
	spin_lock_irq(&conf->device_lock);
4109
	remaining = raid5_dec_bi_phys_segments(bi);
4110 4111
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
4112

4113
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4114
			md_write_end(mddev);
4115

4116
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4117 4118 4119
	}
}

4120
static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
D
Dan Williams 已提交
4121

4122
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4123
{
4124 4125 4126 4127 4128 4129 4130 4131 4132
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4133
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
4134
	struct stripe_head *sh;
4135
	sector_t first_sector, last_sector;
4136 4137 4138
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4139 4140
	int i;
	int dd_idx;
4141
	sector_t writepos, readpos, safepos;
4142
	sector_t stripe_addr;
4143
	int reshape_sectors;
4144
	struct list_head stripes;
4145

4146 4147
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
4148
		if (mddev->reshape_backwards &&
4149 4150 4151
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4152
		} else if (!mddev->reshape_backwards &&
4153 4154
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4155
		sector_div(sector_nr, new_data_disks);
4156
		if (sector_nr) {
4157 4158
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4159 4160 4161
			*skipped = 1;
			return sector_nr;
		}
4162 4163
	}

4164 4165 4166 4167
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4168 4169
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4170
	else
4171
		reshape_sectors = mddev->chunk_sectors;
4172

4173 4174 4175 4176 4177
	/* We update the metadata at least every 10 seconds, or when
	 * the data about to be copied would over-write the source of
	 * the data at the front of the range.  i.e. one new_stripe
	 * along from reshape_progress new_maps to after where
	 * reshape_safe old_maps to
4178
	 */
4179
	writepos = conf->reshape_progress;
4180
	sector_div(writepos, new_data_disks);
4181 4182
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4183
	safepos = conf->reshape_safe;
4184
	sector_div(safepos, data_disks);
4185
	if (mddev->reshape_backwards) {
4186
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4187
		readpos += reshape_sectors;
4188
		safepos += reshape_sectors;
4189
	} else {
4190
		writepos += reshape_sectors;
4191 4192
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4193
	}
4194

4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
	/* Having calculated the 'writepos' possibly use it
	 * to set 'stripe_addr' which is where we will write to.
	 */
	if (mddev->reshape_backwards) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
		       != sector_nr);
	} else {
		BUG_ON(writepos != sector_nr + reshape_sectors);
		stripe_addr = sector_nr;
	}

4210 4211 4212 4213
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
4214 4215 4216 4217
	 * If there is a min_offset_diff, these are adjusted either by
	 * increasing the safepos/readpos if diff is negative, or
	 * increasing writepos if diff is positive.
	 * If 'readpos' is then behind 'writepos', there is no way that we can
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4230 4231 4232 4233 4234 4235
	if (conf->min_offset_diff < 0) {
		safepos += -conf->min_offset_diff;
		readpos += -conf->min_offset_diff;
	} else
		writepos += conf->min_offset_diff;

4236
	if ((mddev->reshape_backwards
4237 4238 4239
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4240 4241 4242
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4243
		mddev->reshape_position = conf->reshape_progress;
4244
		mddev->curr_resync_completed = sector_nr;
4245
		conf->reshape_checkpoint = jiffies;
4246
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4247
		md_wakeup_thread(mddev->thread);
4248
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4249 4250
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4251
		conf->reshape_safe = mddev->reshape_position;
4252 4253
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4254
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4255 4256
	}

4257
	INIT_LIST_HEAD(&stripes);
4258
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4259
		int j;
4260
		int skipped_disk = 0;
4261
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4262 4263 4264 4265 4266 4267 4268 4269 4270
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4271
			if (conf->level == 6 &&
4272
			    j == sh->qd_idx)
4273
				continue;
4274
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4275
			if (s < raid5_size(mddev, 0, 0)) {
4276
				skipped_disk = 1;
4277 4278 4279 4280 4281 4282
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4283
		if (!skipped_disk) {
4284 4285 4286
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4287
		list_add(&sh->lru, &stripes);
4288 4289
	}
	spin_lock_irq(&conf->device_lock);
4290
	if (mddev->reshape_backwards)
4291
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4292
	else
4293
		conf->reshape_progress += reshape_sectors * new_data_disks;
4294 4295 4296 4297 4298 4299 4300
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4301
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4302
				     1, &dd_idx, NULL);
4303
	last_sector =
4304
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4305
					    * new_data_disks - 1),
4306
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4307 4308
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4309
	while (first_sector <= last_sector) {
4310
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4311 4312 4313 4314 4315
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4316 4317 4318 4319 4320 4321 4322 4323
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4324 4325 4326
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4327
	sector_nr += reshape_sectors;
4328 4329
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4330 4331 4332
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4333
		mddev->reshape_position = conf->reshape_progress;
4334
		mddev->curr_resync_completed = sector_nr;
4335
		conf->reshape_checkpoint = jiffies;
4336 4337 4338 4339 4340 4341
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4342
		conf->reshape_safe = mddev->reshape_position;
4343 4344
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4345
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4346
	}
4347
	return reshape_sectors;
4348 4349 4350
}

/* FIXME go_faster isn't used */
4351
static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4352
{
4353
	struct r5conf *conf = mddev->private;
4354
	struct stripe_head *sh;
A
Andre Noll 已提交
4355
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
4356
	sector_t sync_blocks;
4357 4358
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4359

4360
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4361
		/* just being told to finish up .. nothing much to do */
4362

4363 4364 4365 4366
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4367 4368 4369 4370

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4371
		else /* completed sync */
4372 4373 4374
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4375 4376
		return 0;
	}
4377

4378 4379 4380
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4381 4382
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4383

4384 4385 4386 4387 4388 4389
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4390
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4391 4392 4393
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4394
	if (mddev->degraded >= conf->max_degraded &&
4395
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4396
		sector_t rv = mddev->dev_sectors - sector_nr;
4397
		*skipped = 1;
L
Linus Torvalds 已提交
4398 4399
		return rv;
	}
4400
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4401
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4402 4403 4404 4405 4406 4407
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4408

N
NeilBrown 已提交
4409 4410
	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4411
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4412
	if (sh == NULL) {
4413
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4414
		/* make sure we don't swamp the stripe cache if someone else
4415
		 * is trying to get access
L
Linus Torvalds 已提交
4416
		 */
4417
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4418
	}
4419 4420 4421 4422
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4423
	for (i = 0; i < conf->raid_disks; i++)
4424 4425 4426 4427 4428
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

4429
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
L
Linus Torvalds 已提交
4430

4431
	handle_stripe(sh);
L
Linus Torvalds 已提交
4432 4433 4434 4435 4436
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4437
static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4450
	int dd_idx;
4451 4452 4453 4454 4455 4456
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4457
	sector = raid5_compute_sector(conf, logical_sector,
4458
				      0, &dd_idx, NULL);
4459 4460 4461
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4462 4463 4464
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4465

4466
		if (scnt < raid5_bi_hw_segments(raid_bio))
4467 4468 4469
			/* already done this stripe */
			continue;

4470
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4471 4472 4473

		if (!sh) {
			/* failed to get a stripe - must wait */
4474
			raid5_set_bi_hw_segments(raid_bio, scnt);
4475 4476 4477 4478
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4479 4480
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4481
			raid5_set_bi_hw_segments(raid_bio, scnt);
4482 4483 4484 4485
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4486
		handle_stripe(sh);
4487 4488 4489 4490
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4491
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4492
	spin_unlock_irq(&conf->device_lock);
4493 4494
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4495 4496 4497 4498 4499 4500
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4501 4502 4503 4504 4505 4506 4507
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4508
static void raid5d(struct mddev *mddev)
L
Linus Torvalds 已提交
4509 4510
{
	struct stripe_head *sh;
4511
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
4512
	int handled;
4513
	struct blk_plug plug;
L
Linus Torvalds 已提交
4514

4515
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4516 4517 4518

	md_check_recovery(mddev);

4519
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
4520 4521 4522
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4523
		struct bio *bio;
L
Linus Torvalds 已提交
4524

4525 4526 4527 4528
		if (atomic_read(&mddev->plug_cnt) == 0 &&
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
4529
			spin_unlock_irq(&conf->device_lock);
4530
			bitmap_unplug(mddev->bitmap);
4531
			spin_lock_irq(&conf->device_lock);
4532
			conf->seq_write = conf->seq_flush;
4533 4534
			activate_bit_delay(conf);
		}
4535 4536
		if (atomic_read(&mddev->plug_cnt) == 0)
			raid5_activate_delayed(conf);
4537

4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4548 4549
		sh = __get_priority_stripe(conf);

4550
		if (!sh)
L
Linus Torvalds 已提交
4551 4552 4553 4554
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4555 4556 4557
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4558

4559 4560 4561
		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
			md_check_recovery(mddev);

L
Linus Torvalds 已提交
4562 4563
		spin_lock_irq(&conf->device_lock);
	}
4564
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4565 4566 4567

	spin_unlock_irq(&conf->device_lock);

4568
	async_tx_issue_pending_all();
4569
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
4570

4571
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4572 4573
}

4574
static ssize_t
4575
raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4576
{
4577
	struct r5conf *conf = mddev->private;
4578 4579 4580 4581
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4582 4583
}

4584
int
4585
raid5_set_cache_size(struct mddev *mddev, int size)
4586
{
4587
	struct r5conf *conf = mddev->private;
4588 4589
	int err;

4590
	if (size <= 16 || size > 32768)
4591
		return -EINVAL;
4592
	while (size < conf->max_nr_stripes) {
4593 4594 4595 4596 4597
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4598 4599 4600
	err = md_allow_write(mddev);
	if (err)
		return err;
4601
	while (size > conf->max_nr_stripes) {
4602 4603 4604 4605
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4606 4607 4608 4609 4610
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
4611
raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4612
{
4613
	struct r5conf *conf = mddev->private;
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4627 4628
	return len;
}
4629

4630 4631 4632 4633
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4634

4635
static ssize_t
4636
raid5_show_preread_threshold(struct mddev *mddev, char *page)
4637
{
4638
	struct r5conf *conf = mddev->private;
4639 4640 4641 4642 4643 4644 4645
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
4646
raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4647
{
4648
	struct r5conf *conf = mddev->private;
4649
	unsigned long new;
4650 4651 4652 4653 4654
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4655
	if (strict_strtoul(page, 10, &new))
4656
		return -EINVAL;
4657
	if (new > conf->max_nr_stripes)
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4669
static ssize_t
4670
stripe_cache_active_show(struct mddev *mddev, char *page)
4671
{
4672
	struct r5conf *conf = mddev->private;
4673 4674 4675 4676
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4677 4678
}

4679 4680
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4681

4682
static struct attribute *raid5_attrs[] =  {
4683 4684
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4685
	&raid5_preread_bypass_threshold.attr,
4686 4687
	NULL,
};
4688 4689 4690
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4691 4692
};

4693
static sector_t
4694
raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4695
{
4696
	struct r5conf *conf = mddev->private;
4697 4698 4699

	if (!sectors)
		sectors = mddev->dev_sectors;
4700
	if (!raid_disks)
4701
		/* size is defined by the smallest of previous and new size */
4702
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4703

4704
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4705
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4706 4707 4708
	return sectors * (raid_disks - conf->max_degraded);
}

4709
static void raid5_free_percpu(struct r5conf *conf)
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4721
		kfree(percpu->scribble);
4722 4723 4724 4725 4726 4727 4728 4729 4730
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4731
static void free_conf(struct r5conf *conf)
4732 4733
{
	shrink_stripes(conf);
4734
	raid5_free_percpu(conf);
4735 4736 4737 4738 4739
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4740 4741 4742 4743
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
4744
	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4745 4746 4747 4748 4749 4750
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4751
		if (conf->level == 6 && !percpu->spare_page)
4752
			percpu->spare_page = alloc_page(GFP_KERNEL);
4753 4754 4755 4756 4757 4758 4759
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4760 4761
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
4762
			return notifier_from_errno(-ENOMEM);
4763 4764 4765 4766 4767
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4768
		kfree(percpu->scribble);
4769
		percpu->spare_page = NULL;
4770
		percpu->scribble = NULL;
4771 4772 4773 4774 4775 4776 4777 4778
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

4779
static int raid5_alloc_percpu(struct r5conf *conf)
4780 4781 4782
{
	unsigned long cpu;
	struct page *spare_page;
4783
	struct raid5_percpu __percpu *allcpus;
4784
	void *scribble;
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4795 4796 4797 4798 4799 4800 4801 4802
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4803
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4804
		if (!scribble) {
4805 4806 4807
			err = -ENOMEM;
			break;
		}
4808
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

4821
static struct r5conf *setup_conf(struct mddev *mddev)
L
Linus Torvalds 已提交
4822
{
4823
	struct r5conf *conf;
4824
	int raid_disk, memory, max_disks;
4825
	struct md_rdev *rdev;
L
Linus Torvalds 已提交
4826 4827
	struct disk_info *disk;

N
NeilBrown 已提交
4828 4829 4830
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4831
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4832 4833
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4834
	}
N
NeilBrown 已提交
4835 4836 4837 4838
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4839
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4840 4841
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4842
	}
N
NeilBrown 已提交
4843
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4844
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4845 4846
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4847 4848
	}

4849 4850 4851
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4852 4853
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4854
		return ERR_PTR(-EINVAL);
4855 4856
	}

4857
	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
N
NeilBrown 已提交
4858
	if (conf == NULL)
L
Linus Torvalds 已提交
4859
		goto abort;
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
4872
	conf->recovery_disabled = mddev->recovery_disabled - 1;
N
NeilBrown 已提交
4873 4874 4875 4876 4877

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4878
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4879 4880
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4881

4882
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4883 4884 4885
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4886

L
Linus Torvalds 已提交
4887 4888
	conf->mddev = mddev;

4889
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4890 4891
		goto abort;

4892 4893 4894 4895
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4896
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4897

N
NeilBrown 已提交
4898
	rdev_for_each(rdev, mddev) {
L
Linus Torvalds 已提交
4899
		raid_disk = rdev->raid_disk;
4900
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4901 4902 4903 4904
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

4905 4906 4907 4908 4909 4910 4911 4912 4913
		if (test_bit(Replacement, &rdev->flags)) {
			if (disk->replacement)
				goto abort;
			disk->replacement = rdev;
		} else {
			if (disk->rdev)
				goto abort;
			disk->rdev = rdev;
		}
L
Linus Torvalds 已提交
4914

4915
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4916
			char b[BDEVNAME_SIZE];
4917 4918 4919
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
4920
		} else if (rdev->saved_raid_disk != raid_disk)
4921 4922
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4923 4924
	}

4925
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4926
	conf->level = mddev->new_level;
4927 4928 4929 4930
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4931
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4932
	conf->max_nr_stripes = NR_STRIPES;
4933
	conf->reshape_progress = mddev->reshape_position;
4934
	if (conf->reshape_progress != MaxSector) {
4935
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4936 4937
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4938

N
NeilBrown 已提交
4939
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4940
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4941 4942
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4943 4944
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4945 4946
		goto abort;
	} else
4947 4948
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4949

4950
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4951 4952
	if (!conf->thread) {
		printk(KERN_ERR
4953
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4954
		       mdname(mddev));
4955 4956
		goto abort;
	}
N
NeilBrown 已提交
4957 4958 4959 4960 4961

	return conf;

 abort:
	if (conf) {
4962
		free_conf(conf);
N
NeilBrown 已提交
4963 4964 4965 4966 4967
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

4995
static int run(struct mddev *mddev)
N
NeilBrown 已提交
4996
{
4997
	struct r5conf *conf;
4998
	int working_disks = 0;
4999
	int dirty_parity_disks = 0;
5000
	struct md_rdev *rdev;
5001
	sector_t reshape_offset = 0;
5002
	int i;
5003 5004
	long long min_offset_diff = 0;
	int first = 1;
N
NeilBrown 已提交
5005

5006
	if (mddev->recovery_cp != MaxSector)
5007
		printk(KERN_NOTICE "md/raid:%s: not clean"
5008 5009
		       " -- starting background reconstruction\n",
		       mdname(mddev));
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026

	rdev_for_each(rdev, mddev) {
		long long diff;
		if (rdev->raid_disk < 0)
			continue;
		diff = (rdev->new_data_offset - rdev->data_offset);
		if (first) {
			min_offset_diff = diff;
			first = 0;
		} else if (mddev->reshape_backwards &&
			 diff < min_offset_diff)
			min_offset_diff = diff;
		else if (!mddev->reshape_backwards &&
			 diff > min_offset_diff)
			min_offset_diff = diff;
	}

N
NeilBrown 已提交
5027 5028
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
		 * Difficulties arise if the stripe we would write to
		 * next is at or after the stripe we would read from next.
		 * For a reshape that changes the number of devices, this
		 * is only possible for a very short time, and mdadm makes
		 * sure that time appears to have past before assembling
		 * the array.  So we fail if that time hasn't passed.
		 * For a reshape that keeps the number of devices the same
		 * mdadm must be monitoring the reshape can keeping the
		 * critical areas read-only and backed up.  It will start
		 * the array in read-only mode, so we check for that.
N
NeilBrown 已提交
5039 5040 5041
		 */
		sector_t here_new, here_old;
		int old_disks;
5042
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
5043

5044
		if (mddev->new_level != mddev->level) {
5045
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
5056
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
5057
			       (mddev->raid_disks - max_degraded))) {
5058 5059
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
5060 5061
			return -EINVAL;
		}
5062
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
5063 5064
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
5065
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
5066 5067 5068
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
5069
		if (mddev->delta_disks == 0) {
5070 5071 5072 5073 5074 5075
			if ((here_new * mddev->new_chunk_sectors !=
			     here_old * mddev->chunk_sectors)) {
				printk(KERN_ERR "md/raid:%s: reshape position is"
				       " confused - aborting\n", mdname(mddev));
				return -EINVAL;
			}
5076
			/* We cannot be sure it is safe to start an in-place
5077
			 * reshape.  It is only safe if user-space is monitoring
5078 5079 5080 5081 5082
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
5083 5084 5085 5086 5087 5088 5089
			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
				/* not really in-place - so OK */;
			else if (mddev->ro == 0) {
				printk(KERN_ERR "md/raid:%s: in-place reshape "
				       "must be started in read-only mode "
				       "- aborting\n",
5090
				       mdname(mddev));
5091 5092
				return -EINVAL;
			}
5093
		} else if (mddev->reshape_backwards
5094
		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5095 5096
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
5097
		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
N
NeilBrown 已提交
5098
			/* Reading from the same stripe as writing to - bad */
5099 5100 5101
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
5102 5103
			return -EINVAL;
		}
5104 5105
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
5106 5107 5108 5109
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
5110
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
5111
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
5112
	}
N
NeilBrown 已提交
5113

5114 5115 5116 5117 5118
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
5119 5120 5121
	if (IS_ERR(conf))
		return PTR_ERR(conf);

5122
	conf->min_offset_diff = min_offset_diff;
N
NeilBrown 已提交
5123 5124 5125 5126
	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
	     i++) {
		rdev = conf->disks[i].rdev;
		if (!rdev && conf->disks[i].replacement) {
			/* The replacement is all we have yet */
			rdev = conf->disks[i].replacement;
			conf->disks[i].replacement = NULL;
			clear_bit(Replacement, &rdev->flags);
			conf->disks[i].rdev = rdev;
		}
		if (!rdev)
5138
			continue;
5139 5140 5141 5142 5143 5144 5145
		if (conf->disks[i].replacement &&
		    conf->reshape_progress != MaxSector) {
			/* replacements and reshape simply do not mix. */
			printk(KERN_ERR "md: cannot handle concurrent "
			       "replacement and reshape.\n");
			goto abort;
		}
5146
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
5147
			working_disks++;
5148 5149
			continue;
		}
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
5178

5179 5180 5181
	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
5182
	mddev->degraded = calc_degraded(conf);
N
NeilBrown 已提交
5183

5184
	if (has_failed(conf)) {
5185
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
5186
			" (%d/%d failed)\n",
5187
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
5188 5189 5190
		goto abort;
	}

N
NeilBrown 已提交
5191
	/* device size must be a multiple of chunk size */
5192
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
5193 5194
	mddev->resync_max_sectors = mddev->dev_sectors;

5195
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
5196
	    mddev->recovery_cp != MaxSector) {
5197 5198
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
5199 5200
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
5201 5202 5203
			       mdname(mddev));
		else {
			printk(KERN_ERR
5204
			       "md/raid:%s: cannot start dirty degraded array.\n",
5205 5206 5207
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
5208 5209 5210
	}

	if (mddev->degraded == 0)
5211 5212
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5213 5214
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
5215
	else
5216 5217 5218 5219 5220
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
5221 5222 5223

	print_raid5_conf(conf);

5224 5225
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
5226 5227 5228 5229 5230 5231
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5232
							"reshape");
5233 5234
	}

L
Linus Torvalds 已提交
5235 5236

	/* Ok, everything is just fine now */
5237 5238
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
5239 5240
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5241
		printk(KERN_WARNING
5242
		       "raid5: failed to create sysfs attributes for %s\n",
5243
		       mdname(mddev));
5244
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5245

5246
	if (mddev->queue) {
5247
		int chunk_size;
5248 5249 5250 5251 5252 5253 5254 5255 5256
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
5257

5258
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5259

N
NeilBrown 已提交
5260 5261
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5262

5263 5264 5265 5266
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
5267

5268
		rdev_for_each(rdev, mddev) {
5269 5270
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
5271 5272 5273
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->new_data_offset << 9);
		}
5274
	}
5275

L
Linus Torvalds 已提交
5276 5277
	return 0;
abort:
5278
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
5279 5280
	print_raid5_conf(conf);
	free_conf(conf);
L
Linus Torvalds 已提交
5281
	mddev->private = NULL;
5282
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
5283 5284 5285
	return -EIO;
}

5286
static int stop(struct mddev *mddev)
L
Linus Torvalds 已提交
5287
{
5288
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5289

5290
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
5291 5292
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
5293
	free_conf(conf);
5294 5295
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5296 5297 5298
	return 0;
}

5299
static void status(struct seq_file *seq, struct mddev *mddev)
L
Linus Torvalds 已提交
5300
{
5301
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5302 5303
	int i;

5304 5305
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5306
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5307 5308 5309
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5310
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5311 5312 5313
	seq_printf (seq, "]");
}

5314
static void print_raid5_conf (struct r5conf *conf)
L
Linus Torvalds 已提交
5315 5316 5317 5318
{
	int i;
	struct disk_info *tmp;

5319
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
5320 5321 5322 5323
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5324 5325 5326
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5327 5328 5329 5330 5331

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
5332 5333 5334
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
5335 5336 5337
	}
}

5338
static int raid5_spare_active(struct mddev *mddev)
L
Linus Torvalds 已提交
5339 5340
{
	int i;
5341
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5342
	struct disk_info *tmp;
5343 5344
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
5345 5346 5347

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
		if (tmp->replacement
		    && tmp->replacement->recovery_offset == MaxSector
		    && !test_bit(Faulty, &tmp->replacement->flags)
		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
			/* Replacement has just become active. */
			if (!tmp->rdev
			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
				count++;
			if (tmp->rdev) {
				/* Replaced device not technically faulty,
				 * but we need to be sure it gets removed
				 * and never re-added.
				 */
				set_bit(Faulty, &tmp->rdev->flags);
				sysfs_notify_dirent_safe(
					tmp->rdev->sysfs_state);
			}
			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
		} else if (tmp->rdev
5367
		    && tmp->rdev->recovery_offset == MaxSector
5368
		    && !test_bit(Faulty, &tmp->rdev->flags)
5369
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5370
			count++;
5371
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
5372 5373
		}
	}
5374
	spin_lock_irqsave(&conf->device_lock, flags);
5375
	mddev->degraded = calc_degraded(conf);
5376
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5377
	print_raid5_conf(conf);
5378
	return count;
L
Linus Torvalds 已提交
5379 5380
}

5381
static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
5382
{
5383
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5384
	int err = 0;
5385
	int number = rdev->raid_disk;
5386
	struct md_rdev **rdevp;
L
Linus Torvalds 已提交
5387 5388 5389
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
	if (rdev == p->rdev)
		rdevp = &p->rdev;
	else if (rdev == p->replacement)
		rdevp = &p->replacement;
	else
		return 0;

	if (number >= conf->raid_disks &&
	    conf->reshape_progress == MaxSector)
		clear_bit(In_sync, &rdev->flags);

	if (test_bit(In_sync, &rdev->flags) ||
	    atomic_read(&rdev->nr_pending)) {
		err = -EBUSY;
		goto abort;
	}
	/* Only remove non-faulty devices if recovery
	 * isn't possible.
	 */
	if (!test_bit(Faulty, &rdev->flags) &&
	    mddev->recovery_disabled != conf->recovery_disabled &&
	    !has_failed(conf) &&
5412
	    (!p->replacement || p->replacement == rdev) &&
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
	    number < conf->raid_disks) {
		err = -EBUSY;
		goto abort;
	}
	*rdevp = NULL;
	synchronize_rcu();
	if (atomic_read(&rdev->nr_pending)) {
		/* lost the race, try later */
		err = -EBUSY;
		*rdevp = rdev;
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
	} else if (p->replacement) {
		/* We must have just cleared 'rdev' */
		p->rdev = p->replacement;
		clear_bit(Replacement, &p->replacement->flags);
		smp_mb(); /* Make sure other CPUs may see both as identical
			   * but will never see neither - if they are careful
			   */
		p->replacement = NULL;
		clear_bit(WantReplacement, &rdev->flags);
	} else
		/* We might have just removed the Replacement as faulty-
		 * clear the bit just in case
		 */
		clear_bit(WantReplacement, &rdev->flags);
L
Linus Torvalds 已提交
5437 5438 5439 5440 5441 5442
abort:

	print_raid5_conf(conf);
	return err;
}

5443
static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
5444
{
5445
	struct r5conf *conf = mddev->private;
5446
	int err = -EEXIST;
L
Linus Torvalds 已提交
5447 5448
	int disk;
	struct disk_info *p;
5449 5450
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5451

5452 5453 5454
	if (mddev->recovery_disabled == conf->recovery_disabled)
		return -EBUSY;

N
NeilBrown 已提交
5455
	if (rdev->saved_raid_disk < 0 && has_failed(conf))
L
Linus Torvalds 已提交
5456
		/* no point adding a device */
5457
		return -EINVAL;
L
Linus Torvalds 已提交
5458

5459 5460
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5461 5462

	/*
5463 5464
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5465
	 */
5466
	if (rdev->saved_raid_disk >= 0 &&
5467
	    rdev->saved_raid_disk >= first &&
5468
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5469 5470 5471
		first = rdev->saved_raid_disk;

	for (disk = first; disk <= last; disk++) {
5472 5473
		p = conf->disks + disk;
		if (p->rdev == NULL) {
5474
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5475
			rdev->raid_disk = disk;
5476
			err = 0;
5477 5478
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5479
			rcu_assign_pointer(p->rdev, rdev);
5480
			goto out;
L
Linus Torvalds 已提交
5481
		}
5482 5483 5484
	}
	for (disk = first; disk <= last; disk++) {
		p = conf->disks + disk;
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
		if (test_bit(WantReplacement, &p->rdev->flags) &&
		    p->replacement == NULL) {
			clear_bit(In_sync, &rdev->flags);
			set_bit(Replacement, &rdev->flags);
			rdev->raid_disk = disk;
			err = 0;
			conf->fullsync = 1;
			rcu_assign_pointer(p->replacement, rdev);
			break;
		}
	}
5496
out:
L
Linus Torvalds 已提交
5497
	print_raid5_conf(conf);
5498
	return err;
L
Linus Torvalds 已提交
5499 5500
}

5501
static int raid5_resize(struct mddev *mddev, sector_t sectors)
L
Linus Torvalds 已提交
5502 5503 5504 5505 5506 5507 5508 5509
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5510
	sector_t newsize;
5511
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5512 5513 5514
	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
	if (mddev->external_size &&
	    mddev->array_sectors > newsize)
D
Dan Williams 已提交
5515
		return -EINVAL;
5516 5517 5518 5519 5520 5521
	if (mddev->bitmap) {
		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
		if (ret)
			return ret;
	}
	md_set_array_sectors(mddev, newsize);
5522
	set_capacity(mddev->gendisk, mddev->array_sectors);
5523
	revalidate_disk(mddev->gendisk);
5524 5525
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
5526
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5527 5528
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5529
	mddev->dev_sectors = sectors;
5530
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5531 5532 5533
	return 0;
}

5534
static int check_stripe_cache(struct mddev *mddev)
5535 5536 5537 5538 5539 5540 5541 5542 5543
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
5544
	struct r5conf *conf = mddev->private;
5545 5546 5547 5548
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5549 5550
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5551 5552 5553 5554 5555 5556 5557
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5558
static int check_reshape(struct mddev *mddev)
5559
{
5560
	struct r5conf *conf = mddev->private;
5561

5562 5563
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5564
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5565
		return 0; /* nothing to do */
5566
	if (has_failed(conf))
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5580

5581
	if (!check_stripe_cache(mddev))
5582 5583
		return -ENOSPC;

5584
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5585 5586
}

5587
static int raid5_start_reshape(struct mddev *mddev)
5588
{
5589
	struct r5conf *conf = mddev->private;
5590
	struct md_rdev *rdev;
5591
	int spares = 0;
5592
	unsigned long flags;
5593

5594
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5595 5596
		return -EBUSY;

5597 5598 5599
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5600 5601 5602
	if (has_failed(conf))
		return -EINVAL;

5603
	rdev_for_each(rdev, mddev) {
5604 5605
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
5606
			spares++;
5607
	}
5608

5609
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5610 5611 5612 5613 5614
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5615 5616 5617 5618 5619 5620
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5621
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5622 5623 5624 5625
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5626
	atomic_set(&conf->reshape_stripes, 0);
5627 5628
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5629
	conf->raid_disks += mddev->delta_disks;
5630 5631
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5632 5633
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5634 5635 5636 5637 5638
	conf->generation++;
	/* Code that selects data_offset needs to see the generation update
	 * if reshape_progress has been set - so a memory barrier needed.
	 */
	smp_mb();
5639
	if (mddev->reshape_backwards)
5640 5641 5642 5643
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5644 5645 5646 5647
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5648 5649 5650 5651
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5652
	 */
5653
	if (mddev->delta_disks >= 0) {
N
NeilBrown 已提交
5654
		rdev_for_each(rdev, mddev)
5655 5656 5657 5658
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					if (rdev->raid_disk
5659
					    >= conf->previous_raid_disks)
5660
						set_bit(In_sync, &rdev->flags);
5661
					else
5662
						rdev->recovery_offset = 0;
5663 5664

					if (sysfs_link_rdev(mddev, rdev))
5665
						/* Failure here is OK */;
5666
				}
5667 5668 5669 5670 5671
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
			}
5672

5673 5674 5675 5676
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
5677
		spin_lock_irqsave(&conf->device_lock, flags);
5678
		mddev->degraded = calc_degraded(conf);
5679 5680
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5681
	mddev->raid_disks = conf->raid_disks;
5682
	mddev->reshape_position = conf->reshape_progress;
5683
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5684

5685 5686 5687 5688 5689
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5690
						"reshape");
5691 5692 5693 5694
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5695 5696 5697
		rdev_for_each(rdev, mddev)
			rdev->new_data_offset = rdev->data_offset;
		smp_wmb();
5698
		conf->reshape_progress = MaxSector;
5699
		mddev->reshape_position = MaxSector;
5700 5701 5702
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5703
	conf->reshape_checkpoint = jiffies;
5704 5705 5706 5707 5708
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5709 5710 5711
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5712
static void end_reshape(struct r5conf *conf)
5713 5714
{

5715
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5716
		struct md_rdev *rdev;
5717 5718

		spin_lock_irq(&conf->device_lock);
5719
		conf->previous_raid_disks = conf->raid_disks;
5720 5721 5722
		rdev_for_each(rdev, conf->mddev)
			rdev->data_offset = rdev->new_data_offset;
		smp_wmb();
5723
		conf->reshape_progress = MaxSector;
5724
		spin_unlock_irq(&conf->device_lock);
5725
		wake_up(&conf->wait_for_overlap);
5726 5727 5728 5729

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
5730
		if (conf->mddev->queue) {
5731
			int data_disks = conf->raid_disks - conf->max_degraded;
5732
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5733
						   / PAGE_SIZE);
5734 5735 5736
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5737 5738 5739
	}
}

5740 5741 5742
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5743
static void raid5_finish_reshape(struct mddev *mddev)
5744
{
5745
	struct r5conf *conf = mddev->private;
5746 5747 5748

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5749 5750 5751
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5752
			revalidate_disk(mddev->gendisk);
5753 5754
		} else {
			int d;
5755 5756 5757
			spin_lock_irq(&conf->device_lock);
			mddev->degraded = calc_degraded(conf);
			spin_unlock_irq(&conf->device_lock);
5758 5759
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5760
			     d++) {
5761
				struct md_rdev *rdev = conf->disks[d].rdev;
5762 5763 5764 5765 5766
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
				rdev = conf->disks[d].replacement;
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
5767
			}
5768
		}
5769
		mddev->layout = conf->algorithm;
5770
		mddev->chunk_sectors = conf->chunk_sectors;
5771 5772
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5773
		mddev->reshape_backwards = 0;
5774 5775 5776
	}
}

5777
static void raid5_quiesce(struct mddev *mddev, int state)
5778
{
5779
	struct r5conf *conf = mddev->private;
5780 5781

	switch(state) {
5782 5783 5784 5785
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5786 5787
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5788 5789 5790 5791
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5792
		wait_event_lock_irq(conf->wait_for_stripe,
5793 5794
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5795
				    conf->device_lock, /* nothing */);
5796
		conf->quiesce = 1;
5797
		spin_unlock_irq(&conf->device_lock);
5798 5799
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5800 5801 5802 5803 5804 5805
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5806
		wake_up(&conf->wait_for_overlap);
5807 5808 5809 5810
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5811

5812

5813
static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5814
{
5815
	struct r0conf *raid0_conf = mddev->private;
5816
	sector_t sectors;
5817

D
Dan Williams 已提交
5818
	/* for raid0 takeover only one zone is supported */
5819
	if (raid0_conf->nr_strip_zones > 1) {
5820 5821
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5822 5823 5824
		return ERR_PTR(-EINVAL);
	}

5825 5826
	sectors = raid0_conf->strip_zone[0].zone_end;
	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5827
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
5828
	mddev->new_level = level;
5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5840
static void *raid5_takeover_raid1(struct mddev *mddev)
5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5862
	mddev->new_chunk_sectors = chunksect;
5863 5864 5865 5866

	return setup_conf(mddev);
}

5867
static void *raid5_takeover_raid6(struct mddev *mddev)
5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5900

5901
static int raid5_check_reshape(struct mddev *mddev)
5902
{
5903 5904 5905 5906
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5907
	 */
5908
	struct r5conf *conf = mddev->private;
5909
	int new_chunk = mddev->new_chunk_sectors;
5910

5911
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5912 5913
		return -EINVAL;
	if (new_chunk > 0) {
5914
		if (!is_power_of_2(new_chunk))
5915
			return -EINVAL;
5916
		if (new_chunk < (PAGE_SIZE>>9))
5917
			return -EINVAL;
5918
		if (mddev->array_sectors & (new_chunk-1))
5919 5920 5921 5922 5923 5924
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5925
	if (mddev->raid_disks == 2) {
5926 5927 5928 5929
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5930 5931
		}
		if (new_chunk > 0) {
5932 5933
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5934 5935 5936
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5937
	}
5938
	return check_reshape(mddev);
5939 5940
}

5941
static int raid6_check_reshape(struct mddev *mddev)
5942
{
5943
	int new_chunk = mddev->new_chunk_sectors;
5944

5945
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5946
		return -EINVAL;
5947
	if (new_chunk > 0) {
5948
		if (!is_power_of_2(new_chunk))
5949
			return -EINVAL;
5950
		if (new_chunk < (PAGE_SIZE >> 9))
5951
			return -EINVAL;
5952
		if (mddev->array_sectors & (new_chunk-1))
5953 5954
			/* not factor of array size */
			return -EINVAL;
5955
	}
5956 5957

	/* They look valid */
5958
	return check_reshape(mddev);
5959 5960
}

5961
static void *raid5_takeover(struct mddev *mddev)
5962 5963
{
	/* raid5 can take over:
D
Dan Williams 已提交
5964
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5965 5966 5967 5968
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
5969 5970
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
5971 5972
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5973 5974 5975 5976 5977
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5978 5979
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5980 5981 5982 5983

	return ERR_PTR(-EINVAL);
}

5984
static void *raid4_takeover(struct mddev *mddev)
5985
{
D
Dan Williams 已提交
5986 5987 5988
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
5989
	 */
D
Dan Williams 已提交
5990 5991
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
5992 5993 5994 5995 5996 5997 5998 5999
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
6000

6001
static struct md_personality raid5_personality;
6002

6003
static void *raid6_takeover(struct mddev *mddev)
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


6050
static struct md_personality raid6_personality =
6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6065
	.size		= raid5_size,
6066
	.check_reshape	= raid6_check_reshape,
6067
	.start_reshape  = raid5_start_reshape,
6068
	.finish_reshape = raid5_finish_reshape,
6069
	.quiesce	= raid5_quiesce,
6070
	.takeover	= raid6_takeover,
6071
};
6072
static struct md_personality raid5_personality =
L
Linus Torvalds 已提交
6073 6074
{
	.name		= "raid5",
6075
	.level		= 5,
L
Linus Torvalds 已提交
6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6087
	.size		= raid5_size,
6088 6089
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6090
	.finish_reshape = raid5_finish_reshape,
6091
	.quiesce	= raid5_quiesce,
6092
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
6093 6094
};

6095
static struct md_personality raid4_personality =
L
Linus Torvalds 已提交
6096
{
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6110
	.size		= raid5_size,
6111 6112
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6113
	.finish_reshape = raid5_finish_reshape,
6114
	.quiesce	= raid5_quiesce,
6115
	.takeover	= raid4_takeover,
6116 6117 6118 6119
};

static int __init raid5_init(void)
{
6120
	register_md_personality(&raid6_personality);
6121 6122 6123
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
6124 6125
}

6126
static void raid5_exit(void)
L
Linus Torvalds 已提交
6127
{
6128
	unregister_md_personality(&raid6_personality);
6129 6130
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
6131 6132 6133 6134 6135
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
6136
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
6137
MODULE_ALIAS("md-personality-4"); /* RAID5 */
6138 6139
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
6140 6141
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
6142 6143 6144 6145 6146 6147 6148
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");