raid5.c 166.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/async.h>
51
#include <linux/seq_file.h>
52
#include <linux/cpu.h>
53
#include <linux/slab.h>
54
#include "md.h"
55
#include "raid5.h"
56
#include "raid0.h"
57
#include "bitmap.h"
58

L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
68
#define BYPASS_THRESHOLD	1
69
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
70 71
#define HASH_MASK		(NR_HASH - 1)

72
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

94
#ifdef DEBUG
L
Linus Torvalds 已提交
95 96 97 98
#define inline
#define __inline__
#endif

99 100
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

101
/*
102 103
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104 105 106
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
107
	return bio->bi_phys_segments & 0xffff;
108 109 110 111
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
112
	return (bio->bi_phys_segments >> 16) & 0xffff;
113 114 115 116 117 118 119 120 121 122 123 124 125
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
126
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 128 129 130 131
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
132
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
133 134
}

135 136 137
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
138 139 140 141
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
142 143 144 145 146
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
147 148 149 150 151
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
152

153 154 155 156 157
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
158 159
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
160
{
161
	int slot = *count;
162

163
	if (sh->ddf_layout)
164
		(*count)++;
165
	if (idx == sh->pd_idx)
166
		return syndrome_disks;
167
	if (idx == sh->qd_idx)
168
		return syndrome_disks + 1;
169
	if (!sh->ddf_layout)
170
		(*count)++;
171 172 173
	return slot;
}

174 175 176 177 178 179 180 181
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
182
		bio_endio(bi, 0);
183 184 185 186
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
187 188
static void print_raid5_conf (raid5_conf_t *conf);

189 190 191 192 193 194 195
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

196
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
197 198
{
	if (atomic_dec_and_test(&sh->count)) {
199 200
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
201
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
N
NeilBrown 已提交
202
			if (test_bit(STRIPE_DELAYED, &sh->state))
L
Linus Torvalds 已提交
203
				list_add_tail(&sh->lru, &conf->delayed_list);
N
NeilBrown 已提交
204 205
			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
				   sh->bm_seq - conf->seq_write > 0)
206
				list_add_tail(&sh->lru, &conf->bitmap_list);
N
NeilBrown 已提交
207
			else {
208
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
209
				list_add_tail(&sh->lru, &conf->handle_list);
210
			}
L
Linus Torvalds 已提交
211 212
			md_wakeup_thread(conf->mddev->thread);
		} else {
213
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
214 215 216 217 218 219
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
220 221
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
222
				wake_up(&conf->wait_for_stripe);
223 224
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
225
			}
L
Linus Torvalds 已提交
226 227 228
		}
	}
}
229

L
Linus Torvalds 已提交
230 231 232 233
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
234

L
Linus Torvalds 已提交
235 236 237 238 239
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

240
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
241
{
242 243
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
244

245
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
246 247
}

248
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
249
{
250
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
251

252 253
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
254 255

	CHECK_DEVLOCK();
256
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

278
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
279 280 281
{
	struct page *p;
	int i;
282
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
283

284
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
285 286 287 288
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
289
		put_page(p);
L
Linus Torvalds 已提交
290 291 292
	}
}

293
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
294 295
{
	int i;
296
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
297

298
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
299 300 301 302 303 304 305 306 307 308
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

309
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 311
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
312

313
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
314 315
{
	raid5_conf_t *conf = sh->raid_conf;
316
	int i;
L
Linus Torvalds 已提交
317

318 319
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320
	BUG_ON(stripe_operations_active(sh));
321

L
Linus Torvalds 已提交
322
	CHECK_DEVLOCK();
323
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
324 325 326
		(unsigned long long)sh->sector);

	remove_hash(sh);
327

328
	sh->generation = conf->generation - previous;
329
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
330
	sh->sector = sector;
331
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
332 333
	sh->state = 0;

334 335

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
336 337
		struct r5dev *dev = &sh->dev[i];

338
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
339
		    test_bit(R5_LOCKED, &dev->flags)) {
340
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
341
			       (unsigned long long)sh->sector, i, dev->toread,
342
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
343 344 345 346
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
347
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
348 349 350 351
	}
	insert_hash(conf, sh);
}

352 353
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
354 355
{
	struct stripe_head *sh;
356
	struct hlist_node *hn;
L
Linus Torvalds 已提交
357 358

	CHECK_DEVLOCK();
359
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
362
			return sh;
363
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
364 365 366
	return NULL;
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
static int has_failed(raid5_conf_t *conf)
{
	int degraded;
	int i;
	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

434 435
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
436
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
437 438 439
{
	struct stripe_head *sh;

440
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
441 442 443 444

	spin_lock_irq(&conf->device_lock);

	do {
445
		wait_event_lock_irq(conf->wait_for_stripe,
446
				    conf->quiesce == 0 || noquiesce,
447
				    conf->device_lock, /* nothing */);
448
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
449 450 451 452 453 454 455 456 457
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
458 459
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
460 461
						     || !conf->inactive_blocked),
						    conf->device_lock,
462
						    );
L
Linus Torvalds 已提交
463 464
				conf->inactive_blocked = 0;
			} else
465
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
466 467
		} else {
			if (atomic_read(&sh->count)) {
468 469
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
470 471 472
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
473 474
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
475 476
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
477 478 479 480 481 482 483 484 485 486 487
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

488 489 490 491
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
492

493
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
494 495 496 497 498 499 500 501 502 503
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
T
Tejun Heo 已提交
504 505 506 507 508 509
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
510 511 512 513 514 515 516
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
517
		if (rw & WRITE)
518 519 520 521 522 523 524 525 526 527 528 529 530
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
531
			if (s->syncing || s->expanding || s->expanded)
532 533
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
534 535
			set_bit(STRIPE_IO_STARTED, &sh->state);

536 537
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
538
				__func__, (unsigned long long)sh->sector,
539 540 541 542 543 544 545 546 547 548 549 550
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
551
			if ((rw & WRITE) &&
552 553 554 555 556
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
557
			if (rw & WRITE)
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
575
	struct async_submit_ctl submit;
D
Dan Williams 已提交
576
	enum async_tx_flags flags = 0;
577 578 579 580 581

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
582

D
Dan Williams 已提交
583 584 585 586
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

587
	bio_for_each_segment(bvl, bio, i) {
588
		int len = bvl->bv_len;
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
604 605
			b_offset += bvl->bv_offset;
			bio_page = bvl->bv_page;
606 607
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
608
						  b_offset, clen, &submit);
609 610
			else
				tx = async_memcpy(bio_page, page, b_offset,
611
						  page_offset, clen, &submit);
612
		}
613 614 615
		/* chain the operations */
		submit.depend_tx = tx;

616 617 618 619 620 621 622 623 624 625 626 627 628
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
629
	int i;
630

631
	pr_debug("%s: stripe %llu\n", __func__,
632 633 634
		(unsigned long long)sh->sector);

	/* clear completed biofills */
635
	spin_lock_irq(&conf->device_lock);
636 637 638 639
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
640 641
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
642
		 * !STRIPE_BIOFILL_RUN
643 644
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
645 646 647 648 649 650 651 652
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
653
				if (!raid5_dec_bi_phys_segments(rbi)) {
654 655 656 657 658 659 660
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
661 662
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
663 664 665

	return_io(return_bi);

666
	set_bit(STRIPE_HANDLE, &sh->state);
667 668 669 670 671 672 673
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
674
	struct async_submit_ctl submit;
675 676
	int i;

677
	pr_debug("%s: stripe %llu\n", __func__,
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
698 699
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
700 701
}

702
static void mark_target_uptodate(struct stripe_head *sh, int target)
703
{
704
	struct r5dev *tgt;
705

706 707
	if (target < 0)
		return;
708

709
	tgt = &sh->dev[target];
710 711 712
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
713 714
}

715
static void ops_complete_compute(void *stripe_head_ref)
716 717 718
{
	struct stripe_head *sh = stripe_head_ref;

719
	pr_debug("%s: stripe %llu\n", __func__,
720 721
		(unsigned long long)sh->sector);

722
	/* mark the computed target(s) as uptodate */
723
	mark_target_uptodate(sh, sh->ops.target);
724
	mark_target_uptodate(sh, sh->ops.target2);
725

726 727 728
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
729 730 731 732
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

733 734 735 736 737 738 739 740 741
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
742 743
{
	int disks = sh->disks;
744
	struct page **xor_srcs = percpu->scribble;
745 746 747 748 749
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
750
	struct async_submit_ctl submit;
751 752 753
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
754
		__func__, (unsigned long long)sh->sector, target);
755 756 757 758 759 760 761 762
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
763
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
764
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
765
	if (unlikely(count == 1))
766
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
767
	else
768
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
769 770 771 772

	return tx;
}

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
791
		srcs[i] = NULL;
792 793 794 795 796 797 798 799 800 801

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

802
	return syndrome_disks;
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
823
	else
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
840 841
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
842 843 844 845 846 847 848 849 850 851 852
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
853 854
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
855 856 857
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
858 859 860 861

	return tx;
}

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

883
	/* we need to open-code set_syndrome_sources to handle the
884 885 886
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
887
		blocks[i] = NULL;
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
914 915 916
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
917
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
937 938 939 940
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
941 942 943 944
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
945 946 947
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
948 949 950 951
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
952 953 954 955 956 957 958 959 960 961 962 963 964 965
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
966 967 968 969
	}
}


970 971 972 973
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

974
	pr_debug("%s: stripe %llu\n", __func__,
975 976 977 978
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
979 980
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
981 982
{
	int disks = sh->disks;
983
	struct page **xor_srcs = percpu->scribble;
984
	int count = 0, pd_idx = sh->pd_idx, i;
985
	struct async_submit_ctl submit;
986 987 988 989

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

990
	pr_debug("%s: stripe %llu\n", __func__,
991 992 993 994 995
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
996
		if (test_bit(R5_Wantdrain, &dev->flags))
997 998 999
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1000
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1001
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1002
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1003 1004 1005 1006 1007

	return tx;
}

static struct dma_async_tx_descriptor *
1008
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1009 1010
{
	int disks = sh->disks;
1011
	int i;
1012

1013
	pr_debug("%s: stripe %llu\n", __func__,
1014 1015 1016 1017 1018 1019
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1020
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1021 1022
			struct bio *wbi;

1023
			spin_lock_irq(&sh->raid_conf->device_lock);
1024 1025 1026 1027
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
1028
			spin_unlock_irq(&sh->raid_conf->device_lock);
1029 1030 1031

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1032 1033
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1044
static void ops_complete_reconstruct(void *stripe_head_ref)
1045 1046
{
	struct stripe_head *sh = stripe_head_ref;
1047 1048 1049 1050
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
T
Tejun Heo 已提交
1051
	bool fua = false;
1052

1053
	pr_debug("%s: stripe %llu\n", __func__,
1054 1055
		(unsigned long long)sh->sector);

T
Tejun Heo 已提交
1056 1057 1058
	for (i = disks; i--; )
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);

1059 1060
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1061

T
Tejun Heo 已提交
1062
		if (dev->written || i == pd_idx || i == qd_idx) {
1063
			set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1064 1065 1066
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
		}
1067 1068
	}

1069 1070 1071 1072 1073 1074 1075 1076
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1077 1078 1079 1080 1081 1082

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1083 1084
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1085 1086
{
	int disks = sh->disks;
1087
	struct page **xor_srcs = percpu->scribble;
1088
	struct async_submit_ctl submit;
1089 1090
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1091
	int prexor = 0;
1092 1093
	unsigned long flags;

1094
	pr_debug("%s: stripe %llu\n", __func__,
1095 1096 1097 1098 1099
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1100 1101
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1122
	flags = ASYNC_TX_ACK |
1123 1124 1125 1126
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1127
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1128
			  to_addr_conv(sh, percpu));
1129 1130 1131 1132
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1133 1134
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1152 1153 1154 1155 1156 1157
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1158
	pr_debug("%s: stripe %llu\n", __func__,
1159 1160
		(unsigned long long)sh->sector);

1161
	sh->check_state = check_state_check_result;
1162 1163 1164 1165
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1166
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1167 1168
{
	int disks = sh->disks;
1169 1170 1171
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1172
	struct page **xor_srcs = percpu->scribble;
1173
	struct dma_async_tx_descriptor *tx;
1174
	struct async_submit_ctl submit;
1175 1176
	int count;
	int i;
1177

1178
	pr_debug("%s: stripe %llu\n", __func__,
1179 1180
		(unsigned long long)sh->sector);

1181 1182 1183
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1184
	for (i = disks; i--; ) {
1185 1186 1187
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1188 1189
	}

1190 1191
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1192
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1193
			   &sh->ops.zero_sum_result, &submit);
1194 1195

	atomic_inc(&sh->count);
1196 1197
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1198 1199
}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1212 1213

	atomic_inc(&sh->count);
1214 1215 1216 1217
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1218 1219
}

1220
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1221 1222 1223
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1224
	raid5_conf_t *conf = sh->raid_conf;
1225
	int level = conf->level;
1226 1227
	struct raid5_percpu *percpu;
	unsigned long cpu;
1228

1229 1230
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1231
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1232 1233 1234 1235
		ops_run_biofill(sh);
		overlap_clear++;
	}

1236
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1247 1248
			async_tx_ack(tx);
	}
1249

1250
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1251
		tx = ops_run_prexor(sh, percpu, tx);
1252

1253
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1254
		tx = ops_run_biodrain(sh, tx);
1255 1256 1257
		overlap_clear++;
	}

1258 1259 1260 1261 1262 1263
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1264

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1275 1276 1277 1278 1279 1280 1281

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1282
	put_cpu();
1283 1284
}

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1315
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1316 1317
{
	struct stripe_head *sh;
N
Namhyung Kim 已提交
1318
	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1319 1320
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
1321

1322
	sh->raid_conf = conf;
1323 1324 1325
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1326

1327 1328
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
1342
	struct kmem_cache *sc;
1343
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1344

1345 1346 1347 1348 1349 1350 1351 1352
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1353 1354
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1355
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1356
			       0, 0, NULL);
L
Linus Torvalds 已提交
1357 1358 1359
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1360
	conf->pool_size = devs;
1361
	while (num--)
1362
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1363 1364 1365
			return 1;
	return 0;
}
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1417
	unsigned long cpu;
1418
	int err;
1419
	struct kmem_cache *sc;
1420 1421 1422 1423 1424
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1425 1426 1427
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1428

1429 1430 1431
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1432
			       0, 0, NULL);
1433 1434 1435 1436
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
N
Namhyung Kim 已提交
1437
		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1438 1439 1440 1441
		if (!nsh)
			break;

		nsh->raid_conf = conf;
1442 1443 1444
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
N
NeilBrown 已提交
1467
				    );
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1482
	 * conf->disks and the scribble region
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1512 1513 1514 1515
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1516

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1533

1534
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1535 1536 1537
{
	struct stripe_head *sh;

1538 1539 1540 1541 1542
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1543
	BUG_ON(atomic_read(&sh->count));
1544
	shrink_buffers(sh);
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1555 1556
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1557 1558 1559
	conf->slab_cache = NULL;
}

1560
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1561
{
1562
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1563
	raid5_conf_t *conf = sh->raid_conf;
1564
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1565
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1566 1567
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1568 1569 1570 1571 1572 1573


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1574 1575
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1576 1577 1578
		uptodate);
	if (i == disks) {
		BUG();
1579
		return;
L
Linus Torvalds 已提交
1580 1581 1582 1583
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1584
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1585
			rdev = conf->disks[i].rdev;
1586
			printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1587 1588 1589 1590 1591
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1592 1593 1594
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1595 1596
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1597
	} else {
1598
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1599
		int retry = 0;
1600 1601
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1602
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1603
		atomic_inc(&rdev->read_errors);
1604
		if (conf->mddev->degraded >= conf->max_degraded)
1605
			printk_rl(KERN_WARNING
1606
				  "md/raid:%s: read error not correctable "
1607 1608 1609 1610 1611
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1612
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1613
			/* Oh, no!!! */
1614
			printk_rl(KERN_WARNING
1615
				  "md/raid:%s: read error NOT corrected!! "
1616 1617 1618 1619 1620
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1621
		else if (atomic_read(&rdev->read_errors)
1622
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1623
			printk(KERN_WARNING
1624
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1625
			       mdname(conf->mddev), bdn);
1626 1627 1628 1629 1630
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1631 1632
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1633
			md_error(conf->mddev, rdev);
1634
		}
L
Linus Torvalds 已提交
1635 1636 1637 1638 1639 1640 1641
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1642
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1643
{
1644
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1645
	raid5_conf_t *conf = sh->raid_conf;
1646
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1647 1648 1649 1650 1651 1652
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1653
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1654 1655 1656 1657
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1658
		return;
L
Linus Torvalds 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1668
	release_stripe(sh);
L
Linus Torvalds 已提交
1669 1670 1671
}


1672
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1673
	
1674
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1690
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1691 1692 1693 1694 1695
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
1696
	raid5_conf_t *conf = mddev->private;
1697
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1698

1699 1700 1701 1702 1703 1704 1705 1706 1707
	if (test_and_clear_bit(In_sync, &rdev->flags)) {
		unsigned long flags;
		spin_lock_irqsave(&conf->device_lock, flags);
		mddev->degraded++;
		spin_unlock_irqrestore(&conf->device_lock, flags);
		/*
		 * if recovery was running, make sure it aborts.
		 */
		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1708
	}
1709 1710 1711 1712 1713 1714 1715 1716 1717
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
1718
}
L
Linus Torvalds 已提交
1719 1720 1721 1722 1723

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1724
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1725 1726
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1727
{
N
NeilBrown 已提交
1728
	sector_t stripe, stripe2;
1729
	sector_t chunk_number;
L
Linus Torvalds 已提交
1730
	unsigned int chunk_offset;
1731
	int pd_idx, qd_idx;
1732
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1733
	sector_t new_sector;
1734 1735
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1736 1737
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1738 1739 1740
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1753 1754
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1755
	stripe2 = stripe;
L
Linus Torvalds 已提交
1756 1757 1758
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1759
	pd_idx = qd_idx = ~0;
1760 1761
	switch(conf->level) {
	case 4:
1762
		pd_idx = data_disks;
1763 1764
		break;
	case 5:
1765
		switch (algorithm) {
L
Linus Torvalds 已提交
1766
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1767
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1768
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1769 1770 1771
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1772
			pd_idx = sector_div(stripe2, raid_disks);
1773
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1774 1775 1776
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1777
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1778
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1779 1780
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1781
			pd_idx = sector_div(stripe2, raid_disks);
1782
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1783
			break;
1784 1785 1786 1787 1788 1789 1790
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1791
		default:
1792
			BUG();
1793 1794 1795 1796
		}
		break;
	case 6:

1797
		switch (algorithm) {
1798
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1799
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1800 1801
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1802
				(*dd_idx)++;	/* Q D D D P */
1803 1804
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1805 1806 1807
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1808
			pd_idx = sector_div(stripe2, raid_disks);
1809 1810
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1811
				(*dd_idx)++;	/* Q D D D P */
1812 1813
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1814 1815 1816
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1817
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1818 1819
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1820 1821
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1822
			pd_idx = sector_div(stripe2, raid_disks);
1823 1824
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1825
			break;
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
1841
			pd_idx = sector_div(stripe2, raid_disks);
1842 1843 1844 1845 1846 1847
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1848
			ddf_layout = 1;
1849 1850 1851 1852 1853 1854 1855
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
1856 1857
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1858 1859 1860 1861 1862 1863
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1864
			ddf_layout = 1;
1865 1866 1867 1868
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
1869
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1870 1871
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1872
			ddf_layout = 1;
1873 1874 1875 1876
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
1877
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1878 1879 1880 1881 1882 1883
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
1884
			pd_idx = sector_div(stripe2, raid_disks-1);
1885 1886 1887 1888 1889 1890
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
1891
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1892 1893 1894 1895 1896
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
1897
			pd_idx = sector_div(stripe2, raid_disks-1);
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

1908
		default:
1909
			BUG();
1910 1911
		}
		break;
L
Linus Torvalds 已提交
1912 1913
	}

1914 1915 1916
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1917
		sh->ddf_layout = ddf_layout;
1918
	}
L
Linus Torvalds 已提交
1919 1920 1921 1922 1923 1924 1925 1926
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1927
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1928 1929
{
	raid5_conf_t *conf = sh->raid_conf;
1930 1931
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1932
	sector_t new_sector = sh->sector, check;
1933 1934
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1935 1936
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1937 1938
	sector_t stripe;
	int chunk_offset;
1939 1940
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1941
	sector_t r_sector;
1942
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1943

1944

L
Linus Torvalds 已提交
1945 1946 1947
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

1948 1949 1950 1951 1952
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1953
		switch (algorithm) {
L
Linus Torvalds 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1965 1966 1967 1968 1969
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1970
		default:
1971
			BUG();
1972 1973 1974
		}
		break;
	case 6:
1975
		if (i == sh->qd_idx)
1976
			return 0; /* It is the Q disk */
1977
		switch (algorithm) {
1978 1979
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1980 1981 1982 1983
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
1998 1999 2000 2001 2002 2003
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2004
			/* Like left_symmetric, but P is before Q */
2005 2006
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2007 2008 2009 2010 2011 2012
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2028
		default:
2029
			BUG();
2030 2031
		}
		break;
L
Linus Torvalds 已提交
2032 2033 2034
	}

	chunk_number = stripe * data_disks + i;
2035
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2036

2037
	check = raid5_compute_sector(conf, r_sector,
2038
				     previous, &dummy1, &sh2);
2039 2040
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2041 2042
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2043 2044 2045 2046 2047 2048
		return 0;
	}
	return r_sector;
}


2049
static void
2050
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2051
			 int rcw, int expand)
2052 2053
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2054 2055
	raid5_conf_t *conf = sh->raid_conf;
	int level = conf->level;
2056 2057 2058 2059 2060 2061 2062

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2063 2064 2065 2066
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2067

2068
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2069 2070 2071 2072 2073 2074

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2075
				set_bit(R5_Wantdrain, &dev->flags);
2076 2077
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2078
				s->locked++;
2079 2080
			}
		}
2081
		if (s->locked + conf->max_degraded == disks)
2082
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2083
				atomic_inc(&conf->pending_full_writes);
2084
	} else {
2085
		BUG_ON(level == 6);
2086 2087 2088
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2089
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2090 2091
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2092
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2093 2094 2095 2096 2097 2098 2099 2100

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2101 2102
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2103 2104
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2105
				s->locked++;
2106 2107 2108 2109
			}
		}
	}

2110
	/* keep the parity disk(s) locked while asynchronous operations
2111 2112 2113 2114
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2115
	s->locked++;
2116

2117 2118 2119 2120 2121 2122 2123 2124 2125
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2126
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2127
		__func__, (unsigned long long)sh->sector,
2128
		s->locked, s->ops_request);
2129
}
2130

L
Linus Torvalds 已提交
2131 2132
/*
 * Each stripe/dev can have one or more bion attached.
2133
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2134 2135 2136 2137 2138 2139
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
2140
	int firstwrite=0;
L
Linus Torvalds 已提交
2141

2142
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2143 2144 2145 2146 2147
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock_irq(&conf->device_lock);
2148
	if (forwrite) {
L
Linus Torvalds 已提交
2149
		bip = &sh->dev[dd_idx].towrite;
2150 2151 2152
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2162
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2163 2164 2165
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2166
	bi->bi_phys_segments++;
2167

L
Linus Torvalds 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
	spin_unlock_irq(&conf->device_lock);

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
		(unsigned long long)(*bip)->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
		sh->bm_seq = conf->seq_flush+1;
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}
L
Linus Torvalds 已提交
2193 2194 2195 2196 2197 2198 2199 2200
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	return 0;
}

2201 2202
static void end_reshape(raid5_conf_t *conf);

2203 2204
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2205
{
2206
	int sectors_per_chunk =
2207
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2208
	int dd_idx;
2209
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2210
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2211

2212 2213
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2214
			     *sectors_per_chunk + chunk_offset,
2215
			     previous,
2216
			     &dd_idx, sh);
2217 2218
}

2219
static void
2220
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2254
			if (!raid5_dec_bi_phys_segments(bi)) {
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2269
			if (!raid5_dec_bi_phys_segments(bi)) {
2270 2271 2272 2273 2274 2275 2276
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2277 2278 2279 2280 2281 2282
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2293
				if (!raid5_dec_bi_phys_segments(bi)) {
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2306 2307 2308
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2309 2310
}

2311 2312 2313 2314 2315
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2316
 */
2317 2318
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2319 2320
{
	struct r5dev *dev = &sh->dev[disk_idx];
2321
	struct r5dev *failed_dev = &sh->dev[s->failed_num[0]];
2322 2323 2324

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2325 2326 2327 2328 2329 2330 2331 2332
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2333 2334
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2335 2336
		 */
		if ((s->uptodate == disks - 1) &&
2337
		    (s->failed && disk_idx == s->failed_num[0])) {
2338 2339
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2340 2341
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
2342
			sh->ops.target2 = -1;
2343 2344
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
2345
			 * of raid_run_ops which services 'compute' operations
2346 2347 2348 2349 2350
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2351
			return 1; /* uptodate + compute == disks */
2352
		} else if (test_bit(R5_Insync, &dev->flags)) {
2353 2354 2355 2356 2357 2358 2359 2360
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2361
	return 0;
2362 2363
}

2364 2365 2366 2367
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2368 2369 2370
			struct stripe_head_state *s, int disks)
{
	int i;
2371 2372 2373 2374 2375

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2376
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2377
	    !sh->reconstruct_state)
2378
		for (i = disks; i--; )
2379
			if (fetch_block5(sh, s, i, disks))
2380
				break;
2381 2382 2383
	set_bit(STRIPE_HANDLE, &sh->state);
}

2384 2385 2386 2387 2388 2389 2390
/* fetch_block6 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill6 to continue
 */
static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2391
			int disk_idx, int disks)
2392
{
2393
	struct r5dev *dev = &sh->dev[disk_idx];
2394 2395
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411

	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed >= 1 &&
	      (fdev[0]->toread || s->to_write)) ||
	     (s->failed >= 2 &&
	      (fdev[1]->toread || s->to_write)))) {
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
2412 2413
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
2414 2415
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2416
			 */
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2438
			}
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2458 2459
		}
	}
2460 2461 2462 2463 2464 2465 2466 2467

	return 0;
}

/**
 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill6(struct stripe_head *sh,
2468
			struct stripe_head_state *s,
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
			int disks)
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
2480
			if (fetch_block6(sh, s, i, disks))
2481
				break;
2482 2483 2484 2485
	set_bit(STRIPE_HANDLE, &sh->state);
}


2486
/* handle_stripe_clean_event
2487 2488 2489 2490
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2491
static void handle_stripe_clean_event(raid5_conf_t *conf,
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2505
				pr_debug("Return write for disc %d\n", i);
2506 2507 2508 2509 2510 2511
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2512
					if (!raid5_dec_bi_phys_segments(wbi)) {
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2530 2531 2532 2533

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2534 2535
}

2536
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2537 2538 2539 2540 2541 2542 2543 2544
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2545 2546
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2547 2548 2549 2550 2551 2552 2553 2554
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2555 2556 2557
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2558 2559 2560 2561
			else
				rcw += 2*disks;
		}
	}
2562
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2563 2564 2565 2566 2567 2568 2569 2570
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2571 2572
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2573 2574 2575
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2576
					pr_debug("Read_old block "
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2594 2595
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2596 2597 2598
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2599
					pr_debug("Read_old block "
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2613 2614
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2615 2616
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2617 2618 2619
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2620 2621 2622
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2623
		schedule_reconstruction(sh, s, rcw == 0, 0);
2624 2625
}

2626
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2627
		struct stripe_head *sh,	struct stripe_head_state *s,
2628
		int disks)
2629
{
2630
	int rcw = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2631
	int qd_idx = sh->qd_idx;
2632 2633

	set_bit(STRIPE_HANDLE, &sh->state);
2634 2635
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
		/* check if we haven't enough data */
		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
		    i != pd_idx && i != qd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
			rcw++;
			if (!test_bit(R5_Insync, &dev->flags))
				continue; /* it's a failed drive */

			if (
			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				pr_debug("Read_old stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
			} else {
				pr_debug("Request delayed stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(STRIPE_DELAYED, &sh->state);
				set_bit(STRIPE_HANDLE, &sh->state);
2660 2661 2662 2663 2664 2665
			}
		}
	}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
2666 2667
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    s->locked == 0 && rcw == 0 &&
2668
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2669
		schedule_reconstruction(sh, s, 1, 0);
2670 2671 2672 2673 2674 2675
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2676
	struct r5dev *dev = NULL;
2677

2678
	set_bit(STRIPE_HANDLE, &sh->state);
2679

2680 2681 2682
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2683 2684
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2685 2686
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2687 2688
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2689
			break;
2690
		}
2691
		dev = &sh->dev[s->failed_num[0]];
2692 2693 2694 2695 2696 2697 2698 2699 2700
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2701

2702 2703 2704 2705 2706
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2707
		s->locked++;
2708
		set_bit(R5_Wantwrite, &dev->flags);
2709

2710 2711
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2728
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2740
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2741 2742 2743 2744
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2745
				sh->ops.target2 = -1;
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2757 2758 2759 2760 2761
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2762
				  struct stripe_head_state *s,
2763
				  int disks)
2764 2765
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2766
	int qd_idx = sh->qd_idx;
2767
	struct r5dev *dev;
2768 2769 2770 2771

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2772

2773 2774 2775 2776 2777 2778
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2779 2780 2781
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2782
		if (s->failed == s->q_failed) {
2783
			/* The only possible failed device holds Q, so it
2784 2785 2786
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2787
			sh->check_state = check_state_run;
2788
		}
2789
		if (!s->q_failed && s->failed < 2) {
2790
			/* Q is not failed, and we didn't use it to generate
2791 2792
			 * anything, so it makes sense to check it
			 */
2793 2794 2795 2796
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2797 2798
		}

2799 2800
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2801

2802 2803 2804 2805
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2806
		}
2807 2808 2809 2810 2811 2812 2813
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2814 2815
		}

2816 2817 2818 2819 2820
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2821

2822 2823 2824
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2825 2826

		/* now write out any block on a failed drive,
2827
		 * or P or Q if they were recomputed
2828
		 */
2829
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2830
		if (s->failed == 2) {
2831
			dev = &sh->dev[s->failed_num[1]];
2832 2833 2834 2835 2836
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
2837
			dev = &sh->dev[s->failed_num[0]];
2838 2839 2840 2841
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2842
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2843 2844 2845 2846 2847
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2848
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2849 2850 2851 2852 2853 2854 2855 2856
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2921 2922 2923 2924
	}
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2925
				    struct stripe_head_state *r6s)
2926 2927 2928 2929 2930 2931
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2932
	struct dma_async_tx_descriptor *tx = NULL;
2933 2934
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2935
		if (i != sh->pd_idx && i != sh->qd_idx) {
2936
			int dd_idx, j;
2937
			struct stripe_head *sh2;
2938
			struct async_submit_ctl submit;
2939

2940
			sector_t bn = compute_blocknr(sh, i, 1);
2941 2942
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2943
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2956 2957

			/* place all the copies on one channel */
2958
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2959
			tx = async_memcpy(sh2->dev[dd_idx].page,
2960
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2961
					  &submit);
2962

2963 2964 2965 2966
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2967
				    (!r6s || j != sh2->qd_idx) &&
2968 2969 2970 2971 2972 2973 2974
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2975

2976
		}
2977 2978 2979 2980 2981
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2982
}
L
Linus Torvalds 已提交
2983

2984

L
Linus Torvalds 已提交
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
3001

3002
static void handle_stripe5(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
3003 3004
{
	raid5_conf_t *conf = sh->raid_conf;
3005
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
3006
	struct r5dev *dev;
3007
	int prexor;
L
Linus Torvalds 已提交
3008

3009
	/* Now to look around and see what can be done */
3010
	rcu_read_lock();
3011
	spin_lock_irq(&conf->device_lock);
L
Linus Torvalds 已提交
3012 3013
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
3014 3015

		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3016

3017 3018 3019 3020 3021 3022 3023
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
3024
		 * ops_complete_biofill is guaranteed to be inactive
3025 3026
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3027
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3028
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3029 3030

		/* now count some things */
3031 3032 3033 3034 3035 3036
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
		if (test_bit(R5_Wantcompute, &dev->flags))
			s->compute++;
L
Linus Torvalds 已提交
3037

3038
		if (test_bit(R5_Wantfill, &dev->flags))
3039
			s->to_fill++;
3040
		else if (dev->toread)
3041
			s->to_read++;
L
Linus Torvalds 已提交
3042
		if (dev->towrite) {
3043
			s->to_write++;
L
Linus Torvalds 已提交
3044
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3045
				s->non_overwrite++;
L
Linus Torvalds 已提交
3046
		}
3047
		if (dev->written)
3048
			s->written++;
3049
		rdev = rcu_dereference(conf->disks[i].rdev);
3050
		if (s->blocked_rdev == NULL &&
3051
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3052
			s->blocked_rdev = rdev;
3053 3054
			atomic_inc(&rdev->nr_pending);
		}
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* could be in-sync depending on recovery/reshape status */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
N
NeilBrown 已提交
3066
			/* The ReadError flag will just be confusing now */
3067 3068 3069
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
3070 3071 3072
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3073 3074
			s->failed++;
			s->failed_num[0] = i;
3075
		}
L
Linus Torvalds 已提交
3076
	}
3077
	spin_unlock_irq(&conf->device_lock);
3078
	rcu_read_unlock();
3079

3080 3081 3082
	if (unlikely(s->blocked_rdev)) {
		if (s->syncing || s->expanding || s->expanded ||
		    s->to_write || s->written) {
3083
			set_bit(STRIPE_HANDLE, &sh->state);
3084
			return;
3085 3086
		}
		/* There is nothing for the blocked_rdev to block */
3087 3088
		rdev_dec_pending(s->blocked_rdev, conf->mddev);
		s->blocked_rdev = NULL;
3089 3090
	}

3091 3092
	if (s->to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s->ops_request);
3093 3094
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
3095

3096
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
3097
		" to_write=%d failed=%d failed_num=%d\n",
3098 3099
		s->locked, s->uptodate, s->to_read, s->to_write,
		s->failed, s->failed_num[0]);
L
Linus Torvalds 已提交
3100 3101 3102
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
3103 3104 3105
	if (s->failed > 1 && s->to_read+s->to_write+s->written)
		handle_failed_stripe(conf, sh, s, disks, &s->return_bi);
	if (s->failed > 1 && s->syncing) {
L
Linus Torvalds 已提交
3106 3107
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3108
		s->syncing = 0;
L
Linus Torvalds 已提交
3109 3110 3111 3112 3113 3114
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
3115 3116 3117 3118 3119 3120
	if (s->written &&
	    ((test_bit(R5_Insync, &dev->flags) &&
	      !test_bit(R5_LOCKED, &dev->flags) &&
	      test_bit(R5_UPTODATE, &dev->flags)) ||
	     (s->failed == 1 && s->failed_num[0] == sh->pd_idx)))
		handle_stripe_clean_event(conf, sh, disks, &s->return_bi);
L
Linus Torvalds 已提交
3121 3122 3123 3124 3125

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3126 3127 3128
	if (s->to_read || s->non_overwrite ||
	    (s->syncing && (s->uptodate + s->compute < disks)) || s->expanding)
		handle_stripe_fill5(sh, s, disks);
L
Linus Torvalds 已提交
3129

3130 3131 3132
	/* Now we check to see if any write operations have recently
	 * completed
	 */
3133
	prexor = 0;
3134
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3135
		prexor = 1;
3136 3137
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3138
		sh->reconstruct_state = reconstruct_state_idle;
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
3150 3151
				if (prexor)
					continue;
3152
				if (!test_bit(R5_Insync, &dev->flags) ||
3153
				    (i == sh->pd_idx && s->failed == 0))
3154 3155 3156
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3157
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3158
			s->dec_preread_active = 1;
3159 3160 3161 3162 3163 3164 3165 3166
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
3167 3168
	if (s->to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying5(conf, sh, s, disks);
L
Linus Torvalds 已提交
3169 3170

	/* maybe we need to check and possibly fix the parity for this stripe
3171 3172 3173
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
3174
	 */
3175
	if (sh->check_state ||
3176
	    (s->syncing && s->locked == 0 &&
3177
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3178
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3179
		handle_parity_checks5(conf, sh, s, disks);
3180

3181 3182
	if (s->syncing && s->locked == 0
	    && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
3183 3184 3185
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
3186 3187 3188 3189

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
3190 3191 3192 3193
	if (s->failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s->failed_num[0]].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s->failed_num[0]].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s->failed_num[0]].flags)
3194
		) {
3195
		dev = &sh->dev[s->failed_num[0]];
3196 3197 3198 3199
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3200
			s->locked++;
3201 3202 3203 3204
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3205
			s->locked++;
3206 3207 3208
		}
	}

3209 3210
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
3211
		struct stripe_head *sh2
3212
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
3223
			return;
3224 3225 3226 3227
		}
		if (sh2)
			release_stripe(sh2);

3228
		sh->reconstruct_state = reconstruct_state_idle;
3229
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
3230
		for (i = conf->raid_disks; i--; ) {
3231
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
3232
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3233
			s->locked++;
D
Dan Williams 已提交
3234
		}
3235 3236
	}

3237
	if (s->expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3238
	    !sh->reconstruct_state) {
3239 3240
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
3241
		stripe_set_idx(sh->sector, conf, 0, sh);
3242 3243
		schedule_reconstruction(sh, s, 1, 1);
	} else if (s->expanded && !sh->reconstruct_state && s->locked == 0) {
3244
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3245
		atomic_dec(&conf->reshape_stripes);
3246 3247 3248 3249
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3250
	if (s->expanding && s->locked == 0 &&
3251
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3252
		handle_stripe_expansion(conf, sh, NULL);
L
Linus Torvalds 已提交
3253 3254
}

3255
static void handle_stripe6(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
3256
{
3257
	raid5_conf_t *conf = sh->raid_conf;
3258
	int disks = sh->disks;
N
NeilBrown 已提交
3259
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3260
	struct r5dev *dev, *pdev, *qdev;
L
Linus Torvalds 已提交
3261

3262
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3263 3264

	rcu_read_lock();
3265
	spin_lock_irq(&conf->device_lock);
3266 3267 3268
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3269

3270
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3271
			i, dev->flags, dev->toread, dev->towrite, dev->written);
3272 3273 3274 3275 3276 3277 3278 3279
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3280

3281
		/* now count some things */
3282 3283 3284 3285
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
3286
		if (test_bit(R5_Wantcompute, &dev->flags)) {
3287 3288
			s->compute++;
			BUG_ON(s->compute > 2);
3289
		}
L
Linus Torvalds 已提交
3290

3291
		if (test_bit(R5_Wantfill, &dev->flags)) {
3292
			s->to_fill++;
3293
		} else if (dev->toread)
3294
			s->to_read++;
3295
		if (dev->towrite) {
3296
			s->to_write++;
3297
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3298
				s->non_overwrite++;
3299
		}
3300
		if (dev->written)
3301
			s->written++;
3302
		rdev = rcu_dereference(conf->disks[i].rdev);
3303
		if (s->blocked_rdev == NULL &&
3304
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3305
			s->blocked_rdev = rdev;
3306 3307
			atomic_inc(&rdev->nr_pending);
		}
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* in sync if before recovery_offset */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
3319 3320 3321
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3322
		}
3323 3324 3325
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3326 3327 3328
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
3329
		}
L
Linus Torvalds 已提交
3330
	}
3331
	spin_unlock_irq(&conf->device_lock);
L
Linus Torvalds 已提交
3332
	rcu_read_unlock();
3333

3334 3335 3336
	if (unlikely(s->blocked_rdev)) {
		if (s->syncing || s->expanding || s->expanded ||
		    s->to_write || s->written) {
3337
			set_bit(STRIPE_HANDLE, &sh->state);
3338
			return;
3339 3340
		}
		/* There is nothing for the blocked_rdev to block */
3341 3342
		rdev_dec_pending(s->blocked_rdev, conf->mddev);
		s->blocked_rdev = NULL;
3343
	}
3344

3345 3346
	if (s->to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s->ops_request);
3347 3348 3349
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

3350
	pr_debug("locked=%d uptodate=%d to_read=%d"
3351
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3352 3353
	       s->locked, s->uptodate, s->to_read, s->to_write, s->failed,
	       s->failed_num[0], s->failed_num[1]);
3354 3355
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3356
	 */
3357 3358 3359
	if (s->failed > 2 && s->to_read+s->to_write+s->written)
		handle_failed_stripe(conf, sh, s, disks, &s->return_bi);
	if (s->failed > 2 && s->syncing) {
3360 3361
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3362
		s->syncing = 0;
3363 3364 3365 3366 3367 3368 3369
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3370 3371
	s->p_failed = (s->failed >= 1 && s->failed_num[0] == pd_idx)
		|| (s->failed >= 2 && s->failed_num[1] == pd_idx);
N
NeilBrown 已提交
3372
	qdev = &sh->dev[qd_idx];
3373 3374
	s->q_failed = (s->failed >= 1 && s->failed_num[0] == qd_idx)
		|| (s->failed >= 2 && s->failed_num[1] == qd_idx);
3375

3376 3377
	if (s->written &&
	    (s->p_failed || ((test_bit(R5_Insync, &pdev->flags)
3378
			     && !test_bit(R5_LOCKED, &pdev->flags)
3379
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3380
	    (s->q_failed || ((test_bit(R5_Insync, &qdev->flags)
3381
			     && !test_bit(R5_LOCKED, &qdev->flags)
3382
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3383
		handle_stripe_clean_event(conf, sh, disks, &s->return_bi);
3384 3385 3386 3387 3388

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3389 3390 3391
	if (s->to_read || s->non_overwrite || (s->to_write && s->failed) ||
	    (s->syncing && (s->uptodate + s->compute < disks)) || s->expanding)
		handle_stripe_fill6(sh, s, disks);
3392

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	if (sh->reconstruct_state == reconstruct_state_drain_result) {

		sh->reconstruct_state = reconstruct_state_idle;
		/* All the 'written' buffers and the parity blocks are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
			    (i == sh->pd_idx || i == qd_idx ||
			     dev->written)) {
				pr_debug("Writing block %d\n", i);
				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
				set_bit(R5_Wantwrite, &dev->flags);
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == qd_idx) &&
3414
				      s->failed == 0))
3415 3416 3417
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3418
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3419
			s->dec_preread_active = 1;
3420 3421
	}

3422 3423 3424 3425 3426 3427
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
3428 3429
	if (s->to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying6(conf, sh, s, disks);
3430 3431

	/* maybe we need to check and possibly fix the parity for this stripe
3432
	 * Any reads will already have been scheduled, so we just see if enough
3433 3434
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
3435
	 */
3436
	if (sh->check_state ||
3437
	    (s->syncing && s->locked == 0 &&
3438 3439
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3440
		handle_parity_checks6(conf, sh, s, disks);
3441

3442 3443
	if (s->syncing && s->locked == 0
	    && test_bit(STRIPE_INSYNC, &sh->state)) {
3444 3445 3446 3447 3448 3449 3450
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3451 3452 3453
	if (s->failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s->failed; i++) {
			dev = &sh->dev[s->failed_num[i]];
3454 3455 3456 3457 3458 3459 3460 3461
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3462
					s->locked++;
3463 3464 3465 3466
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3467
					s->locked++;
3468 3469 3470
				}
			}
		}
3471

3472 3473 3474 3475 3476 3477 3478
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3479
			s->locked++;
3480 3481 3482
		}
	}

3483
	if (s->expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3484
	    !sh->reconstruct_state) {
3485
		struct stripe_head *sh2
3486
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
3497
			return;
3498 3499 3500 3501
		}
		if (sh2)
			release_stripe(sh2);

3502 3503
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3504
		stripe_set_idx(sh->sector, conf, 0, sh);
3505 3506
		schedule_reconstruction(sh, s, 1, 1);
	} else if (s->expanded && !sh->reconstruct_state && s->locked == 0) {
3507 3508 3509 3510 3511 3512
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3513
	if (s->expanding && s->locked == 0 &&
3514
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
		handle_stripe_expansion(conf, sh, s);
}

static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
	raid5_conf_t *conf = sh->raid_conf;

	clear_bit(STRIPE_HANDLE, &sh->state);
	if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
		set_bit(STRIPE_SYNCING, &sh->state);
		clear_bit(STRIPE_INSYNC, &sh->state);
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
	memset(&s, 0, sizeof(s));

	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);

	if (conf->level == 6)
		handle_stripe6(sh, &s);
	else
		handle_stripe5(sh, &s);
3552

3553

3554
	/* wait for this device to become unblocked */
3555 3556
	if (unlikely(s.blocked_rdev))
		md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3557

3558 3559 3560
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3561
	ops_run_io(sh, &s);
3562

3563

3564
	if (s.dec_preread_active) {
3565
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3566
		 * is waiting on a flush, it won't continue until the writes
3567 3568 3569 3570 3571 3572 3573 3574
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

3575
	return_io(s.return_bi);
3576

3577
	clear_bit(STRIPE_ACTIVE, &sh->state);
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3591
			list_add_tail(&sh->lru, &conf->hold_list);
3592
		}
N
NeilBrown 已提交
3593
	}
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

N
NeilBrown 已提交
3610
int md_raid5_congested(mddev_t *mddev, int bits)
3611
{
3612
	raid5_conf_t *conf = mddev->private;
3613 3614 3615 3616

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3617

3618 3619 3620 3621 3622 3623 3624 3625 3626
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3627 3628 3629 3630 3631 3632 3633 3634 3635
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3636

3637 3638 3639
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3640 3641 3642
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3643 3644
{
	mddev_t *mddev = q->queuedata;
3645
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3646
	int max;
3647
	unsigned int chunk_sectors = mddev->chunk_sectors;
3648
	unsigned int bio_sectors = bvm->bi_size >> 9;
3649

3650
	if ((bvm->bi_rw & 1) == WRITE)
3651 3652
		return biovec->bv_len; /* always allow writes to be mergeable */

3653 3654
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3655 3656 3657 3658 3659 3660 3661 3662
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3663 3664 3665 3666

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3667
	unsigned int chunk_sectors = mddev->chunk_sectors;
3668 3669
	unsigned int bio_sectors = bio->bi_size >> 9;

3670 3671
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3672 3673 3674 3675
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3705
		conf->retry_read_aligned_list = bi->bi_next;
3706
		bi->bi_next = NULL;
3707 3708 3709 3710
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3711 3712 3713 3714 3715 3716 3717
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3718 3719 3720 3721 3722 3723
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3724
static void raid5_align_endio(struct bio *bi, int error)
3725 3726
{
	struct bio* raid_bi  = bi->bi_private;
3727 3728 3729 3730 3731
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3732
	bio_put(bi);
3733 3734 3735

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3736 3737
	mddev = rdev->mddev;
	conf = mddev->private;
3738 3739 3740 3741

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3742
		bio_endio(raid_bi, 0);
3743 3744
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3745
		return;
3746 3747 3748
	}


3749
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3750 3751

	add_bio_to_retry(raid_bi, conf);
3752 3753
}

3754 3755
static int bio_fits_rdev(struct bio *bi)
{
3756
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3757

3758
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3759 3760
		return 0;
	blk_recount_segments(q, bi);
3761
	if (bi->bi_phys_segments > queue_max_segments(q))
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3774
static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3775
{
3776
	raid5_conf_t *conf = mddev->private;
N
NeilBrown 已提交
3777
	int dd_idx;
3778 3779 3780 3781
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3782
		pr_debug("chunk_aligned_read : non aligned\n");
3783 3784 3785
		return 0;
	}
	/*
3786
	 * use bio_clone_mddev to make a copy of the bio
3787
	 */
3788
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3800 3801
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3802
						    &dd_idx, NULL);
3803 3804 3805 3806 3807 3808

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3809 3810 3811 3812 3813
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3814 3815 3816 3817 3818 3819 3820
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3821 3822 3823 3824 3825 3826 3827
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3828 3829 3830 3831
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3832
		bio_put(align_bi);
3833 3834 3835 3836
		return 0;
	}
}

3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3889

3890
static int make_request(mddev_t *mddev, struct bio * bi)
L
Linus Torvalds 已提交
3891
{
3892
	raid5_conf_t *conf = mddev->private;
3893
	int dd_idx;
L
Linus Torvalds 已提交
3894 3895 3896
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3897
	const int rw = bio_data_dir(bi);
3898
	int remaining;
3899
	int plugged;
L
Linus Torvalds 已提交
3900

T
Tejun Heo 已提交
3901 3902
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
3903 3904 3905
		return 0;
	}

3906
	md_write_start(mddev, bi);
3907

3908
	if (rw == READ &&
3909
	     mddev->reshape_position == MaxSector &&
3910
	     chunk_aligned_read(mddev,bi))
3911
		return 0;
3912

L
Linus Torvalds 已提交
3913 3914 3915 3916
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3917

3918
	plugged = mddev_check_plugged(mddev);
L
Linus Torvalds 已提交
3919 3920
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3921
		int disks, data_disks;
3922
		int previous;
3923

3924
	retry:
3925
		previous = 0;
3926
		disks = conf->raid_disks;
3927
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3928
		if (unlikely(conf->reshape_progress != MaxSector)) {
3929
			/* spinlock is needed as reshape_progress may be
3930 3931
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3932
			 * Of course reshape_progress could change after
3933 3934 3935 3936
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3937
			spin_lock_irq(&conf->device_lock);
3938 3939 3940
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3941
				disks = conf->previous_raid_disks;
3942 3943
				previous = 1;
			} else {
3944 3945 3946
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3947 3948 3949 3950 3951
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3952 3953
			spin_unlock_irq(&conf->device_lock);
		}
3954 3955
		data_disks = disks - conf->max_degraded;

3956 3957
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3958
						  &dd_idx, NULL);
3959
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3960 3961 3962
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3963
		sh = get_active_stripe(conf, new_sector, previous,
3964
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
3965
		if (sh) {
3966
			if (unlikely(previous)) {
3967
				/* expansion might have moved on while waiting for a
3968 3969 3970 3971 3972 3973
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
3974 3975 3976
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
3977 3978 3979
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
3980 3981 3982 3983 3984
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
3985
					schedule();
3986 3987 3988
					goto retry;
				}
			}
3989

3990
			if (rw == WRITE &&
3991
			    logical_sector >= mddev->suspend_lo &&
3992 3993
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
4004 4005
				goto retry;
			}
4006 4007

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4008
			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4009 4010
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
4011 4012
				 * and wait a while
				 */
N
NeilBrown 已提交
4013
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
4014 4015 4016 4017 4018
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
4019 4020
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
T
Tejun Heo 已提交
4021
			if ((bi->bi_rw & REQ_SYNC) &&
4022 4023
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
L
Linus Torvalds 已提交
4024 4025 4026 4027 4028 4029 4030 4031 4032
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
4033 4034 4035
	if (!plugged)
		md_wakeup_thread(mddev->thread);

L
Linus Torvalds 已提交
4036
	spin_lock_irq(&conf->device_lock);
4037
	remaining = raid5_dec_bi_phys_segments(bi);
4038 4039
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
4040

4041
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4042
			md_write_end(mddev);
4043

4044
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4045
	}
4046

L
Linus Torvalds 已提交
4047 4048 4049
	return 0;
}

D
Dan Williams 已提交
4050 4051
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

4052
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4053
{
4054 4055 4056 4057 4058 4059 4060 4061 4062
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4063
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4064
	struct stripe_head *sh;
4065
	sector_t first_sector, last_sector;
4066 4067 4068
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4069 4070
	int i;
	int dd_idx;
4071
	sector_t writepos, readpos, safepos;
4072
	sector_t stripe_addr;
4073
	int reshape_sectors;
4074
	struct list_head stripes;
4075

4076 4077 4078 4079 4080 4081
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4082
		} else if (mddev->delta_disks >= 0 &&
4083 4084
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4085
		sector_div(sector_nr, new_data_disks);
4086
		if (sector_nr) {
4087 4088
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4089 4090 4091
			*skipped = 1;
			return sector_nr;
		}
4092 4093
	}

4094 4095 4096 4097
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4098 4099
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4100
	else
4101
		reshape_sectors = mddev->chunk_sectors;
4102

4103 4104 4105 4106 4107
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
4108 4109
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
4110
	 */
4111
	writepos = conf->reshape_progress;
4112
	sector_div(writepos, new_data_disks);
4113 4114
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4115
	safepos = conf->reshape_safe;
4116
	sector_div(safepos, data_disks);
4117
	if (mddev->delta_disks < 0) {
4118
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4119
		readpos += reshape_sectors;
4120
		safepos += reshape_sectors;
4121
	} else {
4122
		writepos += reshape_sectors;
4123 4124
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4125
	}
4126

4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4144
	if ((mddev->delta_disks < 0
4145 4146 4147
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4148 4149 4150
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4151
		mddev->reshape_position = conf->reshape_progress;
4152
		mddev->curr_resync_completed = sector_nr;
4153
		conf->reshape_checkpoint = jiffies;
4154
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4155
		md_wakeup_thread(mddev->thread);
4156
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4157 4158
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4159
		conf->reshape_safe = mddev->reshape_position;
4160 4161
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4162
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4163 4164
	}

4165 4166 4167 4168
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
4169 4170
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
4171 4172
		       != sector_nr);
	} else {
4173
		BUG_ON(writepos != sector_nr + reshape_sectors);
4174 4175
		stripe_addr = sector_nr;
	}
4176
	INIT_LIST_HEAD(&stripes);
4177
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4178
		int j;
4179
		int skipped_disk = 0;
4180
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4181 4182 4183 4184 4185 4186 4187 4188 4189
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4190
			if (conf->level == 6 &&
4191
			    j == sh->qd_idx)
4192
				continue;
4193
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4194
			if (s < raid5_size(mddev, 0, 0)) {
4195
				skipped_disk = 1;
4196 4197 4198 4199 4200 4201
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4202
		if (!skipped_disk) {
4203 4204 4205
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4206
		list_add(&sh->lru, &stripes);
4207 4208
	}
	spin_lock_irq(&conf->device_lock);
4209
	if (mddev->delta_disks < 0)
4210
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4211
	else
4212
		conf->reshape_progress += reshape_sectors * new_data_disks;
4213 4214 4215 4216 4217 4218 4219
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4220
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4221
				     1, &dd_idx, NULL);
4222
	last_sector =
4223
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4224
					    * new_data_disks - 1),
4225
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4226 4227
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4228
	while (first_sector <= last_sector) {
4229
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4230 4231 4232 4233 4234
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4235 4236 4237 4238 4239 4240 4241 4242
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4243 4244 4245
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4246
	sector_nr += reshape_sectors;
4247 4248
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4249 4250 4251
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4252
		mddev->reshape_position = conf->reshape_progress;
4253
		mddev->curr_resync_completed = sector_nr;
4254
		conf->reshape_checkpoint = jiffies;
4255 4256 4257 4258 4259 4260
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4261
		conf->reshape_safe = mddev->reshape_position;
4262 4263
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4264
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4265
	}
4266
	return reshape_sectors;
4267 4268 4269 4270 4271
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
4272
	raid5_conf_t *conf = mddev->private;
4273
	struct stripe_head *sh;
A
Andre Noll 已提交
4274
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
4275
	sector_t sync_blocks;
4276 4277
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4278

4279
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4280
		/* just being told to finish up .. nothing much to do */
4281

4282 4283 4284 4285
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4286 4287 4288 4289

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4290
		else /* completed sync */
4291 4292 4293
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4294 4295
		return 0;
	}
4296

4297 4298 4299
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4300 4301
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4302

4303 4304 4305 4306 4307 4308
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4309
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4310 4311 4312
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4313
	if (mddev->degraded >= conf->max_degraded &&
4314
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4315
		sector_t rv = mddev->dev_sectors - sector_nr;
4316
		*skipped = 1;
L
Linus Torvalds 已提交
4317 4318
		return rv;
	}
4319
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4320
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4321 4322 4323 4324 4325 4326
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4327

N
NeilBrown 已提交
4328 4329 4330

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4331
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4332
	if (sh == NULL) {
4333
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4334
		/* make sure we don't swamp the stripe cache if someone else
4335
		 * is trying to get access
L
Linus Torvalds 已提交
4336
		 */
4337
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4338
	}
4339 4340 4341 4342
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4343
	for (i = 0; i < conf->raid_disks; i++)
4344 4345 4346 4347 4348
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

4349
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
L
Linus Torvalds 已提交
4350

4351
	handle_stripe(sh);
L
Linus Torvalds 已提交
4352 4353 4354 4355 4356
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4370
	int dd_idx;
4371 4372 4373 4374 4375 4376
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4377
	sector = raid5_compute_sector(conf, logical_sector,
4378
				      0, &dd_idx, NULL);
4379 4380 4381
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4382 4383 4384
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4385

4386
		if (scnt < raid5_bi_hw_segments(raid_bio))
4387 4388 4389
			/* already done this stripe */
			continue;

4390
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4391 4392 4393

		if (!sh) {
			/* failed to get a stripe - must wait */
4394
			raid5_set_bi_hw_segments(raid_bio, scnt);
4395 4396 4397 4398 4399
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4400 4401
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4402
			raid5_set_bi_hw_segments(raid_bio, scnt);
4403 4404 4405 4406
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4407
		handle_stripe(sh);
4408 4409 4410 4411
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4412
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4413
	spin_unlock_irq(&conf->device_lock);
4414 4415
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4416 4417 4418 4419 4420 4421
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4422 4423 4424 4425 4426 4427 4428
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4429
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4430 4431
{
	struct stripe_head *sh;
4432
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4433
	int handled;
4434
	struct blk_plug plug;
L
Linus Torvalds 已提交
4435

4436
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4437 4438 4439

	md_check_recovery(mddev);

4440
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
4441 4442 4443
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4444
		struct bio *bio;
L
Linus Torvalds 已提交
4445

4446 4447 4448 4449
		if (atomic_read(&mddev->plug_cnt) == 0 &&
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
4450
			spin_unlock_irq(&conf->device_lock);
4451
			bitmap_unplug(mddev->bitmap);
4452
			spin_lock_irq(&conf->device_lock);
4453
			conf->seq_write = conf->seq_flush;
4454 4455
			activate_bit_delay(conf);
		}
4456 4457
		if (atomic_read(&mddev->plug_cnt) == 0)
			raid5_activate_delayed(conf);
4458

4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4469 4470
		sh = __get_priority_stripe(conf);

4471
		if (!sh)
L
Linus Torvalds 已提交
4472 4473 4474 4475
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4476 4477 4478
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4479 4480 4481

		spin_lock_irq(&conf->device_lock);
	}
4482
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4483 4484 4485

	spin_unlock_irq(&conf->device_lock);

4486
	async_tx_issue_pending_all();
4487
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
4488

4489
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4490 4491
}

4492
static ssize_t
4493
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4494
{
4495
	raid5_conf_t *conf = mddev->private;
4496 4497 4498 4499
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4500 4501
}

4502 4503
int
raid5_set_cache_size(mddev_t *mddev, int size)
4504
{
4505
	raid5_conf_t *conf = mddev->private;
4506 4507
	int err;

4508
	if (size <= 16 || size > 32768)
4509
		return -EINVAL;
4510
	while (size < conf->max_nr_stripes) {
4511 4512 4513 4514 4515
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4516 4517 4518
	err = md_allow_write(mddev);
	if (err)
		return err;
4519
	while (size > conf->max_nr_stripes) {
4520 4521 4522 4523
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
{
	raid5_conf_t *conf = mddev->private;
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4545 4546
	return len;
}
4547

4548 4549 4550 4551
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4552

4553 4554 4555
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4556
	raid5_conf_t *conf = mddev->private;
4557 4558 4559 4560 4561 4562 4563 4564 4565
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4566
	raid5_conf_t *conf = mddev->private;
4567
	unsigned long new;
4568 4569 4570 4571 4572
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4573
	if (strict_strtoul(page, 10, &new))
4574
		return -EINVAL;
4575
	if (new > conf->max_nr_stripes)
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4587
static ssize_t
4588
stripe_cache_active_show(mddev_t *mddev, char *page)
4589
{
4590
	raid5_conf_t *conf = mddev->private;
4591 4592 4593 4594
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4595 4596
}

4597 4598
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4599

4600
static struct attribute *raid5_attrs[] =  {
4601 4602
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4603
	&raid5_preread_bypass_threshold.attr,
4604 4605
	NULL,
};
4606 4607 4608
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4609 4610
};

4611 4612 4613
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4614
	raid5_conf_t *conf = mddev->private;
4615 4616 4617

	if (!sectors)
		sectors = mddev->dev_sectors;
4618
	if (!raid_disks)
4619
		/* size is defined by the smallest of previous and new size */
4620
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4621

4622
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4623
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4624 4625 4626
	return sectors * (raid_disks - conf->max_degraded);
}

4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4639
		kfree(percpu->scribble);
4640 4641 4642 4643 4644 4645 4646 4647 4648
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4649 4650 4651
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4652
	raid5_free_percpu(conf);
4653 4654 4655 4656 4657
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4669
		if (conf->level == 6 && !percpu->spare_page)
4670
			percpu->spare_page = alloc_page(GFP_KERNEL);
4671 4672 4673 4674 4675 4676 4677
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4678 4679
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
4680
			return notifier_from_errno(-ENOMEM);
4681 4682 4683 4684 4685
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4686
		kfree(percpu->scribble);
4687
		percpu->spare_page = NULL;
4688
		percpu->scribble = NULL;
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
4701
	struct raid5_percpu __percpu *allcpus;
4702
	void *scribble;
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4713 4714 4715 4716 4717 4718 4719 4720
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4721
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4722
		if (!scribble) {
4723 4724 4725
			err = -ENOMEM;
			break;
		}
4726
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4739
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4740 4741
{
	raid5_conf_t *conf;
4742
	int raid_disk, memory, max_disks;
L
Linus Torvalds 已提交
4743 4744 4745
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4746 4747 4748
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4749
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4750 4751
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4752
	}
N
NeilBrown 已提交
4753 4754 4755 4756
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4757
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4758 4759
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4760
	}
N
NeilBrown 已提交
4761
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4762
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4763 4764
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4765 4766
	}

4767 4768 4769
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4770 4771
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4772
		return ERR_PTR(-EINVAL);
4773 4774
	}

N
NeilBrown 已提交
4775 4776
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4777
		goto abort;
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
N
NeilBrown 已提交
4790 4791 4792 4793 4794

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4795
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4796 4797
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4798

4799
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4800 4801 4802
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4803

L
Linus Torvalds 已提交
4804 4805
	conf->mddev = mddev;

4806
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4807 4808
		goto abort;

4809 4810 4811 4812
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4813
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4814

4815
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4816
		raid_disk = rdev->raid_disk;
4817
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4818 4819 4820 4821 4822 4823
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4824
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4825
			char b[BDEVNAME_SIZE];
4826 4827 4828
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
4829
		} else if (rdev->saved_raid_disk != raid_disk)
4830 4831
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4832 4833
	}

4834
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4835
	conf->level = mddev->new_level;
4836 4837 4838 4839
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4840
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4841
	conf->max_nr_stripes = NR_STRIPES;
4842
	conf->reshape_progress = mddev->reshape_position;
4843
	if (conf->reshape_progress != MaxSector) {
4844
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4845 4846
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4847

N
NeilBrown 已提交
4848
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4849
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4850 4851
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4852 4853
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4854 4855
		goto abort;
	} else
4856 4857
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4858

4859
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4860 4861
	if (!conf->thread) {
		printk(KERN_ERR
4862
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4863
		       mdname(mddev));
4864 4865
		goto abort;
	}
N
NeilBrown 已提交
4866 4867 4868 4869 4870

	return conf;

 abort:
	if (conf) {
4871
		free_conf(conf);
N
NeilBrown 已提交
4872 4873 4874 4875 4876
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

N
NeilBrown 已提交
4904 4905 4906
static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
4907
	int working_disks = 0;
4908
	int dirty_parity_disks = 0;
N
NeilBrown 已提交
4909
	mdk_rdev_t *rdev;
4910
	sector_t reshape_offset = 0;
N
NeilBrown 已提交
4911

4912
	if (mddev->recovery_cp != MaxSector)
4913
		printk(KERN_NOTICE "md/raid:%s: not clean"
4914 4915
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
4916 4917 4918 4919 4920 4921 4922 4923
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4924
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4925

4926
		if (mddev->new_level != mddev->level) {
4927
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4938
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
4939
			       (mddev->raid_disks - max_degraded))) {
4940 4941
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
4942 4943
			return -EINVAL;
		}
4944
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
4945 4946
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
4947
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
4948 4949 4950
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
4962 4963 4964
				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
				       " in read-only mode - aborting\n",
				       mdname(mddev));
4965 4966 4967 4968 4969 4970 4971
				return -EINVAL;
			}
		} else if (mddev->delta_disks < 0
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
4972
			/* Reading from the same stripe as writing to - bad */
4973 4974 4975
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
4976 4977
			return -EINVAL;
		}
4978 4979
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
4980 4981 4982 4983
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
4984
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
4985
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
4986
	}
N
NeilBrown 已提交
4987

4988 4989 4990 4991 4992
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
5003 5004 5005
	list_for_each_entry(rdev, &mddev->disks, same_set) {
		if (rdev->raid_disk < 0)
			continue;
5006
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
5007
			working_disks++;
5008 5009
			continue;
		}
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
5038

5039 5040
	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
			   - working_disks);
N
NeilBrown 已提交
5041

5042
	if (has_failed(conf)) {
5043
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
5044
			" (%d/%d failed)\n",
5045
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
5046 5047 5048
		goto abort;
	}

N
NeilBrown 已提交
5049
	/* device size must be a multiple of chunk size */
5050
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
5051 5052
	mddev->resync_max_sectors = mddev->dev_sectors;

5053
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
5054
	    mddev->recovery_cp != MaxSector) {
5055 5056
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
5057 5058
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
5059 5060 5061
			       mdname(mddev));
		else {
			printk(KERN_ERR
5062
			       "md/raid:%s: cannot start dirty degraded array.\n",
5063 5064 5065
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
5066 5067 5068
	}

	if (mddev->degraded == 0)
5069 5070
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5071 5072
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
5073
	else
5074 5075 5076 5077 5078
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
5079 5080 5081

	print_raid5_conf(conf);

5082 5083
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
5084 5085 5086 5087 5088 5089
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5090
							"reshape");
5091 5092
	}

L
Linus Torvalds 已提交
5093 5094

	/* Ok, everything is just fine now */
5095 5096
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
5097 5098
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5099
		printk(KERN_WARNING
5100
		       "raid5: failed to create sysfs attributes for %s\n",
5101
		       mdname(mddev));
5102
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5103

5104
	if (mddev->queue) {
5105
		int chunk_size;
5106 5107 5108 5109 5110 5111 5112 5113 5114
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
5115

5116
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5117

N
NeilBrown 已提交
5118 5119
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5120

5121 5122 5123 5124
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
5125

5126 5127 5128 5129
		list_for_each_entry(rdev, &mddev->disks, same_set)
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
	}
5130

L
Linus Torvalds 已提交
5131 5132
	return 0;
abort:
5133
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
5134
	mddev->thread = NULL;
L
Linus Torvalds 已提交
5135 5136
	if (conf) {
		print_raid5_conf(conf);
5137
		free_conf(conf);
L
Linus Torvalds 已提交
5138 5139
	}
	mddev->private = NULL;
5140
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
5141 5142 5143
	return -EIO;
}

5144
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
5145
{
5146
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5147 5148 5149

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
N
NeilBrown 已提交
5150 5151
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
5152
	free_conf(conf);
5153 5154
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5155 5156 5157
	return 0;
}

5158
#ifdef DEBUG
5159
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
5160 5161 5162
{
	int i;

5163 5164 5165 5166 5167
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5168
	for (i = 0; i < sh->disks; i++) {
5169 5170
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
5171
	}
5172
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
5173 5174
}

5175
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
5176 5177
{
	struct stripe_head *sh;
5178
	struct hlist_node *hn;
L
Linus Torvalds 已提交
5179 5180 5181 5182
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
5183
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
5184 5185
			if (sh->raid_conf != conf)
				continue;
5186
			print_sh(seq, sh);
L
Linus Torvalds 已提交
5187 5188 5189 5190 5191 5192
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

5193
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
5194
{
5195
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5196 5197
	int i;

5198 5199
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5200
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5201 5202 5203
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5204
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5205
	seq_printf (seq, "]");
5206
#ifdef DEBUG
5207 5208
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
5209 5210 5211 5212 5213 5214 5215 5216
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

5217
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
5218 5219 5220 5221
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5222 5223 5224
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5225 5226 5227 5228 5229

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
5230 5231 5232
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
5233 5234 5235 5236 5237 5238 5239 5240
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;
5241 5242
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
5243 5244 5245 5246

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
5247
		    && tmp->rdev->recovery_offset == MaxSector
5248
		    && !test_bit(Faulty, &tmp->rdev->flags)
5249
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5250
			count++;
5251
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
5252 5253
		}
	}
5254 5255 5256
	spin_lock_irqsave(&conf->device_lock, flags);
	mddev->degraded -= count;
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5257
	print_raid5_conf(conf);
5258
	return count;
L
Linus Torvalds 已提交
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
5271 5272 5273 5274
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

5275
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
5276 5277 5278 5279
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
5280 5281 5282 5283
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
5284
		    !has_failed(conf) &&
5285
		    number < conf->raid_disks) {
5286 5287 5288
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
5289
		p->rdev = NULL;
5290
		synchronize_rcu();
L
Linus Torvalds 已提交
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
5306
	int err = -EEXIST;
L
Linus Torvalds 已提交
5307 5308
	int disk;
	struct disk_info *p;
5309 5310
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5311

5312
	if (has_failed(conf))
L
Linus Torvalds 已提交
5313
		/* no point adding a device */
5314
		return -EINVAL;
L
Linus Torvalds 已提交
5315

5316 5317
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5318 5319

	/*
5320 5321
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5322
	 */
5323
	if (rdev->saved_raid_disk >= 0 &&
5324
	    rdev->saved_raid_disk >= first &&
5325 5326 5327
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
5328 5329
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
5330
		if ((p=conf->disks + disk)->rdev == NULL) {
5331
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5332
			rdev->raid_disk = disk;
5333
			err = 0;
5334 5335
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5336
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5337 5338 5339
			break;
		}
	print_raid5_conf(conf);
5340
	return err;
L
Linus Torvalds 已提交
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5352
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5353 5354
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5355 5356 5357
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5358
	set_capacity(mddev->gendisk, mddev->array_sectors);
5359
	revalidate_disk(mddev->gendisk);
5360 5361
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
5362
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5363 5364
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5365
	mddev->dev_sectors = sectors;
5366
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5367 5368 5369
	return 0;
}

5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
static int check_stripe_cache(mddev_t *mddev)
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
	raid5_conf_t *conf = mddev->private;
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5385 5386
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5387 5388 5389 5390 5391 5392 5393
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5394
static int check_reshape(mddev_t *mddev)
5395
{
5396
	raid5_conf_t *conf = mddev->private;
5397

5398 5399
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5400
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5401
		return 0; /* nothing to do */
5402 5403 5404
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5405
	if (has_failed(conf))
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5419

5420
	if (!check_stripe_cache(mddev))
5421 5422
		return -ENOSPC;

5423
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5424 5425 5426 5427
}

static int raid5_start_reshape(mddev_t *mddev)
{
5428
	raid5_conf_t *conf = mddev->private;
5429 5430
	mdk_rdev_t *rdev;
	int spares = 0;
5431
	unsigned long flags;
5432

5433
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5434 5435
		return -EBUSY;

5436 5437 5438
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5439
	list_for_each_entry(rdev, &mddev->disks, same_set)
5440 5441
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
5442
			spares++;
5443

5444
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5445 5446 5447 5448 5449
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5450 5451 5452 5453 5454 5455
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5456
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5457 5458 5459 5460
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5461
	atomic_set(&conf->reshape_stripes, 0);
5462 5463
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5464
	conf->raid_disks += mddev->delta_disks;
5465 5466
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5467 5468
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5469 5470 5471 5472 5473
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5474
	conf->generation++;
5475 5476 5477 5478
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5479 5480 5481 5482
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5483
	 */
5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
	if (mddev->delta_disks >= 0) {
		int added_devices = 0;
		list_for_each_entry(rdev, &mddev->disks, same_set)
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					char nm[20];
					if (rdev->raid_disk
					    >= conf->previous_raid_disks) {
						set_bit(In_sync, &rdev->flags);
						added_devices++;
					} else
						rdev->recovery_offset = 0;
					sprintf(nm, "rd%d", rdev->raid_disk);
					if (sysfs_create_link(&mddev->kobj,
							      &rdev->kobj, nm))
						/* Failure here is OK */;
5501
				}
5502 5503 5504 5505 5506 5507
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
				added_devices++;
			}
5508

5509 5510 5511 5512
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
5513
		spin_lock_irqsave(&conf->device_lock, flags);
5514
		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5515 5516 5517
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5518
	mddev->raid_disks = conf->raid_disks;
5519
	mddev->reshape_position = conf->reshape_progress;
5520
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5521

5522 5523 5524 5525 5526
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5527
						"reshape");
5528 5529 5530 5531
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5532
		conf->reshape_progress = MaxSector;
5533 5534 5535
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5536
	conf->reshape_checkpoint = jiffies;
5537 5538 5539 5540 5541
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5542 5543 5544
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5545 5546 5547
static void end_reshape(raid5_conf_t *conf)
{

5548 5549 5550
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5551
		conf->previous_raid_disks = conf->raid_disks;
5552
		conf->reshape_progress = MaxSector;
5553
		spin_unlock_irq(&conf->device_lock);
5554
		wake_up(&conf->wait_for_overlap);
5555 5556 5557 5558

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
5559
		if (conf->mddev->queue) {
5560
			int data_disks = conf->raid_disks - conf->max_degraded;
5561
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5562
						   / PAGE_SIZE);
5563 5564 5565
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5566 5567 5568
	}
}

5569 5570 5571
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5572 5573
static void raid5_finish_reshape(mddev_t *mddev)
{
5574
	raid5_conf_t *conf = mddev->private;
5575 5576 5577

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5578 5579 5580
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5581
			revalidate_disk(mddev->gendisk);
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5592 5593 5594 5595 5596 5597 5598 5599 5600
			     d++) {
				mdk_rdev_t *rdev = conf->disks[d].rdev;
				if (rdev && raid5_remove_disk(mddev, d) == 0) {
					char nm[20];
					sprintf(nm, "rd%d", rdev->raid_disk);
					sysfs_remove_link(&mddev->kobj, nm);
					rdev->raid_disk = -1;
				}
			}
5601
		}
5602
		mddev->layout = conf->algorithm;
5603
		mddev->chunk_sectors = conf->chunk_sectors;
5604 5605
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5606 5607 5608
	}
}

5609 5610
static void raid5_quiesce(mddev_t *mddev, int state)
{
5611
	raid5_conf_t *conf = mddev->private;
5612 5613

	switch(state) {
5614 5615 5616 5617
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5618 5619
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5620 5621 5622 5623
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5624
		wait_event_lock_irq(conf->wait_for_stripe,
5625 5626
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5627
				    conf->device_lock, /* nothing */);
5628
		conf->quiesce = 1;
5629
		spin_unlock_irq(&conf->device_lock);
5630 5631
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5632 5633 5634 5635 5636 5637
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5638
		wake_up(&conf->wait_for_overlap);
5639 5640 5641 5642
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5643

5644

D
Dan Williams 已提交
5645
static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5646
{
D
Dan Williams 已提交
5647
	struct raid0_private_data *raid0_priv = mddev->private;
5648
	sector_t sectors;
5649

D
Dan Williams 已提交
5650 5651
	/* for raid0 takeover only one zone is supported */
	if (raid0_priv->nr_strip_zones > 1) {
5652 5653
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5654 5655 5656
		return ERR_PTR(-EINVAL);
	}

5657 5658 5659
	sectors = raid0_priv->strip_zone[0].zone_end;
	sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
5660
	mddev->new_level = level;
5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5694
	mddev->new_chunk_sectors = chunksect;
5695 5696 5697 5698

	return setup_conf(mddev);
}

5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5732

5733
static int raid5_check_reshape(mddev_t *mddev)
5734
{
5735 5736 5737 5738
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5739
	 */
5740
	raid5_conf_t *conf = mddev->private;
5741
	int new_chunk = mddev->new_chunk_sectors;
5742

5743
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5744 5745
		return -EINVAL;
	if (new_chunk > 0) {
5746
		if (!is_power_of_2(new_chunk))
5747
			return -EINVAL;
5748
		if (new_chunk < (PAGE_SIZE>>9))
5749
			return -EINVAL;
5750
		if (mddev->array_sectors & (new_chunk-1))
5751 5752 5753 5754 5755 5756
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5757
	if (mddev->raid_disks == 2) {
5758 5759 5760 5761
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5762 5763
		}
		if (new_chunk > 0) {
5764 5765
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5766 5767 5768
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5769
	}
5770
	return check_reshape(mddev);
5771 5772
}

5773
static int raid6_check_reshape(mddev_t *mddev)
5774
{
5775
	int new_chunk = mddev->new_chunk_sectors;
5776

5777
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5778
		return -EINVAL;
5779
	if (new_chunk > 0) {
5780
		if (!is_power_of_2(new_chunk))
5781
			return -EINVAL;
5782
		if (new_chunk < (PAGE_SIZE >> 9))
5783
			return -EINVAL;
5784
		if (mddev->array_sectors & (new_chunk-1))
5785 5786
			/* not factor of array size */
			return -EINVAL;
5787
	}
5788 5789

	/* They look valid */
5790
	return check_reshape(mddev);
5791 5792
}

5793 5794 5795
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
D
Dan Williams 已提交
5796
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5797 5798 5799 5800
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
5801 5802
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
5803 5804
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5805 5806 5807 5808 5809
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5810 5811
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5812 5813 5814 5815

	return ERR_PTR(-EINVAL);
}

5816 5817
static void *raid4_takeover(mddev_t *mddev)
{
D
Dan Williams 已提交
5818 5819 5820
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
5821
	 */
D
Dan Williams 已提交
5822 5823
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
5824 5825 5826 5827 5828 5829 5830 5831
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
5832

5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5897
	.size		= raid5_size,
5898
	.check_reshape	= raid6_check_reshape,
5899
	.start_reshape  = raid5_start_reshape,
5900
	.finish_reshape = raid5_finish_reshape,
5901
	.quiesce	= raid5_quiesce,
5902
	.takeover	= raid6_takeover,
5903
};
5904
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5905 5906
{
	.name		= "raid5",
5907
	.level		= 5,
L
Linus Torvalds 已提交
5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5919
	.size		= raid5_size,
5920 5921
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5922
	.finish_reshape = raid5_finish_reshape,
5923
	.quiesce	= raid5_quiesce,
5924
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
5925 5926
};

5927
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5928
{
5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5942
	.size		= raid5_size,
5943 5944
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5945
	.finish_reshape = raid5_finish_reshape,
5946
	.quiesce	= raid5_quiesce,
5947
	.takeover	= raid4_takeover,
5948 5949 5950 5951
};

static int __init raid5_init(void)
{
5952
	register_md_personality(&raid6_personality);
5953 5954 5955
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5956 5957
}

5958
static void raid5_exit(void)
L
Linus Torvalds 已提交
5959
{
5960
	unregister_md_personality(&raid6_personality);
5961 5962
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5963 5964 5965 5966 5967
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
5968
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
5969
MODULE_ALIAS("md-personality-4"); /* RAID5 */
5970 5971
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
5972 5973
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
5974 5975 5976 5977 5978 5979 5980
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");