raid5.c 167.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/async.h>
51
#include <linux/seq_file.h>
52
#include <linux/cpu.h>
53
#include <linux/slab.h>
54
#include "md.h"
55
#include "raid5.h"
56
#include "raid0.h"
57
#include "bitmap.h"
58

L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
68
#define BYPASS_THRESHOLD	1
69
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
70 71
#define HASH_MASK		(NR_HASH - 1)

72
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

94
#ifdef DEBUG
L
Linus Torvalds 已提交
95 96 97 98
#define inline
#define __inline__
#endif

99 100
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

101
/*
102 103
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104 105 106
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
107
	return bio->bi_phys_segments & 0xffff;
108 109 110 111
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
112
	return (bio->bi_phys_segments >> 16) & 0xffff;
113 114 115 116 117 118 119 120 121 122 123 124 125
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
126
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 128 129 130 131
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
132
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 134
}

135 136 137
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
138 139 140 141
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
142 143 144 145 146
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
147 148 149 150 151
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
152

153 154 155 156 157
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
158 159
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
160
{
161
	int slot = *count;
162

163
	if (sh->ddf_layout)
164
		(*count)++;
165
	if (idx == sh->pd_idx)
166
		return syndrome_disks;
167
	if (idx == sh->qd_idx)
168
		return syndrome_disks + 1;
169
	if (!sh->ddf_layout)
170
		(*count)++;
171 172 173
	return slot;
}

174 175 176 177 178 179 180 181
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
182
		bio_endio(bi, 0);
183 184 185 186
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
187 188
static void print_raid5_conf (raid5_conf_t *conf);

189 190 191 192 193 194 195
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

196
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
197 198
{
	if (atomic_dec_and_test(&sh->count)) {
199 200
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
201
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
N
NeilBrown 已提交
202
			if (test_bit(STRIPE_DELAYED, &sh->state))
L
Linus Torvalds 已提交
203
				list_add_tail(&sh->lru, &conf->delayed_list);
N
NeilBrown 已提交
204 205
			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
				   sh->bm_seq - conf->seq_write > 0)
206
				list_add_tail(&sh->lru, &conf->bitmap_list);
N
NeilBrown 已提交
207
			else {
208
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
209
				list_add_tail(&sh->lru, &conf->handle_list);
210
			}
L
Linus Torvalds 已提交
211 212
			md_wakeup_thread(conf->mddev->thread);
		} else {
213
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
214 215 216 217 218 219
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
220 221
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
222
				wake_up(&conf->wait_for_stripe);
223 224
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
225
			}
L
Linus Torvalds 已提交
226 227 228
		}
	}
}
229

L
Linus Torvalds 已提交
230 231 232 233
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
234

L
Linus Torvalds 已提交
235 236 237 238 239
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

240
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
241
{
242 243
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
244

245
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
246 247
}

248
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
249
{
250
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
251

252 253
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
254 255

	CHECK_DEVLOCK();
256
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

278
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
279 280 281
{
	struct page *p;
	int i;
282
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
283

284
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
285 286 287 288
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
289
		put_page(p);
L
Linus Torvalds 已提交
290 291 292
	}
}

293
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
294 295
{
	int i;
296
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
297

298
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
299 300 301 302 303 304 305 306 307 308
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

309
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 311
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
312

313
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
314 315
{
	raid5_conf_t *conf = sh->raid_conf;
316
	int i;
L
Linus Torvalds 已提交
317

318 319
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320
	BUG_ON(stripe_operations_active(sh));
321

L
Linus Torvalds 已提交
322
	CHECK_DEVLOCK();
323
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
324 325 326
		(unsigned long long)sh->sector);

	remove_hash(sh);
327

328
	sh->generation = conf->generation - previous;
329
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
330
	sh->sector = sector;
331
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
332 333
	sh->state = 0;

334 335

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
336 337
		struct r5dev *dev = &sh->dev[i];

338
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
339
		    test_bit(R5_LOCKED, &dev->flags)) {
340
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
341
			       (unsigned long long)sh->sector, i, dev->toread,
342
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
343 344 345 346
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
347
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
348 349 350 351
	}
	insert_hash(conf, sh);
}

352 353
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
354 355
{
	struct stripe_head *sh;
356
	struct hlist_node *hn;
L
Linus Torvalds 已提交
357 358

	CHECK_DEVLOCK();
359
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
362
			return sh;
363
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
364 365 366
	return NULL;
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
static int has_failed(raid5_conf_t *conf)
{
	int degraded;
	int i;
	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

434 435
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
436
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
437 438 439
{
	struct stripe_head *sh;

440
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
441 442 443 444

	spin_lock_irq(&conf->device_lock);

	do {
445
		wait_event_lock_irq(conf->wait_for_stripe,
446
				    conf->quiesce == 0 || noquiesce,
447
				    conf->device_lock, /* nothing */);
448
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
449 450 451 452 453 454 455 456 457
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
458 459
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
460 461
						     || !conf->inactive_blocked),
						    conf->device_lock,
462
						    );
L
Linus Torvalds 已提交
463 464
				conf->inactive_blocked = 0;
			} else
465
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
466 467
		} else {
			if (atomic_read(&sh->count)) {
468 469
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
470 471 472
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
473 474
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
475 476
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
477 478 479 480 481 482 483 484 485 486 487
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

488 489 490 491
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
492

493
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
494 495 496 497 498 499 500 501 502 503
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
T
Tejun Heo 已提交
504 505 506 507 508 509
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
531
			if (s->syncing || s->expanding || s->expanded)
532 533
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
534 535
			set_bit(STRIPE_IO_STARTED, &sh->state);

536 537
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
538
				__func__, (unsigned long long)sh->sector,
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
575
	struct async_submit_ctl submit;
D
Dan Williams 已提交
576
	enum async_tx_flags flags = 0;
577 578 579 580 581

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
582

D
Dan Williams 已提交
583 584 585 586
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
608
						  b_offset, clen, &submit);
609 610
			else
				tx = async_memcpy(bio_page, page, b_offset,
611
						  page_offset, clen, &submit);
612
		}
613 614 615
		/* chain the operations */
		submit.depend_tx = tx;

616 617 618 619 620 621 622 623 624 625 626 627 628
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
629
	int i;
630

631
	pr_debug("%s: stripe %llu\n", __func__,
632 633 634
		(unsigned long long)sh->sector);

	/* clear completed biofills */
635
	spin_lock_irq(&conf->device_lock);
636 637 638 639
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
640 641
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
642
		 * !STRIPE_BIOFILL_RUN
643 644
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
645 646 647 648 649 650 651 652
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
653
				if (!raid5_dec_bi_phys_segments(rbi)) {
654 655 656 657 658 659 660
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
661 662
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
663 664 665

	return_io(return_bi);

666
	set_bit(STRIPE_HANDLE, &sh->state);
667 668 669 670 671 672 673
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
674
	struct async_submit_ctl submit;
675 676
	int i;

677
	pr_debug("%s: stripe %llu\n", __func__,
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
698 699
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
700 701
}

702
static void mark_target_uptodate(struct stripe_head *sh, int target)
703
{
704
	struct r5dev *tgt;
705

706 707
	if (target < 0)
		return;
708

709
	tgt = &sh->dev[target];
710 711 712
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
713 714
}

715
static void ops_complete_compute(void *stripe_head_ref)
716 717 718
{
	struct stripe_head *sh = stripe_head_ref;

719
	pr_debug("%s: stripe %llu\n", __func__,
720 721
		(unsigned long long)sh->sector);

722
	/* mark the computed target(s) as uptodate */
723
	mark_target_uptodate(sh, sh->ops.target);
724
	mark_target_uptodate(sh, sh->ops.target2);
725

726 727 728
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
729 730 731 732
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

733 734 735 736 737 738 739 740 741
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
742 743
{
	int disks = sh->disks;
744
	struct page **xor_srcs = percpu->scribble;
745 746 747 748 749
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
750
	struct async_submit_ctl submit;
751 752 753
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
754
		__func__, (unsigned long long)sh->sector, target);
755 756 757 758 759 760 761 762
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
763
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
764
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
765
	if (unlikely(count == 1))
766
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
767
	else
768
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
769 770 771 772

	return tx;
}

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
791
		srcs[i] = NULL;
792 793 794 795 796 797 798 799 800 801

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

802
	return syndrome_disks;
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
823
	else
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
840 841
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
842 843 844 845 846 847 848 849 850 851 852
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
853 854
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
855 856 857
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
858 859 860 861

	return tx;
}

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

883
	/* we need to open-code set_syndrome_sources to handle the
884 885 886
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
887
		blocks[i] = NULL;
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
914 915 916
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
917
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
937 938 939 940
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
941 942 943 944
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
945 946 947
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
948 949 950 951
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
952 953 954 955 956 957 958 959 960 961 962 963 964 965
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
966 967 968 969
	}
}


970 971 972 973
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

974
	pr_debug("%s: stripe %llu\n", __func__,
975 976 977 978
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
979 980
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
981 982
{
	int disks = sh->disks;
983
	struct page **xor_srcs = percpu->scribble;
984
	int count = 0, pd_idx = sh->pd_idx, i;
985
	struct async_submit_ctl submit;
986 987 988 989

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

990
	pr_debug("%s: stripe %llu\n", __func__,
991 992 993 994 995
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
996
		if (test_bit(R5_Wantdrain, &dev->flags))
997 998 999
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1000
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1001
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1002
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1003 1004 1005 1006 1007

	return tx;
}

static struct dma_async_tx_descriptor *
1008
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1009 1010
{
	int disks = sh->disks;
1011
	int i;
1012

1013
	pr_debug("%s: stripe %llu\n", __func__,
1014 1015 1016 1017 1018 1019
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1020
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1032 1033
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1044
static void ops_complete_reconstruct(void *stripe_head_ref)
1045 1046
{
	struct stripe_head *sh = stripe_head_ref;
1047 1048 1049 1050
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
T
Tejun Heo 已提交
1051
	bool fua = false;
1052

1053
	pr_debug("%s: stripe %llu\n", __func__,
1054 1055
		(unsigned long long)sh->sector);

T
Tejun Heo 已提交
1056 1057 1058
	for (i = disks; i--; )
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);

1059 1060
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1061

T
Tejun Heo 已提交
1062
		if (dev->written || i == pd_idx || i == qd_idx) {
1063
			set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1064 1065 1066
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
		}
1067 1068
	}

1069 1070 1071 1072 1073 1074 1075 1076
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1077 1078 1079 1080 1081 1082

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1083 1084
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1085 1086
{
	int disks = sh->disks;
1087
	struct page **xor_srcs = percpu->scribble;
1088
	struct async_submit_ctl submit;
1089 1090
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1091
	int prexor = 0;
1092 1093
	unsigned long flags;

1094
	pr_debug("%s: stripe %llu\n", __func__,
1095 1096 1097 1098 1099
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1100 1101
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1122
	flags = ASYNC_TX_ACK |
1123 1124 1125 1126
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1127
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1128
			  to_addr_conv(sh, percpu));
1129 1130 1131 1132
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1133 1134
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1152 1153 1154 1155 1156 1157
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1158
	pr_debug("%s: stripe %llu\n", __func__,
1159 1160
		(unsigned long long)sh->sector);

1161
	sh->check_state = check_state_check_result;
1162 1163 1164 1165
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1166
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1167 1168
{
	int disks = sh->disks;
1169 1170 1171
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1172
	struct page **xor_srcs = percpu->scribble;
1173
	struct dma_async_tx_descriptor *tx;
1174
	struct async_submit_ctl submit;
1175 1176
	int count;
	int i;
1177

1178
	pr_debug("%s: stripe %llu\n", __func__,
1179 1180
		(unsigned long long)sh->sector);

1181 1182 1183
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1184
	for (i = disks; i--; ) {
1185 1186 1187
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1188 1189
	}

1190 1191
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1192
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1193
			   &sh->ops.zero_sum_result, &submit);
1194 1195

	atomic_inc(&sh->count);
1196 1197
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1198 1199
}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1212 1213

	atomic_inc(&sh->count);
1214 1215 1216 1217
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1218 1219
}

1220
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1221 1222 1223
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1224
	raid5_conf_t *conf = sh->raid_conf;
1225
	int level = conf->level;
1226 1227
	struct raid5_percpu *percpu;
	unsigned long cpu;
1228

1229 1230
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1231
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1232 1233 1234 1235
		ops_run_biofill(sh);
		overlap_clear++;
	}

1236
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1247 1248
			async_tx_ack(tx);
	}
1249

1250
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1251
		tx = ops_run_prexor(sh, percpu, tx);
1252

1253
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1254
		tx = ops_run_biodrain(sh, tx);
1255 1256 1257
		overlap_clear++;
	}

1258 1259 1260 1261 1262 1263
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1264

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1275 1276 1277 1278 1279 1280 1281

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1282
	put_cpu();
1283 1284
}

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1315
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1316 1317
{
	struct stripe_head *sh;
1318 1319 1320
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
1321
	memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1322 1323
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);
1324 1325 1326
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1327

1328 1329
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
1343
	struct kmem_cache *sc;
1344
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1345

1346 1347 1348 1349 1350 1351 1352 1353
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1354 1355
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1356
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1357
			       0, 0, NULL);
L
Linus Torvalds 已提交
1358 1359 1360
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1361
	conf->pool_size = devs;
1362
	while (num--)
1363
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1364 1365 1366
			return 1;
	return 0;
}
1367

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1418
	unsigned long cpu;
1419
	int err;
1420
	struct kmem_cache *sc;
1421 1422 1423 1424 1425
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1426 1427 1428
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1429

1430 1431 1432
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1433
			       0, 0, NULL);
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);
1446 1447 1448
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
N
NeilBrown 已提交
1471
				    );
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1486
	 * conf->disks and the scribble region
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1516 1517 1518 1519
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1520

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1537

1538
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1539 1540 1541
{
	struct stripe_head *sh;

1542 1543 1544 1545 1546
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1547
	BUG_ON(atomic_read(&sh->count));
1548
	shrink_buffers(sh);
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1559 1560
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1561 1562 1563
	conf->slab_cache = NULL;
}

1564
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1565
{
1566
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1567
	raid5_conf_t *conf = sh->raid_conf;
1568
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1569
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1570 1571
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1572 1573 1574 1575 1576 1577


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1578 1579
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1580 1581 1582
		uptodate);
	if (i == disks) {
		BUG();
1583
		return;
L
Linus Torvalds 已提交
1584 1585 1586 1587
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1588
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1589
			rdev = conf->disks[i].rdev;
1590
			printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1591 1592 1593 1594 1595
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1596 1597 1598
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1599 1600
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1601
	} else {
1602
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1603
		int retry = 0;
1604 1605
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1606
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1607
		atomic_inc(&rdev->read_errors);
1608
		if (conf->mddev->degraded >= conf->max_degraded)
1609
			printk_rl(KERN_WARNING
1610
				  "md/raid:%s: read error not correctable "
1611 1612 1613 1614 1615
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1616
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1617
			/* Oh, no!!! */
1618
			printk_rl(KERN_WARNING
1619
				  "md/raid:%s: read error NOT corrected!! "
1620 1621 1622 1623 1624
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1625
		else if (atomic_read(&rdev->read_errors)
1626
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1627
			printk(KERN_WARNING
1628
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1629
			       mdname(conf->mddev), bdn);
1630 1631 1632 1633 1634
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1635 1636
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1637
			md_error(conf->mddev, rdev);
1638
		}
L
Linus Torvalds 已提交
1639 1640 1641 1642 1643 1644 1645
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1646
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1647
{
1648
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1649
	raid5_conf_t *conf = sh->raid_conf;
1650
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1651 1652 1653 1654 1655 1656
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1657
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1658 1659 1660 1661
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1662
		return;
L
Linus Torvalds 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1672
	release_stripe(sh);
L
Linus Torvalds 已提交
1673 1674 1675
}


1676
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1677
	
1678
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1694
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1695 1696 1697 1698 1699
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
1700
	raid5_conf_t *conf = mddev->private;
1701
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1702

1703 1704 1705 1706 1707 1708 1709 1710 1711
	if (test_and_clear_bit(In_sync, &rdev->flags)) {
		unsigned long flags;
		spin_lock_irqsave(&conf->device_lock, flags);
		mddev->degraded++;
		spin_unlock_irqrestore(&conf->device_lock, flags);
		/*
		 * if recovery was running, make sure it aborts.
		 */
		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1712
	}
1713 1714 1715 1716 1717 1718 1719 1720 1721
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
1722
}
L
Linus Torvalds 已提交
1723 1724 1725 1726 1727

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1728
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1729 1730
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1731
{
N
NeilBrown 已提交
1732
	sector_t stripe, stripe2;
1733
	sector_t chunk_number;
L
Linus Torvalds 已提交
1734
	unsigned int chunk_offset;
1735
	int pd_idx, qd_idx;
1736
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1737
	sector_t new_sector;
1738 1739
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1740 1741
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1742 1743 1744
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1757 1758
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1759
	stripe2 = stripe;
L
Linus Torvalds 已提交
1760 1761 1762
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1763
	pd_idx = qd_idx = ~0;
1764 1765
	switch(conf->level) {
	case 4:
1766
		pd_idx = data_disks;
1767 1768
		break;
	case 5:
1769
		switch (algorithm) {
L
Linus Torvalds 已提交
1770
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1771
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1772
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1773 1774 1775
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1776
			pd_idx = sector_div(stripe2, raid_disks);
1777
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1778 1779 1780
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1781
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1782
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1783 1784
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1785
			pd_idx = sector_div(stripe2, raid_disks);
1786
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1787
			break;
1788 1789 1790 1791 1792 1793 1794
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1795
		default:
1796
			BUG();
1797 1798 1799 1800
		}
		break;
	case 6:

1801
		switch (algorithm) {
1802
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1803
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1804 1805
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1806
				(*dd_idx)++;	/* Q D D D P */
1807 1808
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1809 1810 1811
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1812
			pd_idx = sector_div(stripe2, raid_disks);
1813 1814
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1815
				(*dd_idx)++;	/* Q D D D P */
1816 1817
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1818 1819 1820
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1821
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1822 1823
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1824 1825
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1826
			pd_idx = sector_div(stripe2, raid_disks);
1827 1828
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1829
			break;
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
1845
			pd_idx = sector_div(stripe2, raid_disks);
1846 1847 1848 1849 1850 1851
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1852
			ddf_layout = 1;
1853 1854 1855 1856 1857 1858 1859
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
1860 1861
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1862 1863 1864 1865 1866 1867
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1868
			ddf_layout = 1;
1869 1870 1871 1872
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
1873
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1874 1875
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1876
			ddf_layout = 1;
1877 1878 1879 1880
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
1881
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1882 1883 1884 1885 1886 1887
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
1888
			pd_idx = sector_div(stripe2, raid_disks-1);
1889 1890 1891 1892 1893 1894
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
1895
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1896 1897 1898 1899 1900
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
1901
			pd_idx = sector_div(stripe2, raid_disks-1);
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

1912
		default:
1913
			BUG();
1914 1915
		}
		break;
L
Linus Torvalds 已提交
1916 1917
	}

1918 1919 1920
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1921
		sh->ddf_layout = ddf_layout;
1922
	}
L
Linus Torvalds 已提交
1923 1924 1925 1926 1927 1928 1929 1930
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1931
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1932 1933
{
	raid5_conf_t *conf = sh->raid_conf;
1934 1935
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1936
	sector_t new_sector = sh->sector, check;
1937 1938
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1939 1940
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1941 1942
	sector_t stripe;
	int chunk_offset;
1943 1944
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1945
	sector_t r_sector;
1946
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1947

1948

L
Linus Torvalds 已提交
1949 1950 1951
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

1952 1953 1954 1955 1956
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1957
		switch (algorithm) {
L
Linus Torvalds 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1969 1970 1971 1972 1973
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1974
		default:
1975
			BUG();
1976 1977 1978
		}
		break;
	case 6:
1979
		if (i == sh->qd_idx)
1980
			return 0; /* It is the Q disk */
1981
		switch (algorithm) {
1982 1983
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1984 1985 1986 1987
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2002 2003 2004 2005 2006 2007
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2008
			/* Like left_symmetric, but P is before Q */
2009 2010
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2011 2012 2013 2014 2015 2016
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2032
		default:
2033
			BUG();
2034 2035
		}
		break;
L
Linus Torvalds 已提交
2036 2037 2038
	}

	chunk_number = stripe * data_disks + i;
2039
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2040

2041
	check = raid5_compute_sector(conf, r_sector,
2042
				     previous, &dummy1, &sh2);
2043 2044
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2045 2046
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2047 2048 2049 2050 2051 2052
		return 0;
	}
	return r_sector;
}


2053
static void
2054
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2055
			 int rcw, int expand)
2056 2057
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2058 2059
	raid5_conf_t *conf = sh->raid_conf;
	int level = conf->level;
2060 2061 2062 2063 2064 2065 2066

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2067 2068 2069 2070
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2071

2072
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2073 2074 2075 2076 2077 2078

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2079
				set_bit(R5_Wantdrain, &dev->flags);
2080 2081
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2082
				s->locked++;
2083 2084
			}
		}
2085
		if (s->locked + conf->max_degraded == disks)
2086
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2087
				atomic_inc(&conf->pending_full_writes);
2088
	} else {
2089
		BUG_ON(level == 6);
2090 2091 2092
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2093
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2094 2095
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2096
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2097 2098 2099 2100 2101 2102 2103 2104

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2105 2106
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2107 2108
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2109
				s->locked++;
2110 2111 2112 2113
			}
		}
	}

2114
	/* keep the parity disk(s) locked while asynchronous operations
2115 2116 2117 2118
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2119
	s->locked++;
2120

2121 2122 2123 2124 2125 2126 2127 2128 2129
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2130
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2131
		__func__, (unsigned long long)sh->sector,
2132
		s->locked, s->ops_request);
2133
}
2134

L
Linus Torvalds 已提交
2135 2136
/*
 * Each stripe/dev can have one or more bion attached.
2137
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2138 2139 2140 2141 2142 2143
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
2144
	int firstwrite=0;
L
Linus Torvalds 已提交
2145

2146
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2147 2148 2149 2150 2151 2152
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
2153
	if (forwrite) {
L
Linus Torvalds 已提交
2154
		bip = &sh->dev[dd_idx].towrite;
2155 2156 2157
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2167
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2168 2169 2170
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2171
	bi->bi_phys_segments++;
L
Linus Torvalds 已提交
2172 2173 2174
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

2175
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
2176 2177 2178
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

2179 2180 2181
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
2182
		sh->bm_seq = conf->seq_flush+1;
2183 2184 2185
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

2208 2209
static void end_reshape(raid5_conf_t *conf);

2210 2211
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2212
{
2213
	int sectors_per_chunk =
2214
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2215
	int dd_idx;
2216
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2217
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2218

2219 2220
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2221
			     *sectors_per_chunk + chunk_offset,
2222
			     previous,
2223
			     &dd_idx, sh);
2224 2225
}

2226
static void
2227
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2261
			if (!raid5_dec_bi_phys_segments(bi)) {
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2276
			if (!raid5_dec_bi_phys_segments(bi)) {
2277 2278 2279 2280 2281 2282 2283
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2284 2285 2286 2287 2288 2289
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2300
				if (!raid5_dec_bi_phys_segments(bi)) {
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2313 2314 2315
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2316 2317
}

2318 2319 2320 2321 2322
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2323
 */
2324 2325
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2326 2327 2328 2329 2330 2331
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2332 2333 2334 2335 2336 2337 2338 2339
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2340 2341
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2342 2343
		 */
		if ((s->uptodate == disks - 1) &&
2344
		    (s->failed && disk_idx == s->failed_num)) {
2345 2346
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2347 2348
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
2349
			sh->ops.target2 = -1;
2350 2351
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
2352
			 * of raid_run_ops which services 'compute' operations
2353 2354 2355 2356 2357
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2358
			return 1; /* uptodate + compute == disks */
2359
		} else if (test_bit(R5_Insync, &dev->flags)) {
2360 2361 2362 2363 2364 2365 2366 2367
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2368
	return 0;
2369 2370
}

2371 2372 2373 2374
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2375 2376 2377
			struct stripe_head_state *s, int disks)
{
	int i;
2378 2379 2380 2381 2382

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2383
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2384
	    !sh->reconstruct_state)
2385
		for (i = disks; i--; )
2386
			if (fetch_block5(sh, s, i, disks))
2387
				break;
2388 2389 2390
	set_bit(STRIPE_HANDLE, &sh->state);
}

2391 2392 2393 2394 2395 2396 2397 2398
/* fetch_block6 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill6 to continue
 */
static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
			 struct r6_state *r6s, int disk_idx, int disks)
2399
{
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
				  &sh->dev[r6s->failed_num[1]] };

	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed >= 1 &&
	      (fdev[0]->toread || s->to_write)) ||
	     (s->failed >= 2 &&
	      (fdev[1]->toread || s->to_write)))) {
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
		    (s->failed && (disk_idx == r6s->failed_num[0] ||
				   disk_idx == r6s->failed_num[1]))) {
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2423
			 */
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2445
			}
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2465 2466
		}
	}
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488

	return 0;
}

/**
 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill6(struct stripe_head *sh,
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
			if (fetch_block6(sh, s, r6s, i, disks))
				break;
2489 2490 2491 2492
	set_bit(STRIPE_HANDLE, &sh->state);
}


2493
/* handle_stripe_clean_event
2494 2495 2496 2497
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2498
static void handle_stripe_clean_event(raid5_conf_t *conf,
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2512
				pr_debug("Return write for disc %d\n", i);
2513 2514 2515 2516 2517 2518
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2519
					if (!raid5_dec_bi_phys_segments(wbi)) {
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2537 2538 2539 2540

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2541 2542
}

2543
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2544 2545 2546 2547 2548 2549 2550 2551
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2552 2553
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2554 2555 2556 2557 2558 2559 2560 2561
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2562 2563 2564
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2565 2566 2567 2568
			else
				rcw += 2*disks;
		}
	}
2569
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2570 2571 2572 2573 2574 2575 2576 2577
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2578 2579
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2580 2581 2582
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2583
					pr_debug("Read_old block "
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2601 2602
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2603 2604 2605
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2606
					pr_debug("Read_old block "
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2620 2621
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2622 2623
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2624 2625 2626
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2627 2628 2629
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2630
		schedule_reconstruction(sh, s, rcw == 0, 0);
2631 2632
}

2633
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2634 2635 2636
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
2637
	int rcw = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2638
	int qd_idx = sh->qd_idx;
2639 2640

	set_bit(STRIPE_HANDLE, &sh->state);
2641 2642
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
		/* check if we haven't enough data */
		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
		    i != pd_idx && i != qd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
			rcw++;
			if (!test_bit(R5_Insync, &dev->flags))
				continue; /* it's a failed drive */

			if (
			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				pr_debug("Read_old stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
			} else {
				pr_debug("Request delayed stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(STRIPE_DELAYED, &sh->state);
				set_bit(STRIPE_HANDLE, &sh->state);
2667 2668 2669 2670 2671 2672
			}
		}
	}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
2673 2674
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    s->locked == 0 && rcw == 0 &&
2675
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2676
		schedule_reconstruction(sh, s, 1, 0);
2677 2678 2679 2680 2681 2682
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2683
	struct r5dev *dev = NULL;
2684

2685
	set_bit(STRIPE_HANDLE, &sh->state);
2686

2687 2688 2689
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2690 2691
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2692 2693
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2694 2695
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2696
			break;
2697
		}
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
		dev = &sh->dev[s->failed_num];
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2708

2709 2710 2711 2712 2713
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2714
		s->locked++;
2715
		set_bit(R5_Wantwrite, &dev->flags);
2716

2717 2718
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2735
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2747
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2748 2749 2750 2751
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2752
				sh->ops.target2 = -1;
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2764 2765 2766 2767 2768
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2769 2770
				  struct stripe_head_state *s,
				  struct r6_state *r6s, int disks)
2771 2772
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2773
	int qd_idx = sh->qd_idx;
2774
	struct r5dev *dev;
2775 2776 2777 2778

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2779

2780 2781 2782 2783 2784 2785
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2786 2787 2788
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2789
		if (s->failed == r6s->q_failed) {
2790
			/* The only possible failed device holds Q, so it
2791 2792 2793
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2794
			sh->check_state = check_state_run;
2795 2796
		}
		if (!r6s->q_failed && s->failed < 2) {
2797
			/* Q is not failed, and we didn't use it to generate
2798 2799
			 * anything, so it makes sense to check it
			 */
2800 2801 2802 2803
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2804 2805
		}

2806 2807
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2808

2809 2810 2811 2812
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2813
		}
2814 2815 2816 2817 2818 2819 2820
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2821 2822
		}

2823 2824 2825 2826 2827
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2828

2829 2830 2831
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2832 2833

		/* now write out any block on a failed drive,
2834
		 * or P or Q if they were recomputed
2835
		 */
2836
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
		if (s->failed == 2) {
			dev = &sh->dev[r6s->failed_num[1]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
			dev = &sh->dev[r6s->failed_num[0]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2849
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2850 2851 2852 2853 2854
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2855
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2856 2857 2858 2859 2860 2861 2862 2863
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
	}
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2939
	struct dma_async_tx_descriptor *tx = NULL;
2940 2941
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2942
		if (i != sh->pd_idx && i != sh->qd_idx) {
2943
			int dd_idx, j;
2944
			struct stripe_head *sh2;
2945
			struct async_submit_ctl submit;
2946

2947
			sector_t bn = compute_blocknr(sh, i, 1);
2948 2949
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2950
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2963 2964

			/* place all the copies on one channel */
2965
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2966
			tx = async_memcpy(sh2->dev[dd_idx].page,
2967
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2968
					  &submit);
2969

2970 2971 2972 2973
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2974
				    (!r6s || j != sh2->qd_idx) &&
2975 2976 2977 2978 2979 2980 2981
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2982

2983
		}
2984 2985 2986 2987 2988
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2989
}
L
Linus Torvalds 已提交
2990

2991

L
Linus Torvalds 已提交
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
3008

3009
static void handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
3010 3011
{
	raid5_conf_t *conf = sh->raid_conf;
3012 3013 3014
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
3015
	struct r5dev *dev;
3016
	mdk_rdev_t *blocked_rdev = NULL;
3017
	int prexor;
3018
	int dec_preread_active = 0;
L
Linus Torvalds 已提交
3019

3020
	memset(&s, 0, sizeof(s));
3021 3022 3023 3024
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
		 sh->reconstruct_state);
L
Linus Torvalds 已提交
3025 3026 3027 3028 3029

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3030 3031 3032
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
N
Neil Brown 已提交
3033

3034
	/* Now to look around and see what can be done */
3035
	rcu_read_lock();
L
Linus Torvalds 已提交
3036 3037
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
3038 3039

		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3040

3041 3042 3043 3044 3045 3046 3047
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
3048
		 * ops_complete_biofill is guaranteed to be inactive
3049 3050
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3051
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3052
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3053 3054

		/* now count some things */
3055 3056
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3057
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
3058

3059 3060 3061
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
3062
			s.to_read++;
L
Linus Torvalds 已提交
3063
		if (dev->towrite) {
3064
			s.to_write++;
L
Linus Torvalds 已提交
3065
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3066
				s.non_overwrite++;
L
Linus Torvalds 已提交
3067
		}
3068 3069
		if (dev->written)
			s.written++;
3070
		rdev = rcu_dereference(conf->disks[i].rdev);
3071 3072
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3073 3074 3075
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* could be in-sync depending on recovery/reshape status */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
N
NeilBrown 已提交
3087
			/* The ReadError flag will just be confusing now */
3088 3089 3090
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
3091 3092 3093
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3094 3095
			s.failed++;
			s.failed_num = i;
3096
		}
L
Linus Torvalds 已提交
3097
	}
3098
	rcu_read_unlock();
3099

3100
	if (unlikely(blocked_rdev)) {
3101 3102 3103 3104 3105 3106 3107 3108
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3109 3110
	}

3111 3112 3113 3114
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
3115

3116
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
3117
		" to_write=%d failed=%d failed_num=%d\n",
3118 3119
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
3120 3121 3122
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
3123
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3124
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3125
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
3126 3127
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3128
		s.syncing = 0;
L
Linus Torvalds 已提交
3129 3130 3131 3132 3133 3134
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
3135 3136 3137 3138 3139
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3140
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
3141 3142 3143 3144 3145

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3146
	if (s.to_read || s.non_overwrite ||
3147
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3148
		handle_stripe_fill5(sh, &s, disks);
L
Linus Torvalds 已提交
3149

3150 3151 3152
	/* Now we check to see if any write operations have recently
	 * completed
	 */
3153
	prexor = 0;
3154
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3155
		prexor = 1;
3156 3157
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3158
		sh->reconstruct_state = reconstruct_state_idle;
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
3170 3171
				if (prexor)
					continue;
3172 3173 3174 3175 3176
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3177 3178
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			dec_preread_active = 1;
3179 3180 3181 3182 3183 3184 3185 3186
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
3187
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3188
		handle_stripe_dirtying5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
3189 3190

	/* maybe we need to check and possibly fix the parity for this stripe
3191 3192 3193
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
3194
	 */
3195 3196
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
3197
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3198
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3199
		handle_parity_checks5(conf, sh, &s, disks);
3200

3201
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
3202 3203 3204
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
3205 3206 3207 3208

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
3209 3210 3211 3212
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3213
		) {
3214
		dev = &sh->dev[s.failed_num];
3215 3216 3217 3218
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3219
			s.locked++;
3220 3221 3222 3223
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3224
			s.locked++;
3225 3226 3227
		}
	}

3228 3229
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
3230
		struct stripe_head *sh2
3231
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3247
		sh->reconstruct_state = reconstruct_state_idle;
3248
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
3249
		for (i = conf->raid_disks; i--; ) {
3250
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
3251
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3252
			s.locked++;
D
Dan Williams 已提交
3253
		}
3254 3255 3256
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3257
	    !sh->reconstruct_state) {
3258 3259
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
3260
		stripe_set_idx(sh->sector, conf, 0, sh);
3261
		schedule_reconstruction(sh, &s, 1, 1);
3262
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3263
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3264
		atomic_dec(&conf->reshape_stripes);
3265 3266 3267 3268
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3269
	if (s.expanding && s.locked == 0 &&
3270
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3271
		handle_stripe_expansion(conf, sh, NULL);
3272

3273
 unlock:
L
Linus Torvalds 已提交
3274 3275
	spin_unlock(&sh->lock);

3276 3277 3278 3279
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3280
	if (s.ops_request)
3281
		raid_run_ops(sh, s.ops_request);
3282

3283
	ops_run_io(sh, &s);
L
Linus Torvalds 已提交
3284

3285 3286
	if (dec_preread_active) {
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3287
		 * is waiting on a flush, it won't continue until the writes
3288 3289 3290 3291 3292 3293 3294
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}
3295
	return_io(return_bi);
L
Linus Torvalds 已提交
3296 3297
}

3298
static void handle_stripe6(struct stripe_head *sh)
L
Linus Torvalds 已提交
3299
{
3300
	raid5_conf_t *conf = sh->raid_conf;
3301
	int disks = sh->disks;
3302
	struct bio *return_bi = NULL;
N
NeilBrown 已提交
3303
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3304 3305
	struct stripe_head_state s;
	struct r6_state r6s;
3306
	struct r5dev *dev, *pdev, *qdev;
3307
	mdk_rdev_t *blocked_rdev = NULL;
3308
	int dec_preread_active = 0;
L
Linus Torvalds 已提交
3309

3310
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3311
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3312
	       (unsigned long long)sh->sector, sh->state,
3313 3314
	       atomic_read(&sh->count), pd_idx, qd_idx,
	       sh->check_state, sh->reconstruct_state);
3315
	memset(&s, 0, sizeof(s));
3316

3317 3318 3319 3320
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3321 3322 3323
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3324
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3325 3326

	rcu_read_lock();
3327 3328 3329
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3330

3331
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3332
			i, dev->flags, dev->toread, dev->towrite, dev->written);
3333 3334 3335 3336 3337 3338 3339 3340
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3341

3342
		/* now count some things */
3343 3344
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3345 3346 3347 3348
		if (test_bit(R5_Wantcompute, &dev->flags)) {
			s.compute++;
			BUG_ON(s.compute > 2);
		}
L
Linus Torvalds 已提交
3349

3350 3351 3352
		if (test_bit(R5_Wantfill, &dev->flags)) {
			s.to_fill++;
		} else if (dev->toread)
3353
			s.to_read++;
3354
		if (dev->towrite) {
3355
			s.to_write++;
3356
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3357
				s.non_overwrite++;
3358
		}
3359 3360
		if (dev->written)
			s.written++;
3361
		rdev = rcu_dereference(conf->disks[i].rdev);
3362 3363
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3364 3365 3366
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* in sync if before recovery_offset */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
3378 3379 3380
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3381
		}
3382 3383 3384
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3385 3386 3387
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3388
		}
L
Linus Torvalds 已提交
3389 3390
	}
	rcu_read_unlock();
3391 3392

	if (unlikely(blocked_rdev)) {
3393 3394 3395 3396 3397 3398 3399 3400
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3401
	}
3402

3403 3404 3405 3406 3407
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

3408
	pr_debug("locked=%d uptodate=%d to_read=%d"
3409
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3410 3411 3412 3413
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3414
	 */
3415
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3416
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3417
	if (s.failed > 2 && s.syncing) {
3418 3419
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3420
		s.syncing = 0;
3421 3422 3423 3424 3425 3426 3427
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3428 3429
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
N
NeilBrown 已提交
3430 3431 3432
	qdev = &sh->dev[qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3433 3434 3435

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3436
			     && !test_bit(R5_LOCKED, &pdev->flags)
3437 3438
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3439
			     && !test_bit(R5_LOCKED, &qdev->flags)
3440
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3441
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3442 3443 3444 3445 3446

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3447
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3448
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3449
		handle_stripe_fill6(sh, &s, &r6s, disks);
3450

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	if (sh->reconstruct_state == reconstruct_state_drain_result) {

		sh->reconstruct_state = reconstruct_state_idle;
		/* All the 'written' buffers and the parity blocks are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
			    (i == sh->pd_idx || i == qd_idx ||
			     dev->written)) {
				pr_debug("Writing block %d\n", i);
				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
				set_bit(R5_Wantwrite, &dev->flags);
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == qd_idx) &&
				      s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3476 3477
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			dec_preread_active = 1;
3478 3479
	}

3480 3481 3482 3483 3484 3485 3486
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3487
		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3488 3489

	/* maybe we need to check and possibly fix the parity for this stripe
3490
	 * Any reads will already have been scheduled, so we just see if enough
3491 3492
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
3493
	 */
3494 3495 3496 3497
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3498
		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3499

3500
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3501 3502 3503 3504 3505 3506 3507
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3508 3509 3510
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3511 3512 3513 3514 3515 3516 3517 3518
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3519
					s.locked++;
3520 3521 3522 3523
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3524
					s.locked++;
3525 3526 3527
				}
			}
		}
3528

3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
3542
		struct stripe_head *sh2
3543
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3559 3560
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3561
		stripe_set_idx(sh->sector, conf, 0, sh);
3562 3563
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3564 3565 3566 3567 3568 3569
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3570
	if (s.expanding && s.locked == 0 &&
3571
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3572
		handle_stripe_expansion(conf, sh, &r6s);
3573

3574
 unlock:
3575 3576
	spin_unlock(&sh->lock);

3577 3578 3579 3580
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3581 3582 3583
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3584
	ops_run_io(sh, &s);
3585

3586 3587 3588

	if (dec_preread_active) {
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3589
		 * is waiting on a flush, it won't continue until the writes
3590 3591 3592 3593 3594 3595 3596 3597
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

D
Dan Williams 已提交
3598
	return_io(return_bi);
3599 3600
}

3601
static void handle_stripe(struct stripe_head *sh)
3602 3603
{
	if (sh->raid_conf->level == 6)
3604
		handle_stripe6(sh);
3605
	else
3606
		handle_stripe5(sh);
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3620
			list_add_tail(&sh->lru, &conf->hold_list);
3621
		}
N
NeilBrown 已提交
3622
	}
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

N
NeilBrown 已提交
3639
int md_raid5_congested(mddev_t *mddev, int bits)
3640
{
3641
	raid5_conf_t *conf = mddev->private;
3642 3643 3644 3645

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3646

3647 3648 3649 3650 3651 3652 3653 3654 3655
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3656 3657 3658 3659 3660 3661 3662 3663 3664
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3665

3666 3667 3668
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3669 3670 3671
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3672 3673
{
	mddev_t *mddev = q->queuedata;
3674
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3675
	int max;
3676
	unsigned int chunk_sectors = mddev->chunk_sectors;
3677
	unsigned int bio_sectors = bvm->bi_size >> 9;
3678

3679
	if ((bvm->bi_rw & 1) == WRITE)
3680 3681
		return biovec->bv_len; /* always allow writes to be mergeable */

3682 3683
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3684 3685 3686 3687 3688 3689 3690 3691
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3692 3693 3694 3695

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3696
	unsigned int chunk_sectors = mddev->chunk_sectors;
3697 3698
	unsigned int bio_sectors = bio->bi_size >> 9;

3699 3700
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3701 3702 3703 3704
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3734
		conf->retry_read_aligned_list = bi->bi_next;
3735
		bi->bi_next = NULL;
3736 3737 3738 3739
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3740 3741 3742 3743 3744 3745 3746
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3747 3748 3749 3750 3751 3752
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3753
static void raid5_align_endio(struct bio *bi, int error)
3754 3755
{
	struct bio* raid_bi  = bi->bi_private;
3756 3757 3758 3759 3760
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3761
	bio_put(bi);
3762 3763 3764

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3765 3766
	mddev = rdev->mddev;
	conf = mddev->private;
3767 3768 3769 3770

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3771
		bio_endio(raid_bi, 0);
3772 3773
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3774
		return;
3775 3776 3777
	}


3778
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3779 3780

	add_bio_to_retry(raid_bi, conf);
3781 3782
}

3783 3784
static int bio_fits_rdev(struct bio *bi)
{
3785
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3786

3787
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3788 3789
		return 0;
	blk_recount_segments(q, bi);
3790
	if (bi->bi_phys_segments > queue_max_segments(q))
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3803
static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3804
{
3805
	raid5_conf_t *conf = mddev->private;
N
NeilBrown 已提交
3806
	int dd_idx;
3807 3808 3809 3810
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3811
		pr_debug("chunk_aligned_read : non aligned\n");
3812 3813 3814
		return 0;
	}
	/*
3815
	 * use bio_clone_mddev to make a copy of the bio
3816
	 */
3817
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3829 3830
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3831
						    &dd_idx, NULL);
3832 3833 3834 3835 3836 3837

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3838 3839 3840 3841 3842
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3843 3844 3845 3846 3847 3848 3849
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3850 3851 3852 3853 3854 3855 3856
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3857 3858 3859 3860
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3861
		bio_put(align_bi);
3862 3863 3864 3865
		return 0;
	}
}

3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3918

3919
static int make_request(mddev_t *mddev, struct bio * bi)
L
Linus Torvalds 已提交
3920
{
3921
	raid5_conf_t *conf = mddev->private;
3922
	int dd_idx;
L
Linus Torvalds 已提交
3923 3924 3925
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3926
	const int rw = bio_data_dir(bi);
3927
	int remaining;
3928
	int plugged;
L
Linus Torvalds 已提交
3929

T
Tejun Heo 已提交
3930 3931
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
3932 3933 3934
		return 0;
	}

3935
	md_write_start(mddev, bi);
3936

3937
	if (rw == READ &&
3938
	     mddev->reshape_position == MaxSector &&
3939
	     chunk_aligned_read(mddev,bi))
3940
		return 0;
3941

L
Linus Torvalds 已提交
3942 3943 3944 3945
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3946

3947
	plugged = mddev_check_plugged(mddev);
L
Linus Torvalds 已提交
3948 3949
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3950
		int disks, data_disks;
3951
		int previous;
3952

3953
	retry:
3954
		previous = 0;
3955
		disks = conf->raid_disks;
3956
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3957
		if (unlikely(conf->reshape_progress != MaxSector)) {
3958
			/* spinlock is needed as reshape_progress may be
3959 3960
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3961
			 * Of course reshape_progress could change after
3962 3963 3964 3965
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3966
			spin_lock_irq(&conf->device_lock);
3967 3968 3969
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3970
				disks = conf->previous_raid_disks;
3971 3972
				previous = 1;
			} else {
3973 3974 3975
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3976 3977 3978 3979 3980
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3981 3982
			spin_unlock_irq(&conf->device_lock);
		}
3983 3984
		data_disks = disks - conf->max_degraded;

3985 3986
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3987
						  &dd_idx, NULL);
3988
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3989 3990 3991
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3992
		sh = get_active_stripe(conf, new_sector, previous,
3993
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
3994
		if (sh) {
3995
			if (unlikely(previous)) {
3996
				/* expansion might have moved on while waiting for a
3997 3998 3999 4000 4001 4002
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
4003 4004 4005
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
4006 4007 4008
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
4009 4010 4011 4012 4013
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
4014
					schedule();
4015 4016 4017
					goto retry;
				}
			}
4018

4019 4020
			if (bio_data_dir(bi) == WRITE &&
			    logical_sector >= mddev->suspend_lo &&
4021 4022
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
4033 4034
				goto retry;
			}
4035 4036 4037 4038 4039

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
4040 4041
				 * and wait a while
				 */
N
NeilBrown 已提交
4042
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
4043 4044 4045 4046 4047
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
4048 4049
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
T
Tejun Heo 已提交
4050
			if ((bi->bi_rw & REQ_SYNC) &&
4051 4052
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
L
Linus Torvalds 已提交
4053 4054 4055 4056 4057 4058 4059 4060 4061
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
4062 4063 4064
	if (!plugged)
		md_wakeup_thread(mddev->thread);

L
Linus Torvalds 已提交
4065
	spin_lock_irq(&conf->device_lock);
4066
	remaining = raid5_dec_bi_phys_segments(bi);
4067 4068
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
4069

4070
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4071
			md_write_end(mddev);
4072

4073
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4074
	}
4075

L
Linus Torvalds 已提交
4076 4077 4078
	return 0;
}

D
Dan Williams 已提交
4079 4080
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

4081
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4082
{
4083 4084 4085 4086 4087 4088 4089 4090 4091
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4092
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4093
	struct stripe_head *sh;
4094
	sector_t first_sector, last_sector;
4095 4096 4097
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4098 4099
	int i;
	int dd_idx;
4100
	sector_t writepos, readpos, safepos;
4101
	sector_t stripe_addr;
4102
	int reshape_sectors;
4103
	struct list_head stripes;
4104

4105 4106 4107 4108 4109 4110
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4111
		} else if (mddev->delta_disks >= 0 &&
4112 4113
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4114
		sector_div(sector_nr, new_data_disks);
4115
		if (sector_nr) {
4116 4117
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4118 4119 4120
			*skipped = 1;
			return sector_nr;
		}
4121 4122
	}

4123 4124 4125 4126
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4127 4128
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4129
	else
4130
		reshape_sectors = mddev->chunk_sectors;
4131

4132 4133 4134 4135 4136
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
4137 4138
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
4139
	 */
4140
	writepos = conf->reshape_progress;
4141
	sector_div(writepos, new_data_disks);
4142 4143
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4144
	safepos = conf->reshape_safe;
4145
	sector_div(safepos, data_disks);
4146
	if (mddev->delta_disks < 0) {
4147
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4148
		readpos += reshape_sectors;
4149
		safepos += reshape_sectors;
4150
	} else {
4151
		writepos += reshape_sectors;
4152 4153
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4154
	}
4155

4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4173
	if ((mddev->delta_disks < 0
4174 4175 4176
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4177 4178 4179
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4180
		mddev->reshape_position = conf->reshape_progress;
4181
		mddev->curr_resync_completed = sector_nr;
4182
		conf->reshape_checkpoint = jiffies;
4183
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4184
		md_wakeup_thread(mddev->thread);
4185
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4186 4187
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4188
		conf->reshape_safe = mddev->reshape_position;
4189 4190
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4191
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4192 4193
	}

4194 4195 4196 4197
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
4198 4199
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
4200 4201
		       != sector_nr);
	} else {
4202
		BUG_ON(writepos != sector_nr + reshape_sectors);
4203 4204
		stripe_addr = sector_nr;
	}
4205
	INIT_LIST_HEAD(&stripes);
4206
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4207
		int j;
4208
		int skipped_disk = 0;
4209
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4210 4211 4212 4213 4214 4215 4216 4217 4218
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4219
			if (conf->level == 6 &&
4220
			    j == sh->qd_idx)
4221
				continue;
4222
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4223
			if (s < raid5_size(mddev, 0, 0)) {
4224
				skipped_disk = 1;
4225 4226 4227 4228 4229 4230
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4231
		if (!skipped_disk) {
4232 4233 4234
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4235
		list_add(&sh->lru, &stripes);
4236 4237
	}
	spin_lock_irq(&conf->device_lock);
4238
	if (mddev->delta_disks < 0)
4239
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4240
	else
4241
		conf->reshape_progress += reshape_sectors * new_data_disks;
4242 4243 4244 4245 4246 4247 4248
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4249
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4250
				     1, &dd_idx, NULL);
4251
	last_sector =
4252
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4253
					    * new_data_disks - 1),
4254
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4255 4256
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4257
	while (first_sector <= last_sector) {
4258
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4259 4260 4261 4262 4263
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4264 4265 4266 4267 4268 4269 4270 4271
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4272 4273 4274
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4275
	sector_nr += reshape_sectors;
4276 4277
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4278 4279 4280
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4281
		mddev->reshape_position = conf->reshape_progress;
4282
		mddev->curr_resync_completed = sector_nr;
4283
		conf->reshape_checkpoint = jiffies;
4284 4285 4286 4287 4288 4289
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4290
		conf->reshape_safe = mddev->reshape_position;
4291 4292
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4293
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4294
	}
4295
	return reshape_sectors;
4296 4297 4298 4299 4300
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
4301
	raid5_conf_t *conf = mddev->private;
4302
	struct stripe_head *sh;
A
Andre Noll 已提交
4303
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
4304
	sector_t sync_blocks;
4305 4306
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4307

4308
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4309
		/* just being told to finish up .. nothing much to do */
4310

4311 4312 4313 4314
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4315 4316 4317 4318

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4319
		else /* completed sync */
4320 4321 4322
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4323 4324
		return 0;
	}
4325

4326 4327 4328
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4329 4330
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4331

4332 4333 4334 4335 4336 4337
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4338
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4339 4340 4341
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4342
	if (mddev->degraded >= conf->max_degraded &&
4343
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4344
		sector_t rv = mddev->dev_sectors - sector_nr;
4345
		*skipped = 1;
L
Linus Torvalds 已提交
4346 4347
		return rv;
	}
4348
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4349
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4350 4351 4352 4353 4354 4355
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4356

N
NeilBrown 已提交
4357 4358 4359

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4360
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4361
	if (sh == NULL) {
4362
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4363
		/* make sure we don't swamp the stripe cache if someone else
4364
		 * is trying to get access
L
Linus Torvalds 已提交
4365
		 */
4366
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4367
	}
4368 4369 4370 4371
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4372
	for (i = 0; i < conf->raid_disks; i++)
4373 4374 4375 4376 4377 4378
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
4379 4380 4381 4382
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

4383
	handle_stripe(sh);
L
Linus Torvalds 已提交
4384 4385 4386 4387 4388
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4402
	int dd_idx;
4403 4404 4405 4406 4407 4408
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4409
	sector = raid5_compute_sector(conf, logical_sector,
4410
				      0, &dd_idx, NULL);
4411 4412 4413
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4414 4415 4416
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4417

4418
		if (scnt < raid5_bi_hw_segments(raid_bio))
4419 4420 4421
			/* already done this stripe */
			continue;

4422
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4423 4424 4425

		if (!sh) {
			/* failed to get a stripe - must wait */
4426
			raid5_set_bi_hw_segments(raid_bio, scnt);
4427 4428 4429 4430 4431
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4432 4433
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4434
			raid5_set_bi_hw_segments(raid_bio, scnt);
4435 4436 4437 4438
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4439
		handle_stripe(sh);
4440 4441 4442 4443
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4444
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4445
	spin_unlock_irq(&conf->device_lock);
4446 4447
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4448 4449 4450 4451 4452 4453
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4454 4455 4456 4457 4458 4459 4460
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4461
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4462 4463
{
	struct stripe_head *sh;
4464
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4465
	int handled;
4466
	struct blk_plug plug;
L
Linus Torvalds 已提交
4467

4468
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4469 4470 4471

	md_check_recovery(mddev);

4472
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
4473 4474 4475
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4476
		struct bio *bio;
L
Linus Torvalds 已提交
4477

4478 4479 4480 4481
		if (atomic_read(&mddev->plug_cnt) == 0 &&
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
4482
			spin_unlock_irq(&conf->device_lock);
4483
			bitmap_unplug(mddev->bitmap);
4484
			spin_lock_irq(&conf->device_lock);
4485
			conf->seq_write = conf->seq_flush;
4486 4487
			activate_bit_delay(conf);
		}
4488 4489
		if (atomic_read(&mddev->plug_cnt) == 0)
			raid5_activate_delayed(conf);
4490

4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4501 4502
		sh = __get_priority_stripe(conf);

4503
		if (!sh)
L
Linus Torvalds 已提交
4504 4505 4506 4507
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4508 4509 4510
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4511 4512 4513

		spin_lock_irq(&conf->device_lock);
	}
4514
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4515 4516 4517

	spin_unlock_irq(&conf->device_lock);

4518
	async_tx_issue_pending_all();
4519
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
4520

4521
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4522 4523
}

4524
static ssize_t
4525
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4526
{
4527
	raid5_conf_t *conf = mddev->private;
4528 4529 4530 4531
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4532 4533
}

4534 4535
int
raid5_set_cache_size(mddev_t *mddev, int size)
4536
{
4537
	raid5_conf_t *conf = mddev->private;
4538 4539
	int err;

4540
	if (size <= 16 || size > 32768)
4541
		return -EINVAL;
4542
	while (size < conf->max_nr_stripes) {
4543 4544 4545 4546 4547
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4548 4549 4550
	err = md_allow_write(mddev);
	if (err)
		return err;
4551
	while (size > conf->max_nr_stripes) {
4552 4553 4554 4555
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
{
	raid5_conf_t *conf = mddev->private;
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4577 4578
	return len;
}
4579

4580 4581 4582 4583
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4584

4585 4586 4587
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4588
	raid5_conf_t *conf = mddev->private;
4589 4590 4591 4592 4593 4594 4595 4596 4597
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4598
	raid5_conf_t *conf = mddev->private;
4599
	unsigned long new;
4600 4601 4602 4603 4604
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4605
	if (strict_strtoul(page, 10, &new))
4606
		return -EINVAL;
4607
	if (new > conf->max_nr_stripes)
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4619
static ssize_t
4620
stripe_cache_active_show(mddev_t *mddev, char *page)
4621
{
4622
	raid5_conf_t *conf = mddev->private;
4623 4624 4625 4626
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4627 4628
}

4629 4630
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4631

4632
static struct attribute *raid5_attrs[] =  {
4633 4634
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4635
	&raid5_preread_bypass_threshold.attr,
4636 4637
	NULL,
};
4638 4639 4640
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4641 4642
};

4643 4644 4645
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4646
	raid5_conf_t *conf = mddev->private;
4647 4648 4649

	if (!sectors)
		sectors = mddev->dev_sectors;
4650
	if (!raid_disks)
4651
		/* size is defined by the smallest of previous and new size */
4652
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4653

4654
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4655
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4656 4657 4658
	return sectors * (raid_disks - conf->max_degraded);
}

4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4671
		kfree(percpu->scribble);
4672 4673 4674 4675 4676 4677 4678 4679 4680
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4681 4682 4683
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4684
	raid5_free_percpu(conf);
4685 4686 4687 4688 4689
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4701
		if (conf->level == 6 && !percpu->spare_page)
4702
			percpu->spare_page = alloc_page(GFP_KERNEL);
4703 4704 4705 4706 4707 4708 4709
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4710 4711
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
4712
			return notifier_from_errno(-ENOMEM);
4713 4714 4715 4716 4717
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4718
		kfree(percpu->scribble);
4719
		percpu->spare_page = NULL;
4720
		percpu->scribble = NULL;
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
4733
	struct raid5_percpu __percpu *allcpus;
4734
	void *scribble;
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4745 4746 4747 4748 4749 4750 4751 4752
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4753
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4754
		if (!scribble) {
4755 4756 4757
			err = -ENOMEM;
			break;
		}
4758
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4771
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4772 4773
{
	raid5_conf_t *conf;
4774
	int raid_disk, memory, max_disks;
L
Linus Torvalds 已提交
4775 4776 4777
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4778 4779 4780
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4781
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4782 4783
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4784
	}
N
NeilBrown 已提交
4785 4786 4787 4788
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4789
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4790 4791
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4792
	}
N
NeilBrown 已提交
4793
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4794
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4795 4796
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4797 4798
	}

4799 4800 4801
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4802 4803
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4804
		return ERR_PTR(-EINVAL);
4805 4806
	}

N
NeilBrown 已提交
4807 4808
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4809
		goto abort;
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
N
NeilBrown 已提交
4822 4823 4824 4825 4826

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4827
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4828 4829
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4830

4831
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4832 4833 4834
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4835

L
Linus Torvalds 已提交
4836 4837
	conf->mddev = mddev;

4838
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4839 4840
		goto abort;

4841 4842 4843 4844
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4845
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4846

4847
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4848
		raid_disk = rdev->raid_disk;
4849
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4850 4851 4852 4853 4854 4855
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4856
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4857
			char b[BDEVNAME_SIZE];
4858 4859 4860
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4861 4862 4863
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4864 4865
	}

4866
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4867
	conf->level = mddev->new_level;
4868 4869 4870 4871
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4872
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4873
	conf->max_nr_stripes = NR_STRIPES;
4874
	conf->reshape_progress = mddev->reshape_position;
4875
	if (conf->reshape_progress != MaxSector) {
4876
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4877 4878
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4879

N
NeilBrown 已提交
4880
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4881
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4882 4883
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4884 4885
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4886 4887
		goto abort;
	} else
4888 4889
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4890

4891
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4892 4893
	if (!conf->thread) {
		printk(KERN_ERR
4894
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4895
		       mdname(mddev));
4896 4897
		goto abort;
	}
N
NeilBrown 已提交
4898 4899 4900 4901 4902

	return conf;

 abort:
	if (conf) {
4903
		free_conf(conf);
N
NeilBrown 已提交
4904 4905 4906 4907 4908
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

N
NeilBrown 已提交
4936 4937 4938
static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
4939
	int working_disks = 0;
4940
	int dirty_parity_disks = 0;
N
NeilBrown 已提交
4941
	mdk_rdev_t *rdev;
4942
	sector_t reshape_offset = 0;
N
NeilBrown 已提交
4943

4944
	if (mddev->recovery_cp != MaxSector)
4945
		printk(KERN_NOTICE "md/raid:%s: not clean"
4946 4947
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
4948 4949 4950 4951 4952 4953 4954 4955
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4956
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4957

4958
		if (mddev->new_level != mddev->level) {
4959
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4970
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
4971
			       (mddev->raid_disks - max_degraded))) {
4972 4973
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
4974 4975
			return -EINVAL;
		}
4976
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
4977 4978
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
4979
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
4980 4981 4982
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
4994 4995 4996
				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
				       " in read-only mode - aborting\n",
				       mdname(mddev));
4997 4998 4999 5000 5001 5002 5003
				return -EINVAL;
			}
		} else if (mddev->delta_disks < 0
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
5004
			/* Reading from the same stripe as writing to - bad */
5005 5006 5007
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
5008 5009
			return -EINVAL;
		}
5010 5011
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
5012 5013 5014 5015
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
5016
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
5017
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
5018
	}
N
NeilBrown 已提交
5019

5020 5021 5022 5023 5024
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
5035 5036 5037
	list_for_each_entry(rdev, &mddev->disks, same_set) {
		if (rdev->raid_disk < 0)
			continue;
5038
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
5039
			working_disks++;
5040 5041
			continue;
		}
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
5070

5071 5072
	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
			   - working_disks);
N
NeilBrown 已提交
5073

5074
	if (has_failed(conf)) {
5075
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
5076
			" (%d/%d failed)\n",
5077
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
5078 5079 5080
		goto abort;
	}

N
NeilBrown 已提交
5081
	/* device size must be a multiple of chunk size */
5082
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
5083 5084
	mddev->resync_max_sectors = mddev->dev_sectors;

5085
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
5086
	    mddev->recovery_cp != MaxSector) {
5087 5088
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
5089 5090
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
5091 5092 5093
			       mdname(mddev));
		else {
			printk(KERN_ERR
5094
			       "md/raid:%s: cannot start dirty degraded array.\n",
5095 5096 5097
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
5098 5099 5100
	}

	if (mddev->degraded == 0)
5101 5102
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5103 5104
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
5105
	else
5106 5107 5108 5109 5110
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
5111 5112 5113

	print_raid5_conf(conf);

5114 5115
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
5116 5117 5118 5119 5120 5121
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5122
							"reshape");
5123 5124
	}

L
Linus Torvalds 已提交
5125 5126

	/* Ok, everything is just fine now */
5127 5128
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
5129 5130
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5131
		printk(KERN_WARNING
5132
		       "raid5: failed to create sysfs attributes for %s\n",
5133
		       mdname(mddev));
5134
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5135

5136
	if (mddev->queue) {
5137
		int chunk_size;
5138 5139 5140 5141 5142 5143 5144 5145 5146
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
5147

5148
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5149

N
NeilBrown 已提交
5150 5151
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5152

5153 5154 5155 5156
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
5157

5158 5159 5160 5161
		list_for_each_entry(rdev, &mddev->disks, same_set)
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
	}
5162

L
Linus Torvalds 已提交
5163 5164
	return 0;
abort:
5165
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
5166
	mddev->thread = NULL;
L
Linus Torvalds 已提交
5167 5168
	if (conf) {
		print_raid5_conf(conf);
5169
		free_conf(conf);
L
Linus Torvalds 已提交
5170 5171
	}
	mddev->private = NULL;
5172
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
5173 5174 5175
	return -EIO;
}

5176
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
5177
{
5178
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5179 5180 5181

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
N
NeilBrown 已提交
5182 5183
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
5184
	free_conf(conf);
5185 5186
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5187 5188 5189
	return 0;
}

5190
#ifdef DEBUG
5191
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
5192 5193 5194
{
	int i;

5195 5196 5197 5198 5199
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5200
	for (i = 0; i < sh->disks; i++) {
5201 5202
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
5203
	}
5204
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
5205 5206
}

5207
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
5208 5209
{
	struct stripe_head *sh;
5210
	struct hlist_node *hn;
L
Linus Torvalds 已提交
5211 5212 5213 5214
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
5215
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
5216 5217
			if (sh->raid_conf != conf)
				continue;
5218
			print_sh(seq, sh);
L
Linus Torvalds 已提交
5219 5220 5221 5222 5223 5224
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

5225
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
5226
{
5227
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5228 5229
	int i;

5230 5231
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5232
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5233 5234 5235
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5236
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5237
	seq_printf (seq, "]");
5238
#ifdef DEBUG
5239 5240
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
5241 5242 5243 5244 5245 5246 5247 5248
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

5249
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
5250 5251 5252 5253
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5254 5255 5256
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5257 5258 5259 5260 5261

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
5262 5263 5264
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
5265 5266 5267 5268 5269 5270 5271 5272
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;
5273 5274
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
5275 5276 5277 5278

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
5279
		    && tmp->rdev->recovery_offset == MaxSector
5280
		    && !test_bit(Faulty, &tmp->rdev->flags)
5281
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5282
			count++;
5283
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
5284 5285
		}
	}
5286 5287 5288
	spin_lock_irqsave(&conf->device_lock, flags);
	mddev->degraded -= count;
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5289
	print_raid5_conf(conf);
5290
	return count;
L
Linus Torvalds 已提交
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
5303 5304 5305 5306
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

5307
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
5308 5309 5310 5311
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
5312 5313 5314 5315
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
5316
		    !has_failed(conf) &&
5317
		    number < conf->raid_disks) {
5318 5319 5320
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
5321
		p->rdev = NULL;
5322
		synchronize_rcu();
L
Linus Torvalds 已提交
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
5338
	int err = -EEXIST;
L
Linus Torvalds 已提交
5339 5340
	int disk;
	struct disk_info *p;
5341 5342
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5343

5344
	if (has_failed(conf))
L
Linus Torvalds 已提交
5345
		/* no point adding a device */
5346
		return -EINVAL;
L
Linus Torvalds 已提交
5347

5348 5349
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5350 5351

	/*
5352 5353
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5354
	 */
5355
	if (rdev->saved_raid_disk >= 0 &&
5356
	    rdev->saved_raid_disk >= first &&
5357 5358 5359
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
5360 5361
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
5362
		if ((p=conf->disks + disk)->rdev == NULL) {
5363
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5364
			rdev->raid_disk = disk;
5365
			err = 0;
5366 5367
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5368
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5369 5370 5371
			break;
		}
	print_raid5_conf(conf);
5372
	return err;
L
Linus Torvalds 已提交
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5384
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5385 5386
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5387 5388 5389
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5390
	set_capacity(mddev->gendisk, mddev->array_sectors);
5391
	revalidate_disk(mddev->gendisk);
5392 5393
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
5394
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5395 5396
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5397
	mddev->dev_sectors = sectors;
5398
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5399 5400 5401
	return 0;
}

5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
static int check_stripe_cache(mddev_t *mddev)
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
	raid5_conf_t *conf = mddev->private;
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5417 5418
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5419 5420 5421 5422 5423 5424 5425
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5426
static int check_reshape(mddev_t *mddev)
5427
{
5428
	raid5_conf_t *conf = mddev->private;
5429

5430 5431
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5432
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5433
		return 0; /* nothing to do */
5434 5435 5436
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5437
	if (has_failed(conf))
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5451

5452
	if (!check_stripe_cache(mddev))
5453 5454
		return -ENOSPC;

5455
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5456 5457 5458 5459
}

static int raid5_start_reshape(mddev_t *mddev)
{
5460
	raid5_conf_t *conf = mddev->private;
5461 5462
	mdk_rdev_t *rdev;
	int spares = 0;
5463
	unsigned long flags;
5464

5465
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5466 5467
		return -EBUSY;

5468 5469 5470
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5471
	list_for_each_entry(rdev, &mddev->disks, same_set)
5472 5473
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
5474
			spares++;
5475

5476
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5477 5478 5479 5480 5481
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5482 5483 5484 5485 5486 5487
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5488
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5489 5490 5491 5492
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5493
	atomic_set(&conf->reshape_stripes, 0);
5494 5495
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5496
	conf->raid_disks += mddev->delta_disks;
5497 5498
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5499 5500
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5501 5502 5503 5504 5505
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5506
	conf->generation++;
5507 5508 5509 5510
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5511 5512 5513 5514
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5515
	 */
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532
	if (mddev->delta_disks >= 0) {
		int added_devices = 0;
		list_for_each_entry(rdev, &mddev->disks, same_set)
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					char nm[20];
					if (rdev->raid_disk
					    >= conf->previous_raid_disks) {
						set_bit(In_sync, &rdev->flags);
						added_devices++;
					} else
						rdev->recovery_offset = 0;
					sprintf(nm, "rd%d", rdev->raid_disk);
					if (sysfs_create_link(&mddev->kobj,
							      &rdev->kobj, nm))
						/* Failure here is OK */;
5533
				}
5534 5535 5536 5537 5538 5539
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
				added_devices++;
			}
5540

5541 5542 5543 5544
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
5545
		spin_lock_irqsave(&conf->device_lock, flags);
5546
		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5547 5548 5549
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5550
	mddev->raid_disks = conf->raid_disks;
5551
	mddev->reshape_position = conf->reshape_progress;
5552
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5553

5554 5555 5556 5557 5558
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5559
						"reshape");
5560 5561 5562 5563
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5564
		conf->reshape_progress = MaxSector;
5565 5566 5567
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5568
	conf->reshape_checkpoint = jiffies;
5569 5570 5571 5572 5573
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5574 5575 5576
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5577 5578 5579
static void end_reshape(raid5_conf_t *conf)
{

5580 5581 5582
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5583
		conf->previous_raid_disks = conf->raid_disks;
5584
		conf->reshape_progress = MaxSector;
5585
		spin_unlock_irq(&conf->device_lock);
5586
		wake_up(&conf->wait_for_overlap);
5587 5588 5589 5590

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
5591
		if (conf->mddev->queue) {
5592
			int data_disks = conf->raid_disks - conf->max_degraded;
5593
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5594
						   / PAGE_SIZE);
5595 5596 5597
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5598 5599 5600
	}
}

5601 5602 5603
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5604 5605
static void raid5_finish_reshape(mddev_t *mddev)
{
5606
	raid5_conf_t *conf = mddev->private;
5607 5608 5609

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5610 5611 5612
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5613
			revalidate_disk(mddev->gendisk);
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5624 5625 5626 5627 5628 5629 5630 5631 5632
			     d++) {
				mdk_rdev_t *rdev = conf->disks[d].rdev;
				if (rdev && raid5_remove_disk(mddev, d) == 0) {
					char nm[20];
					sprintf(nm, "rd%d", rdev->raid_disk);
					sysfs_remove_link(&mddev->kobj, nm);
					rdev->raid_disk = -1;
				}
			}
5633
		}
5634
		mddev->layout = conf->algorithm;
5635
		mddev->chunk_sectors = conf->chunk_sectors;
5636 5637
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5638 5639 5640
	}
}

5641 5642
static void raid5_quiesce(mddev_t *mddev, int state)
{
5643
	raid5_conf_t *conf = mddev->private;
5644 5645

	switch(state) {
5646 5647 5648 5649
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5650 5651
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5652 5653 5654 5655
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5656
		wait_event_lock_irq(conf->wait_for_stripe,
5657 5658
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5659
				    conf->device_lock, /* nothing */);
5660
		conf->quiesce = 1;
5661
		spin_unlock_irq(&conf->device_lock);
5662 5663
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5664 5665 5666 5667 5668 5669
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5670
		wake_up(&conf->wait_for_overlap);
5671 5672 5673 5674
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5675

5676

D
Dan Williams 已提交
5677
static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5678
{
D
Dan Williams 已提交
5679
	struct raid0_private_data *raid0_priv = mddev->private;
5680
	sector_t sectors;
5681

D
Dan Williams 已提交
5682 5683
	/* for raid0 takeover only one zone is supported */
	if (raid0_priv->nr_strip_zones > 1) {
5684 5685
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5686 5687 5688
		return ERR_PTR(-EINVAL);
	}

5689 5690 5691
	sectors = raid0_priv->strip_zone[0].zone_end;
	sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
5692
	mddev->new_level = level;
5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5726
	mddev->new_chunk_sectors = chunksect;
5727 5728 5729 5730

	return setup_conf(mddev);
}

5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5764

5765
static int raid5_check_reshape(mddev_t *mddev)
5766
{
5767 5768 5769 5770
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5771
	 */
5772
	raid5_conf_t *conf = mddev->private;
5773
	int new_chunk = mddev->new_chunk_sectors;
5774

5775
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5776 5777
		return -EINVAL;
	if (new_chunk > 0) {
5778
		if (!is_power_of_2(new_chunk))
5779
			return -EINVAL;
5780
		if (new_chunk < (PAGE_SIZE>>9))
5781
			return -EINVAL;
5782
		if (mddev->array_sectors & (new_chunk-1))
5783 5784 5785 5786 5787 5788
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5789
	if (mddev->raid_disks == 2) {
5790 5791 5792 5793
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5794 5795
		}
		if (new_chunk > 0) {
5796 5797
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5798 5799 5800
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5801
	}
5802
	return check_reshape(mddev);
5803 5804
}

5805
static int raid6_check_reshape(mddev_t *mddev)
5806
{
5807
	int new_chunk = mddev->new_chunk_sectors;
5808

5809
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5810
		return -EINVAL;
5811
	if (new_chunk > 0) {
5812
		if (!is_power_of_2(new_chunk))
5813
			return -EINVAL;
5814
		if (new_chunk < (PAGE_SIZE >> 9))
5815
			return -EINVAL;
5816
		if (mddev->array_sectors & (new_chunk-1))
5817 5818
			/* not factor of array size */
			return -EINVAL;
5819
	}
5820 5821

	/* They look valid */
5822
	return check_reshape(mddev);
5823 5824
}

5825 5826 5827
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
D
Dan Williams 已提交
5828
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5829 5830 5831 5832
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
5833 5834
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
5835 5836
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5837 5838 5839 5840 5841
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5842 5843
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5844 5845 5846 5847

	return ERR_PTR(-EINVAL);
}

5848 5849
static void *raid4_takeover(mddev_t *mddev)
{
D
Dan Williams 已提交
5850 5851 5852
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
5853
	 */
D
Dan Williams 已提交
5854 5855
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
5856 5857 5858 5859 5860 5861 5862 5863
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
5864

5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5929
	.size		= raid5_size,
5930
	.check_reshape	= raid6_check_reshape,
5931
	.start_reshape  = raid5_start_reshape,
5932
	.finish_reshape = raid5_finish_reshape,
5933
	.quiesce	= raid5_quiesce,
5934
	.takeover	= raid6_takeover,
5935
};
5936
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5937 5938
{
	.name		= "raid5",
5939
	.level		= 5,
L
Linus Torvalds 已提交
5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5951
	.size		= raid5_size,
5952 5953
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5954
	.finish_reshape = raid5_finish_reshape,
5955
	.quiesce	= raid5_quiesce,
5956
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
5957 5958
};

5959
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5960
{
5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5974
	.size		= raid5_size,
5975 5976
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5977
	.finish_reshape = raid5_finish_reshape,
5978
	.quiesce	= raid5_quiesce,
5979
	.takeover	= raid4_takeover,
5980 5981 5982 5983
};

static int __init raid5_init(void)
{
5984
	register_md_personality(&raid6_personality);
5985 5986 5987
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5988 5989
}

5990
static void raid5_exit(void)
L
Linus Torvalds 已提交
5991
{
5992
	unregister_md_personality(&raid6_personality);
5993 5994
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5995 5996 5997 5998 5999
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
6000
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
6001
MODULE_ALIAS("md-personality-4"); /* RAID5 */
6002 6003
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
6004 6005
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
6006 6007 6008 6009 6010 6011 6012
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");