raid5.c 155.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/async.h>
51
#include <linux/seq_file.h>
52
#include <linux/cpu.h>
53
#include <linux/slab.h>
54
#include <linux/ratelimit.h>
55
#include "md.h"
56
#include "raid5.h"
57
#include "raid0.h"
58
#include "bitmap.h"
59

L
Linus Torvalds 已提交
60 61 62 63 64 65 66 67 68
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
69
#define BYPASS_THRESHOLD	1
70
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
71 72
#define HASH_MASK		(NR_HASH - 1)

73
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

95
#ifdef DEBUG
L
Linus Torvalds 已提交
96 97 98 99
#define inline
#define __inline__
#endif

100
/*
101 102
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 104 105
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
106
	return bio->bi_phys_segments & 0xffff;
107 108 109 110
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
111
	return (bio->bi_phys_segments >> 16) & 0xffff;
112 113 114 115 116 117 118 119 120 121 122 123 124
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
125
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126 127 128 129 130
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
131
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
132 133
}

134 135 136
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
137 138 139 140
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
141 142 143 144 145
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
146 147 148 149 150
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
151

152 153 154 155 156
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
157 158
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
159
{
160
	int slot = *count;
161

162
	if (sh->ddf_layout)
163
		(*count)++;
164
	if (idx == sh->pd_idx)
165
		return syndrome_disks;
166
	if (idx == sh->qd_idx)
167
		return syndrome_disks + 1;
168
	if (!sh->ddf_layout)
169
		(*count)++;
170 171 172
	return slot;
}

173 174 175 176 177 178 179 180
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
181
		bio_endio(bi, 0);
182 183 184 185
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
186 187
static void print_raid5_conf (raid5_conf_t *conf);

188 189 190 191 192 193 194
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

195
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
196 197
{
	if (atomic_dec_and_test(&sh->count)) {
198 199
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
200
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
N
NeilBrown 已提交
201
			if (test_bit(STRIPE_DELAYED, &sh->state))
L
Linus Torvalds 已提交
202
				list_add_tail(&sh->lru, &conf->delayed_list);
N
NeilBrown 已提交
203 204
			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
				   sh->bm_seq - conf->seq_write > 0)
205
				list_add_tail(&sh->lru, &conf->bitmap_list);
N
NeilBrown 已提交
206
			else {
207
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
208
				list_add_tail(&sh->lru, &conf->handle_list);
209
			}
L
Linus Torvalds 已提交
210 211
			md_wakeup_thread(conf->mddev->thread);
		} else {
212
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
213 214 215 216 217 218
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
219 220
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
221
				wake_up(&conf->wait_for_stripe);
222 223
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
224
			}
L
Linus Torvalds 已提交
225 226 227
		}
	}
}
228

L
Linus Torvalds 已提交
229 230 231 232
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
233

L
Linus Torvalds 已提交
234 235 236 237 238
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

239
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
240
{
241 242
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
243

244
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
245 246
}

247
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
248
{
249
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
250

251 252
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
253 254

	CHECK_DEVLOCK();
255
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

277
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
278 279 280
{
	struct page *p;
	int i;
281
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
282

283
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
284 285 286 287
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
288
		put_page(p);
L
Linus Torvalds 已提交
289 290 291
	}
}

292
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
293 294
{
	int i;
295
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
296

297
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
298 299 300 301 302 303 304 305 306 307
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

308
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309 310
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
311

312
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
313 314
{
	raid5_conf_t *conf = sh->raid_conf;
315
	int i;
L
Linus Torvalds 已提交
316

317 318
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319
	BUG_ON(stripe_operations_active(sh));
320

L
Linus Torvalds 已提交
321
	CHECK_DEVLOCK();
322
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
323 324 325
		(unsigned long long)sh->sector);

	remove_hash(sh);
326

327
	sh->generation = conf->generation - previous;
328
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
329
	sh->sector = sector;
330
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
331 332
	sh->state = 0;

333 334

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
335 336
		struct r5dev *dev = &sh->dev[i];

337
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
338
		    test_bit(R5_LOCKED, &dev->flags)) {
339
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
340
			       (unsigned long long)sh->sector, i, dev->toread,
341
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
342
			       test_bit(R5_LOCKED, &dev->flags));
343
			WARN_ON(1);
L
Linus Torvalds 已提交
344 345
		}
		dev->flags = 0;
346
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
347 348 349 350
	}
	insert_hash(conf, sh);
}

351 352
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
353 354
{
	struct stripe_head *sh;
355
	struct hlist_node *hn;
L
Linus Torvalds 已提交
356 357

	CHECK_DEVLOCK();
358
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
361
			return sh;
362
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
363 364 365
	return NULL;
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
static int has_failed(raid5_conf_t *conf)
{
	int degraded;
	int i;
	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

433 434
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
435
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
436 437 438
{
	struct stripe_head *sh;

439
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
440 441 442 443

	spin_lock_irq(&conf->device_lock);

	do {
444
		wait_event_lock_irq(conf->wait_for_stripe,
445
				    conf->quiesce == 0 || noquiesce,
446
				    conf->device_lock, /* nothing */);
447
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
448 449 450 451 452 453 454 455 456
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
457 458
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
459 460
						     || !conf->inactive_blocked),
						    conf->device_lock,
461
						    );
L
Linus Torvalds 已提交
462 463
				conf->inactive_blocked = 0;
			} else
464
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
465 466
		} else {
			if (atomic_read(&sh->count)) {
467 468
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
469 470 471
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
472 473
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
474 475
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
476 477 478 479 480 481 482 483 484 485 486
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

487 488 489 490
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
491

492
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
493 494 495 496 497 498 499 500 501 502
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
T
Tejun Heo 已提交
503 504 505 506 507 508
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
509 510 511 512 513 514 515
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
516
		if (rw & WRITE)
517 518 519 520 521 522 523 524 525 526 527 528 529
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
530
			if (s->syncing || s->expanding || s->expanded)
531 532
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
533 534
			set_bit(STRIPE_IO_STARTED, &sh->state);

535 536
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
537
				__func__, (unsigned long long)sh->sector,
538 539 540 541 542 543 544 545 546 547 548 549 550 551
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			generic_make_request(bi);
		} else {
552
			if (rw & WRITE)
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
570
	struct async_submit_ctl submit;
D
Dan Williams 已提交
571
	enum async_tx_flags flags = 0;
572 573 574 575 576

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
577

D
Dan Williams 已提交
578 579 580 581
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

582
	bio_for_each_segment(bvl, bio, i) {
583
		int len = bvl->bv_len;
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
599 600
			b_offset += bvl->bv_offset;
			bio_page = bvl->bv_page;
601 602
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
603
						  b_offset, clen, &submit);
604 605
			else
				tx = async_memcpy(bio_page, page, b_offset,
606
						  page_offset, clen, &submit);
607
		}
608 609 610
		/* chain the operations */
		submit.depend_tx = tx;

611 612 613 614 615 616 617 618 619 620 621 622 623
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
624
	int i;
625

626
	pr_debug("%s: stripe %llu\n", __func__,
627 628 629
		(unsigned long long)sh->sector);

	/* clear completed biofills */
630
	spin_lock_irq(&conf->device_lock);
631 632 633 634
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
635 636
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
637
		 * !STRIPE_BIOFILL_RUN
638 639
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
640 641 642 643 644 645 646 647
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
648
				if (!raid5_dec_bi_phys_segments(rbi)) {
649 650 651 652 653 654 655
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
656 657
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
658 659 660

	return_io(return_bi);

661
	set_bit(STRIPE_HANDLE, &sh->state);
662 663 664 665 666 667 668
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
669
	struct async_submit_ctl submit;
670 671
	int i;

672
	pr_debug("%s: stripe %llu\n", __func__,
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
693 694
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
695 696
}

697
static void mark_target_uptodate(struct stripe_head *sh, int target)
698
{
699
	struct r5dev *tgt;
700

701 702
	if (target < 0)
		return;
703

704
	tgt = &sh->dev[target];
705 706 707
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
708 709
}

710
static void ops_complete_compute(void *stripe_head_ref)
711 712 713
{
	struct stripe_head *sh = stripe_head_ref;

714
	pr_debug("%s: stripe %llu\n", __func__,
715 716
		(unsigned long long)sh->sector);

717
	/* mark the computed target(s) as uptodate */
718
	mark_target_uptodate(sh, sh->ops.target);
719
	mark_target_uptodate(sh, sh->ops.target2);
720

721 722 723
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
724 725 726 727
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

728 729 730 731 732 733 734 735 736
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
737 738
{
	int disks = sh->disks;
739
	struct page **xor_srcs = percpu->scribble;
740 741 742 743 744
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
745
	struct async_submit_ctl submit;
746 747 748
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
749
		__func__, (unsigned long long)sh->sector, target);
750 751 752 753 754 755 756 757
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
758
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
759
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
760
	if (unlikely(count == 1))
761
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
762
	else
763
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
764 765 766 767

	return tx;
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
786
		srcs[i] = NULL;
787 788 789 790 791 792 793 794 795 796

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

797
	return syndrome_disks;
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
818
	else
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
835 836
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
837 838 839 840 841 842 843 844 845 846 847
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
848 849
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
850 851 852
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
853 854 855 856

	return tx;
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

878
	/* we need to open-code set_syndrome_sources to handle the
879 880 881
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
882
		blocks[i] = NULL;
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
909 910 911
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
912
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
932 933 934 935
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
936 937 938 939
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
940 941 942
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
943 944 945 946
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
947 948 949 950 951 952 953 954 955 956 957 958 959 960
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
961 962 963 964
	}
}


965 966 967 968
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

969
	pr_debug("%s: stripe %llu\n", __func__,
970 971 972 973
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
974 975
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
976 977
{
	int disks = sh->disks;
978
	struct page **xor_srcs = percpu->scribble;
979
	int count = 0, pd_idx = sh->pd_idx, i;
980
	struct async_submit_ctl submit;
981 982 983 984

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

985
	pr_debug("%s: stripe %llu\n", __func__,
986 987 988 989 990
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
991
		if (test_bit(R5_Wantdrain, &dev->flags))
992 993 994
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
995
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
996
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
997
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
998 999 1000 1001 1002

	return tx;
}

static struct dma_async_tx_descriptor *
1003
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1004 1005
{
	int disks = sh->disks;
1006
	int i;
1007

1008
	pr_debug("%s: stripe %llu\n", __func__,
1009 1010 1011 1012 1013 1014
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1015
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1016 1017
			struct bio *wbi;

1018
			spin_lock_irq(&sh->raid_conf->device_lock);
1019 1020 1021 1022
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
1023
			spin_unlock_irq(&sh->raid_conf->device_lock);
1024 1025 1026

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1027 1028
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1039
static void ops_complete_reconstruct(void *stripe_head_ref)
1040 1041
{
	struct stripe_head *sh = stripe_head_ref;
1042 1043 1044 1045
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
T
Tejun Heo 已提交
1046
	bool fua = false;
1047

1048
	pr_debug("%s: stripe %llu\n", __func__,
1049 1050
		(unsigned long long)sh->sector);

T
Tejun Heo 已提交
1051 1052 1053
	for (i = disks; i--; )
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);

1054 1055
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1056

T
Tejun Heo 已提交
1057
		if (dev->written || i == pd_idx || i == qd_idx) {
1058
			set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1059 1060 1061
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
		}
1062 1063
	}

1064 1065 1066 1067 1068 1069 1070 1071
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1072 1073 1074 1075 1076 1077

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1078 1079
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1080 1081
{
	int disks = sh->disks;
1082
	struct page **xor_srcs = percpu->scribble;
1083
	struct async_submit_ctl submit;
1084 1085
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1086
	int prexor = 0;
1087 1088
	unsigned long flags;

1089
	pr_debug("%s: stripe %llu\n", __func__,
1090 1091 1092 1093 1094
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1095 1096
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1117
	flags = ASYNC_TX_ACK |
1118 1119 1120 1121
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1122
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1123
			  to_addr_conv(sh, percpu));
1124 1125 1126 1127
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1128 1129
}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1147 1148 1149 1150 1151 1152
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1153
	pr_debug("%s: stripe %llu\n", __func__,
1154 1155
		(unsigned long long)sh->sector);

1156
	sh->check_state = check_state_check_result;
1157 1158 1159 1160
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1161
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1162 1163
{
	int disks = sh->disks;
1164 1165 1166
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1167
	struct page **xor_srcs = percpu->scribble;
1168
	struct dma_async_tx_descriptor *tx;
1169
	struct async_submit_ctl submit;
1170 1171
	int count;
	int i;
1172

1173
	pr_debug("%s: stripe %llu\n", __func__,
1174 1175
		(unsigned long long)sh->sector);

1176 1177 1178
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1179
	for (i = disks; i--; ) {
1180 1181 1182
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1183 1184
	}

1185 1186
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1187
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1188
			   &sh->ops.zero_sum_result, &submit);
1189 1190

	atomic_inc(&sh->count);
1191 1192
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1193 1194
}

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1207 1208

	atomic_inc(&sh->count);
1209 1210 1211 1212
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1213 1214
}

1215
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1216 1217 1218
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1219
	raid5_conf_t *conf = sh->raid_conf;
1220
	int level = conf->level;
1221 1222
	struct raid5_percpu *percpu;
	unsigned long cpu;
1223

1224 1225
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1226
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1227 1228 1229 1230
		ops_run_biofill(sh);
		overlap_clear++;
	}

1231
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1242 1243
			async_tx_ack(tx);
	}
1244

1245
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1246
		tx = ops_run_prexor(sh, percpu, tx);
1247

1248
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1249
		tx = ops_run_biodrain(sh, tx);
1250 1251 1252
		overlap_clear++;
	}

1253 1254 1255 1256 1257 1258
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1270 1271 1272 1273 1274 1275 1276

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1277
	put_cpu();
1278 1279
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1310
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1311 1312
{
	struct stripe_head *sh;
N
Namhyung Kim 已提交
1313
	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1314 1315
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
1316

1317
	sh->raid_conf = conf;
1318 1319 1320
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1321

1322 1323
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
1337
	struct kmem_cache *sc;
1338
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1339

1340 1341 1342 1343 1344 1345 1346 1347
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1348 1349
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1350
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1351
			       0, 0, NULL);
L
Linus Torvalds 已提交
1352 1353 1354
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1355
	conf->pool_size = devs;
1356
	while (num--)
1357
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1358 1359 1360
			return 1;
	return 0;
}
1361

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1412
	unsigned long cpu;
1413
	int err;
1414
	struct kmem_cache *sc;
1415 1416 1417 1418 1419
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1420 1421 1422
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1423

1424 1425 1426
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1427
			       0, 0, NULL);
1428 1429 1430 1431
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
N
Namhyung Kim 已提交
1432
		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1433 1434 1435 1436
		if (!nsh)
			break;

		nsh->raid_conf = conf;
1437 1438 1439
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
N
NeilBrown 已提交
1462
				    );
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1477
	 * conf->disks and the scribble region
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1507 1508 1509 1510
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1528

1529
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1530 1531 1532
{
	struct stripe_head *sh;

1533 1534 1535 1536 1537
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1538
	BUG_ON(atomic_read(&sh->count));
1539
	shrink_buffers(sh);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1550 1551
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1552 1553 1554
	conf->slab_cache = NULL;
}

1555
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1556
{
1557
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1558
	raid5_conf_t *conf = sh->raid_conf;
1559
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1560
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1561 1562
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1563 1564 1565 1566 1567 1568


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1569 1570
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1571 1572 1573
		uptodate);
	if (i == disks) {
		BUG();
1574
		return;
L
Linus Torvalds 已提交
1575 1576 1577 1578
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1579
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1580
			rdev = conf->disks[i].rdev;
1581 1582 1583 1584 1585 1586 1587 1588
			printk_ratelimited(
				KERN_INFO
				"md/raid:%s: read error corrected"
				" (%lu sectors at %llu on %s)\n",
				mdname(conf->mddev), STRIPE_SECTORS,
				(unsigned long long)(sh->sector
						     + rdev->data_offset),
				bdevname(rdev->bdev, b));
1589
			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1590 1591 1592
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1593 1594
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1595
	} else {
1596
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1597
		int retry = 0;
1598 1599
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1600
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1601
		atomic_inc(&rdev->read_errors);
1602
		if (conf->mddev->degraded >= conf->max_degraded)
1603 1604 1605 1606 1607 1608 1609 1610
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error not correctable "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
				(unsigned long long)(sh->sector
						     + rdev->data_offset),
				bdn);
1611
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1612
			/* Oh, no!!! */
1613 1614 1615 1616 1617 1618 1619 1620
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error NOT corrected!! "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
				(unsigned long long)(sh->sector
						     + rdev->data_offset),
				bdn);
1621
		else if (atomic_read(&rdev->read_errors)
1622
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1623
			printk(KERN_WARNING
1624
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1625
			       mdname(conf->mddev), bdn);
1626 1627 1628 1629 1630
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1631 1632
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1633
			md_error(conf->mddev, rdev);
1634
		}
L
Linus Torvalds 已提交
1635 1636 1637 1638 1639 1640 1641
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1642
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1643
{
1644
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1645
	raid5_conf_t *conf = sh->raid_conf;
1646
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1647 1648 1649 1650 1651 1652
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1653
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1654 1655 1656 1657
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1658
		return;
L
Linus Torvalds 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1668
	release_stripe(sh);
L
Linus Torvalds 已提交
1669 1670 1671
}


1672
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1673
	
1674
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1690
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1691 1692 1693 1694 1695
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
1696
	raid5_conf_t *conf = mddev->private;
1697
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1698

1699 1700 1701 1702 1703 1704 1705 1706 1707
	if (test_and_clear_bit(In_sync, &rdev->flags)) {
		unsigned long flags;
		spin_lock_irqsave(&conf->device_lock, flags);
		mddev->degraded++;
		spin_unlock_irqrestore(&conf->device_lock, flags);
		/*
		 * if recovery was running, make sure it aborts.
		 */
		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1708
	}
1709 1710 1711 1712 1713 1714 1715 1716 1717
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
1718
}
L
Linus Torvalds 已提交
1719 1720 1721 1722 1723

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1724
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1725 1726
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1727
{
N
NeilBrown 已提交
1728
	sector_t stripe, stripe2;
1729
	sector_t chunk_number;
L
Linus Torvalds 已提交
1730
	unsigned int chunk_offset;
1731
	int pd_idx, qd_idx;
1732
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1733
	sector_t new_sector;
1734 1735
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1736 1737
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1738 1739 1740
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1753 1754
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1755
	stripe2 = stripe;
L
Linus Torvalds 已提交
1756 1757 1758
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1759
	pd_idx = qd_idx = -1;
1760 1761
	switch(conf->level) {
	case 4:
1762
		pd_idx = data_disks;
1763 1764
		break;
	case 5:
1765
		switch (algorithm) {
L
Linus Torvalds 已提交
1766
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1767
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1768
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1769 1770 1771
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1772
			pd_idx = sector_div(stripe2, raid_disks);
1773
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1774 1775 1776
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1777
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1778
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1779 1780
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1781
			pd_idx = sector_div(stripe2, raid_disks);
1782
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1783
			break;
1784 1785 1786 1787 1788 1789 1790
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1791
		default:
1792
			BUG();
1793 1794 1795 1796
		}
		break;
	case 6:

1797
		switch (algorithm) {
1798
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1799
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1800 1801
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1802
				(*dd_idx)++;	/* Q D D D P */
1803 1804
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1805 1806 1807
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1808
			pd_idx = sector_div(stripe2, raid_disks);
1809 1810
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1811
				(*dd_idx)++;	/* Q D D D P */
1812 1813
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1814 1815 1816
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1817
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1818 1819
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1820 1821
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1822
			pd_idx = sector_div(stripe2, raid_disks);
1823 1824
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1825
			break;
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
1841
			pd_idx = sector_div(stripe2, raid_disks);
1842 1843 1844 1845 1846 1847
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1848
			ddf_layout = 1;
1849 1850 1851 1852 1853 1854 1855
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
1856 1857
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1858 1859 1860 1861 1862 1863
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1864
			ddf_layout = 1;
1865 1866 1867 1868
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
1869
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1870 1871
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1872
			ddf_layout = 1;
1873 1874 1875 1876
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
1877
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1878 1879 1880 1881 1882 1883
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
1884
			pd_idx = sector_div(stripe2, raid_disks-1);
1885 1886 1887 1888 1889 1890
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
1891
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1892 1893 1894 1895 1896
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
1897
			pd_idx = sector_div(stripe2, raid_disks-1);
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

1908
		default:
1909
			BUG();
1910 1911
		}
		break;
L
Linus Torvalds 已提交
1912 1913
	}

1914 1915 1916
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1917
		sh->ddf_layout = ddf_layout;
1918
	}
L
Linus Torvalds 已提交
1919 1920 1921 1922 1923 1924 1925 1926
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1927
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1928 1929
{
	raid5_conf_t *conf = sh->raid_conf;
1930 1931
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1932
	sector_t new_sector = sh->sector, check;
1933 1934
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1935 1936
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1937 1938
	sector_t stripe;
	int chunk_offset;
1939 1940
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1941
	sector_t r_sector;
1942
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1943

1944

L
Linus Torvalds 已提交
1945 1946 1947
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

1948 1949 1950 1951 1952
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1953
		switch (algorithm) {
L
Linus Torvalds 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1965 1966 1967 1968 1969
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1970
		default:
1971
			BUG();
1972 1973 1974
		}
		break;
	case 6:
1975
		if (i == sh->qd_idx)
1976
			return 0; /* It is the Q disk */
1977
		switch (algorithm) {
1978 1979
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1980 1981 1982 1983
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
1998 1999 2000 2001 2002 2003
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2004
			/* Like left_symmetric, but P is before Q */
2005 2006
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2007 2008 2009 2010 2011 2012
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2028
		default:
2029
			BUG();
2030 2031
		}
		break;
L
Linus Torvalds 已提交
2032 2033 2034
	}

	chunk_number = stripe * data_disks + i;
2035
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2036

2037
	check = raid5_compute_sector(conf, r_sector,
2038
				     previous, &dummy1, &sh2);
2039 2040
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2041 2042
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2043 2044 2045 2046 2047 2048
		return 0;
	}
	return r_sector;
}


2049
static void
2050
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2051
			 int rcw, int expand)
2052 2053
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2054 2055
	raid5_conf_t *conf = sh->raid_conf;
	int level = conf->level;
2056 2057 2058 2059 2060 2061 2062

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2063 2064 2065 2066
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2067

2068
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2069 2070 2071 2072 2073 2074

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2075
				set_bit(R5_Wantdrain, &dev->flags);
2076 2077
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2078
				s->locked++;
2079 2080
			}
		}
2081
		if (s->locked + conf->max_degraded == disks)
2082
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2083
				atomic_inc(&conf->pending_full_writes);
2084
	} else {
2085
		BUG_ON(level == 6);
2086 2087 2088
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2089
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2090 2091
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2092
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2093 2094 2095 2096 2097 2098 2099 2100

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2101 2102
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2103 2104
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2105
				s->locked++;
2106 2107 2108 2109
			}
		}
	}

2110
	/* keep the parity disk(s) locked while asynchronous operations
2111 2112 2113 2114
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2115
	s->locked++;
2116

2117 2118 2119 2120 2121 2122 2123 2124 2125
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2126
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2127
		__func__, (unsigned long long)sh->sector,
2128
		s->locked, s->ops_request);
2129
}
2130

L
Linus Torvalds 已提交
2131 2132
/*
 * Each stripe/dev can have one or more bion attached.
2133
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2134 2135 2136 2137 2138 2139
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
2140
	int firstwrite=0;
L
Linus Torvalds 已提交
2141

2142
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2143 2144 2145 2146 2147
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock_irq(&conf->device_lock);
2148
	if (forwrite) {
L
Linus Torvalds 已提交
2149
		bip = &sh->dev[dd_idx].towrite;
2150 2151 2152
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2162
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2163 2164 2165
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2166
	bi->bi_phys_segments++;
2167

L
Linus Torvalds 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
	spin_unlock_irq(&conf->device_lock);

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
		(unsigned long long)(*bip)->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
		sh->bm_seq = conf->seq_flush+1;
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}
L
Linus Torvalds 已提交
2193 2194 2195 2196 2197 2198 2199 2200
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	return 0;
}

2201 2202
static void end_reshape(raid5_conf_t *conf);

2203 2204
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2205
{
2206
	int sectors_per_chunk =
2207
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2208
	int dd_idx;
2209
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2210
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2211

2212 2213
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2214
			     *sectors_per_chunk + chunk_offset,
2215
			     previous,
2216
			     &dd_idx, sh);
2217 2218
}

2219
static void
2220
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2254
			if (!raid5_dec_bi_phys_segments(bi)) {
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2269
			if (!raid5_dec_bi_phys_segments(bi)) {
2270 2271 2272 2273 2274 2275 2276
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2277 2278 2279 2280 2281 2282
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2293
				if (!raid5_dec_bi_phys_segments(bi)) {
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
2304 2305 2306 2307
		/* If we were in the middle of a write the parity block might
		 * still be locked - so just clear all R5_LOCKED flags
		 */
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2308 2309
	}

2310 2311 2312
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2313 2314
}

2315
/* fetch_block - checks the given member device to see if its data needs
2316 2317 2318
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
2319
 * 0 to tell the loop in handle_stripe_fill to continue
2320
 */
2321 2322
static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
		       int disk_idx, int disks)
2323
{
2324
	struct r5dev *dev = &sh->dev[disk_idx];
2325 2326
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
2327

2328
	/* is the data in this block needed, and can we get it? */
2329 2330 2331 2332 2333
	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
2334 2335
	     (s->failed >= 1 && fdev[0]->toread) ||
	     (s->failed >= 2 && fdev[1]->toread) ||
2336 2337 2338
	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2339 2340 2341 2342 2343 2344
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
2345 2346
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
2347 2348
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2349
			 */
2350 2351 2352 2353 2354 2355 2356 2357
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
2358 2359 2360 2361 2362 2363
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2377
			}
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2397 2398
		}
	}
2399 2400 2401 2402 2403

	return 0;
}

/**
2404
 * handle_stripe_fill - read or compute data to satisfy pending requests.
2405
 */
2406 2407 2408
static void handle_stripe_fill(struct stripe_head *sh,
			       struct stripe_head_state *s,
			       int disks)
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
2419
			if (fetch_block(sh, s, i, disks))
2420
				break;
2421 2422 2423 2424
	set_bit(STRIPE_HANDLE, &sh->state);
}


2425
/* handle_stripe_clean_event
2426 2427 2428 2429
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2430
static void handle_stripe_clean_event(raid5_conf_t *conf,
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2444
				pr_debug("Return write for disc %d\n", i);
2445 2446 2447 2448 2449 2450
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2451
					if (!raid5_dec_bi_phys_segments(wbi)) {
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2469 2470 2471 2472

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2473 2474
}

2475 2476 2477 2478
static void handle_stripe_dirtying(raid5_conf_t *conf,
				   struct stripe_head *sh,
				   struct stripe_head_state *s,
				   int disks)
2479 2480
{
	int rmw = 0, rcw = 0, i;
2481 2482 2483 2484 2485 2486 2487
	if (conf->max_degraded == 2) {
		/* RAID6 requires 'rcw' in current implementation
		 * Calculate the real rcw later - for now fake it
		 * look like rcw is cheaper
		 */
		rcw = 1; rmw = 2;
	} else for (i = disks; i--; ) {
2488 2489 2490 2491
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2492 2493
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2494 2495 2496 2497 2498 2499 2500 2501
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2502 2503 2504
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2505 2506 2507 2508
			else
				rcw += 2*disks;
		}
	}
2509
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2510 2511 2512 2513 2514 2515 2516 2517
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2518 2519
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2520 2521 2522
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2523
					pr_debug("Read_old block "
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2534
	if (rcw <= rmw && rcw > 0) {
2535
		/* want reconstruct write, but need to get some data */
2536
		rcw = 0;
2537 2538 2539
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2540
			    i != sh->pd_idx && i != sh->qd_idx &&
2541
			    !test_bit(R5_LOCKED, &dev->flags) &&
2542
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2543 2544 2545 2546
			      test_bit(R5_Wantcompute, &dev->flags))) {
				rcw++;
				if (!test_bit(R5_Insync, &dev->flags))
					continue; /* it's a failed drive */
2547 2548
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2549
					pr_debug("Read_old block "
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2560
	}
2561 2562 2563
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2564 2565
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2566 2567
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2568 2569 2570
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2571 2572 2573
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2574
		schedule_reconstruction(sh, s, rcw == 0, 0);
2575 2576 2577 2578 2579
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2580
	struct r5dev *dev = NULL;
2581

2582
	set_bit(STRIPE_HANDLE, &sh->state);
2583

2584 2585 2586
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2587 2588
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2589 2590
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2591 2592
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2593
			break;
2594
		}
2595
		dev = &sh->dev[s->failed_num[0]];
2596 2597 2598 2599 2600 2601 2602 2603 2604
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2605

2606 2607 2608 2609 2610
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2611
		s->locked++;
2612
		set_bit(R5_Wantwrite, &dev->flags);
2613

2614 2615
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2632
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2644
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2645 2646 2647 2648
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2649
				sh->ops.target2 = -1;
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2661 2662 2663 2664 2665
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2666
				  struct stripe_head_state *s,
2667
				  int disks)
2668 2669
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2670
	int qd_idx = sh->qd_idx;
2671
	struct r5dev *dev;
2672 2673 2674 2675

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2676

2677 2678 2679 2680 2681 2682
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2683 2684 2685
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2686
		if (s->failed == s->q_failed) {
2687
			/* The only possible failed device holds Q, so it
2688 2689 2690
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2691
			sh->check_state = check_state_run;
2692
		}
2693
		if (!s->q_failed && s->failed < 2) {
2694
			/* Q is not failed, and we didn't use it to generate
2695 2696
			 * anything, so it makes sense to check it
			 */
2697 2698 2699 2700
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2701 2702
		}

2703 2704
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2705

2706 2707 2708 2709
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2710
		}
2711 2712 2713 2714 2715 2716 2717
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2718 2719
		}

2720 2721 2722 2723 2724
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2725

2726 2727 2728
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2729 2730

		/* now write out any block on a failed drive,
2731
		 * or P or Q if they were recomputed
2732
		 */
2733
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2734
		if (s->failed == 2) {
2735
			dev = &sh->dev[s->failed_num[1]];
2736 2737 2738 2739 2740
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
2741
			dev = &sh->dev[s->failed_num[0]];
2742 2743 2744 2745
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2746
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2747 2748 2749 2750 2751
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2752
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2753 2754 2755 2756 2757 2758 2759 2760
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2825 2826 2827
	}
}

2828
static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2829 2830 2831 2832 2833 2834
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2835
	struct dma_async_tx_descriptor *tx = NULL;
2836 2837
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2838
		if (i != sh->pd_idx && i != sh->qd_idx) {
2839
			int dd_idx, j;
2840
			struct stripe_head *sh2;
2841
			struct async_submit_ctl submit;
2842

2843
			sector_t bn = compute_blocknr(sh, i, 1);
2844 2845
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2846
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2859 2860

			/* place all the copies on one channel */
2861
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2862
			tx = async_memcpy(sh2->dev[dd_idx].page,
2863
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2864
					  &submit);
2865

2866 2867 2868 2869
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2870
				    j != sh2->qd_idx &&
2871 2872 2873 2874 2875 2876 2877
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2878

2879
		}
2880 2881 2882 2883 2884
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2885
}
L
Linus Torvalds 已提交
2886

2887

L
Linus Torvalds 已提交
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
2904

2905
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
2906
{
2907
	raid5_conf_t *conf = sh->raid_conf;
2908
	int disks = sh->disks;
2909 2910
	struct r5dev *dev;
	int i;
L
Linus Torvalds 已提交
2911

2912 2913 2914 2915 2916 2917 2918
	memset(s, 0, sizeof(*s));

	s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
	s->failed_num[0] = -1;
	s->failed_num[1] = -1;
L
Linus Torvalds 已提交
2919

2920
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
2921
	rcu_read_lock();
2922
	spin_lock_irq(&conf->device_lock);
2923 2924
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
2925

2926
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
2927

2928
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2929
			i, dev->flags, dev->toread, dev->towrite, dev->written);
2930 2931 2932 2933 2934 2935 2936 2937
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
2938

2939
		/* now count some things */
2940 2941 2942 2943
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
2944
		if (test_bit(R5_Wantcompute, &dev->flags)) {
2945 2946
			s->compute++;
			BUG_ON(s->compute > 2);
2947
		}
L
Linus Torvalds 已提交
2948

2949
		if (test_bit(R5_Wantfill, &dev->flags))
2950
			s->to_fill++;
2951
		else if (dev->toread)
2952
			s->to_read++;
2953
		if (dev->towrite) {
2954
			s->to_write++;
2955
			if (!test_bit(R5_OVERWRITE, &dev->flags))
2956
				s->non_overwrite++;
2957
		}
2958
		if (dev->written)
2959
			s->written++;
2960
		rdev = rcu_dereference(conf->disks[i].rdev);
2961
		if (s->blocked_rdev == NULL &&
2962
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2963
			s->blocked_rdev = rdev;
2964 2965
			atomic_inc(&rdev->nr_pending);
		}
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* in sync if before recovery_offset */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
2977 2978 2979
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
2980
		}
2981 2982 2983
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
2984 2985 2986
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
2987
		}
L
Linus Torvalds 已提交
2988
	}
2989
	spin_unlock_irq(&conf->device_lock);
L
Linus Torvalds 已提交
2990
	rcu_read_unlock();
2991 2992 2993 2994 2995
}

static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
2996
	raid5_conf_t *conf = sh->raid_conf;
2997
	int i;
2998 2999
	int prexor;
	int disks = sh->disks;
3000
	struct r5dev *pdev, *qdev;
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020

	clear_bit(STRIPE_HANDLE, &sh->state);
	if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
		set_bit(STRIPE_SYNCING, &sh->state);
		clear_bit(STRIPE_INSYNC, &sh->state);
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
3021

3022
	analyse_stripe(sh, &s);
3023

3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
	if (unlikely(s.blocked_rdev)) {
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto finish;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(s.blocked_rdev, conf->mddev);
		s.blocked_rdev = NULL;
	}

	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

	pr_debug("locked=%d uptodate=%d to_read=%d"
	       " to_write=%d failed=%d failed_num=%d,%d\n",
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       s.failed_num[0], s.failed_num[1]);
	/* check if the array has lost more than max_degraded devices and,
	 * if so, some requests might need to be failed.
	 */
	if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
		handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
	if (s.failed > conf->max_degraded && s.syncing) {
		md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
		clear_bit(STRIPE_SYNCING, &sh->state);
		s.syncing = 0;
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[sh->pd_idx];
	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
	qdev = &sh->dev[sh->qd_idx];
	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
		|| conf->level < 6;

	if (s.written &&
	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
			     && !test_bit(R5_LOCKED, &pdev->flags)
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
			     && !test_bit(R5_LOCKED, &qdev->flags)
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
	if (s.to_read || s.non_overwrite
	    || (conf->level == 6 && s.to_write && s.failed)
	    || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
		handle_stripe_fill(sh, &s, disks);

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	prexor = 0;
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
		prexor = 1;
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
		sh->reconstruct_state = reconstruct_state_idle;

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(sh->qd_idx >= 0 &&
		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || i == sh->qd_idx ||
				 dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
				if (prexor)
					continue;
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
				     s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			s.dec_preread_active = 1;
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying(conf, sh, &s, disks);

	/* maybe we need to check and possibly fix the parity for this stripe
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
	 */
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state))) {
		if (conf->level == 6)
			handle_parity_checks6(conf, sh, &s, disks);
		else
			handle_parity_checks5(conf, sh, &s, disks);
	}
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173

	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			struct r5dev *dev = &sh->dev[s.failed_num[i]];
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				}
			}
		}


3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		struct stripe_head *sh_src
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
			/* sh cannot be written until sh_src has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh_src->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh_src);
			goto finish;
		}
		if (sh_src)
			release_stripe(sh_src);

		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}
3201

3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		stripe_set_idx(sh->sector, conf, 0, sh);
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
		handle_stripe_expansion(conf, sh);
3218

3219
finish:
3220
	/* wait for this device to become unblocked */
3221 3222
	if (unlikely(s.blocked_rdev))
		md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3223

3224 3225 3226
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3227
	ops_run_io(sh, &s);
3228

3229

3230
	if (s.dec_preread_active) {
3231
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3232
		 * is waiting on a flush, it won't continue until the writes
3233 3234 3235 3236 3237 3238 3239 3240
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

3241
	return_io(s.return_bi);
3242

3243
	clear_bit(STRIPE_ACTIVE, &sh->state);
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3257
			list_add_tail(&sh->lru, &conf->hold_list);
3258
		}
N
NeilBrown 已提交
3259
	}
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

N
NeilBrown 已提交
3276
int md_raid5_congested(mddev_t *mddev, int bits)
3277
{
3278
	raid5_conf_t *conf = mddev->private;
3279 3280 3281 3282

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3283

3284 3285 3286 3287 3288 3289 3290 3291 3292
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3293 3294 3295 3296 3297 3298 3299 3300 3301
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3302

3303 3304 3305
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3306 3307 3308
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3309 3310
{
	mddev_t *mddev = q->queuedata;
3311
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3312
	int max;
3313
	unsigned int chunk_sectors = mddev->chunk_sectors;
3314
	unsigned int bio_sectors = bvm->bi_size >> 9;
3315

3316
	if ((bvm->bi_rw & 1) == WRITE)
3317 3318
		return biovec->bv_len; /* always allow writes to be mergeable */

3319 3320
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3321 3322 3323 3324 3325 3326 3327 3328
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3329 3330 3331 3332

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3333
	unsigned int chunk_sectors = mddev->chunk_sectors;
3334 3335
	unsigned int bio_sectors = bio->bi_size >> 9;

3336 3337
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3338 3339 3340 3341
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3371
		conf->retry_read_aligned_list = bi->bi_next;
3372
		bi->bi_next = NULL;
3373 3374 3375 3376
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3377 3378 3379 3380 3381 3382 3383
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3384 3385 3386 3387 3388 3389
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3390
static void raid5_align_endio(struct bio *bi, int error)
3391 3392
{
	struct bio* raid_bi  = bi->bi_private;
3393 3394 3395 3396 3397
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3398
	bio_put(bi);
3399 3400 3401

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3402 3403
	mddev = rdev->mddev;
	conf = mddev->private;
3404 3405 3406 3407

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3408
		bio_endio(raid_bi, 0);
3409 3410
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3411
		return;
3412 3413 3414
	}


3415
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3416 3417

	add_bio_to_retry(raid_bi, conf);
3418 3419
}

3420 3421
static int bio_fits_rdev(struct bio *bi)
{
3422
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3423

3424
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3425 3426
		return 0;
	blk_recount_segments(q, bi);
3427
	if (bi->bi_phys_segments > queue_max_segments(q))
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3440
static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3441
{
3442
	raid5_conf_t *conf = mddev->private;
N
NeilBrown 已提交
3443
	int dd_idx;
3444 3445 3446 3447
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3448
		pr_debug("chunk_aligned_read : non aligned\n");
3449 3450 3451
		return 0;
	}
	/*
3452
	 * use bio_clone_mddev to make a copy of the bio
3453
	 */
3454
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3466 3467
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3468
						    &dd_idx, NULL);
3469 3470 3471 3472 3473 3474

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3475 3476 3477 3478 3479
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3480 3481 3482 3483 3484 3485 3486
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3487 3488 3489 3490 3491 3492 3493
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3494 3495 3496 3497
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3498
		bio_put(align_bi);
3499 3500 3501 3502
		return 0;
	}
}

3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3555

3556
static int make_request(mddev_t *mddev, struct bio * bi)
L
Linus Torvalds 已提交
3557
{
3558
	raid5_conf_t *conf = mddev->private;
3559
	int dd_idx;
L
Linus Torvalds 已提交
3560 3561 3562
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3563
	const int rw = bio_data_dir(bi);
3564
	int remaining;
3565
	int plugged;
L
Linus Torvalds 已提交
3566

T
Tejun Heo 已提交
3567 3568
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
3569 3570 3571
		return 0;
	}

3572
	md_write_start(mddev, bi);
3573

3574
	if (rw == READ &&
3575
	     mddev->reshape_position == MaxSector &&
3576
	     chunk_aligned_read(mddev,bi))
3577
		return 0;
3578

L
Linus Torvalds 已提交
3579 3580 3581 3582
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3583

3584
	plugged = mddev_check_plugged(mddev);
L
Linus Torvalds 已提交
3585 3586
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3587
		int disks, data_disks;
3588
		int previous;
3589

3590
	retry:
3591
		previous = 0;
3592
		disks = conf->raid_disks;
3593
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3594
		if (unlikely(conf->reshape_progress != MaxSector)) {
3595
			/* spinlock is needed as reshape_progress may be
3596 3597
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3598
			 * Of course reshape_progress could change after
3599 3600 3601 3602
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3603
			spin_lock_irq(&conf->device_lock);
3604 3605 3606
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3607
				disks = conf->previous_raid_disks;
3608 3609
				previous = 1;
			} else {
3610 3611 3612
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3613 3614 3615 3616 3617
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3618 3619
			spin_unlock_irq(&conf->device_lock);
		}
3620 3621
		data_disks = disks - conf->max_degraded;

3622 3623
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3624
						  &dd_idx, NULL);
3625
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3626 3627 3628
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3629
		sh = get_active_stripe(conf, new_sector, previous,
3630
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
3631
		if (sh) {
3632
			if (unlikely(previous)) {
3633
				/* expansion might have moved on while waiting for a
3634 3635 3636 3637 3638 3639
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
3640 3641 3642
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
3643 3644 3645
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
3646 3647 3648 3649 3650
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
3651
					schedule();
3652 3653 3654
					goto retry;
				}
			}
3655

3656
			if (rw == WRITE &&
3657
			    logical_sector >= mddev->suspend_lo &&
3658 3659
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
3670 3671
				goto retry;
			}
3672 3673

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3674
			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
3675 3676
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
3677 3678
				 * and wait a while
				 */
N
NeilBrown 已提交
3679
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
3680 3681 3682 3683 3684
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
3685 3686
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
T
Tejun Heo 已提交
3687
			if ((bi->bi_rw & REQ_SYNC) &&
3688 3689
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
L
Linus Torvalds 已提交
3690 3691 3692 3693 3694 3695 3696 3697 3698
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
3699 3700 3701
	if (!plugged)
		md_wakeup_thread(mddev->thread);

L
Linus Torvalds 已提交
3702
	spin_lock_irq(&conf->device_lock);
3703
	remaining = raid5_dec_bi_phys_segments(bi);
3704 3705
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
3706

3707
		if ( rw == WRITE )
L
Linus Torvalds 已提交
3708
			md_write_end(mddev);
3709

3710
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
3711
	}
3712

L
Linus Torvalds 已提交
3713 3714 3715
	return 0;
}

D
Dan Williams 已提交
3716 3717
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

3718
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
3719
{
3720 3721 3722 3723 3724 3725 3726 3727 3728
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
3729
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
3730
	struct stripe_head *sh;
3731
	sector_t first_sector, last_sector;
3732 3733 3734
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
3735 3736
	int i;
	int dd_idx;
3737
	sector_t writepos, readpos, safepos;
3738
	sector_t stripe_addr;
3739
	int reshape_sectors;
3740
	struct list_head stripes;
3741

3742 3743 3744 3745 3746 3747
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
3748
		} else if (mddev->delta_disks >= 0 &&
3749 3750
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
3751
		sector_div(sector_nr, new_data_disks);
3752
		if (sector_nr) {
3753 3754
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3755 3756 3757
			*skipped = 1;
			return sector_nr;
		}
3758 3759
	}

3760 3761 3762 3763
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
3764 3765
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
3766
	else
3767
		reshape_sectors = mddev->chunk_sectors;
3768

3769 3770 3771 3772 3773
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
3774 3775
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
3776
	 */
3777
	writepos = conf->reshape_progress;
3778
	sector_div(writepos, new_data_disks);
3779 3780
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
3781
	safepos = conf->reshape_safe;
3782
	sector_div(safepos, data_disks);
3783
	if (mddev->delta_disks < 0) {
3784
		writepos -= min_t(sector_t, reshape_sectors, writepos);
3785
		readpos += reshape_sectors;
3786
		safepos += reshape_sectors;
3787
	} else {
3788
		writepos += reshape_sectors;
3789 3790
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
3791
	}
3792

3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
3810
	if ((mddev->delta_disks < 0
3811 3812 3813
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3814 3815 3816
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
3817
		mddev->reshape_position = conf->reshape_progress;
3818
		mddev->curr_resync_completed = sector_nr;
3819
		conf->reshape_checkpoint = jiffies;
3820
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3821
		md_wakeup_thread(mddev->thread);
3822
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3823 3824
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
3825
		conf->reshape_safe = mddev->reshape_position;
3826 3827
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
3828
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3829 3830
	}

3831 3832 3833 3834
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
3835 3836
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
3837 3838
		       != sector_nr);
	} else {
3839
		BUG_ON(writepos != sector_nr + reshape_sectors);
3840 3841
		stripe_addr = sector_nr;
	}
3842
	INIT_LIST_HEAD(&stripes);
3843
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3844
		int j;
3845
		int skipped_disk = 0;
3846
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3847 3848 3849 3850 3851 3852 3853 3854 3855
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
3856
			if (conf->level == 6 &&
3857
			    j == sh->qd_idx)
3858
				continue;
3859
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
3860
			if (s < raid5_size(mddev, 0, 0)) {
3861
				skipped_disk = 1;
3862 3863 3864 3865 3866 3867
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
3868
		if (!skipped_disk) {
3869 3870 3871
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
3872
		list_add(&sh->lru, &stripes);
3873 3874
	}
	spin_lock_irq(&conf->device_lock);
3875
	if (mddev->delta_disks < 0)
3876
		conf->reshape_progress -= reshape_sectors * new_data_disks;
3877
	else
3878
		conf->reshape_progress += reshape_sectors * new_data_disks;
3879 3880 3881 3882 3883 3884 3885
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
3886
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3887
				     1, &dd_idx, NULL);
3888
	last_sector =
3889
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
3890
					    * new_data_disks - 1),
3891
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
3892 3893
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
3894
	while (first_sector <= last_sector) {
3895
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
3896 3897 3898 3899 3900
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
3901 3902 3903 3904 3905 3906 3907 3908
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
3909 3910 3911
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
3912
	sector_nr += reshape_sectors;
3913 3914
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
3915 3916 3917
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
3918
		mddev->reshape_position = conf->reshape_progress;
3919
		mddev->curr_resync_completed = sector_nr;
3920
		conf->reshape_checkpoint = jiffies;
3921 3922 3923 3924 3925 3926
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
3927
		conf->reshape_safe = mddev->reshape_position;
3928 3929
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
3930
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3931
	}
3932
	return reshape_sectors;
3933 3934 3935 3936 3937
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
3938
	raid5_conf_t *conf = mddev->private;
3939
	struct stripe_head *sh;
A
Andre Noll 已提交
3940
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
3941
	sector_t sync_blocks;
3942 3943
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
3944

3945
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
3946
		/* just being told to finish up .. nothing much to do */
3947

3948 3949 3950 3951
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
3952 3953 3954 3955

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
3956
		else /* completed sync */
3957 3958 3959
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
3960 3961
		return 0;
	}
3962

3963 3964 3965
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

3966 3967
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
3968

3969 3970 3971 3972 3973 3974
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

3975
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
3976 3977 3978
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
3979
	if (mddev->degraded >= conf->max_degraded &&
3980
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
3981
		sector_t rv = mddev->dev_sectors - sector_nr;
3982
		*skipped = 1;
L
Linus Torvalds 已提交
3983 3984
		return rv;
	}
3985
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3986
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3987 3988 3989 3990 3991 3992
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
3993

N
NeilBrown 已提交
3994 3995 3996

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

3997
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
3998
	if (sh == NULL) {
3999
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4000
		/* make sure we don't swamp the stripe cache if someone else
4001
		 * is trying to get access
L
Linus Torvalds 已提交
4002
		 */
4003
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4004
	}
4005 4006 4007 4008
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4009
	for (i = 0; i < conf->raid_disks; i++)
4010 4011 4012 4013 4014
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

4015
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
L
Linus Torvalds 已提交
4016

4017
	handle_stripe(sh);
L
Linus Torvalds 已提交
4018 4019 4020 4021 4022
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4036
	int dd_idx;
4037 4038 4039 4040 4041 4042
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4043
	sector = raid5_compute_sector(conf, logical_sector,
4044
				      0, &dd_idx, NULL);
4045 4046 4047
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4048 4049 4050
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4051

4052
		if (scnt < raid5_bi_hw_segments(raid_bio))
4053 4054 4055
			/* already done this stripe */
			continue;

4056
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4057 4058 4059

		if (!sh) {
			/* failed to get a stripe - must wait */
4060
			raid5_set_bi_hw_segments(raid_bio, scnt);
4061 4062 4063 4064 4065
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4066 4067
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4068
			raid5_set_bi_hw_segments(raid_bio, scnt);
4069 4070 4071 4072
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4073
		handle_stripe(sh);
4074 4075 4076 4077
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4078
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4079
	spin_unlock_irq(&conf->device_lock);
4080 4081
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4082 4083 4084 4085 4086 4087
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4088 4089 4090 4091 4092 4093 4094
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4095
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4096 4097
{
	struct stripe_head *sh;
4098
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4099
	int handled;
4100
	struct blk_plug plug;
L
Linus Torvalds 已提交
4101

4102
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4103 4104 4105

	md_check_recovery(mddev);

4106
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
4107 4108 4109
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4110
		struct bio *bio;
L
Linus Torvalds 已提交
4111

4112 4113 4114 4115
		if (atomic_read(&mddev->plug_cnt) == 0 &&
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
4116
			spin_unlock_irq(&conf->device_lock);
4117
			bitmap_unplug(mddev->bitmap);
4118
			spin_lock_irq(&conf->device_lock);
4119
			conf->seq_write = conf->seq_flush;
4120 4121
			activate_bit_delay(conf);
		}
4122 4123
		if (atomic_read(&mddev->plug_cnt) == 0)
			raid5_activate_delayed(conf);
4124

4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4135 4136
		sh = __get_priority_stripe(conf);

4137
		if (!sh)
L
Linus Torvalds 已提交
4138 4139 4140 4141
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4142 4143 4144
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4145 4146 4147

		spin_lock_irq(&conf->device_lock);
	}
4148
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4149 4150 4151

	spin_unlock_irq(&conf->device_lock);

4152
	async_tx_issue_pending_all();
4153
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
4154

4155
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4156 4157
}

4158
static ssize_t
4159
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4160
{
4161
	raid5_conf_t *conf = mddev->private;
4162 4163 4164 4165
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4166 4167
}

4168 4169
int
raid5_set_cache_size(mddev_t *mddev, int size)
4170
{
4171
	raid5_conf_t *conf = mddev->private;
4172 4173
	int err;

4174
	if (size <= 16 || size > 32768)
4175
		return -EINVAL;
4176
	while (size < conf->max_nr_stripes) {
4177 4178 4179 4180 4181
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4182 4183 4184
	err = md_allow_write(mddev);
	if (err)
		return err;
4185
	while (size > conf->max_nr_stripes) {
4186 4187 4188 4189
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
{
	raid5_conf_t *conf = mddev->private;
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4211 4212
	return len;
}
4213

4214 4215 4216 4217
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4218

4219 4220 4221
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4222
	raid5_conf_t *conf = mddev->private;
4223 4224 4225 4226 4227 4228 4229 4230 4231
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4232
	raid5_conf_t *conf = mddev->private;
4233
	unsigned long new;
4234 4235 4236 4237 4238
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4239
	if (strict_strtoul(page, 10, &new))
4240
		return -EINVAL;
4241
	if (new > conf->max_nr_stripes)
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4253
static ssize_t
4254
stripe_cache_active_show(mddev_t *mddev, char *page)
4255
{
4256
	raid5_conf_t *conf = mddev->private;
4257 4258 4259 4260
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4261 4262
}

4263 4264
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4265

4266
static struct attribute *raid5_attrs[] =  {
4267 4268
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4269
	&raid5_preread_bypass_threshold.attr,
4270 4271
	NULL,
};
4272 4273 4274
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4275 4276
};

4277 4278 4279
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4280
	raid5_conf_t *conf = mddev->private;
4281 4282 4283

	if (!sectors)
		sectors = mddev->dev_sectors;
4284
	if (!raid_disks)
4285
		/* size is defined by the smallest of previous and new size */
4286
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4287

4288
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4289
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4290 4291 4292
	return sectors * (raid_disks - conf->max_degraded);
}

4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4305
		kfree(percpu->scribble);
4306 4307 4308 4309 4310 4311 4312 4313 4314
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4315 4316 4317
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4318
	raid5_free_percpu(conf);
4319 4320 4321 4322 4323
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4335
		if (conf->level == 6 && !percpu->spare_page)
4336
			percpu->spare_page = alloc_page(GFP_KERNEL);
4337 4338 4339 4340 4341 4342 4343
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4344 4345
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
4346
			return notifier_from_errno(-ENOMEM);
4347 4348 4349 4350 4351
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4352
		kfree(percpu->scribble);
4353
		percpu->spare_page = NULL;
4354
		percpu->scribble = NULL;
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
4367
	struct raid5_percpu __percpu *allcpus;
4368
	void *scribble;
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4379 4380 4381 4382 4383 4384 4385 4386
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4387
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4388
		if (!scribble) {
4389 4390 4391
			err = -ENOMEM;
			break;
		}
4392
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4405
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4406 4407
{
	raid5_conf_t *conf;
4408
	int raid_disk, memory, max_disks;
L
Linus Torvalds 已提交
4409 4410 4411
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4412 4413 4414
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4415
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4416 4417
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4418
	}
N
NeilBrown 已提交
4419 4420 4421 4422
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4423
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4424 4425
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4426
	}
N
NeilBrown 已提交
4427
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4428
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4429 4430
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4431 4432
	}

4433 4434 4435
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4436 4437
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4438
		return ERR_PTR(-EINVAL);
4439 4440
	}

N
NeilBrown 已提交
4441 4442
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4443
		goto abort;
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
N
NeilBrown 已提交
4456 4457 4458 4459 4460

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4461
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4462 4463
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4464

4465
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4466 4467 4468
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4469

L
Linus Torvalds 已提交
4470 4471
	conf->mddev = mddev;

4472
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4473 4474
		goto abort;

4475 4476 4477 4478
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4479
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4480

4481
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4482
		raid_disk = rdev->raid_disk;
4483
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4484 4485 4486 4487 4488 4489
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4490
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4491
			char b[BDEVNAME_SIZE];
4492 4493 4494
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
4495
		} else if (rdev->saved_raid_disk != raid_disk)
4496 4497
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4498 4499
	}

4500
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4501
	conf->level = mddev->new_level;
4502 4503 4504 4505
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4506
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4507
	conf->max_nr_stripes = NR_STRIPES;
4508
	conf->reshape_progress = mddev->reshape_position;
4509
	if (conf->reshape_progress != MaxSector) {
4510
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4511 4512
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4513

N
NeilBrown 已提交
4514
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4515
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4516 4517
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4518 4519
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4520 4521
		goto abort;
	} else
4522 4523
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4524

4525
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4526 4527
	if (!conf->thread) {
		printk(KERN_ERR
4528
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4529
		       mdname(mddev));
4530 4531
		goto abort;
	}
N
NeilBrown 已提交
4532 4533 4534 4535 4536

	return conf;

 abort:
	if (conf) {
4537
		free_conf(conf);
N
NeilBrown 已提交
4538 4539 4540 4541 4542
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

N
NeilBrown 已提交
4570 4571 4572
static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
4573
	int working_disks = 0;
4574
	int dirty_parity_disks = 0;
N
NeilBrown 已提交
4575
	mdk_rdev_t *rdev;
4576
	sector_t reshape_offset = 0;
N
NeilBrown 已提交
4577

4578
	if (mddev->recovery_cp != MaxSector)
4579
		printk(KERN_NOTICE "md/raid:%s: not clean"
4580 4581
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
4582 4583 4584 4585 4586 4587 4588 4589
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4590
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4591

4592
		if (mddev->new_level != mddev->level) {
4593
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4604
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
4605
			       (mddev->raid_disks - max_degraded))) {
4606 4607
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
4608 4609
			return -EINVAL;
		}
4610
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
4611 4612
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
4613
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
4614 4615 4616
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
4628 4629 4630
				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
				       " in read-only mode - aborting\n",
				       mdname(mddev));
4631 4632 4633 4634 4635 4636 4637
				return -EINVAL;
			}
		} else if (mddev->delta_disks < 0
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
4638
			/* Reading from the same stripe as writing to - bad */
4639 4640 4641
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
4642 4643
			return -EINVAL;
		}
4644 4645
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
4646 4647 4648 4649
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
4650
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
4651
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
4652
	}
N
NeilBrown 已提交
4653

4654 4655 4656 4657 4658
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
4669
	list_for_each_entry(rdev, &mddev->disks, same_set) {
4670 4671 4672 4673
		if (rdev->badblocks.count) {
			printk(KERN_ERR "md/raid5: cannot handle bad blocks yet\n");
			goto abort;
		}
4674 4675
		if (rdev->raid_disk < 0)
			continue;
4676
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
4677
			working_disks++;
4678 4679
			continue;
		}
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
4708

4709 4710
	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
			   - working_disks);
N
NeilBrown 已提交
4711

4712
	if (has_failed(conf)) {
4713
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
4714
			" (%d/%d failed)\n",
4715
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
4716 4717 4718
		goto abort;
	}

N
NeilBrown 已提交
4719
	/* device size must be a multiple of chunk size */
4720
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
4721 4722
	mddev->resync_max_sectors = mddev->dev_sectors;

4723
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
4724
	    mddev->recovery_cp != MaxSector) {
4725 4726
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
4727 4728
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
4729 4730 4731
			       mdname(mddev));
		else {
			printk(KERN_ERR
4732
			       "md/raid:%s: cannot start dirty degraded array.\n",
4733 4734 4735
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
4736 4737 4738
	}

	if (mddev->degraded == 0)
4739 4740
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
4741 4742
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
4743
	else
4744 4745 4746 4747 4748
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
4749 4750 4751

	print_raid5_conf(conf);

4752 4753
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
4754 4755 4756 4757 4758 4759
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4760
							"reshape");
4761 4762
	}

L
Linus Torvalds 已提交
4763 4764

	/* Ok, everything is just fine now */
4765 4766
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
4767 4768
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4769
		printk(KERN_WARNING
4770
		       "raid5: failed to create sysfs attributes for %s\n",
4771
		       mdname(mddev));
4772
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4773

4774
	if (mddev->queue) {
4775
		int chunk_size;
4776 4777 4778 4779 4780 4781 4782 4783 4784
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
4785

4786
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4787

N
NeilBrown 已提交
4788 4789
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4790

4791 4792 4793 4794
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
4795

4796 4797 4798 4799
		list_for_each_entry(rdev, &mddev->disks, same_set)
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
	}
4800

L
Linus Torvalds 已提交
4801 4802
	return 0;
abort:
4803
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
4804
	mddev->thread = NULL;
L
Linus Torvalds 已提交
4805 4806
	if (conf) {
		print_raid5_conf(conf);
4807
		free_conf(conf);
L
Linus Torvalds 已提交
4808 4809
	}
	mddev->private = NULL;
4810
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
4811 4812 4813
	return -EIO;
}

4814
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
4815
{
4816
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4817 4818 4819

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
N
NeilBrown 已提交
4820 4821
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
4822
	free_conf(conf);
4823 4824
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
4825 4826 4827
	return 0;
}

4828
#ifdef DEBUG
4829
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
4830 4831 4832
{
	int i;

4833 4834 4835 4836 4837
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4838
	for (i = 0; i < sh->disks; i++) {
4839 4840
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
4841
	}
4842
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
4843 4844
}

4845
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
4846 4847
{
	struct stripe_head *sh;
4848
	struct hlist_node *hn;
L
Linus Torvalds 已提交
4849 4850 4851 4852
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
4853
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
4854 4855
			if (sh->raid_conf != conf)
				continue;
4856
			print_sh(seq, sh);
L
Linus Torvalds 已提交
4857 4858 4859 4860 4861 4862
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

4863
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
4864
{
4865
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4866 4867
	int i;

4868 4869
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
4870
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
4871 4872 4873
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
4874
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
4875
	seq_printf (seq, "]");
4876
#ifdef DEBUG
4877 4878
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
4879 4880 4881 4882 4883 4884 4885 4886
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

4887
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
4888 4889 4890 4891
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
4892 4893 4894
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
4895 4896 4897 4898 4899

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
4900 4901 4902
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
4903 4904 4905 4906 4907 4908 4909 4910
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;
4911 4912
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
4913 4914 4915 4916

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
4917
		    && tmp->rdev->recovery_offset == MaxSector
4918
		    && !test_bit(Faulty, &tmp->rdev->flags)
4919
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4920
			count++;
4921
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
4922 4923
		}
	}
4924 4925 4926
	spin_lock_irqsave(&conf->device_lock, flags);
	mddev->degraded -= count;
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
4927
	print_raid5_conf(conf);
4928
	return count;
L
Linus Torvalds 已提交
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
4941 4942 4943 4944
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

4945
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
4946 4947 4948 4949
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
4950 4951 4952 4953
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
4954
		    !has_failed(conf) &&
4955
		    number < conf->raid_disks) {
4956 4957 4958
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
4959
		p->rdev = NULL;
4960
		synchronize_rcu();
L
Linus Torvalds 已提交
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
4976
	int err = -EEXIST;
L
Linus Torvalds 已提交
4977 4978
	int disk;
	struct disk_info *p;
4979 4980
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
4981

4982 4983 4984
	if (rdev->badblocks.count)
		return -EINVAL;

4985
	if (has_failed(conf))
L
Linus Torvalds 已提交
4986
		/* no point adding a device */
4987
		return -EINVAL;
L
Linus Torvalds 已提交
4988

4989 4990
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
4991 4992

	/*
4993 4994
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
4995
	 */
4996
	if (rdev->saved_raid_disk >= 0 &&
4997
	    rdev->saved_raid_disk >= first &&
4998 4999 5000
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
5001 5002
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
5003
		if ((p=conf->disks + disk)->rdev == NULL) {
5004
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5005
			rdev->raid_disk = disk;
5006
			err = 0;
5007 5008
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5009
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5010 5011 5012
			break;
		}
	print_raid5_conf(conf);
5013
	return err;
L
Linus Torvalds 已提交
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5025
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5026 5027
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5028 5029 5030
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5031
	set_capacity(mddev->gendisk, mddev->array_sectors);
5032
	revalidate_disk(mddev->gendisk);
5033 5034
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
5035
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5036 5037
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5038
	mddev->dev_sectors = sectors;
5039
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5040 5041 5042
	return 0;
}

5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
static int check_stripe_cache(mddev_t *mddev)
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
	raid5_conf_t *conf = mddev->private;
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5058 5059
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5060 5061 5062 5063 5064 5065 5066
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5067
static int check_reshape(mddev_t *mddev)
5068
{
5069
	raid5_conf_t *conf = mddev->private;
5070

5071 5072
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5073
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5074
		return 0; /* nothing to do */
5075 5076 5077
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5078
	if (has_failed(conf))
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5092

5093
	if (!check_stripe_cache(mddev))
5094 5095
		return -ENOSPC;

5096
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5097 5098 5099 5100
}

static int raid5_start_reshape(mddev_t *mddev)
{
5101
	raid5_conf_t *conf = mddev->private;
5102 5103
	mdk_rdev_t *rdev;
	int spares = 0;
5104
	unsigned long flags;
5105

5106
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5107 5108
		return -EBUSY;

5109 5110 5111
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5112
	list_for_each_entry(rdev, &mddev->disks, same_set)
5113 5114
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
5115
			spares++;
5116

5117
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5118 5119 5120 5121 5122
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5123 5124 5125 5126 5127 5128
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5129
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5130 5131 5132 5133
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5134
	atomic_set(&conf->reshape_stripes, 0);
5135 5136
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5137
	conf->raid_disks += mddev->delta_disks;
5138 5139
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5140 5141
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5142 5143 5144 5145 5146
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5147
	conf->generation++;
5148 5149 5150 5151
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5152 5153 5154 5155
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5156
	 */
5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
	if (mddev->delta_disks >= 0) {
		int added_devices = 0;
		list_for_each_entry(rdev, &mddev->disks, same_set)
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					if (rdev->raid_disk
					    >= conf->previous_raid_disks) {
						set_bit(In_sync, &rdev->flags);
						added_devices++;
					} else
						rdev->recovery_offset = 0;
5169 5170

					if (sysfs_link_rdev(mddev, rdev))
5171
						/* Failure here is OK */;
5172
				}
5173 5174 5175 5176 5177 5178
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
				added_devices++;
			}
5179

5180 5181 5182 5183
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
5184
		spin_lock_irqsave(&conf->device_lock, flags);
5185
		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5186 5187 5188
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5189
	mddev->raid_disks = conf->raid_disks;
5190
	mddev->reshape_position = conf->reshape_progress;
5191
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5192

5193 5194 5195 5196 5197
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5198
						"reshape");
5199 5200 5201 5202
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5203
		conf->reshape_progress = MaxSector;
5204 5205 5206
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5207
	conf->reshape_checkpoint = jiffies;
5208 5209 5210 5211 5212
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5213 5214 5215
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5216 5217 5218
static void end_reshape(raid5_conf_t *conf)
{

5219 5220 5221
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5222
		conf->previous_raid_disks = conf->raid_disks;
5223
		conf->reshape_progress = MaxSector;
5224
		spin_unlock_irq(&conf->device_lock);
5225
		wake_up(&conf->wait_for_overlap);
5226 5227 5228 5229

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
5230
		if (conf->mddev->queue) {
5231
			int data_disks = conf->raid_disks - conf->max_degraded;
5232
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5233
						   / PAGE_SIZE);
5234 5235 5236
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5237 5238 5239
	}
}

5240 5241 5242
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5243 5244
static void raid5_finish_reshape(mddev_t *mddev)
{
5245
	raid5_conf_t *conf = mddev->private;
5246 5247 5248

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5249 5250 5251
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5252
			revalidate_disk(mddev->gendisk);
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5263 5264 5265
			     d++) {
				mdk_rdev_t *rdev = conf->disks[d].rdev;
				if (rdev && raid5_remove_disk(mddev, d) == 0) {
5266
					sysfs_unlink_rdev(mddev, rdev);
5267 5268 5269
					rdev->raid_disk = -1;
				}
			}
5270
		}
5271
		mddev->layout = conf->algorithm;
5272
		mddev->chunk_sectors = conf->chunk_sectors;
5273 5274
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5275 5276 5277
	}
}

5278 5279
static void raid5_quiesce(mddev_t *mddev, int state)
{
5280
	raid5_conf_t *conf = mddev->private;
5281 5282

	switch(state) {
5283 5284 5285 5286
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5287 5288
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5289 5290 5291 5292
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5293
		wait_event_lock_irq(conf->wait_for_stripe,
5294 5295
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5296
				    conf->device_lock, /* nothing */);
5297
		conf->quiesce = 1;
5298
		spin_unlock_irq(&conf->device_lock);
5299 5300
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5301 5302 5303 5304 5305 5306
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5307
		wake_up(&conf->wait_for_overlap);
5308 5309 5310 5311
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5312

5313

D
Dan Williams 已提交
5314
static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5315
{
D
Dan Williams 已提交
5316
	struct raid0_private_data *raid0_priv = mddev->private;
5317
	sector_t sectors;
5318

D
Dan Williams 已提交
5319 5320
	/* for raid0 takeover only one zone is supported */
	if (raid0_priv->nr_strip_zones > 1) {
5321 5322
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5323 5324 5325
		return ERR_PTR(-EINVAL);
	}

5326 5327 5328
	sectors = raid0_priv->strip_zone[0].zone_end;
	sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
5329
	mddev->new_level = level;
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5363
	mddev->new_chunk_sectors = chunksect;
5364 5365 5366 5367

	return setup_conf(mddev);
}

5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5401

5402
static int raid5_check_reshape(mddev_t *mddev)
5403
{
5404 5405 5406 5407
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5408
	 */
5409
	raid5_conf_t *conf = mddev->private;
5410
	int new_chunk = mddev->new_chunk_sectors;
5411

5412
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5413 5414
		return -EINVAL;
	if (new_chunk > 0) {
5415
		if (!is_power_of_2(new_chunk))
5416
			return -EINVAL;
5417
		if (new_chunk < (PAGE_SIZE>>9))
5418
			return -EINVAL;
5419
		if (mddev->array_sectors & (new_chunk-1))
5420 5421 5422 5423 5424 5425
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5426
	if (mddev->raid_disks == 2) {
5427 5428 5429 5430
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5431 5432
		}
		if (new_chunk > 0) {
5433 5434
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5435 5436 5437
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5438
	}
5439
	return check_reshape(mddev);
5440 5441
}

5442
static int raid6_check_reshape(mddev_t *mddev)
5443
{
5444
	int new_chunk = mddev->new_chunk_sectors;
5445

5446
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5447
		return -EINVAL;
5448
	if (new_chunk > 0) {
5449
		if (!is_power_of_2(new_chunk))
5450
			return -EINVAL;
5451
		if (new_chunk < (PAGE_SIZE >> 9))
5452
			return -EINVAL;
5453
		if (mddev->array_sectors & (new_chunk-1))
5454 5455
			/* not factor of array size */
			return -EINVAL;
5456
	}
5457 5458

	/* They look valid */
5459
	return check_reshape(mddev);
5460 5461
}

5462 5463 5464
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
D
Dan Williams 已提交
5465
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5466 5467 5468 5469
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
5470 5471
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
5472 5473
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5474 5475 5476 5477 5478
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5479 5480
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5481 5482 5483 5484

	return ERR_PTR(-EINVAL);
}

5485 5486
static void *raid4_takeover(mddev_t *mddev)
{
D
Dan Williams 已提交
5487 5488 5489
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
5490
	 */
D
Dan Williams 已提交
5491 5492
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
5493 5494 5495 5496 5497 5498 5499 5500
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
5501

5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5566
	.size		= raid5_size,
5567
	.check_reshape	= raid6_check_reshape,
5568
	.start_reshape  = raid5_start_reshape,
5569
	.finish_reshape = raid5_finish_reshape,
5570
	.quiesce	= raid5_quiesce,
5571
	.takeover	= raid6_takeover,
5572
};
5573
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5574 5575
{
	.name		= "raid5",
5576
	.level		= 5,
L
Linus Torvalds 已提交
5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5588
	.size		= raid5_size,
5589 5590
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5591
	.finish_reshape = raid5_finish_reshape,
5592
	.quiesce	= raid5_quiesce,
5593
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
5594 5595
};

5596
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5597
{
5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5611
	.size		= raid5_size,
5612 5613
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5614
	.finish_reshape = raid5_finish_reshape,
5615
	.quiesce	= raid5_quiesce,
5616
	.takeover	= raid4_takeover,
5617 5618 5619 5620
};

static int __init raid5_init(void)
{
5621
	register_md_personality(&raid6_personality);
5622 5623 5624
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5625 5626
}

5627
static void raid5_exit(void)
L
Linus Torvalds 已提交
5628
{
5629
	unregister_md_personality(&raid6_personality);
5630 5631
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5632 5633 5634 5635 5636
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
5637
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
5638
MODULE_ALIAS("md-personality-4"); /* RAID5 */
5639 5640
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
5641 5642
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
5643 5644 5645 5646 5647 5648 5649
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");