raid5.c 169.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/module.h>
51
#include <linux/async.h>
52
#include <linux/seq_file.h>
53
#include <linux/cpu.h>
54
#include <linux/slab.h>
55
#include <linux/ratelimit.h>
56
#include "md.h"
57
#include "raid5.h"
58
#include "raid0.h"
59
#include "bitmap.h"
60

L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68 69
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
70
#define BYPASS_THRESHOLD	1
71
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
72 73
#define HASH_MASK		(NR_HASH - 1)

74
static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 76 77 78
{
	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
	return &conf->stripe_hashtbl[hash];
}
L
Linus Torvalds 已提交
79 80 81 82 83 84 85

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
86
 * This function is used to determine the 'next' bio in the list, given the sector
L
Linus Torvalds 已提交
87 88
 * of the current stripe+device
 */
89 90 91 92 93 94 95 96
static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
{
	int sectors = bio->bi_size >> 9;
	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
		return bio->bi_next;
	else
		return NULL;
}
L
Linus Torvalds 已提交
97

98
/*
99 100
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101 102 103
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
104
	return bio->bi_phys_segments & 0xffff;
105 106 107 108
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
109
	return (bio->bi_phys_segments >> 16) & 0xffff;
110 111 112 113 114 115 116 117 118 119 120 121 122
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
123
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124 125 126 127 128
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
129
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130 131
}

132 133 134
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
135 136 137 138
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
139 140 141 142 143
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
144 145 146 147 148
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
149

150 151 152 153 154
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
155 156
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
157
{
158
	int slot = *count;
159

160
	if (sh->ddf_layout)
161
		(*count)++;
162
	if (idx == sh->pd_idx)
163
		return syndrome_disks;
164
	if (idx == sh->qd_idx)
165
		return syndrome_disks + 1;
166
	if (!sh->ddf_layout)
167
		(*count)++;
168 169 170
	return slot;
}

171 172 173 174 175 176 177 178
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
179
		bio_endio(bi, 0);
180 181 182 183
		bi = return_bi;
	}
}

184
static void print_raid5_conf (struct r5conf *conf);
L
Linus Torvalds 已提交
185

186 187 188 189 190 191 192
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

193
static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
194 195
{
	if (atomic_dec_and_test(&sh->count)) {
196 197
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
198
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
N
NeilBrown 已提交
199
			if (test_bit(STRIPE_DELAYED, &sh->state))
L
Linus Torvalds 已提交
200
				list_add_tail(&sh->lru, &conf->delayed_list);
N
NeilBrown 已提交
201 202
			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
				   sh->bm_seq - conf->seq_write > 0)
203
				list_add_tail(&sh->lru, &conf->bitmap_list);
N
NeilBrown 已提交
204
			else {
205
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
206
				list_add_tail(&sh->lru, &conf->handle_list);
207
			}
L
Linus Torvalds 已提交
208 209
			md_wakeup_thread(conf->mddev->thread);
		} else {
210
			BUG_ON(stripe_operations_active(sh));
211 212 213
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				if (atomic_dec_return(&conf->preread_active_stripes)
				    < IO_THRESHOLD)
L
Linus Torvalds 已提交
214 215
					md_wakeup_thread(conf->mddev->thread);
			atomic_dec(&conf->active_stripes);
216 217
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
218
				wake_up(&conf->wait_for_stripe);
219 220
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
221
			}
L
Linus Torvalds 已提交
222 223 224
		}
	}
}
225

L
Linus Torvalds 已提交
226 227
static void release_stripe(struct stripe_head *sh)
{
228
	struct r5conf *conf = sh->raid_conf;
L
Linus Torvalds 已提交
229
	unsigned long flags;
230

L
Linus Torvalds 已提交
231 232 233 234 235
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

236
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
237
{
238 239
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
240

241
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
242 243
}

244
static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
245
{
246
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
247

248 249
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
250

251
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
252 253 254 255
}


/* find an idle stripe, make sure it is unhashed, and return it. */
256
static struct stripe_head *get_free_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

272
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
273 274 275
{
	struct page *p;
	int i;
276
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
277

278
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
279 280 281 282
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
283
		put_page(p);
L
Linus Torvalds 已提交
284 285 286
	}
}

287
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
288 289
{
	int i;
290
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
291

292
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
293 294 295 296 297 298 299 300 301 302
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

303
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
304
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
305
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
306

307
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
308
{
309
	struct r5conf *conf = sh->raid_conf;
310
	int i;
L
Linus Torvalds 已提交
311

312 313
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
314
	BUG_ON(stripe_operations_active(sh));
315

316
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
317 318 319
		(unsigned long long)sh->sector);

	remove_hash(sh);
320

321
	sh->generation = conf->generation - previous;
322
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
323
	sh->sector = sector;
324
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
325 326
	sh->state = 0;

327 328

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
329 330
		struct r5dev *dev = &sh->dev[i];

331
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
332
		    test_bit(R5_LOCKED, &dev->flags)) {
333
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
334
			       (unsigned long long)sh->sector, i, dev->toread,
335
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
336
			       test_bit(R5_LOCKED, &dev->flags));
337
			WARN_ON(1);
L
Linus Torvalds 已提交
338 339
		}
		dev->flags = 0;
340
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
341 342 343 344
	}
	insert_hash(conf, sh);
}

345
static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
346
					 short generation)
L
Linus Torvalds 已提交
347 348
{
	struct stripe_head *sh;
349
	struct hlist_node *hn;
L
Linus Torvalds 已提交
350

351
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
352
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
353
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
354
			return sh;
355
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
356 357 358
	return NULL;
}

359 360 361 362 363 364 365 366 367 368 369 370 371
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
372
static int calc_degraded(struct r5conf *conf)
373
{
374
	int degraded, degraded2;
375 376 377 378 379
	int i;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
380
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
399 400
	if (conf->raid_disks == conf->previous_raid_disks)
		return degraded;
401
	rcu_read_lock();
402
	degraded2 = 0;
403
	for (i = 0; i < conf->raid_disks; i++) {
404
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
405
		if (!rdev || test_bit(Faulty, &rdev->flags))
406
			degraded2++;
407 408 409 410 411 412 413 414 415
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
416
				degraded2++;
417 418
	}
	rcu_read_unlock();
419 420 421 422 423 424 425 426 427 428 429 430 431
	if (degraded2 > degraded)
		return degraded2;
	return degraded;
}

static int has_failed(struct r5conf *conf)
{
	int degraded;

	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	degraded = calc_degraded(conf);
432 433 434 435 436
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

437
static struct stripe_head *
438
get_active_stripe(struct r5conf *conf, sector_t sector,
439
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
440 441 442
{
	struct stripe_head *sh;

443
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
444 445 446 447

	spin_lock_irq(&conf->device_lock);

	do {
448
		wait_event_lock_irq(conf->wait_for_stripe,
449
				    conf->quiesce == 0 || noquiesce,
450
				    conf->device_lock, /* nothing */);
451
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
452 453 454 455 456 457 458 459 460
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
461 462
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
463 464
						     || !conf->inactive_blocked),
						    conf->device_lock,
465
						    );
L
Linus Torvalds 已提交
466 467
				conf->inactive_blocked = 0;
			} else
468
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
469 470
		} else {
			if (atomic_read(&sh->count)) {
471 472
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
473 474 475
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
476 477
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
478 479
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
480 481 482 483 484 485 486 487 488 489 490
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
/* Determine if 'data_offset' or 'new_data_offset' should be used
 * in this stripe_head.
 */
static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
{
	sector_t progress = conf->reshape_progress;
	/* Need a memory barrier to make sure we see the value
	 * of conf->generation, or ->data_offset that was set before
	 * reshape_progress was updated.
	 */
	smp_rmb();
	if (progress == MaxSector)
		return 0;
	if (sh->generation == conf->generation - 1)
		return 0;
	/* We are in a reshape, and this is a new-generation stripe,
	 * so use new_data_offset.
	 */
	return 1;
}

512 513 514 515
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
516

517
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
518
{
519
	struct r5conf *conf = sh->raid_conf;
520 521 522 523 524 525
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
526
		int replace_only = 0;
527 528
		struct bio *bi, *rbi;
		struct md_rdev *rdev, *rrdev = NULL;
T
Tejun Heo 已提交
529 530 531 532 533 534
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
535
			rw = READ;
536 537 538 539 540
		else if (test_and_clear_bit(R5_WantReplace,
					    &sh->dev[i].flags)) {
			rw = WRITE;
			replace_only = 1;
		} else
541 542 543
			continue;

		bi = &sh->dev[i].req;
544
		rbi = &sh->dev[i].rreq; /* For writing to replacement */
545 546

		bi->bi_rw = rw;
547 548
		rbi->bi_rw = rw;
		if (rw & WRITE) {
549
			bi->bi_end_io = raid5_end_write_request;
550 551
			rbi->bi_end_io = raid5_end_write_request;
		} else
552 553 554
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
555
		rrdev = rcu_dereference(conf->disks[i].replacement);
556 557 558 559 560 561
		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev) {
			rdev = rrdev;
			rrdev = NULL;
		}
562 563 564
		if (rw & WRITE) {
			if (replace_only)
				rdev = NULL;
565 566 567
			if (rdev == rrdev)
				/* We raced and saw duplicates */
				rrdev = NULL;
568
		} else {
569
			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
570 571 572
				rdev = rrdev;
			rrdev = NULL;
		}
573

574 575 576 577
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
578 579 580 581
		if (rrdev && test_bit(Faulty, &rrdev->flags))
			rrdev = NULL;
		if (rrdev)
			atomic_inc(&rrdev->nr_pending);
582 583
		rcu_read_unlock();

584
		/* We have already checked bad blocks for reads.  Now
585 586
		 * need to check for writes.  We never accept write errors
		 * on the replacement, so we don't to check rrdev.
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
		 */
		while ((rw & WRITE) && rdev &&
		       test_bit(WriteErrorSeen, &rdev->flags)) {
			sector_t first_bad;
			int bad_sectors;
			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					      &first_bad, &bad_sectors);
			if (!bad)
				break;

			if (bad < 0) {
				set_bit(BlockedBadBlocks, &rdev->flags);
				if (!conf->mddev->external &&
				    conf->mddev->flags) {
					/* It is very unlikely, but we might
					 * still need to write out the
					 * bad block log - better give it
					 * a chance*/
					md_check_recovery(conf->mddev);
				}
				md_wait_for_blocked_rdev(rdev, conf->mddev);
			} else {
				/* Acknowledged bad block - skip the write */
				rdev_dec_pending(rdev, conf->mddev);
				rdev = NULL;
			}
		}

615
		if (rdev) {
616 617
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
618 619
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
620 621
			set_bit(STRIPE_IO_STARTED, &sh->state);

622 623
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
624
				__func__, (unsigned long long)sh->sector,
625 626
				bi->bi_rw, i);
			atomic_inc(&sh->count);
627 628 629 630 631 632
			if (use_new_offset(conf, sh))
				bi->bi_sector = (sh->sector
						 + rdev->new_data_offset);
			else
				bi->bi_sector = (sh->sector
						 + rdev->data_offset);
633 634 635 636 637 638
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_idx = 0;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
639 640
			if (rrdev)
				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
641
			generic_make_request(bi);
642 643
		}
		if (rrdev) {
644 645
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
646 647 648 649 650 651 652 653 654 655
				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);

			set_bit(STRIPE_IO_STARTED, &sh->state);

			rbi->bi_bdev = rrdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on "
				 "replacement disc %d\n",
				__func__, (unsigned long long)sh->sector,
				rbi->bi_rw, i);
			atomic_inc(&sh->count);
656 657 658 659 660 661
			if (use_new_offset(conf, sh))
				rbi->bi_sector = (sh->sector
						  + rrdev->new_data_offset);
			else
				rbi->bi_sector = (sh->sector
						  + rrdev->data_offset);
662 663 664 665 666 667 668 669 670
			rbi->bi_flags = 1 << BIO_UPTODATE;
			rbi->bi_idx = 0;
			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			rbi->bi_io_vec[0].bv_offset = 0;
			rbi->bi_size = STRIPE_SIZE;
			rbi->bi_next = NULL;
			generic_make_request(rbi);
		}
		if (!rdev && !rrdev) {
671
			if (rw & WRITE)
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
689
	struct async_submit_ctl submit;
D
Dan Williams 已提交
690
	enum async_tx_flags flags = 0;
691 692 693 694 695

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
696

D
Dan Williams 已提交
697 698 699 700
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

701
	bio_for_each_segment(bvl, bio, i) {
702
		int len = bvl->bv_len;
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
718 719
			b_offset += bvl->bv_offset;
			bio_page = bvl->bv_page;
720 721
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
722
						  b_offset, clen, &submit);
723 724
			else
				tx = async_memcpy(bio_page, page, b_offset,
725
						  page_offset, clen, &submit);
726
		}
727 728 729
		/* chain the operations */
		submit.depend_tx = tx;

730 731 732 733 734 735 736 737 738 739 740 741
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
742
	struct r5conf *conf = sh->raid_conf;
743
	int i;
744

745
	pr_debug("%s: stripe %llu\n", __func__,
746 747 748
		(unsigned long long)sh->sector);

	/* clear completed biofills */
749
	spin_lock_irq(&conf->device_lock);
750 751 752 753
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
754 755
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
756
		 * !STRIPE_BIOFILL_RUN
757 758
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
759 760 761 762 763 764 765 766
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
767
				if (!raid5_dec_bi_phys_segments(rbi)) {
768 769 770 771 772 773 774
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
775 776
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
777 778 779

	return_io(return_bi);

780
	set_bit(STRIPE_HANDLE, &sh->state);
781 782 783 784 785 786
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
787
	struct r5conf *conf = sh->raid_conf;
788
	struct async_submit_ctl submit;
789 790
	int i;

791
	pr_debug("%s: stripe %llu\n", __func__,
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
812 813
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
814 815
}

816
static void mark_target_uptodate(struct stripe_head *sh, int target)
817
{
818
	struct r5dev *tgt;
819

820 821
	if (target < 0)
		return;
822

823
	tgt = &sh->dev[target];
824 825 826
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
827 828
}

829
static void ops_complete_compute(void *stripe_head_ref)
830 831 832
{
	struct stripe_head *sh = stripe_head_ref;

833
	pr_debug("%s: stripe %llu\n", __func__,
834 835
		(unsigned long long)sh->sector);

836
	/* mark the computed target(s) as uptodate */
837
	mark_target_uptodate(sh, sh->ops.target);
838
	mark_target_uptodate(sh, sh->ops.target2);
839

840 841 842
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
843 844 845 846
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

847 848 849 850 851 852 853 854 855
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
856 857
{
	int disks = sh->disks;
858
	struct page **xor_srcs = percpu->scribble;
859 860 861 862 863
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
864
	struct async_submit_ctl submit;
865 866 867
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
868
		__func__, (unsigned long long)sh->sector, target);
869 870 871 872 873 874 875 876
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
877
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
878
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
879
	if (unlikely(count == 1))
880
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
881
	else
882
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
883 884 885 886

	return tx;
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
905
		srcs[i] = NULL;
906 907 908 909 910 911 912 913 914 915

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

916
	return syndrome_disks;
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
937
	else
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
954 955
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
956 957 958 959 960 961 962 963 964 965 966
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
967 968
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
969 970 971
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
972 973 974 975

	return tx;
}

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

997
	/* we need to open-code set_syndrome_sources to handle the
998 999 1000
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
1001
		blocks[i] = NULL;
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
1028 1029 1030
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
1031
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
1051 1052 1053 1054
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
1055 1056 1057 1058
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
1059 1060 1061
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
1062 1063 1064 1065
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
1080 1081 1082 1083
	}
}


1084 1085 1086 1087
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1088
	pr_debug("%s: stripe %llu\n", __func__,
1089 1090 1091 1092
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
1093 1094
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
1095 1096
{
	int disks = sh->disks;
1097
	struct page **xor_srcs = percpu->scribble;
1098
	int count = 0, pd_idx = sh->pd_idx, i;
1099
	struct async_submit_ctl submit;
1100 1101 1102 1103

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

1104
	pr_debug("%s: stripe %llu\n", __func__,
1105 1106 1107 1108 1109
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
1110
		if (test_bit(R5_Wantdrain, &dev->flags))
1111 1112 1113
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1114
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1115
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1116
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1117 1118 1119 1120 1121

	return tx;
}

static struct dma_async_tx_descriptor *
1122
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1123 1124
{
	int disks = sh->disks;
1125
	int i;
1126

1127
	pr_debug("%s: stripe %llu\n", __func__,
1128 1129 1130 1131 1132 1133
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1134
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1135 1136
			struct bio *wbi;

1137
			spin_lock_irq(&sh->raid_conf->device_lock);
1138 1139 1140 1141
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
1142
			spin_unlock_irq(&sh->raid_conf->device_lock);
1143 1144 1145

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1146 1147
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1158
static void ops_complete_reconstruct(void *stripe_head_ref)
1159 1160
{
	struct stripe_head *sh = stripe_head_ref;
1161 1162 1163 1164
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
T
Tejun Heo 已提交
1165
	bool fua = false;
1166

1167
	pr_debug("%s: stripe %llu\n", __func__,
1168 1169
		(unsigned long long)sh->sector);

T
Tejun Heo 已提交
1170 1171 1172
	for (i = disks; i--; )
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);

1173 1174
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1175

T
Tejun Heo 已提交
1176
		if (dev->written || i == pd_idx || i == qd_idx) {
1177
			set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1178 1179 1180
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
		}
1181 1182
	}

1183 1184 1185 1186 1187 1188 1189 1190
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1191 1192 1193 1194 1195 1196

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1197 1198
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1199 1200
{
	int disks = sh->disks;
1201
	struct page **xor_srcs = percpu->scribble;
1202
	struct async_submit_ctl submit;
1203 1204
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1205
	int prexor = 0;
1206 1207
	unsigned long flags;

1208
	pr_debug("%s: stripe %llu\n", __func__,
1209 1210 1211 1212 1213
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1214 1215
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1236
	flags = ASYNC_TX_ACK |
1237 1238 1239 1240
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1241
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1242
			  to_addr_conv(sh, percpu));
1243 1244 1245 1246
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1247 1248
}

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1266 1267 1268 1269 1270 1271
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1272
	pr_debug("%s: stripe %llu\n", __func__,
1273 1274
		(unsigned long long)sh->sector);

1275
	sh->check_state = check_state_check_result;
1276 1277 1278 1279
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1280
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1281 1282
{
	int disks = sh->disks;
1283 1284 1285
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1286
	struct page **xor_srcs = percpu->scribble;
1287
	struct dma_async_tx_descriptor *tx;
1288
	struct async_submit_ctl submit;
1289 1290
	int count;
	int i;
1291

1292
	pr_debug("%s: stripe %llu\n", __func__,
1293 1294
		(unsigned long long)sh->sector);

1295 1296 1297
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1298
	for (i = disks; i--; ) {
1299 1300 1301
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1302 1303
	}

1304 1305
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1306
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1307
			   &sh->ops.zero_sum_result, &submit);
1308 1309

	atomic_inc(&sh->count);
1310 1311
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1312 1313
}

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1326 1327

	atomic_inc(&sh->count);
1328 1329 1330 1331
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1332 1333
}

1334
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1335 1336 1337
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1338
	struct r5conf *conf = sh->raid_conf;
1339
	int level = conf->level;
1340 1341
	struct raid5_percpu *percpu;
	unsigned long cpu;
1342

1343 1344
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1345
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1346 1347 1348 1349
		ops_run_biofill(sh);
		overlap_clear++;
	}

1350
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1361 1362
			async_tx_ack(tx);
	}
1363

1364
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1365
		tx = ops_run_prexor(sh, percpu, tx);
1366

1367
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1368
		tx = ops_run_biodrain(sh, tx);
1369 1370 1371
		overlap_clear++;
	}

1372 1373 1374 1375 1376 1377
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1378

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1389 1390 1391 1392 1393 1394 1395

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1396
	put_cpu();
1397 1398
}

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1429
static int grow_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
1430 1431
{
	struct stripe_head *sh;
N
Namhyung Kim 已提交
1432
	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1433 1434
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
1435

1436
	sh->raid_conf = conf;
1437 1438 1439
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1440

1441 1442
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

1454
static int grow_stripes(struct r5conf *conf, int num)
1455
{
1456
	struct kmem_cache *sc;
1457
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1458

1459 1460 1461 1462 1463 1464 1465 1466
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1467 1468
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1469
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1470
			       0, 0, NULL);
L
Linus Torvalds 已提交
1471 1472 1473
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1474
	conf->pool_size = devs;
1475
	while (num--)
1476
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1477 1478 1479
			return 1;
	return 0;
}
1480

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1503
static int resize_stripes(struct r5conf *conf, int newsize)
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1531
	unsigned long cpu;
1532
	int err;
1533
	struct kmem_cache *sc;
1534 1535 1536 1537 1538
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1539 1540 1541
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1542

1543 1544 1545
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1546
			       0, 0, NULL);
1547 1548 1549 1550
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
N
Namhyung Kim 已提交
1551
		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1552 1553 1554 1555
		if (!nsh)
			break;

		nsh->raid_conf = conf;
1556 1557 1558
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
N
NeilBrown 已提交
1581
				    );
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1596
	 * conf->disks and the scribble region
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1626 1627 1628 1629
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1630

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1647

1648
static int drop_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
1649 1650 1651
{
	struct stripe_head *sh;

1652 1653 1654 1655 1656
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1657
	BUG_ON(atomic_read(&sh->count));
1658
	shrink_buffers(sh);
1659 1660 1661 1662 1663
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

1664
static void shrink_stripes(struct r5conf *conf)
1665 1666 1667 1668
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1669 1670
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1671 1672 1673
	conf->slab_cache = NULL;
}

1674
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1675
{
1676
	struct stripe_head *sh = bi->bi_private;
1677
	struct r5conf *conf = sh->raid_conf;
1678
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1679
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1680
	char b[BDEVNAME_SIZE];
1681
	struct md_rdev *rdev = NULL;
1682
	sector_t s;
L
Linus Torvalds 已提交
1683 1684 1685 1686 1687

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1688 1689
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1690 1691 1692
		uptodate);
	if (i == disks) {
		BUG();
1693
		return;
L
Linus Torvalds 已提交
1694
	}
1695
	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1696 1697 1698 1699 1700
		/* If replacement finished while this request was outstanding,
		 * 'replacement' might be NULL already.
		 * In that case it moved down to 'rdev'.
		 * rdev is not removed until all requests are finished.
		 */
1701
		rdev = conf->disks[i].replacement;
1702
	if (!rdev)
1703
		rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
1704

1705 1706 1707 1708
	if (use_new_offset(conf, sh))
		s = sh->sector + rdev->new_data_offset;
	else
		s = sh->sector + rdev->data_offset;
L
Linus Torvalds 已提交
1709 1710
	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1711
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1712 1713 1714 1715
			/* Note that this cannot happen on a
			 * replacement device.  We just fail those on
			 * any error
			 */
1716 1717 1718 1719 1720
			printk_ratelimited(
				KERN_INFO
				"md/raid:%s: read error corrected"
				" (%lu sectors at %llu on %s)\n",
				mdname(conf->mddev), STRIPE_SECTORS,
1721
				(unsigned long long)s,
1722
				bdevname(rdev->bdev, b));
1723
			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1724 1725 1726
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1727 1728
		if (atomic_read(&rdev->read_errors))
			atomic_set(&rdev->read_errors, 0);
L
Linus Torvalds 已提交
1729
	} else {
1730
		const char *bdn = bdevname(rdev->bdev, b);
1731
		int retry = 0;
1732

L
Linus Torvalds 已提交
1733
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1734
		atomic_inc(&rdev->read_errors);
1735 1736 1737 1738 1739 1740
		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error on replacement device "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1741
				(unsigned long long)s,
1742 1743
				bdn);
		else if (conf->mddev->degraded >= conf->max_degraded)
1744 1745 1746 1747 1748
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error not correctable "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1749
				(unsigned long long)s,
1750
				bdn);
1751
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1752
			/* Oh, no!!! */
1753 1754 1755 1756 1757
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error NOT corrected!! "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1758
				(unsigned long long)s,
1759
				bdn);
1760
		else if (atomic_read(&rdev->read_errors)
1761
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1762
			printk(KERN_WARNING
1763
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1764
			       mdname(conf->mddev), bdn);
1765 1766 1767 1768 1769
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1770 1771
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1772
			md_error(conf->mddev, rdev);
1773
		}
L
Linus Torvalds 已提交
1774
	}
1775
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
1776 1777 1778 1779 1780
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1781
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1782
{
1783
	struct stripe_head *sh = bi->bi_private;
1784
	struct r5conf *conf = sh->raid_conf;
1785
	int disks = sh->disks, i;
1786
	struct md_rdev *uninitialized_var(rdev);
L
Linus Torvalds 已提交
1787
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1788 1789
	sector_t first_bad;
	int bad_sectors;
1790
	int replacement = 0;
L
Linus Torvalds 已提交
1791

1792 1793 1794
	for (i = 0 ; i < disks; i++) {
		if (bi == &sh->dev[i].req) {
			rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
1795
			break;
1796 1797 1798
		}
		if (bi == &sh->dev[i].rreq) {
			rdev = conf->disks[i].replacement;
1799 1800 1801 1802 1803 1804 1805 1806
			if (rdev)
				replacement = 1;
			else
				/* rdev was removed and 'replacement'
				 * replaced it.  rdev is not removed
				 * until all requests are finished.
				 */
				rdev = conf->disks[i].rdev;
1807 1808 1809
			break;
		}
	}
1810
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1811 1812 1813 1814
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1815
		return;
L
Linus Torvalds 已提交
1816 1817
	}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
	if (replacement) {
		if (!uptodate)
			md_error(conf->mddev, rdev);
		else if (is_badblock(rdev, sh->sector,
				     STRIPE_SECTORS,
				     &first_bad, &bad_sectors))
			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
	} else {
		if (!uptodate) {
			set_bit(WriteErrorSeen, &rdev->flags);
			set_bit(R5_WriteError, &sh->dev[i].flags);
1829 1830 1831
			if (!test_and_set_bit(WantReplacement, &rdev->flags))
				set_bit(MD_RECOVERY_NEEDED,
					&rdev->mddev->recovery);
1832 1833 1834 1835 1836 1837
		} else if (is_badblock(rdev, sh->sector,
				       STRIPE_SECTORS,
				       &first_bad, &bad_sectors))
			set_bit(R5_MadeGood, &sh->dev[i].flags);
	}
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
1838

1839 1840
	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
L
Linus Torvalds 已提交
1841
	set_bit(STRIPE_HANDLE, &sh->state);
1842
	release_stripe(sh);
L
Linus Torvalds 已提交
1843 1844
}

1845
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1846
	
1847
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1848 1849 1850 1851 1852 1853 1854 1855
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->req.bi_private = sh;
1856
	dev->vec.bv_page = dev->page;
L
Linus Torvalds 已提交
1857

1858 1859 1860 1861 1862 1863 1864
	bio_init(&dev->rreq);
	dev->rreq.bi_io_vec = &dev->rvec;
	dev->rreq.bi_vcnt++;
	dev->rreq.bi_max_vecs++;
	dev->rreq.bi_private = sh;
	dev->rvec.bv_page = dev->page;

L
Linus Torvalds 已提交
1865
	dev->flags = 0;
1866
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1867 1868
}

1869
static void error(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
1870 1871
{
	char b[BDEVNAME_SIZE];
1872
	struct r5conf *conf = mddev->private;
1873
	unsigned long flags;
1874
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1875

1876 1877 1878 1879 1880 1881
	spin_lock_irqsave(&conf->device_lock, flags);
	clear_bit(In_sync, &rdev->flags);
	mddev->degraded = calc_degraded(conf);
	spin_unlock_irqrestore(&conf->device_lock, flags);
	set_bit(MD_RECOVERY_INTR, &mddev->recovery);

1882
	set_bit(Blocked, &rdev->flags);
1883 1884 1885 1886 1887 1888 1889 1890 1891
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
1892
}
L
Linus Torvalds 已提交
1893 1894 1895 1896 1897

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1898
static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1899 1900
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1901
{
N
NeilBrown 已提交
1902
	sector_t stripe, stripe2;
1903
	sector_t chunk_number;
L
Linus Torvalds 已提交
1904
	unsigned int chunk_offset;
1905
	int pd_idx, qd_idx;
1906
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1907
	sector_t new_sector;
1908 1909
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1910 1911
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1912 1913 1914
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1927 1928
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1929
	stripe2 = stripe;
L
Linus Torvalds 已提交
1930 1931 1932
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1933
	pd_idx = qd_idx = -1;
1934 1935
	switch(conf->level) {
	case 4:
1936
		pd_idx = data_disks;
1937 1938
		break;
	case 5:
1939
		switch (algorithm) {
L
Linus Torvalds 已提交
1940
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1941
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1942
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1943 1944 1945
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1946
			pd_idx = sector_div(stripe2, raid_disks);
1947
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1948 1949 1950
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1951
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1952
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1953 1954
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1955
			pd_idx = sector_div(stripe2, raid_disks);
1956
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1957
			break;
1958 1959 1960 1961 1962 1963 1964
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1965
		default:
1966
			BUG();
1967 1968 1969 1970
		}
		break;
	case 6:

1971
		switch (algorithm) {
1972
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1973
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1974 1975
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1976
				(*dd_idx)++;	/* Q D D D P */
1977 1978
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1979 1980 1981
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1982
			pd_idx = sector_div(stripe2, raid_disks);
1983 1984
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1985
				(*dd_idx)++;	/* Q D D D P */
1986 1987
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1988 1989 1990
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1991
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1992 1993
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1994 1995
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1996
			pd_idx = sector_div(stripe2, raid_disks);
1997 1998
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1999
			break;
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
2015
			pd_idx = sector_div(stripe2, raid_disks);
2016 2017 2018 2019 2020 2021
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2022
			ddf_layout = 1;
2023 2024 2025 2026 2027 2028 2029
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
2030 2031
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2032 2033 2034 2035 2036 2037
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2038
			ddf_layout = 1;
2039 2040 2041 2042
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
2043
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2044 2045
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2046
			ddf_layout = 1;
2047 2048 2049 2050
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
2051
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2052 2053 2054 2055 2056 2057
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
2058
			pd_idx = sector_div(stripe2, raid_disks-1);
2059 2060 2061 2062 2063 2064
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
2065
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2066 2067 2068 2069 2070
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
2071
			pd_idx = sector_div(stripe2, raid_disks-1);
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

2082
		default:
2083
			BUG();
2084 2085
		}
		break;
L
Linus Torvalds 已提交
2086 2087
	}

2088 2089 2090
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
2091
		sh->ddf_layout = ddf_layout;
2092
	}
L
Linus Torvalds 已提交
2093 2094 2095 2096 2097 2098 2099 2100
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


2101
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
2102
{
2103
	struct r5conf *conf = sh->raid_conf;
2104 2105
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2106
	sector_t new_sector = sh->sector, check;
2107 2108
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2109 2110
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
2111 2112
	sector_t stripe;
	int chunk_offset;
2113 2114
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
2115
	sector_t r_sector;
2116
	struct stripe_head sh2;
L
Linus Torvalds 已提交
2117

2118

L
Linus Torvalds 已提交
2119 2120 2121
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

2122 2123 2124 2125 2126
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
2127
		switch (algorithm) {
L
Linus Torvalds 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
2139 2140 2141 2142 2143
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
2144
		default:
2145
			BUG();
2146 2147 2148
		}
		break;
	case 6:
2149
		if (i == sh->qd_idx)
2150
			return 0; /* It is the Q disk */
2151
		switch (algorithm) {
2152 2153
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
2154 2155 2156 2157
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2172 2173 2174 2175 2176 2177
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2178
			/* Like left_symmetric, but P is before Q */
2179 2180
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2181 2182 2183 2184 2185 2186
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2202
		default:
2203
			BUG();
2204 2205
		}
		break;
L
Linus Torvalds 已提交
2206 2207 2208
	}

	chunk_number = stripe * data_disks + i;
2209
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2210

2211
	check = raid5_compute_sector(conf, r_sector,
2212
				     previous, &dummy1, &sh2);
2213 2214
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2215 2216
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2217 2218 2219 2220 2221 2222
		return 0;
	}
	return r_sector;
}


2223
static void
2224
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2225
			 int rcw, int expand)
2226 2227
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2228
	struct r5conf *conf = sh->raid_conf;
2229
	int level = conf->level;
2230 2231 2232 2233 2234 2235 2236

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2237 2238 2239 2240
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2241

2242
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2243 2244 2245 2246 2247 2248

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2249
				set_bit(R5_Wantdrain, &dev->flags);
2250 2251
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2252
				s->locked++;
2253 2254
			}
		}
2255
		if (s->locked + conf->max_degraded == disks)
2256
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2257
				atomic_inc(&conf->pending_full_writes);
2258
	} else {
2259
		BUG_ON(level == 6);
2260 2261 2262
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2263
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2264 2265
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2266
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2267 2268 2269 2270 2271 2272 2273 2274

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2275 2276
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2277 2278
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2279
				s->locked++;
2280 2281 2282 2283
			}
		}
	}

2284
	/* keep the parity disk(s) locked while asynchronous operations
2285 2286 2287 2288
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2289
	s->locked++;
2290

2291 2292 2293 2294 2295 2296 2297 2298 2299
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2300
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2301
		__func__, (unsigned long long)sh->sector,
2302
		s->locked, s->ops_request);
2303
}
2304

L
Linus Torvalds 已提交
2305 2306
/*
 * Each stripe/dev can have one or more bion attached.
2307
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2308 2309 2310 2311 2312
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
2313
	struct r5conf *conf = sh->raid_conf;
2314
	int firstwrite=0;
L
Linus Torvalds 已提交
2315

2316
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2317 2318 2319 2320 2321
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock_irq(&conf->device_lock);
2322
	if (forwrite) {
L
Linus Torvalds 已提交
2323
		bip = &sh->dev[dd_idx].towrite;
2324 2325 2326
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2336
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2337 2338 2339
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2340
	bi->bi_phys_segments++;
2341

L
Linus Torvalds 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
	spin_unlock_irq(&conf->device_lock);

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
		(unsigned long long)(*bip)->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
		sh->bm_seq = conf->seq_flush+1;
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}
L
Linus Torvalds 已提交
2367 2368 2369 2370 2371 2372 2373 2374
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	return 0;
}

2375
static void end_reshape(struct r5conf *conf);
2376

2377
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2378
			    struct stripe_head *sh)
2379
{
2380
	int sectors_per_chunk =
2381
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2382
	int dd_idx;
2383
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2384
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2385

2386 2387
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2388
			     *sectors_per_chunk + chunk_offset,
2389
			     previous,
2390
			     &dd_idx, sh);
2391 2392
}

2393
static void
2394
handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2395 2396 2397 2398 2399 2400 2401 2402 2403
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2404
			struct md_rdev *rdev;
2405 2406 2407
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
2408 2409 2410
				atomic_inc(&rdev->nr_pending);
			else
				rdev = NULL;
2411
			rcu_read_unlock();
2412 2413 2414 2415 2416 2417 2418 2419
			if (rdev) {
				if (!rdev_set_badblocks(
					    rdev,
					    sh->sector,
					    STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2437
			if (!raid5_dec_bi_phys_segments(bi)) {
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2452
			if (!raid5_dec_bi_phys_segments(bi)) {
2453 2454 2455 2456 2457 2458 2459
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2460 2461 2462 2463 2464 2465
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2476
				if (!raid5_dec_bi_phys_segments(bi)) {
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
2487 2488 2489 2490
		/* If we were in the middle of a write the parity block might
		 * still be locked - so just clear all R5_LOCKED flags
		 */
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2491 2492
	}

2493 2494 2495
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2496 2497
}

2498
static void
2499
handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2500 2501 2502 2503 2504 2505 2506
		   struct stripe_head_state *s)
{
	int abort = 0;
	int i;

	clear_bit(STRIPE_SYNCING, &sh->state);
	s->syncing = 0;
2507
	s->replacing = 0;
2508
	/* There is nothing more to do for sync/check/repair.
2509 2510 2511
	 * Don't even need to abort as that is handled elsewhere
	 * if needed, and not always wanted e.g. if there is a known
	 * bad block here.
2512
	 * For recover/replace we need to record a bad block on all
2513 2514
	 * non-sync devices, or abort the recovery
	 */
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
		/* During recovery devices cannot be removed, so
		 * locking and refcounting of rdevs is not needed
		 */
		for (i = 0; i < conf->raid_disks; i++) {
			struct md_rdev *rdev = conf->disks[i].rdev;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
			rdev = conf->disks[i].replacement;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
		}
		if (abort)
			conf->recovery_disabled =
				conf->mddev->recovery_disabled;
2538
	}
2539
	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2540 2541
}

2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
static int want_replace(struct stripe_head *sh, int disk_idx)
{
	struct md_rdev *rdev;
	int rv = 0;
	/* Doing recovery so rcu locking not required */
	rdev = sh->raid_conf->disks[disk_idx].replacement;
	if (rdev
	    && !test_bit(Faulty, &rdev->flags)
	    && !test_bit(In_sync, &rdev->flags)
	    && (rdev->recovery_offset <= sh->sector
		|| rdev->mddev->recovery_cp <= sh->sector))
		rv = 1;

	return rv;
}

2558
/* fetch_block - checks the given member device to see if its data needs
2559 2560 2561
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
2562
 * 0 to tell the loop in handle_stripe_fill to continue
2563
 */
2564 2565
static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
		       int disk_idx, int disks)
2566
{
2567
	struct r5dev *dev = &sh->dev[disk_idx];
2568 2569
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
2570

2571
	/* is the data in this block needed, and can we get it? */
2572 2573 2574 2575 2576
	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
2577
	     (s->replacing && want_replace(sh, disk_idx)) ||
2578 2579
	     (s->failed >= 1 && fdev[0]->toread) ||
	     (s->failed >= 2 && fdev[1]->toread) ||
2580 2581 2582
	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2583 2584 2585 2586 2587 2588
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
2589 2590
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
2591 2592
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2593
			 */
2594 2595 2596 2597 2598 2599 2600 2601
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
2602 2603 2604 2605 2606 2607
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2621
			}
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2641 2642
		}
	}
2643 2644 2645 2646 2647

	return 0;
}

/**
2648
 * handle_stripe_fill - read or compute data to satisfy pending requests.
2649
 */
2650 2651 2652
static void handle_stripe_fill(struct stripe_head *sh,
			       struct stripe_head_state *s,
			       int disks)
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
2663
			if (fetch_block(sh, s, i, disks))
2664
				break;
2665 2666 2667 2668
	set_bit(STRIPE_HANDLE, &sh->state);
}


2669
/* handle_stripe_clean_event
2670 2671 2672 2673
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2674
static void handle_stripe_clean_event(struct r5conf *conf,
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2688
				pr_debug("Return write for disc %d\n", i);
2689 2690 2691 2692 2693 2694
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2695
					if (!raid5_dec_bi_phys_segments(wbi)) {
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2713 2714 2715 2716

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2717 2718
}

2719
static void handle_stripe_dirtying(struct r5conf *conf,
2720 2721 2722
				   struct stripe_head *sh,
				   struct stripe_head_state *s,
				   int disks)
2723 2724
{
	int rmw = 0, rcw = 0, i;
2725 2726 2727 2728 2729 2730 2731
	if (conf->max_degraded == 2) {
		/* RAID6 requires 'rcw' in current implementation
		 * Calculate the real rcw later - for now fake it
		 * look like rcw is cheaper
		 */
		rcw = 1; rmw = 2;
	} else for (i = disks; i--; ) {
2732 2733 2734 2735
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2736 2737
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2738 2739 2740 2741 2742 2743 2744 2745
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2746 2747 2748
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2749 2750 2751 2752
			else
				rcw += 2*disks;
		}
	}
2753
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2754 2755 2756 2757 2758 2759 2760 2761
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2762 2763
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2764 2765 2766
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2767
					pr_debug("Read_old block "
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2778
	if (rcw <= rmw && rcw > 0) {
2779
		/* want reconstruct write, but need to get some data */
2780
		rcw = 0;
2781 2782 2783
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2784
			    i != sh->pd_idx && i != sh->qd_idx &&
2785
			    !test_bit(R5_LOCKED, &dev->flags) &&
2786
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2787 2788 2789 2790
			      test_bit(R5_Wantcompute, &dev->flags))) {
				rcw++;
				if (!test_bit(R5_Insync, &dev->flags))
					continue; /* it's a failed drive */
2791 2792
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2793
					pr_debug("Read_old block "
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2804
	}
2805 2806 2807
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2808 2809
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2810 2811
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2812 2813 2814
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2815 2816 2817
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2818
		schedule_reconstruction(sh, s, rcw == 0, 0);
2819 2820
}

2821
static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2822 2823
				struct stripe_head_state *s, int disks)
{
2824
	struct r5dev *dev = NULL;
2825

2826
	set_bit(STRIPE_HANDLE, &sh->state);
2827

2828 2829 2830
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2831 2832
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2833 2834
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2835 2836
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2837
			break;
2838
		}
2839
		dev = &sh->dev[s->failed_num[0]];
2840 2841 2842 2843 2844 2845 2846 2847 2848
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2849

2850 2851 2852 2853 2854
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2855
		s->locked++;
2856
		set_bit(R5_Wantwrite, &dev->flags);
2857

2858 2859
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2876
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2888
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2889 2890 2891 2892
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2893
				sh->ops.target2 = -1;
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2905 2906 2907 2908
	}
}


2909
static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2910
				  struct stripe_head_state *s,
2911
				  int disks)
2912 2913
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2914
	int qd_idx = sh->qd_idx;
2915
	struct r5dev *dev;
2916 2917 2918 2919

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2920

2921 2922 2923 2924 2925 2926
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2927 2928 2929
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2930
		if (s->failed == s->q_failed) {
2931
			/* The only possible failed device holds Q, so it
2932 2933 2934
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2935
			sh->check_state = check_state_run;
2936
		}
2937
		if (!s->q_failed && s->failed < 2) {
2938
			/* Q is not failed, and we didn't use it to generate
2939 2940
			 * anything, so it makes sense to check it
			 */
2941 2942 2943 2944
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2945 2946
		}

2947 2948
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2949

2950 2951 2952 2953
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2954
		}
2955 2956 2957 2958 2959 2960 2961
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2962 2963
		}

2964 2965 2966 2967 2968
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2969

2970 2971 2972
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2973 2974

		/* now write out any block on a failed drive,
2975
		 * or P or Q if they were recomputed
2976
		 */
2977
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2978
		if (s->failed == 2) {
2979
			dev = &sh->dev[s->failed_num[1]];
2980 2981 2982 2983 2984
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
2985
			dev = &sh->dev[s->failed_num[0]];
2986 2987 2988 2989
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2990
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2991 2992 2993 2994 2995
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2996
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2997 2998 2999 3000 3001 3002 3003 3004
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3069 3070 3071
	}
}

3072
static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3073 3074 3075 3076 3077 3078
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
3079
	struct dma_async_tx_descriptor *tx = NULL;
3080 3081
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
3082
		if (i != sh->pd_idx && i != sh->qd_idx) {
3083
			int dd_idx, j;
3084
			struct stripe_head *sh2;
3085
			struct async_submit_ctl submit;
3086

3087
			sector_t bn = compute_blocknr(sh, i, 1);
3088 3089
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
3090
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
3103 3104

			/* place all the copies on one channel */
3105
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3106
			tx = async_memcpy(sh2->dev[dd_idx].page,
3107
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3108
					  &submit);
3109

3110 3111 3112 3113
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
3114
				    j != sh2->qd_idx &&
3115 3116 3117 3118 3119 3120 3121
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
3122

3123
		}
3124 3125 3126 3127 3128
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
3129
}
L
Linus Torvalds 已提交
3130 3131 3132 3133

/*
 * handle_stripe - do things to a stripe.
 *
3134 3135
 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
 * state of various bits to see what needs to be done.
L
Linus Torvalds 已提交
3136
 * Possible results:
3137 3138
 *    return some read requests which now have data
 *    return some write requests which are safely on storage
L
Linus Torvalds 已提交
3139 3140 3141 3142 3143
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 */
3144

3145
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
3146
{
3147
	struct r5conf *conf = sh->raid_conf;
3148
	int disks = sh->disks;
3149 3150
	struct r5dev *dev;
	int i;
3151
	int do_recovery = 0;
L
Linus Torvalds 已提交
3152

3153 3154 3155 3156 3157 3158
	memset(s, 0, sizeof(*s));

	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
	s->failed_num[0] = -1;
	s->failed_num[1] = -1;
L
Linus Torvalds 已提交
3159

3160
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3161
	rcu_read_lock();
3162
	spin_lock_irq(&conf->device_lock);
3163
	for (i=disks; i--; ) {
3164
		struct md_rdev *rdev;
3165 3166 3167
		sector_t first_bad;
		int bad_sectors;
		int is_bad = 0;
3168

3169
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3170

3171
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3172 3173
			 i, dev->flags,
			 dev->toread, dev->towrite, dev->written);
3174 3175 3176 3177 3178 3179 3180 3181
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3182

3183
		/* now count some things */
3184 3185 3186 3187
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
3188
		if (test_bit(R5_Wantcompute, &dev->flags)) {
3189 3190
			s->compute++;
			BUG_ON(s->compute > 2);
3191
		}
L
Linus Torvalds 已提交
3192

3193
		if (test_bit(R5_Wantfill, &dev->flags))
3194
			s->to_fill++;
3195
		else if (dev->toread)
3196
			s->to_read++;
3197
		if (dev->towrite) {
3198
			s->to_write++;
3199
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3200
				s->non_overwrite++;
3201
		}
3202
		if (dev->written)
3203
			s->written++;
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
		/* Prefer to use the replacement for reads, but only
		 * if it is recovered enough and has no bad blocks.
		 */
		rdev = rcu_dereference(conf->disks[i].replacement);
		if (rdev && !test_bit(Faulty, &rdev->flags) &&
		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
				 &first_bad, &bad_sectors))
			set_bit(R5_ReadRepl, &dev->flags);
		else {
3214 3215
			if (rdev)
				set_bit(R5_NeedReplace, &dev->flags);
3216 3217 3218
			rdev = rcu_dereference(conf->disks[i].rdev);
			clear_bit(R5_ReadRepl, &dev->flags);
		}
3219 3220
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
		if (rdev) {
			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					     &first_bad, &bad_sectors);
			if (s->blocked_rdev == NULL
			    && (test_bit(Blocked, &rdev->flags)
				|| is_bad < 0)) {
				if (is_bad < 0)
					set_bit(BlockedBadBlocks,
						&rdev->flags);
				s->blocked_rdev = rdev;
				atomic_inc(&rdev->nr_pending);
			}
3233
		}
3234 3235 3236
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
3237 3238
		else if (is_bad) {
			/* also not in-sync */
3239 3240
			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
			    test_bit(R5_UPTODATE, &dev->flags)) {
3241 3242 3243 3244 3245 3246 3247
				/* treat as in-sync, but with a read error
				 * which we can now try to correct
				 */
				set_bit(R5_Insync, &dev->flags);
				set_bit(R5_ReadError, &dev->flags);
			}
		} else if (test_bit(In_sync, &rdev->flags))
3248
			set_bit(R5_Insync, &dev->flags);
3249
		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3250
			/* in sync if before recovery_offset */
3251 3252 3253 3254 3255 3256 3257 3258 3259
			set_bit(R5_Insync, &dev->flags);
		else if (test_bit(R5_UPTODATE, &dev->flags) &&
			 test_bit(R5_Expanded, &dev->flags))
			/* If we've reshaped into here, we assume it is Insync.
			 * We will shortly update recovery_offset to make
			 * it official.
			 */
			set_bit(R5_Insync, &dev->flags);

A
Adam Kwolek 已提交
3260
		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3261 3262 3263 3264 3265 3266 3267
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 == rdev)
				clear_bit(R5_Insync, &dev->flags);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3268
				s->handle_bad_blocks = 1;
3269
				atomic_inc(&rdev2->nr_pending);
3270 3271 3272
			} else
				clear_bit(R5_WriteError, &dev->flags);
		}
A
Adam Kwolek 已提交
3273
		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3274 3275 3276 3277 3278
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3279
				s->handle_bad_blocks = 1;
3280
				atomic_inc(&rdev2->nr_pending);
3281 3282 3283
			} else
				clear_bit(R5_MadeGood, &dev->flags);
		}
3284 3285 3286 3287 3288 3289 3290 3291 3292
		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].replacement);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
				s->handle_bad_blocks = 1;
				atomic_inc(&rdev2->nr_pending);
			} else
				clear_bit(R5_MadeGoodRepl, &dev->flags);
		}
3293
		if (!test_bit(R5_Insync, &dev->flags)) {
3294 3295 3296
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3297
		}
3298 3299 3300
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3301 3302 3303
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
3304 3305
			if (rdev && !test_bit(Faulty, &rdev->flags))
				do_recovery = 1;
3306
		}
L
Linus Torvalds 已提交
3307
	}
3308
	spin_unlock_irq(&conf->device_lock);
3309 3310 3311 3312
	if (test_bit(STRIPE_SYNCING, &sh->state)) {
		/* If there is a failed device being replaced,
		 *     we must be recovering.
		 * else if we are after recovery_cp, we must be syncing
3313
		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3314 3315 3316 3317 3318
		 * else we can only be replacing
		 * sync and recovery both need to read all devices, and so
		 * use the same flag.
		 */
		if (do_recovery ||
3319 3320
		    sh->sector >= conf->mddev->recovery_cp ||
		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3321 3322 3323 3324
			s->syncing = 1;
		else
			s->replacing = 1;
	}
L
Linus Torvalds 已提交
3325
	rcu_read_unlock();
3326 3327 3328 3329 3330
}

static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
3331
	struct r5conf *conf = sh->raid_conf;
3332
	int i;
3333 3334
	int prexor;
	int disks = sh->disks;
3335
	struct r5dev *pdev, *qdev;
3336 3337

	clear_bit(STRIPE_HANDLE, &sh->state);
3338
	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
		set_bit(STRIPE_SYNCING, &sh->state);
		clear_bit(STRIPE_INSYNC, &sh->state);
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
3356

3357
	analyse_stripe(sh, &s);
3358

3359 3360 3361 3362 3363
	if (s.handle_bad_blocks) {
		set_bit(STRIPE_HANDLE, &sh->state);
		goto finish;
	}

3364 3365
	if (unlikely(s.blocked_rdev)) {
		if (s.syncing || s.expanding || s.expanded ||
3366
		    s.replacing || s.to_write || s.written) {
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
			set_bit(STRIPE_HANDLE, &sh->state);
			goto finish;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(s.blocked_rdev, conf->mddev);
		s.blocked_rdev = NULL;
	}

	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

	pr_debug("locked=%d uptodate=%d to_read=%d"
	       " to_write=%d failed=%d failed_num=%d,%d\n",
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       s.failed_num[0], s.failed_num[1]);
	/* check if the array has lost more than max_degraded devices and,
	 * if so, some requests might need to be failed.
	 */
3387 3388 3389 3390 3391
	if (s.failed > conf->max_degraded) {
		sh->check_state = 0;
		sh->reconstruct_state = 0;
		if (s.to_read+s.to_write+s.written)
			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3392
		if (s.syncing + s.replacing)
3393 3394
			handle_failed_sync(conf, sh, &s);
	}
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[sh->pd_idx];
	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
	qdev = &sh->dev[sh->qd_idx];
	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
		|| conf->level < 6;

	if (s.written &&
	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
			     && !test_bit(R5_LOCKED, &pdev->flags)
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
			     && !test_bit(R5_LOCKED, &qdev->flags)
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
	if (s.to_read || s.non_overwrite
	    || (conf->level == 6 && s.to_write && s.failed)
3423 3424 3425
	    || (s.syncing && (s.uptodate + s.compute < disks))
	    || s.replacing
	    || s.expanding)
3426 3427
		handle_stripe_fill(sh, &s, disks);

3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	prexor = 0;
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
		prexor = 1;
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
		sh->reconstruct_state = reconstruct_state_idle;

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(sh->qd_idx >= 0 &&
		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || i == sh->qd_idx ||
				 dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
				if (prexor)
					continue;
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
				     s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			s.dec_preread_active = 1;
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying(conf, sh, &s, disks);

	/* maybe we need to check and possibly fix the parity for this stripe
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
	 */
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state))) {
		if (conf->level == 6)
			handle_parity_checks6(conf, sh, &s, disks);
		else
			handle_parity_checks5(conf, sh, &s, disks);
	}
3486

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
	if (s.replacing && s.locked == 0
	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
		/* Write out to replacement devices where possible */
		for (i = 0; i < conf->raid_disks; i++)
			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
				set_bit(R5_WantReplace, &sh->dev[i].flags);
				set_bit(R5_LOCKED, &sh->dev[i].flags);
				s.locked++;
			}
		set_bit(STRIPE_INSYNC, &sh->state);
	}
	if ((s.syncing || s.replacing) && s.locked == 0 &&
	    test_bit(STRIPE_INSYNC, &sh->state)) {
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			struct r5dev *dev = &sh->dev[s.failed_num[i]];
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				}
			}
		}


3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		struct stripe_head *sh_src
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
			/* sh cannot be written until sh_src has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh_src->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh_src);
			goto finish;
		}
		if (sh_src)
			release_stripe(sh_src);

		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}
3557

3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		stripe_set_idx(sh->sector, conf, 0, sh);
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
		handle_stripe_expansion(conf, sh);
3574

3575
finish:
3576
	/* wait for this device to become unblocked */
3577
	if (conf->mddev->external && unlikely(s.blocked_rdev))
3578
		md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3579

3580 3581
	if (s.handle_bad_blocks)
		for (i = disks; i--; ) {
3582
			struct md_rdev *rdev;
3583 3584 3585 3586 3587 3588 3589 3590 3591
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
				/* We own a safe reference to the rdev */
				rdev = conf->disks[i].rdev;
				if (!rdev_set_badblocks(rdev, sh->sector,
							STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
3592 3593 3594
			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
				rdev = conf->disks[i].rdev;
				rdev_clear_badblocks(rdev, sh->sector,
3595
						     STRIPE_SECTORS, 0);
3596 3597
				rdev_dec_pending(rdev, conf->mddev);
			}
3598 3599
			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
				rdev = conf->disks[i].replacement;
3600 3601 3602
				if (!rdev)
					/* rdev have been moved down */
					rdev = conf->disks[i].rdev;
3603
				rdev_clear_badblocks(rdev, sh->sector,
3604
						     STRIPE_SECTORS, 0);
3605 3606
				rdev_dec_pending(rdev, conf->mddev);
			}
3607 3608
		}

3609 3610 3611
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3612
	ops_run_io(sh, &s);
3613

3614
	if (s.dec_preread_active) {
3615
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3616
		 * is waiting on a flush, it won't continue until the writes
3617 3618 3619 3620 3621 3622 3623 3624
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

3625
	return_io(s.return_bi);
3626

3627
	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3628 3629
}

3630
static void raid5_activate_delayed(struct r5conf *conf)
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3641
			list_add_tail(&sh->lru, &conf->hold_list);
3642
		}
N
NeilBrown 已提交
3643
	}
3644 3645
}

3646
static void activate_bit_delay(struct r5conf *conf)
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

3660
int md_raid5_congested(struct mddev *mddev, int bits)
3661
{
3662
	struct r5conf *conf = mddev->private;
3663 3664 3665 3666

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3667

3668 3669 3670 3671 3672 3673 3674 3675 3676
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3677 3678 3679 3680
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
3681
	struct mddev *mddev = data;
N
NeilBrown 已提交
3682 3683 3684 3685

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3686

3687 3688 3689
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3690 3691 3692
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3693
{
3694
	struct mddev *mddev = q->queuedata;
3695
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3696
	int max;
3697
	unsigned int chunk_sectors = mddev->chunk_sectors;
3698
	unsigned int bio_sectors = bvm->bi_size >> 9;
3699

3700
	if ((bvm->bi_rw & 1) == WRITE)
3701 3702
		return biovec->bv_len; /* always allow writes to be mergeable */

3703 3704
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3705 3706 3707 3708 3709 3710 3711 3712
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3713

3714
static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3715 3716
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3717
	unsigned int chunk_sectors = mddev->chunk_sectors;
3718 3719
	unsigned int bio_sectors = bio->bi_size >> 9;

3720 3721
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3722 3723 3724 3725
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3726 3727 3728 3729
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
3730
static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


3744
static struct bio *remove_bio_from_retry(struct r5conf *conf)
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3755
		conf->retry_read_aligned_list = bi->bi_next;
3756
		bi->bi_next = NULL;
3757 3758 3759 3760
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3761 3762 3763 3764 3765 3766 3767
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3768 3769 3770 3771 3772 3773
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3774
static void raid5_align_endio(struct bio *bi, int error)
3775 3776
{
	struct bio* raid_bi  = bi->bi_private;
3777
	struct mddev *mddev;
3778
	struct r5conf *conf;
3779
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3780
	struct md_rdev *rdev;
3781

3782
	bio_put(bi);
3783 3784 3785

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3786 3787
	mddev = rdev->mddev;
	conf = mddev->private;
3788 3789 3790 3791

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3792
		bio_endio(raid_bi, 0);
3793 3794
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3795
		return;
3796 3797 3798
	}


3799
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3800 3801

	add_bio_to_retry(raid_bi, conf);
3802 3803
}

3804 3805
static int bio_fits_rdev(struct bio *bi)
{
3806
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3807

3808
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3809 3810
		return 0;
	blk_recount_segments(q, bi);
3811
	if (bi->bi_phys_segments > queue_max_segments(q))
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3824
static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3825
{
3826
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
3827
	int dd_idx;
3828
	struct bio* align_bi;
3829
	struct md_rdev *rdev;
3830
	sector_t end_sector;
3831 3832

	if (!in_chunk_boundary(mddev, raid_bio)) {
3833
		pr_debug("chunk_aligned_read : non aligned\n");
3834 3835 3836
		return 0;
	}
	/*
3837
	 * use bio_clone_mddev to make a copy of the bio
3838
	 */
3839
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3851 3852
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3853
						    &dd_idx, NULL);
3854

3855
	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3856
	rcu_read_lock();
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
	if (!rdev || test_bit(Faulty, &rdev->flags) ||
	    rdev->recovery_offset < end_sector) {
		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
		if (rdev &&
		    (test_bit(Faulty, &rdev->flags) ||
		    !(test_bit(In_sync, &rdev->flags) ||
		      rdev->recovery_offset >= end_sector)))
			rdev = NULL;
	}
	if (rdev) {
3868 3869 3870
		sector_t first_bad;
		int bad_sectors;

3871 3872
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3873 3874 3875
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3876
		/* No reshape active, so we can trust rdev->data_offset */
3877 3878
		align_bi->bi_sector += rdev->data_offset;

3879 3880 3881 3882
		if (!bio_fits_rdev(align_bi) ||
		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
				&first_bad, &bad_sectors)) {
			/* too big in some way, or has a known bad block */
3883 3884 3885 3886 3887
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3888 3889 3890 3891 3892 3893 3894
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3895 3896 3897 3898
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3899
		bio_put(align_bi);
3900 3901 3902 3903
		return 0;
	}
}

3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
3914
static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3956

3957
static void make_request(struct mddev *mddev, struct bio * bi)
L
Linus Torvalds 已提交
3958
{
3959
	struct r5conf *conf = mddev->private;
3960
	int dd_idx;
L
Linus Torvalds 已提交
3961 3962 3963
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3964
	const int rw = bio_data_dir(bi);
3965
	int remaining;
3966
	int plugged;
L
Linus Torvalds 已提交
3967

T
Tejun Heo 已提交
3968 3969
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
3970
		return;
3971 3972
	}

3973
	md_write_start(mddev, bi);
3974

3975
	if (rw == READ &&
3976
	     mddev->reshape_position == MaxSector &&
3977
	     chunk_aligned_read(mddev,bi))
3978
		return;
3979

L
Linus Torvalds 已提交
3980 3981 3982 3983
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3984

3985
	plugged = mddev_check_plugged(mddev);
L
Linus Torvalds 已提交
3986 3987
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3988
		int disks, data_disks;
3989
		int previous;
3990

3991
	retry:
3992
		previous = 0;
3993
		disks = conf->raid_disks;
3994
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3995
		if (unlikely(conf->reshape_progress != MaxSector)) {
3996
			/* spinlock is needed as reshape_progress may be
3997 3998
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3999
			 * Of course reshape_progress could change after
4000 4001 4002 4003
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
4004
			spin_lock_irq(&conf->device_lock);
4005
			if (mddev->reshape_backwards
4006 4007
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
4008
				disks = conf->previous_raid_disks;
4009 4010
				previous = 1;
			} else {
4011
				if (mddev->reshape_backwards
4012 4013
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
4014 4015 4016 4017 4018
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
4019 4020
			spin_unlock_irq(&conf->device_lock);
		}
4021 4022
		data_disks = disks - conf->max_degraded;

4023 4024
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
4025
						  &dd_idx, NULL);
4026
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
4027 4028 4029
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

4030
		sh = get_active_stripe(conf, new_sector, previous,
4031
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
4032
		if (sh) {
4033
			if (unlikely(previous)) {
4034
				/* expansion might have moved on while waiting for a
4035 4036 4037 4038 4039 4040
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
4041 4042 4043
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
4044
				if (mddev->reshape_backwards
4045 4046
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
4047 4048 4049 4050 4051
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
4052
					schedule();
4053 4054 4055
					goto retry;
				}
			}
4056

4057
			if (rw == WRITE &&
4058
			    logical_sector >= mddev->suspend_lo &&
4059 4060
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
4071 4072
				goto retry;
			}
4073 4074

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4075
			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4076 4077
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
4078 4079
				 * and wait a while
				 */
N
NeilBrown 已提交
4080
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
4081 4082 4083 4084 4085
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
4086 4087
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
T
Tejun Heo 已提交
4088
			if ((bi->bi_rw & REQ_SYNC) &&
4089 4090
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
L
Linus Torvalds 已提交
4091 4092 4093 4094 4095 4096 4097 4098 4099
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
4100 4101 4102
	if (!plugged)
		md_wakeup_thread(mddev->thread);

L
Linus Torvalds 已提交
4103
	spin_lock_irq(&conf->device_lock);
4104
	remaining = raid5_dec_bi_phys_segments(bi);
4105 4106
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
4107

4108
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4109
			md_write_end(mddev);
4110

4111
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4112 4113 4114
	}
}

4115
static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
D
Dan Williams 已提交
4116

4117
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4118
{
4119 4120 4121 4122 4123 4124 4125 4126 4127
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4128
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
4129
	struct stripe_head *sh;
4130
	sector_t first_sector, last_sector;
4131 4132 4133
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4134 4135
	int i;
	int dd_idx;
4136
	sector_t writepos, readpos, safepos;
4137
	sector_t stripe_addr;
4138
	int reshape_sectors;
4139
	struct list_head stripes;
4140

4141 4142
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
4143
		if (mddev->reshape_backwards &&
4144 4145 4146
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4147
		} else if (!mddev->reshape_backwards &&
4148 4149
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4150
		sector_div(sector_nr, new_data_disks);
4151
		if (sector_nr) {
4152 4153
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4154 4155 4156
			*skipped = 1;
			return sector_nr;
		}
4157 4158
	}

4159 4160 4161 4162
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4163 4164
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4165
	else
4166
		reshape_sectors = mddev->chunk_sectors;
4167

4168 4169 4170 4171 4172
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
4173 4174
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
4175
	 */
4176
	writepos = conf->reshape_progress;
4177
	sector_div(writepos, new_data_disks);
4178 4179
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4180
	safepos = conf->reshape_safe;
4181
	sector_div(safepos, data_disks);
4182
	if (mddev->reshape_backwards) {
4183
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4184
		readpos += reshape_sectors;
4185
		safepos += reshape_sectors;
4186
	} else {
4187
		writepos += reshape_sectors;
4188 4189
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4190
	}
4191

4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4209
	if ((mddev->reshape_backwards
4210 4211 4212
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4213 4214 4215
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4216
		mddev->reshape_position = conf->reshape_progress;
4217
		mddev->curr_resync_completed = sector_nr;
4218
		conf->reshape_checkpoint = jiffies;
4219
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4220
		md_wakeup_thread(mddev->thread);
4221
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4222 4223
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4224
		conf->reshape_safe = mddev->reshape_position;
4225 4226
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4227
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4228 4229
	}

4230
	if (mddev->reshape_backwards) {
4231 4232 4233
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
4234 4235
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
4236 4237
		       != sector_nr);
	} else {
4238
		BUG_ON(writepos != sector_nr + reshape_sectors);
4239 4240
		stripe_addr = sector_nr;
	}
4241
	INIT_LIST_HEAD(&stripes);
4242
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4243
		int j;
4244
		int skipped_disk = 0;
4245
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4246 4247 4248 4249 4250 4251 4252 4253 4254
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4255
			if (conf->level == 6 &&
4256
			    j == sh->qd_idx)
4257
				continue;
4258
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4259
			if (s < raid5_size(mddev, 0, 0)) {
4260
				skipped_disk = 1;
4261 4262 4263 4264 4265 4266
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4267
		if (!skipped_disk) {
4268 4269 4270
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4271
		list_add(&sh->lru, &stripes);
4272 4273
	}
	spin_lock_irq(&conf->device_lock);
4274
	if (mddev->reshape_backwards)
4275
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4276
	else
4277
		conf->reshape_progress += reshape_sectors * new_data_disks;
4278 4279 4280 4281 4282 4283 4284
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4285
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4286
				     1, &dd_idx, NULL);
4287
	last_sector =
4288
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4289
					    * new_data_disks - 1),
4290
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4291 4292
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4293
	while (first_sector <= last_sector) {
4294
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4295 4296 4297 4298 4299
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4300 4301 4302 4303 4304 4305 4306 4307
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4308 4309 4310
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4311
	sector_nr += reshape_sectors;
4312 4313
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4314 4315 4316
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4317
		mddev->reshape_position = conf->reshape_progress;
4318
		mddev->curr_resync_completed = sector_nr;
4319
		conf->reshape_checkpoint = jiffies;
4320 4321 4322 4323 4324 4325
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4326
		conf->reshape_safe = mddev->reshape_position;
4327 4328
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4329
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4330
	}
4331
	return reshape_sectors;
4332 4333 4334
}

/* FIXME go_faster isn't used */
4335
static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4336
{
4337
	struct r5conf *conf = mddev->private;
4338
	struct stripe_head *sh;
A
Andre Noll 已提交
4339
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
4340
	sector_t sync_blocks;
4341 4342
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4343

4344
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4345
		/* just being told to finish up .. nothing much to do */
4346

4347 4348 4349 4350
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4351 4352 4353 4354

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4355
		else /* completed sync */
4356 4357 4358
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4359 4360
		return 0;
	}
4361

4362 4363 4364
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4365 4366
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4367

4368 4369 4370 4371 4372 4373
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4374
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4375 4376 4377
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4378
	if (mddev->degraded >= conf->max_degraded &&
4379
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4380
		sector_t rv = mddev->dev_sectors - sector_nr;
4381
		*skipped = 1;
L
Linus Torvalds 已提交
4382 4383
		return rv;
	}
4384
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4385
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4386 4387 4388 4389 4390 4391
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4392

N
NeilBrown 已提交
4393 4394
	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4395
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4396
	if (sh == NULL) {
4397
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4398
		/* make sure we don't swamp the stripe cache if someone else
4399
		 * is trying to get access
L
Linus Torvalds 已提交
4400
		 */
4401
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4402
	}
4403 4404 4405 4406
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4407
	for (i = 0; i < conf->raid_disks; i++)
4408 4409 4410 4411 4412
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

4413
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
L
Linus Torvalds 已提交
4414

4415
	handle_stripe(sh);
L
Linus Torvalds 已提交
4416 4417 4418 4419 4420
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4421
static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4434
	int dd_idx;
4435 4436 4437 4438 4439 4440
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4441
	sector = raid5_compute_sector(conf, logical_sector,
4442
				      0, &dd_idx, NULL);
4443 4444 4445
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4446 4447 4448
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4449

4450
		if (scnt < raid5_bi_hw_segments(raid_bio))
4451 4452 4453
			/* already done this stripe */
			continue;

4454
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4455 4456 4457

		if (!sh) {
			/* failed to get a stripe - must wait */
4458
			raid5_set_bi_hw_segments(raid_bio, scnt);
4459 4460 4461 4462
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4463 4464
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4465
			raid5_set_bi_hw_segments(raid_bio, scnt);
4466 4467 4468 4469
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4470
		handle_stripe(sh);
4471 4472 4473 4474
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4475
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4476
	spin_unlock_irq(&conf->device_lock);
4477 4478
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4479 4480 4481 4482 4483 4484
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4485 4486 4487 4488 4489 4490 4491
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4492
static void raid5d(struct mddev *mddev)
L
Linus Torvalds 已提交
4493 4494
{
	struct stripe_head *sh;
4495
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
4496
	int handled;
4497
	struct blk_plug plug;
L
Linus Torvalds 已提交
4498

4499
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4500 4501 4502

	md_check_recovery(mddev);

4503
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
4504 4505 4506
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4507
		struct bio *bio;
L
Linus Torvalds 已提交
4508

4509 4510 4511 4512
		if (atomic_read(&mddev->plug_cnt) == 0 &&
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
4513
			spin_unlock_irq(&conf->device_lock);
4514
			bitmap_unplug(mddev->bitmap);
4515
			spin_lock_irq(&conf->device_lock);
4516
			conf->seq_write = conf->seq_flush;
4517 4518
			activate_bit_delay(conf);
		}
4519 4520
		if (atomic_read(&mddev->plug_cnt) == 0)
			raid5_activate_delayed(conf);
4521

4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4532 4533
		sh = __get_priority_stripe(conf);

4534
		if (!sh)
L
Linus Torvalds 已提交
4535 4536 4537 4538
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4539 4540 4541
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4542

4543 4544 4545
		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
			md_check_recovery(mddev);

L
Linus Torvalds 已提交
4546 4547
		spin_lock_irq(&conf->device_lock);
	}
4548
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4549 4550 4551

	spin_unlock_irq(&conf->device_lock);

4552
	async_tx_issue_pending_all();
4553
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
4554

4555
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4556 4557
}

4558
static ssize_t
4559
raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4560
{
4561
	struct r5conf *conf = mddev->private;
4562 4563 4564 4565
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4566 4567
}

4568
int
4569
raid5_set_cache_size(struct mddev *mddev, int size)
4570
{
4571
	struct r5conf *conf = mddev->private;
4572 4573
	int err;

4574
	if (size <= 16 || size > 32768)
4575
		return -EINVAL;
4576
	while (size < conf->max_nr_stripes) {
4577 4578 4579 4580 4581
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4582 4583 4584
	err = md_allow_write(mddev);
	if (err)
		return err;
4585
	while (size > conf->max_nr_stripes) {
4586 4587 4588 4589
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4590 4591 4592 4593 4594
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
4595
raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4596
{
4597
	struct r5conf *conf = mddev->private;
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4611 4612
	return len;
}
4613

4614 4615 4616 4617
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4618

4619
static ssize_t
4620
raid5_show_preread_threshold(struct mddev *mddev, char *page)
4621
{
4622
	struct r5conf *conf = mddev->private;
4623 4624 4625 4626 4627 4628 4629
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
4630
raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4631
{
4632
	struct r5conf *conf = mddev->private;
4633
	unsigned long new;
4634 4635 4636 4637 4638
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4639
	if (strict_strtoul(page, 10, &new))
4640
		return -EINVAL;
4641
	if (new > conf->max_nr_stripes)
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4653
static ssize_t
4654
stripe_cache_active_show(struct mddev *mddev, char *page)
4655
{
4656
	struct r5conf *conf = mddev->private;
4657 4658 4659 4660
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4661 4662
}

4663 4664
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4665

4666
static struct attribute *raid5_attrs[] =  {
4667 4668
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4669
	&raid5_preread_bypass_threshold.attr,
4670 4671
	NULL,
};
4672 4673 4674
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4675 4676
};

4677
static sector_t
4678
raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4679
{
4680
	struct r5conf *conf = mddev->private;
4681 4682 4683

	if (!sectors)
		sectors = mddev->dev_sectors;
4684
	if (!raid_disks)
4685
		/* size is defined by the smallest of previous and new size */
4686
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4687

4688
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4689
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4690 4691 4692
	return sectors * (raid_disks - conf->max_degraded);
}

4693
static void raid5_free_percpu(struct r5conf *conf)
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4705
		kfree(percpu->scribble);
4706 4707 4708 4709 4710 4711 4712 4713 4714
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4715
static void free_conf(struct r5conf *conf)
4716 4717
{
	shrink_stripes(conf);
4718
	raid5_free_percpu(conf);
4719 4720 4721 4722 4723
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4724 4725 4726 4727
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
4728
	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4729 4730 4731 4732 4733 4734
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4735
		if (conf->level == 6 && !percpu->spare_page)
4736
			percpu->spare_page = alloc_page(GFP_KERNEL);
4737 4738 4739 4740 4741 4742 4743
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4744 4745
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
4746
			return notifier_from_errno(-ENOMEM);
4747 4748 4749 4750 4751
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4752
		kfree(percpu->scribble);
4753
		percpu->spare_page = NULL;
4754
		percpu->scribble = NULL;
4755 4756 4757 4758 4759 4760 4761 4762
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

4763
static int raid5_alloc_percpu(struct r5conf *conf)
4764 4765 4766
{
	unsigned long cpu;
	struct page *spare_page;
4767
	struct raid5_percpu __percpu *allcpus;
4768
	void *scribble;
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4779 4780 4781 4782 4783 4784 4785 4786
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4787
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4788
		if (!scribble) {
4789 4790 4791
			err = -ENOMEM;
			break;
		}
4792
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

4805
static struct r5conf *setup_conf(struct mddev *mddev)
L
Linus Torvalds 已提交
4806
{
4807
	struct r5conf *conf;
4808
	int raid_disk, memory, max_disks;
4809
	struct md_rdev *rdev;
L
Linus Torvalds 已提交
4810 4811
	struct disk_info *disk;

N
NeilBrown 已提交
4812 4813 4814
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4815
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4816 4817
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4818
	}
N
NeilBrown 已提交
4819 4820 4821 4822
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4823
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4824 4825
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4826
	}
N
NeilBrown 已提交
4827
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4828
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4829 4830
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4831 4832
	}

4833 4834 4835
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4836 4837
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4838
		return ERR_PTR(-EINVAL);
4839 4840
	}

4841
	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
N
NeilBrown 已提交
4842
	if (conf == NULL)
L
Linus Torvalds 已提交
4843
		goto abort;
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
4856
	conf->recovery_disabled = mddev->recovery_disabled - 1;
N
NeilBrown 已提交
4857 4858 4859 4860 4861

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4862
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4863 4864
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4865

4866
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4867 4868 4869
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4870

L
Linus Torvalds 已提交
4871 4872
	conf->mddev = mddev;

4873
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4874 4875
		goto abort;

4876 4877 4878 4879
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4880
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4881

N
NeilBrown 已提交
4882
	rdev_for_each(rdev, mddev) {
L
Linus Torvalds 已提交
4883
		raid_disk = rdev->raid_disk;
4884
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4885 4886 4887 4888
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

4889 4890 4891 4892 4893 4894 4895 4896 4897
		if (test_bit(Replacement, &rdev->flags)) {
			if (disk->replacement)
				goto abort;
			disk->replacement = rdev;
		} else {
			if (disk->rdev)
				goto abort;
			disk->rdev = rdev;
		}
L
Linus Torvalds 已提交
4898

4899
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4900
			char b[BDEVNAME_SIZE];
4901 4902 4903
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
4904
		} else if (rdev->saved_raid_disk != raid_disk)
4905 4906
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4907 4908
	}

4909
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4910
	conf->level = mddev->new_level;
4911 4912 4913 4914
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4915
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4916
	conf->max_nr_stripes = NR_STRIPES;
4917
	conf->reshape_progress = mddev->reshape_position;
4918
	if (conf->reshape_progress != MaxSector) {
4919
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4920 4921
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4922

N
NeilBrown 已提交
4923
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4924
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4925 4926
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4927 4928
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4929 4930
		goto abort;
	} else
4931 4932
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4933

4934
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4935 4936
	if (!conf->thread) {
		printk(KERN_ERR
4937
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4938
		       mdname(mddev));
4939 4940
		goto abort;
	}
N
NeilBrown 已提交
4941 4942 4943 4944 4945

	return conf;

 abort:
	if (conf) {
4946
		free_conf(conf);
N
NeilBrown 已提交
4947 4948 4949 4950 4951
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

4979
static int run(struct mddev *mddev)
N
NeilBrown 已提交
4980
{
4981
	struct r5conf *conf;
4982
	int working_disks = 0;
4983
	int dirty_parity_disks = 0;
4984
	struct md_rdev *rdev;
4985
	sector_t reshape_offset = 0;
4986
	int i;
N
NeilBrown 已提交
4987

4988
	if (mddev->recovery_cp != MaxSector)
4989
		printk(KERN_NOTICE "md/raid:%s: not clean"
4990 4991
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
4992 4993 4994 4995 4996 4997 4998 4999
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
5000
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
5001

5002
		if (mddev->new_level != mddev->level) {
5003
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
5014
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
5015
			       (mddev->raid_disks - max_degraded))) {
5016 5017
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
5018 5019
			return -EINVAL;
		}
5020
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
5021 5022
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
5023
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
5024 5025 5026
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
5038 5039 5040
				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
				       " in read-only mode - aborting\n",
				       mdname(mddev));
5041 5042
				return -EINVAL;
			}
5043
		} else if (mddev->reshape_backwards
5044 5045 5046 5047
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
5048
			/* Reading from the same stripe as writing to - bad */
5049 5050 5051
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
5052 5053
			return -EINVAL;
		}
5054 5055
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
5056 5057 5058 5059
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
5060
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
5061
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
5062
	}
N
NeilBrown 已提交
5063

5064 5065 5066 5067 5068
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
5069 5070 5071 5072 5073 5074 5075
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
	     i++) {
		rdev = conf->disks[i].rdev;
		if (!rdev && conf->disks[i].replacement) {
			/* The replacement is all we have yet */
			rdev = conf->disks[i].replacement;
			conf->disks[i].replacement = NULL;
			clear_bit(Replacement, &rdev->flags);
			conf->disks[i].rdev = rdev;
		}
		if (!rdev)
5087
			continue;
5088 5089 5090 5091 5092 5093 5094
		if (conf->disks[i].replacement &&
		    conf->reshape_progress != MaxSector) {
			/* replacements and reshape simply do not mix. */
			printk(KERN_ERR "md: cannot handle concurrent "
			       "replacement and reshape.\n");
			goto abort;
		}
5095
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
5096
			working_disks++;
5097 5098
			continue;
		}
5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
5127

5128 5129 5130
	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
5131
	mddev->degraded = calc_degraded(conf);
N
NeilBrown 已提交
5132

5133
	if (has_failed(conf)) {
5134
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
5135
			" (%d/%d failed)\n",
5136
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
5137 5138 5139
		goto abort;
	}

N
NeilBrown 已提交
5140
	/* device size must be a multiple of chunk size */
5141
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
5142 5143
	mddev->resync_max_sectors = mddev->dev_sectors;

5144
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
5145
	    mddev->recovery_cp != MaxSector) {
5146 5147
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
5148 5149
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
5150 5151 5152
			       mdname(mddev));
		else {
			printk(KERN_ERR
5153
			       "md/raid:%s: cannot start dirty degraded array.\n",
5154 5155 5156
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
5157 5158 5159
	}

	if (mddev->degraded == 0)
5160 5161
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5162 5163
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
5164
	else
5165 5166 5167 5168 5169
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
5170 5171 5172

	print_raid5_conf(conf);

5173 5174
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
5175 5176 5177 5178 5179 5180
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5181
							"reshape");
5182 5183
	}

L
Linus Torvalds 已提交
5184 5185

	/* Ok, everything is just fine now */
5186 5187
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
5188 5189
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5190
		printk(KERN_WARNING
5191
		       "raid5: failed to create sysfs attributes for %s\n",
5192
		       mdname(mddev));
5193
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5194

5195
	if (mddev->queue) {
5196
		int chunk_size;
5197 5198 5199 5200 5201 5202 5203 5204 5205
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
5206

5207
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5208

N
NeilBrown 已提交
5209 5210
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5211

5212 5213 5214 5215
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
5216

5217
		rdev_for_each(rdev, mddev) {
5218 5219
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
5220 5221 5222
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->new_data_offset << 9);
		}
5223
	}
5224

L
Linus Torvalds 已提交
5225 5226
	return 0;
abort:
5227
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
5228 5229
	print_raid5_conf(conf);
	free_conf(conf);
L
Linus Torvalds 已提交
5230
	mddev->private = NULL;
5231
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
5232 5233 5234
	return -EIO;
}

5235
static int stop(struct mddev *mddev)
L
Linus Torvalds 已提交
5236
{
5237
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5238

5239
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
5240 5241
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
5242
	free_conf(conf);
5243 5244
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5245 5246 5247
	return 0;
}

5248
static void status(struct seq_file *seq, struct mddev *mddev)
L
Linus Torvalds 已提交
5249
{
5250
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5251 5252
	int i;

5253 5254
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5255
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5256 5257 5258
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5259
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5260 5261 5262
	seq_printf (seq, "]");
}

5263
static void print_raid5_conf (struct r5conf *conf)
L
Linus Torvalds 已提交
5264 5265 5266 5267
{
	int i;
	struct disk_info *tmp;

5268
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
5269 5270 5271 5272
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5273 5274 5275
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5276 5277 5278 5279 5280

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
5281 5282 5283
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
5284 5285 5286
	}
}

5287
static int raid5_spare_active(struct mddev *mddev)
L
Linus Torvalds 已提交
5288 5289
{
	int i;
5290
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5291
	struct disk_info *tmp;
5292 5293
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
5294 5295 5296

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
		if (tmp->replacement
		    && tmp->replacement->recovery_offset == MaxSector
		    && !test_bit(Faulty, &tmp->replacement->flags)
		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
			/* Replacement has just become active. */
			if (!tmp->rdev
			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
				count++;
			if (tmp->rdev) {
				/* Replaced device not technically faulty,
				 * but we need to be sure it gets removed
				 * and never re-added.
				 */
				set_bit(Faulty, &tmp->rdev->flags);
				sysfs_notify_dirent_safe(
					tmp->rdev->sysfs_state);
			}
			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
		} else if (tmp->rdev
5316
		    && tmp->rdev->recovery_offset == MaxSector
5317
		    && !test_bit(Faulty, &tmp->rdev->flags)
5318
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5319
			count++;
5320
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
5321 5322
		}
	}
5323
	spin_lock_irqsave(&conf->device_lock, flags);
5324
	mddev->degraded = calc_degraded(conf);
5325
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5326
	print_raid5_conf(conf);
5327
	return count;
L
Linus Torvalds 已提交
5328 5329
}

5330
static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
5331
{
5332
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5333
	int err = 0;
5334
	int number = rdev->raid_disk;
5335
	struct md_rdev **rdevp;
L
Linus Torvalds 已提交
5336 5337 5338
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360
	if (rdev == p->rdev)
		rdevp = &p->rdev;
	else if (rdev == p->replacement)
		rdevp = &p->replacement;
	else
		return 0;

	if (number >= conf->raid_disks &&
	    conf->reshape_progress == MaxSector)
		clear_bit(In_sync, &rdev->flags);

	if (test_bit(In_sync, &rdev->flags) ||
	    atomic_read(&rdev->nr_pending)) {
		err = -EBUSY;
		goto abort;
	}
	/* Only remove non-faulty devices if recovery
	 * isn't possible.
	 */
	if (!test_bit(Faulty, &rdev->flags) &&
	    mddev->recovery_disabled != conf->recovery_disabled &&
	    !has_failed(conf) &&
5361
	    (!p->replacement || p->replacement == rdev) &&
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
	    number < conf->raid_disks) {
		err = -EBUSY;
		goto abort;
	}
	*rdevp = NULL;
	synchronize_rcu();
	if (atomic_read(&rdev->nr_pending)) {
		/* lost the race, try later */
		err = -EBUSY;
		*rdevp = rdev;
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385
	} else if (p->replacement) {
		/* We must have just cleared 'rdev' */
		p->rdev = p->replacement;
		clear_bit(Replacement, &p->replacement->flags);
		smp_mb(); /* Make sure other CPUs may see both as identical
			   * but will never see neither - if they are careful
			   */
		p->replacement = NULL;
		clear_bit(WantReplacement, &rdev->flags);
	} else
		/* We might have just removed the Replacement as faulty-
		 * clear the bit just in case
		 */
		clear_bit(WantReplacement, &rdev->flags);
L
Linus Torvalds 已提交
5386 5387 5388 5389 5390 5391
abort:

	print_raid5_conf(conf);
	return err;
}

5392
static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
5393
{
5394
	struct r5conf *conf = mddev->private;
5395
	int err = -EEXIST;
L
Linus Torvalds 已提交
5396 5397
	int disk;
	struct disk_info *p;
5398 5399
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5400

5401 5402 5403
	if (mddev->recovery_disabled == conf->recovery_disabled)
		return -EBUSY;

N
NeilBrown 已提交
5404
	if (rdev->saved_raid_disk < 0 && has_failed(conf))
L
Linus Torvalds 已提交
5405
		/* no point adding a device */
5406
		return -EINVAL;
L
Linus Torvalds 已提交
5407

5408 5409
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5410 5411

	/*
5412 5413
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5414
	 */
5415
	if (rdev->saved_raid_disk >= 0 &&
5416
	    rdev->saved_raid_disk >= first &&
5417 5418 5419
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
5420
		disk = first;
5421 5422 5423
	for ( ; disk <= last ; disk++) {
		p = conf->disks + disk;
		if (p->rdev == NULL) {
5424
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5425
			rdev->raid_disk = disk;
5426
			err = 0;
5427 5428
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5429
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5430 5431
			break;
		}
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
		if (test_bit(WantReplacement, &p->rdev->flags) &&
		    p->replacement == NULL) {
			clear_bit(In_sync, &rdev->flags);
			set_bit(Replacement, &rdev->flags);
			rdev->raid_disk = disk;
			err = 0;
			conf->fullsync = 1;
			rcu_assign_pointer(p->replacement, rdev);
			break;
		}
	}
L
Linus Torvalds 已提交
5443
	print_raid5_conf(conf);
5444
	return err;
L
Linus Torvalds 已提交
5445 5446
}

5447
static int raid5_resize(struct mddev *mddev, sector_t sectors)
L
Linus Torvalds 已提交
5448 5449 5450 5451 5452 5453 5454 5455
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5456
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5457 5458
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5459 5460 5461
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5462
	set_capacity(mddev->gendisk, mddev->array_sectors);
5463
	revalidate_disk(mddev->gendisk);
5464 5465
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
5466
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5467 5468
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5469
	mddev->dev_sectors = sectors;
5470
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5471 5472 5473
	return 0;
}

5474
static int check_stripe_cache(struct mddev *mddev)
5475 5476 5477 5478 5479 5480 5481 5482 5483
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
5484
	struct r5conf *conf = mddev->private;
5485 5486 5487 5488
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5489 5490
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5491 5492 5493 5494 5495 5496 5497
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5498
static int check_reshape(struct mddev *mddev)
5499
{
5500
	struct r5conf *conf = mddev->private;
5501

5502 5503
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5504
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5505
		return 0; /* nothing to do */
5506 5507 5508
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5509
	if (has_failed(conf))
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5523

5524
	if (!check_stripe_cache(mddev))
5525 5526
		return -ENOSPC;

5527
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5528 5529
}

5530
static int raid5_start_reshape(struct mddev *mddev)
5531
{
5532
	struct r5conf *conf = mddev->private;
5533
	struct md_rdev *rdev;
5534
	int spares = 0;
5535
	unsigned long flags;
5536

5537
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5538 5539
		return -EBUSY;

5540 5541 5542
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5543 5544 5545 5546
	rdev_for_each(rdev, mddev) {
		/* Don't support changing data_offset yet */
		if (rdev->new_data_offset != rdev->data_offset)
			return -EINVAL;
5547 5548
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
5549
			spares++;
5550
	}
5551

5552
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5553 5554 5555 5556 5557
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5558 5559 5560 5561 5562 5563
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5564
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5565 5566 5567 5568
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5569
	atomic_set(&conf->reshape_stripes, 0);
5570 5571
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5572
	conf->raid_disks += mddev->delta_disks;
5573 5574
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5575 5576
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5577 5578 5579 5580 5581
	conf->generation++;
	/* Code that selects data_offset needs to see the generation update
	 * if reshape_progress has been set - so a memory barrier needed.
	 */
	smp_mb();
5582
	if (mddev->reshape_backwards)
5583 5584 5585 5586
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5587 5588 5589 5590
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5591 5592 5593 5594
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5595
	 */
5596
	if (mddev->delta_disks >= 0) {
N
NeilBrown 已提交
5597
		rdev_for_each(rdev, mddev)
5598 5599 5600 5601
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					if (rdev->raid_disk
5602
					    >= conf->previous_raid_disks)
5603
						set_bit(In_sync, &rdev->flags);
5604
					else
5605
						rdev->recovery_offset = 0;
5606 5607

					if (sysfs_link_rdev(mddev, rdev))
5608
						/* Failure here is OK */;
5609
				}
5610 5611 5612 5613 5614
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
			}
5615

5616 5617 5618 5619
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
5620
		spin_lock_irqsave(&conf->device_lock, flags);
5621
		mddev->degraded = calc_degraded(conf);
5622 5623
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5624
	mddev->raid_disks = conf->raid_disks;
5625
	mddev->reshape_position = conf->reshape_progress;
5626
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5627

5628 5629 5630 5631 5632
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5633
						"reshape");
5634 5635 5636 5637
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5638 5639 5640
		rdev_for_each(rdev, mddev)
			rdev->new_data_offset = rdev->data_offset;
		smp_wmb();
5641
		conf->reshape_progress = MaxSector;
5642
		mddev->reshape_position = MaxSector;
5643 5644 5645
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5646
	conf->reshape_checkpoint = jiffies;
5647 5648 5649 5650 5651
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5652 5653 5654
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5655
static void end_reshape(struct r5conf *conf)
5656 5657
{

5658
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5659
		struct md_rdev *rdev;
5660 5661

		spin_lock_irq(&conf->device_lock);
5662
		conf->previous_raid_disks = conf->raid_disks;
5663 5664 5665
		rdev_for_each(rdev, conf->mddev)
			rdev->data_offset = rdev->new_data_offset;
		smp_wmb();
5666
		conf->reshape_progress = MaxSector;
5667
		spin_unlock_irq(&conf->device_lock);
5668
		wake_up(&conf->wait_for_overlap);
5669 5670 5671 5672

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
5673
		if (conf->mddev->queue) {
5674
			int data_disks = conf->raid_disks - conf->max_degraded;
5675
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5676
						   / PAGE_SIZE);
5677 5678 5679
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5680 5681 5682
	}
}

5683 5684 5685
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5686
static void raid5_finish_reshape(struct mddev *mddev)
5687
{
5688
	struct r5conf *conf = mddev->private;
5689 5690 5691

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5692 5693 5694
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5695
			revalidate_disk(mddev->gendisk);
5696 5697
		} else {
			int d;
5698 5699 5700
			spin_lock_irq(&conf->device_lock);
			mddev->degraded = calc_degraded(conf);
			spin_unlock_irq(&conf->device_lock);
5701 5702
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5703
			     d++) {
5704
				struct md_rdev *rdev = conf->disks[d].rdev;
5705 5706
				if (rdev &&
				    raid5_remove_disk(mddev, rdev) == 0) {
5707
					sysfs_unlink_rdev(mddev, rdev);
5708 5709 5710
					rdev->raid_disk = -1;
				}
			}
5711
		}
5712
		mddev->layout = conf->algorithm;
5713
		mddev->chunk_sectors = conf->chunk_sectors;
5714 5715
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5716
		mddev->reshape_backwards = 0;
5717 5718 5719
	}
}

5720
static void raid5_quiesce(struct mddev *mddev, int state)
5721
{
5722
	struct r5conf *conf = mddev->private;
5723 5724

	switch(state) {
5725 5726 5727 5728
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5729 5730
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5731 5732 5733 5734
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5735
		wait_event_lock_irq(conf->wait_for_stripe,
5736 5737
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5738
				    conf->device_lock, /* nothing */);
5739
		conf->quiesce = 1;
5740
		spin_unlock_irq(&conf->device_lock);
5741 5742
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5743 5744 5745 5746 5747 5748
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5749
		wake_up(&conf->wait_for_overlap);
5750 5751 5752 5753
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5754

5755

5756
static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5757
{
5758
	struct r0conf *raid0_conf = mddev->private;
5759
	sector_t sectors;
5760

D
Dan Williams 已提交
5761
	/* for raid0 takeover only one zone is supported */
5762
	if (raid0_conf->nr_strip_zones > 1) {
5763 5764
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5765 5766 5767
		return ERR_PTR(-EINVAL);
	}

5768 5769
	sectors = raid0_conf->strip_zone[0].zone_end;
	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5770
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
5771
	mddev->new_level = level;
5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5783
static void *raid5_takeover_raid1(struct mddev *mddev)
5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5805
	mddev->new_chunk_sectors = chunksect;
5806 5807 5808 5809

	return setup_conf(mddev);
}

5810
static void *raid5_takeover_raid6(struct mddev *mddev)
5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5843

5844
static int raid5_check_reshape(struct mddev *mddev)
5845
{
5846 5847 5848 5849
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5850
	 */
5851
	struct r5conf *conf = mddev->private;
5852
	int new_chunk = mddev->new_chunk_sectors;
5853

5854
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5855 5856
		return -EINVAL;
	if (new_chunk > 0) {
5857
		if (!is_power_of_2(new_chunk))
5858
			return -EINVAL;
5859
		if (new_chunk < (PAGE_SIZE>>9))
5860
			return -EINVAL;
5861
		if (mddev->array_sectors & (new_chunk-1))
5862 5863 5864 5865 5866 5867
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5868
	if (mddev->raid_disks == 2) {
5869 5870 5871 5872
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5873 5874
		}
		if (new_chunk > 0) {
5875 5876
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5877 5878 5879
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5880
	}
5881
	return check_reshape(mddev);
5882 5883
}

5884
static int raid6_check_reshape(struct mddev *mddev)
5885
{
5886
	int new_chunk = mddev->new_chunk_sectors;
5887

5888
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5889
		return -EINVAL;
5890
	if (new_chunk > 0) {
5891
		if (!is_power_of_2(new_chunk))
5892
			return -EINVAL;
5893
		if (new_chunk < (PAGE_SIZE >> 9))
5894
			return -EINVAL;
5895
		if (mddev->array_sectors & (new_chunk-1))
5896 5897
			/* not factor of array size */
			return -EINVAL;
5898
	}
5899 5900

	/* They look valid */
5901
	return check_reshape(mddev);
5902 5903
}

5904
static void *raid5_takeover(struct mddev *mddev)
5905 5906
{
	/* raid5 can take over:
D
Dan Williams 已提交
5907
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5908 5909 5910 5911
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
5912 5913
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
5914 5915
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5916 5917 5918 5919 5920
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5921 5922
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5923 5924 5925 5926

	return ERR_PTR(-EINVAL);
}

5927
static void *raid4_takeover(struct mddev *mddev)
5928
{
D
Dan Williams 已提交
5929 5930 5931
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
5932
	 */
D
Dan Williams 已提交
5933 5934
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
5935 5936 5937 5938 5939 5940 5941 5942
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
5943

5944
static struct md_personality raid5_personality;
5945

5946
static void *raid6_takeover(struct mddev *mddev)
5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5993
static struct md_personality raid6_personality =
5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6008
	.size		= raid5_size,
6009
	.check_reshape	= raid6_check_reshape,
6010
	.start_reshape  = raid5_start_reshape,
6011
	.finish_reshape = raid5_finish_reshape,
6012
	.quiesce	= raid5_quiesce,
6013
	.takeover	= raid6_takeover,
6014
};
6015
static struct md_personality raid5_personality =
L
Linus Torvalds 已提交
6016 6017
{
	.name		= "raid5",
6018
	.level		= 5,
L
Linus Torvalds 已提交
6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6030
	.size		= raid5_size,
6031 6032
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6033
	.finish_reshape = raid5_finish_reshape,
6034
	.quiesce	= raid5_quiesce,
6035
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
6036 6037
};

6038
static struct md_personality raid4_personality =
L
Linus Torvalds 已提交
6039
{
6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6053
	.size		= raid5_size,
6054 6055
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6056
	.finish_reshape = raid5_finish_reshape,
6057
	.quiesce	= raid5_quiesce,
6058
	.takeover	= raid4_takeover,
6059 6060 6061 6062
};

static int __init raid5_init(void)
{
6063
	register_md_personality(&raid6_personality);
6064 6065 6066
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
6067 6068
}

6069
static void raid5_exit(void)
L
Linus Torvalds 已提交
6070
{
6071
	unregister_md_personality(&raid6_personality);
6072 6073
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
6074 6075 6076 6077 6078
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
6079
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
6080
MODULE_ALIAS("md-personality-4"); /* RAID5 */
6081 6082
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
6083 6084
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
6085 6086 6087 6088 6089 6090 6091
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");