raid5.c 166.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
 * conf->bm_write is the number of the last batch successfully written.
 * conf->bm_flush is the number of the last batch that was closed to
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
 * the number of the batch it will be in. This is bm_flush+1.
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/async.h>
51
#include <linux/seq_file.h>
52
#include <linux/cpu.h>
53
#include <linux/slab.h>
54
#include "md.h"
55
#include "raid5.h"
56
#include "raid0.h"
57
#include "bitmap.h"
58

L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
68
#define BYPASS_THRESHOLD	1
69
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
70 71
#define HASH_MASK		(NR_HASH - 1)

72
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

94
#ifdef DEBUG
L
Linus Torvalds 已提交
95 96 97 98
#define inline
#define __inline__
#endif

99 100
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

101
/*
102 103
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104 105 106
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
107
	return bio->bi_phys_segments & 0xffff;
108 109 110 111
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
112
	return (bio->bi_phys_segments >> 16) & 0xffff;
113 114 115 116 117 118 119 120 121 122 123 124 125
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
126
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 128 129 130 131
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
132
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 134
}

135 136 137
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
138 139 140 141
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
142 143 144 145 146
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
147 148 149 150 151
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
152

153 154 155 156 157
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
158 159
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
160
{
161
	int slot = *count;
162

163
	if (sh->ddf_layout)
164
		(*count)++;
165
	if (idx == sh->pd_idx)
166
		return syndrome_disks;
167
	if (idx == sh->qd_idx)
168
		return syndrome_disks + 1;
169
	if (!sh->ddf_layout)
170
		(*count)++;
171 172 173
	return slot;
}

174 175 176 177 178 179 180 181
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
182
		bio_endio(bi, 0);
183 184 185 186
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
187 188
static void print_raid5_conf (raid5_conf_t *conf);

189 190 191 192 193 194 195
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

196
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
197 198
{
	if (atomic_dec_and_test(&sh->count)) {
199 200
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
201
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
N
NeilBrown 已提交
202
			if (test_bit(STRIPE_DELAYED, &sh->state))
L
Linus Torvalds 已提交
203
				list_add_tail(&sh->lru, &conf->delayed_list);
N
NeilBrown 已提交
204 205
			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
				   sh->bm_seq - conf->seq_write > 0)
206
				list_add_tail(&sh->lru, &conf->bitmap_list);
N
NeilBrown 已提交
207
			else {
208
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
209
				list_add_tail(&sh->lru, &conf->handle_list);
210
			}
L
Linus Torvalds 已提交
211 212
			md_wakeup_thread(conf->mddev->thread);
		} else {
213
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
214 215 216 217 218 219
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
220 221
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
222
				wake_up(&conf->wait_for_stripe);
223 224
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
225
			}
L
Linus Torvalds 已提交
226 227 228
		}
	}
}
229

L
Linus Torvalds 已提交
230 231 232 233
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
234

L
Linus Torvalds 已提交
235 236 237 238 239
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

240
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
241
{
242 243
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
244

245
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
246 247
}

248
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
249
{
250
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
251

252 253
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
254 255

	CHECK_DEVLOCK();
256
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

278
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
279 280 281
{
	struct page *p;
	int i;
282
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
283

284
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
285 286 287 288
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
289
		put_page(p);
L
Linus Torvalds 已提交
290 291 292
	}
}

293
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
294 295
{
	int i;
296
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
297

298
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
299 300 301 302 303 304 305 306 307 308
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

309
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 311
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
312

313
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
314 315
{
	raid5_conf_t *conf = sh->raid_conf;
316
	int i;
L
Linus Torvalds 已提交
317

318 319
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320
	BUG_ON(stripe_operations_active(sh));
321

L
Linus Torvalds 已提交
322
	CHECK_DEVLOCK();
323
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
324 325 326
		(unsigned long long)sh->sector);

	remove_hash(sh);
327

328
	sh->generation = conf->generation - previous;
329
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
330
	sh->sector = sector;
331
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
332 333
	sh->state = 0;

334 335

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
336 337
		struct r5dev *dev = &sh->dev[i];

338
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
339
		    test_bit(R5_LOCKED, &dev->flags)) {
340
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
341
			       (unsigned long long)sh->sector, i, dev->toread,
342
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
343 344 345 346
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
347
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
348 349 350 351
	}
	insert_hash(conf, sh);
}

352 353
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
354 355
{
	struct stripe_head *sh;
356
	struct hlist_node *hn;
L
Linus Torvalds 已提交
357 358

	CHECK_DEVLOCK();
359
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
362
			return sh;
363
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
364 365 366
	return NULL;
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
static int has_failed(raid5_conf_t *conf)
{
	int degraded;
	int i;
	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

434 435
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
436
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
437 438 439
{
	struct stripe_head *sh;

440
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
441 442 443 444

	spin_lock_irq(&conf->device_lock);

	do {
445
		wait_event_lock_irq(conf->wait_for_stripe,
446
				    conf->quiesce == 0 || noquiesce,
447
				    conf->device_lock, /* nothing */);
448
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
449 450 451 452 453 454 455 456 457
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
458 459
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
460 461
						     || !conf->inactive_blocked),
						    conf->device_lock,
N
NeilBrown 已提交
462
						    md_wakeup_thread(conf->mddev->thread));
L
Linus Torvalds 已提交
463 464
				conf->inactive_blocked = 0;
			} else
465
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
466 467
		} else {
			if (atomic_read(&sh->count)) {
468 469
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
470 471 472
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
473 474
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
475 476
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
477 478 479 480 481 482 483 484 485 486 487
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

488 489 490 491
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
492

493
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
494 495 496 497 498 499 500 501 502 503
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
T
Tejun Heo 已提交
504 505 506 507 508 509
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
531
			if (s->syncing || s->expanding || s->expanded)
532 533
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
534 535
			set_bit(STRIPE_IO_STARTED, &sh->state);

536 537
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
538
				__func__, (unsigned long long)sh->sector,
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
575
	struct async_submit_ctl submit;
D
Dan Williams 已提交
576
	enum async_tx_flags flags = 0;
577 578 579 580 581

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
582

D
Dan Williams 已提交
583 584 585 586
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
608
						  b_offset, clen, &submit);
609 610
			else
				tx = async_memcpy(bio_page, page, b_offset,
611
						  page_offset, clen, &submit);
612
		}
613 614 615
		/* chain the operations */
		submit.depend_tx = tx;

616 617 618 619 620 621 622 623 624 625 626 627 628
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
629
	int i;
630

631
	pr_debug("%s: stripe %llu\n", __func__,
632 633 634
		(unsigned long long)sh->sector);

	/* clear completed biofills */
635
	spin_lock_irq(&conf->device_lock);
636 637 638 639
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
640 641
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
642
		 * !STRIPE_BIOFILL_RUN
643 644
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
645 646 647 648 649 650 651 652
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
653
				if (!raid5_dec_bi_phys_segments(rbi)) {
654 655 656 657 658 659 660
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
661 662
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
663 664 665

	return_io(return_bi);

666
	set_bit(STRIPE_HANDLE, &sh->state);
667 668 669 670 671 672 673
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
674
	struct async_submit_ctl submit;
675 676
	int i;

677
	pr_debug("%s: stripe %llu\n", __func__,
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
698 699
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
700 701
}

702
static void mark_target_uptodate(struct stripe_head *sh, int target)
703
{
704
	struct r5dev *tgt;
705

706 707
	if (target < 0)
		return;
708

709
	tgt = &sh->dev[target];
710 711 712
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
713 714
}

715
static void ops_complete_compute(void *stripe_head_ref)
716 717 718
{
	struct stripe_head *sh = stripe_head_ref;

719
	pr_debug("%s: stripe %llu\n", __func__,
720 721
		(unsigned long long)sh->sector);

722
	/* mark the computed target(s) as uptodate */
723
	mark_target_uptodate(sh, sh->ops.target);
724
	mark_target_uptodate(sh, sh->ops.target2);
725

726 727 728
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
729 730 731 732
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

733 734 735 736 737 738 739 740 741
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
742 743
{
	int disks = sh->disks;
744
	struct page **xor_srcs = percpu->scribble;
745 746 747 748 749
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
750
	struct async_submit_ctl submit;
751 752 753
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
754
		__func__, (unsigned long long)sh->sector, target);
755 756 757 758 759 760 761 762
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
763
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
764
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
765
	if (unlikely(count == 1))
766
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
767
	else
768
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
769 770 771 772

	return tx;
}

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
791
		srcs[i] = NULL;
792 793 794 795 796 797 798 799 800 801

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

802
	return syndrome_disks;
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
823
	else
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
840 841
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
842 843 844 845 846 847 848 849 850 851 852
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
853 854
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
855 856 857
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
858 859 860 861

	return tx;
}

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

883
	/* we need to open-code set_syndrome_sources to handle the
884 885 886
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
887
		blocks[i] = NULL;
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
914 915 916
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
917
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
937 938 939 940
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
941 942 943 944
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
945 946 947
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
948 949 950 951
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
952 953 954 955 956 957 958 959 960 961 962 963 964 965
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
966 967 968 969
	}
}


970 971 972 973
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

974
	pr_debug("%s: stripe %llu\n", __func__,
975 976 977 978
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
979 980
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
981 982
{
	int disks = sh->disks;
983
	struct page **xor_srcs = percpu->scribble;
984
	int count = 0, pd_idx = sh->pd_idx, i;
985
	struct async_submit_ctl submit;
986 987 988 989

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

990
	pr_debug("%s: stripe %llu\n", __func__,
991 992 993 994 995
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
996
		if (test_bit(R5_Wantdrain, &dev->flags))
997 998 999
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1000
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1001
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1002
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1003 1004 1005 1006 1007

	return tx;
}

static struct dma_async_tx_descriptor *
1008
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1009 1010
{
	int disks = sh->disks;
1011
	int i;
1012

1013
	pr_debug("%s: stripe %llu\n", __func__,
1014 1015 1016 1017 1018 1019
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1020
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1032 1033
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1044
static void ops_complete_reconstruct(void *stripe_head_ref)
1045 1046
{
	struct stripe_head *sh = stripe_head_ref;
1047 1048 1049 1050
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
T
Tejun Heo 已提交
1051
	bool fua = false;
1052

1053
	pr_debug("%s: stripe %llu\n", __func__,
1054 1055
		(unsigned long long)sh->sector);

T
Tejun Heo 已提交
1056 1057 1058
	for (i = disks; i--; )
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);

1059 1060
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1061

T
Tejun Heo 已提交
1062
		if (dev->written || i == pd_idx || i == qd_idx) {
1063
			set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1064 1065 1066
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
		}
1067 1068
	}

1069 1070 1071 1072 1073 1074 1075 1076
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1077 1078 1079 1080 1081 1082

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1083 1084
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1085 1086
{
	int disks = sh->disks;
1087
	struct page **xor_srcs = percpu->scribble;
1088
	struct async_submit_ctl submit;
1089 1090
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1091
	int prexor = 0;
1092 1093
	unsigned long flags;

1094
	pr_debug("%s: stripe %llu\n", __func__,
1095 1096 1097 1098 1099
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1100 1101
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1122
	flags = ASYNC_TX_ACK |
1123 1124 1125 1126
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1127
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1128
			  to_addr_conv(sh, percpu));
1129 1130 1131 1132
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1133 1134
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1152 1153 1154 1155 1156 1157
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1158
	pr_debug("%s: stripe %llu\n", __func__,
1159 1160
		(unsigned long long)sh->sector);

1161
	sh->check_state = check_state_check_result;
1162 1163 1164 1165
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1166
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1167 1168
{
	int disks = sh->disks;
1169 1170 1171
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1172
	struct page **xor_srcs = percpu->scribble;
1173
	struct dma_async_tx_descriptor *tx;
1174
	struct async_submit_ctl submit;
1175 1176
	int count;
	int i;
1177

1178
	pr_debug("%s: stripe %llu\n", __func__,
1179 1180
		(unsigned long long)sh->sector);

1181 1182 1183
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1184
	for (i = disks; i--; ) {
1185 1186 1187
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1188 1189
	}

1190 1191
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1192
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1193
			   &sh->ops.zero_sum_result, &submit);
1194 1195

	atomic_inc(&sh->count);
1196 1197
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1198 1199
}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1212 1213

	atomic_inc(&sh->count);
1214 1215 1216 1217
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1218 1219
}

1220
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1221 1222 1223
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1224
	raid5_conf_t *conf = sh->raid_conf;
1225
	int level = conf->level;
1226 1227
	struct raid5_percpu *percpu;
	unsigned long cpu;
1228

1229 1230
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1231
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1232 1233 1234 1235
		ops_run_biofill(sh);
		overlap_clear++;
	}

1236
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1247 1248
			async_tx_ack(tx);
	}
1249

1250
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1251
		tx = ops_run_prexor(sh, percpu, tx);
1252

1253
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1254
		tx = ops_run_biodrain(sh, tx);
1255 1256 1257
		overlap_clear++;
	}

1258 1259 1260 1261 1262 1263
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1264

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1275 1276 1277 1278 1279 1280 1281

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1282
	put_cpu();
1283 1284
}

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1315
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1316 1317
{
	struct stripe_head *sh;
1318 1319 1320
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
1321
	memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1322 1323
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);
1324 1325 1326
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1327

1328 1329
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
1343
	struct kmem_cache *sc;
1344
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1345

1346 1347 1348 1349 1350 1351 1352 1353
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1354 1355
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1356
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1357
			       0, 0, NULL);
L
Linus Torvalds 已提交
1358 1359 1360
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1361
	conf->pool_size = devs;
1362
	while (num--)
1363
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1364 1365 1366
			return 1;
	return 0;
}
1367

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1418
	unsigned long cpu;
1419
	int err;
1420
	struct kmem_cache *sc;
1421 1422 1423 1424 1425
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1426 1427 1428
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1429

1430 1431 1432
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1433
			       0, 0, NULL);
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);
1446 1447 1448
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
N
NeilBrown 已提交
1471
				    );
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1486
	 * conf->disks and the scribble region
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1516 1517 1518 1519
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1520

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1537

1538
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1539 1540 1541
{
	struct stripe_head *sh;

1542 1543 1544 1545 1546
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1547
	BUG_ON(atomic_read(&sh->count));
1548
	shrink_buffers(sh);
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1559 1560
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1561 1562 1563
	conf->slab_cache = NULL;
}

1564
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1565
{
1566
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1567
	raid5_conf_t *conf = sh->raid_conf;
1568
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1569
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1570 1571
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1572 1573 1574 1575 1576 1577


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1578 1579
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1580 1581 1582
		uptodate);
	if (i == disks) {
		BUG();
1583
		return;
L
Linus Torvalds 已提交
1584 1585 1586 1587
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1588
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1589
			rdev = conf->disks[i].rdev;
1590
			printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1591 1592 1593 1594 1595
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1596 1597 1598
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1599 1600
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1601
	} else {
1602
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1603
		int retry = 0;
1604 1605
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1606
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1607
		atomic_inc(&rdev->read_errors);
1608
		if (conf->mddev->degraded >= conf->max_degraded)
1609
			printk_rl(KERN_WARNING
1610
				  "md/raid:%s: read error not correctable "
1611 1612 1613 1614 1615
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1616
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1617
			/* Oh, no!!! */
1618
			printk_rl(KERN_WARNING
1619
				  "md/raid:%s: read error NOT corrected!! "
1620 1621 1622 1623 1624
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1625
		else if (atomic_read(&rdev->read_errors)
1626
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1627
			printk(KERN_WARNING
1628
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1629
			       mdname(conf->mddev), bdn);
1630 1631 1632 1633 1634
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1635 1636
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1637
			md_error(conf->mddev, rdev);
1638
		}
L
Linus Torvalds 已提交
1639 1640 1641 1642 1643 1644 1645
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1646
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1647
{
1648
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1649
	raid5_conf_t *conf = sh->raid_conf;
1650
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1651 1652 1653 1654 1655 1656
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1657
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1658 1659 1660 1661
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1662
		return;
L
Linus Torvalds 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1672
	release_stripe(sh);
L
Linus Torvalds 已提交
1673 1674 1675
}


1676
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1677
	
1678
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1694
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1695 1696 1697 1698 1699
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
1700
	raid5_conf_t *conf = mddev->private;
1701
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1702

1703
	if (!test_bit(Faulty, &rdev->flags)) {
1704
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1705 1706 1707
		if (test_and_clear_bit(In_sync, &rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1708
			mddev->degraded++;
1709
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1710 1711 1712
			/*
			 * if recovery was running, make sure it aborts.
			 */
1713
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1714
		}
1715
		set_bit(Faulty, &rdev->flags);
1716
		printk(KERN_ALERT
1717 1718 1719 1720 1721 1722
		       "md/raid:%s: Disk failure on %s, disabling device.\n"
		       "md/raid:%s: Operation continuing on %d devices.\n",
		       mdname(mddev),
		       bdevname(rdev->bdev, b),
		       mdname(mddev),
		       conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
1723
	}
1724
}
L
Linus Torvalds 已提交
1725 1726 1727 1728 1729

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1730
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1731 1732
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1733
{
N
NeilBrown 已提交
1734
	sector_t stripe, stripe2;
1735
	sector_t chunk_number;
L
Linus Torvalds 已提交
1736
	unsigned int chunk_offset;
1737
	int pd_idx, qd_idx;
1738
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1739
	sector_t new_sector;
1740 1741
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1742 1743
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1744 1745 1746
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1759 1760
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1761
	stripe2 = stripe;
L
Linus Torvalds 已提交
1762 1763 1764
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1765
	pd_idx = qd_idx = ~0;
1766 1767
	switch(conf->level) {
	case 4:
1768
		pd_idx = data_disks;
1769 1770
		break;
	case 5:
1771
		switch (algorithm) {
L
Linus Torvalds 已提交
1772
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1773
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1774
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1775 1776 1777
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1778
			pd_idx = sector_div(stripe2, raid_disks);
1779
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1780 1781 1782
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1783
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1784
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1785 1786
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1787
			pd_idx = sector_div(stripe2, raid_disks);
1788
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1789
			break;
1790 1791 1792 1793 1794 1795 1796
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1797
		default:
1798
			BUG();
1799 1800 1801 1802
		}
		break;
	case 6:

1803
		switch (algorithm) {
1804
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1805
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1806 1807
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1808
				(*dd_idx)++;	/* Q D D D P */
1809 1810
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1811 1812 1813
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1814
			pd_idx = sector_div(stripe2, raid_disks);
1815 1816
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1817
				(*dd_idx)++;	/* Q D D D P */
1818 1819
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1820 1821 1822
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1823
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1824 1825
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1826 1827
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1828
			pd_idx = sector_div(stripe2, raid_disks);
1829 1830
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1831
			break;
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
1847
			pd_idx = sector_div(stripe2, raid_disks);
1848 1849 1850 1851 1852 1853
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1854
			ddf_layout = 1;
1855 1856 1857 1858 1859 1860 1861
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
1862 1863
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1864 1865 1866 1867 1868 1869
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1870
			ddf_layout = 1;
1871 1872 1873 1874
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
1875
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1876 1877
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1878
			ddf_layout = 1;
1879 1880 1881 1882
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
1883
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1884 1885 1886 1887 1888 1889
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
1890
			pd_idx = sector_div(stripe2, raid_disks-1);
1891 1892 1893 1894 1895 1896
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
1897
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1898 1899 1900 1901 1902
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
1903
			pd_idx = sector_div(stripe2, raid_disks-1);
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

1914
		default:
1915
			BUG();
1916 1917
		}
		break;
L
Linus Torvalds 已提交
1918 1919
	}

1920 1921 1922
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1923
		sh->ddf_layout = ddf_layout;
1924
	}
L
Linus Torvalds 已提交
1925 1926 1927 1928 1929 1930 1931 1932
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1933
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1934 1935
{
	raid5_conf_t *conf = sh->raid_conf;
1936 1937
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1938
	sector_t new_sector = sh->sector, check;
1939 1940
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1941 1942
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1943 1944
	sector_t stripe;
	int chunk_offset;
1945 1946
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1947
	sector_t r_sector;
1948
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1949

1950

L
Linus Torvalds 已提交
1951 1952 1953
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

1954 1955 1956 1957 1958
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1959
		switch (algorithm) {
L
Linus Torvalds 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1971 1972 1973 1974 1975
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1976
		default:
1977
			BUG();
1978 1979 1980
		}
		break;
	case 6:
1981
		if (i == sh->qd_idx)
1982
			return 0; /* It is the Q disk */
1983
		switch (algorithm) {
1984 1985
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1986 1987 1988 1989
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2004 2005 2006 2007 2008 2009
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2010
			/* Like left_symmetric, but P is before Q */
2011 2012
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2013 2014 2015 2016 2017 2018
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2034
		default:
2035
			BUG();
2036 2037
		}
		break;
L
Linus Torvalds 已提交
2038 2039 2040
	}

	chunk_number = stripe * data_disks + i;
2041
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2042

2043
	check = raid5_compute_sector(conf, r_sector,
2044
				     previous, &dummy1, &sh2);
2045 2046
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2047 2048
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2049 2050 2051 2052 2053 2054
		return 0;
	}
	return r_sector;
}


2055
static void
2056
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2057
			 int rcw, int expand)
2058 2059
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2060 2061
	raid5_conf_t *conf = sh->raid_conf;
	int level = conf->level;
2062 2063 2064 2065 2066 2067 2068

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2069 2070 2071 2072
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2073

2074
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2075 2076 2077 2078 2079 2080

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2081
				set_bit(R5_Wantdrain, &dev->flags);
2082 2083
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2084
				s->locked++;
2085 2086
			}
		}
2087
		if (s->locked + conf->max_degraded == disks)
2088
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2089
				atomic_inc(&conf->pending_full_writes);
2090
	} else {
2091
		BUG_ON(level == 6);
2092 2093 2094
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2095
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2096 2097
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2098
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2099 2100 2101 2102 2103 2104 2105 2106

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2107 2108
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2109 2110
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2111
				s->locked++;
2112 2113 2114 2115
			}
		}
	}

2116
	/* keep the parity disk(s) locked while asynchronous operations
2117 2118 2119 2120
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2121
	s->locked++;
2122

2123 2124 2125 2126 2127 2128 2129 2130 2131
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2132
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2133
		__func__, (unsigned long long)sh->sector,
2134
		s->locked, s->ops_request);
2135
}
2136

L
Linus Torvalds 已提交
2137 2138
/*
 * Each stripe/dev can have one or more bion attached.
2139
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2140 2141 2142 2143 2144 2145
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
2146
	int firstwrite=0;
L
Linus Torvalds 已提交
2147

2148
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2149 2150 2151 2152 2153 2154
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
2155
	if (forwrite) {
L
Linus Torvalds 已提交
2156
		bip = &sh->dev[dd_idx].towrite;
2157 2158 2159
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2169
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2170 2171 2172
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2173
	bi->bi_phys_segments++;
L
Linus Torvalds 已提交
2174 2175 2176
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

2177
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
2178 2179 2180
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

2181 2182 2183
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
2184
		sh->bm_seq = conf->seq_flush+1;
2185 2186 2187
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

2210 2211
static void end_reshape(raid5_conf_t *conf);

2212 2213
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2214
{
2215
	int sectors_per_chunk =
2216
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2217
	int dd_idx;
2218
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2219
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2220

2221 2222
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2223
			     *sectors_per_chunk + chunk_offset,
2224
			     previous,
2225
			     &dd_idx, sh);
2226 2227
}

2228
static void
2229
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2263
			if (!raid5_dec_bi_phys_segments(bi)) {
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2278
			if (!raid5_dec_bi_phys_segments(bi)) {
2279 2280 2281 2282 2283 2284 2285
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2286 2287 2288 2289 2290 2291
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2302
				if (!raid5_dec_bi_phys_segments(bi)) {
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2315 2316 2317
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2318 2319
}

2320 2321 2322 2323 2324
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2325
 */
2326 2327
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2328 2329 2330 2331 2332 2333
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2334 2335 2336 2337 2338 2339 2340 2341
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2342 2343
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2344 2345
		 */
		if ((s->uptodate == disks - 1) &&
2346
		    (s->failed && disk_idx == s->failed_num)) {
2347 2348
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2349 2350
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
2351
			sh->ops.target2 = -1;
2352 2353
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
2354
			 * of raid_run_ops which services 'compute' operations
2355 2356 2357 2358 2359
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2360
			return 1; /* uptodate + compute == disks */
2361
		} else if (test_bit(R5_Insync, &dev->flags)) {
2362 2363 2364 2365 2366 2367 2368 2369
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2370
	return 0;
2371 2372
}

2373 2374 2375 2376
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2377 2378 2379
			struct stripe_head_state *s, int disks)
{
	int i;
2380 2381 2382 2383 2384

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2385
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2386
	    !sh->reconstruct_state)
2387
		for (i = disks; i--; )
2388
			if (fetch_block5(sh, s, i, disks))
2389
				break;
2390 2391 2392
	set_bit(STRIPE_HANDLE, &sh->state);
}

2393 2394 2395 2396 2397 2398 2399 2400
/* fetch_block6 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill6 to continue
 */
static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
			 struct r6_state *r6s, int disk_idx, int disks)
2401
{
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
				  &sh->dev[r6s->failed_num[1]] };

	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed >= 1 &&
	      (fdev[0]->toread || s->to_write)) ||
	     (s->failed >= 2 &&
	      (fdev[1]->toread || s->to_write)))) {
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
		    (s->failed && (disk_idx == r6s->failed_num[0] ||
				   disk_idx == r6s->failed_num[1]))) {
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2425
			 */
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2447
			}
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2467 2468
		}
	}
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490

	return 0;
}

/**
 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill6(struct stripe_head *sh,
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
			if (fetch_block6(sh, s, r6s, i, disks))
				break;
2491 2492 2493 2494
	set_bit(STRIPE_HANDLE, &sh->state);
}


2495
/* handle_stripe_clean_event
2496 2497 2498 2499
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2500
static void handle_stripe_clean_event(raid5_conf_t *conf,
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2514
				pr_debug("Return write for disc %d\n", i);
2515 2516 2517 2518 2519 2520
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2521
					if (!raid5_dec_bi_phys_segments(wbi)) {
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2539 2540 2541 2542

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2543 2544
}

2545
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2546 2547 2548 2549 2550 2551 2552 2553
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2554 2555
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2556 2557 2558 2559 2560 2561 2562 2563
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2564 2565 2566
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2567 2568 2569 2570
			else
				rcw += 2*disks;
		}
	}
2571
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2572 2573 2574 2575 2576 2577 2578 2579
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2580 2581
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2582 2583 2584
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2585
					pr_debug("Read_old block "
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2603 2604
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2605 2606 2607
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2608
					pr_debug("Read_old block "
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2622 2623
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2624 2625
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2626 2627 2628
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2629 2630 2631
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2632
		schedule_reconstruction(sh, s, rcw == 0, 0);
2633 2634
}

2635
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2636 2637 2638
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
2639
	int rcw = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2640
	int qd_idx = sh->qd_idx;
2641 2642

	set_bit(STRIPE_HANDLE, &sh->state);
2643 2644
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
		/* check if we haven't enough data */
		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
		    i != pd_idx && i != qd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
			rcw++;
			if (!test_bit(R5_Insync, &dev->flags))
				continue; /* it's a failed drive */

			if (
			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				pr_debug("Read_old stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
			} else {
				pr_debug("Request delayed stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(STRIPE_DELAYED, &sh->state);
				set_bit(STRIPE_HANDLE, &sh->state);
2669 2670 2671 2672 2673 2674
			}
		}
	}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
2675 2676
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    s->locked == 0 && rcw == 0 &&
2677
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2678
		schedule_reconstruction(sh, s, 1, 0);
2679 2680 2681 2682 2683 2684
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2685
	struct r5dev *dev = NULL;
2686

2687
	set_bit(STRIPE_HANDLE, &sh->state);
2688

2689 2690 2691
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2692 2693
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2694 2695
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2696 2697
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2698
			break;
2699
		}
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
		dev = &sh->dev[s->failed_num];
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2710

2711 2712 2713 2714 2715
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2716
		s->locked++;
2717
		set_bit(R5_Wantwrite, &dev->flags);
2718

2719 2720
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2737
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2749
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2750 2751 2752 2753
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2754
				sh->ops.target2 = -1;
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2766 2767 2768 2769 2770
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2771 2772
				  struct stripe_head_state *s,
				  struct r6_state *r6s, int disks)
2773 2774
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2775
	int qd_idx = sh->qd_idx;
2776
	struct r5dev *dev;
2777 2778 2779 2780

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2781

2782 2783 2784 2785 2786 2787
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2788 2789 2790
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2791
		if (s->failed == r6s->q_failed) {
2792
			/* The only possible failed device holds Q, so it
2793 2794 2795
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2796
			sh->check_state = check_state_run;
2797 2798
		}
		if (!r6s->q_failed && s->failed < 2) {
2799
			/* Q is not failed, and we didn't use it to generate
2800 2801
			 * anything, so it makes sense to check it
			 */
2802 2803 2804 2805
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2806 2807
		}

2808 2809
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2810

2811 2812 2813 2814
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2815
		}
2816 2817 2818 2819 2820 2821 2822
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2823 2824
		}

2825 2826 2827 2828 2829
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2830

2831 2832 2833
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2834 2835

		/* now write out any block on a failed drive,
2836
		 * or P or Q if they were recomputed
2837
		 */
2838
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
		if (s->failed == 2) {
			dev = &sh->dev[r6s->failed_num[1]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
			dev = &sh->dev[r6s->failed_num[0]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2851
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2852 2853 2854 2855 2856
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2857
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2858 2859 2860 2861 2862 2863 2864 2865
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
	}
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2941
	struct dma_async_tx_descriptor *tx = NULL;
2942 2943
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2944
		if (i != sh->pd_idx && i != sh->qd_idx) {
2945
			int dd_idx, j;
2946
			struct stripe_head *sh2;
2947
			struct async_submit_ctl submit;
2948

2949
			sector_t bn = compute_blocknr(sh, i, 1);
2950 2951
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2952
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2965 2966

			/* place all the copies on one channel */
2967
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2968
			tx = async_memcpy(sh2->dev[dd_idx].page,
2969
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2970
					  &submit);
2971

2972 2973 2974 2975
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2976
				    (!r6s || j != sh2->qd_idx) &&
2977 2978 2979 2980 2981 2982 2983
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2984

2985
		}
2986 2987 2988 2989 2990
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2991
}
L
Linus Torvalds 已提交
2992

2993

L
Linus Torvalds 已提交
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
3010

3011
static void handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
3012 3013
{
	raid5_conf_t *conf = sh->raid_conf;
3014 3015 3016
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
3017
	struct r5dev *dev;
3018
	mdk_rdev_t *blocked_rdev = NULL;
3019
	int prexor;
3020
	int dec_preread_active = 0;
L
Linus Torvalds 已提交
3021

3022
	memset(&s, 0, sizeof(s));
3023 3024 3025 3026
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
		 sh->reconstruct_state);
L
Linus Torvalds 已提交
3027 3028 3029 3030 3031

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3032 3033 3034
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
N
Neil Brown 已提交
3035

3036
	/* Now to look around and see what can be done */
3037
	rcu_read_lock();
L
Linus Torvalds 已提交
3038 3039
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
3040 3041

		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3042

3043 3044 3045 3046 3047 3048 3049
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
3050
		 * ops_complete_biofill is guaranteed to be inactive
3051 3052
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3053
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3054
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3055 3056

		/* now count some things */
3057 3058
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3059
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
3060

3061 3062 3063
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
3064
			s.to_read++;
L
Linus Torvalds 已提交
3065
		if (dev->towrite) {
3066
			s.to_write++;
L
Linus Torvalds 已提交
3067
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3068
				s.non_overwrite++;
L
Linus Torvalds 已提交
3069
		}
3070 3071
		if (dev->written)
			s.written++;
3072
		rdev = rcu_dereference(conf->disks[i].rdev);
3073 3074
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3075 3076 3077
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* could be in-sync depending on recovery/reshape status */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
N
NeilBrown 已提交
3089
			/* The ReadError flag will just be confusing now */
3090 3091 3092
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
3093 3094 3095
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3096 3097
			s.failed++;
			s.failed_num = i;
3098
		}
L
Linus Torvalds 已提交
3099
	}
3100
	rcu_read_unlock();
3101

3102
	if (unlikely(blocked_rdev)) {
3103 3104 3105 3106 3107 3108 3109 3110
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3111 3112
	}

3113 3114 3115 3116
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
3117

3118
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
3119
		" to_write=%d failed=%d failed_num=%d\n",
3120 3121
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
3122 3123 3124
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
3125
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3126
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3127
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
3128 3129
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3130
		s.syncing = 0;
L
Linus Torvalds 已提交
3131 3132 3133 3134 3135 3136
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
3137 3138 3139 3140 3141
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3142
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
3143 3144 3145 3146 3147

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3148
	if (s.to_read || s.non_overwrite ||
3149
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3150
		handle_stripe_fill5(sh, &s, disks);
L
Linus Torvalds 已提交
3151

3152 3153 3154
	/* Now we check to see if any write operations have recently
	 * completed
	 */
3155
	prexor = 0;
3156
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3157
		prexor = 1;
3158 3159
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3160
		sh->reconstruct_state = reconstruct_state_idle;
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
3172 3173
				if (prexor)
					continue;
3174 3175 3176 3177 3178
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3179 3180
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			dec_preread_active = 1;
3181 3182 3183 3184 3185 3186 3187 3188
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
3189
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3190
		handle_stripe_dirtying5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
3191 3192

	/* maybe we need to check and possibly fix the parity for this stripe
3193 3194 3195
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
3196
	 */
3197 3198
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
3199
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3200
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3201
		handle_parity_checks5(conf, sh, &s, disks);
3202

3203
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
3204 3205 3206
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
3207 3208 3209 3210

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
3211 3212 3213 3214
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3215
		) {
3216
		dev = &sh->dev[s.failed_num];
3217 3218 3219 3220
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3221
			s.locked++;
3222 3223 3224 3225
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3226
			s.locked++;
3227 3228 3229
		}
	}

3230 3231
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
3232
		struct stripe_head *sh2
3233
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3249
		sh->reconstruct_state = reconstruct_state_idle;
3250
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
3251
		for (i = conf->raid_disks; i--; ) {
3252
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
3253
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3254
			s.locked++;
D
Dan Williams 已提交
3255
		}
3256 3257 3258
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3259
	    !sh->reconstruct_state) {
3260 3261
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
3262
		stripe_set_idx(sh->sector, conf, 0, sh);
3263
		schedule_reconstruction(sh, &s, 1, 1);
3264
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3265
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3266
		atomic_dec(&conf->reshape_stripes);
3267 3268 3269 3270
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3271
	if (s.expanding && s.locked == 0 &&
3272
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3273
		handle_stripe_expansion(conf, sh, NULL);
3274

3275
 unlock:
L
Linus Torvalds 已提交
3276 3277
	spin_unlock(&sh->lock);

3278 3279 3280 3281
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3282
	if (s.ops_request)
3283
		raid_run_ops(sh, s.ops_request);
3284

3285
	ops_run_io(sh, &s);
L
Linus Torvalds 已提交
3286

3287 3288
	if (dec_preread_active) {
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3289
		 * is waiting on a flush, it won't continue until the writes
3290 3291 3292 3293 3294 3295 3296
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}
3297
	return_io(return_bi);
L
Linus Torvalds 已提交
3298 3299
}

3300
static void handle_stripe6(struct stripe_head *sh)
L
Linus Torvalds 已提交
3301
{
3302
	raid5_conf_t *conf = sh->raid_conf;
3303
	int disks = sh->disks;
3304
	struct bio *return_bi = NULL;
N
NeilBrown 已提交
3305
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3306 3307
	struct stripe_head_state s;
	struct r6_state r6s;
3308
	struct r5dev *dev, *pdev, *qdev;
3309
	mdk_rdev_t *blocked_rdev = NULL;
3310
	int dec_preread_active = 0;
L
Linus Torvalds 已提交
3311

3312
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3313
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3314
	       (unsigned long long)sh->sector, sh->state,
3315 3316
	       atomic_read(&sh->count), pd_idx, qd_idx,
	       sh->check_state, sh->reconstruct_state);
3317
	memset(&s, 0, sizeof(s));
3318

3319 3320 3321 3322
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3323 3324 3325
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3326
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3327 3328

	rcu_read_lock();
3329 3330 3331
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3332

3333
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3334
			i, dev->flags, dev->toread, dev->towrite, dev->written);
3335 3336 3337 3338 3339 3340 3341 3342
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3343

3344
		/* now count some things */
3345 3346
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3347 3348 3349 3350
		if (test_bit(R5_Wantcompute, &dev->flags)) {
			s.compute++;
			BUG_ON(s.compute > 2);
		}
L
Linus Torvalds 已提交
3351

3352 3353 3354
		if (test_bit(R5_Wantfill, &dev->flags)) {
			s.to_fill++;
		} else if (dev->toread)
3355
			s.to_read++;
3356
		if (dev->towrite) {
3357
			s.to_write++;
3358
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3359
				s.non_overwrite++;
3360
		}
3361 3362
		if (dev->written)
			s.written++;
3363
		rdev = rcu_dereference(conf->disks[i].rdev);
3364 3365
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3366 3367 3368
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* in sync if before recovery_offset */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
3380 3381 3382
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3383
		}
3384 3385 3386
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3387 3388 3389
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3390
		}
L
Linus Torvalds 已提交
3391 3392
	}
	rcu_read_unlock();
3393 3394

	if (unlikely(blocked_rdev)) {
3395 3396 3397 3398 3399 3400 3401 3402
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3403
	}
3404

3405 3406 3407 3408 3409
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

3410
	pr_debug("locked=%d uptodate=%d to_read=%d"
3411
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3412 3413 3414 3415
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3416
	 */
3417
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3418
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3419
	if (s.failed > 2 && s.syncing) {
3420 3421
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3422
		s.syncing = 0;
3423 3424 3425 3426 3427 3428 3429
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3430 3431
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
N
NeilBrown 已提交
3432 3433 3434
	qdev = &sh->dev[qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3435 3436 3437

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3438
			     && !test_bit(R5_LOCKED, &pdev->flags)
3439 3440
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3441
			     && !test_bit(R5_LOCKED, &qdev->flags)
3442
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3443
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3444 3445 3446 3447 3448

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3449
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3450
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3451
		handle_stripe_fill6(sh, &s, &r6s, disks);
3452

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	if (sh->reconstruct_state == reconstruct_state_drain_result) {

		sh->reconstruct_state = reconstruct_state_idle;
		/* All the 'written' buffers and the parity blocks are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
			    (i == sh->pd_idx || i == qd_idx ||
			     dev->written)) {
				pr_debug("Writing block %d\n", i);
				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
				set_bit(R5_Wantwrite, &dev->flags);
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == qd_idx) &&
				      s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3478 3479
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			dec_preread_active = 1;
3480 3481
	}

3482 3483 3484 3485 3486 3487 3488
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3489
		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3490 3491

	/* maybe we need to check and possibly fix the parity for this stripe
3492
	 * Any reads will already have been scheduled, so we just see if enough
3493 3494
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
3495
	 */
3496 3497 3498 3499
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3500
		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3501

3502
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3503 3504 3505 3506 3507 3508 3509
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3510 3511 3512
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3513 3514 3515 3516 3517 3518 3519 3520
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3521
					s.locked++;
3522 3523 3524 3525
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3526
					s.locked++;
3527 3528 3529
				}
			}
		}
3530

3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
3544
		struct stripe_head *sh2
3545
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3561 3562
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3563
		stripe_set_idx(sh->sector, conf, 0, sh);
3564 3565
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3566 3567 3568 3569 3570 3571
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3572
	if (s.expanding && s.locked == 0 &&
3573
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3574
		handle_stripe_expansion(conf, sh, &r6s);
3575

3576
 unlock:
3577 3578
	spin_unlock(&sh->lock);

3579 3580 3581 3582
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3583 3584 3585
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3586
	ops_run_io(sh, &s);
3587

3588 3589 3590

	if (dec_preread_active) {
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3591
		 * is waiting on a flush, it won't continue until the writes
3592 3593 3594 3595 3596 3597 3598 3599
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

D
Dan Williams 已提交
3600
	return_io(return_bi);
3601 3602
}

3603
static void handle_stripe(struct stripe_head *sh)
3604 3605
{
	if (sh->raid_conf->level == 6)
3606
		handle_stripe6(sh);
3607
	else
3608
		handle_stripe5(sh);
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3622
			list_add_tail(&sh->lru, &conf->hold_list);
3623
		}
N
NeilBrown 已提交
3624
	}
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

N
NeilBrown 已提交
3641
int md_raid5_congested(mddev_t *mddev, int bits)
3642
{
3643
	raid5_conf_t *conf = mddev->private;
3644 3645 3646 3647

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3648

3649 3650 3651 3652 3653 3654 3655 3656 3657
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3658 3659 3660 3661 3662 3663 3664 3665 3666
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3667

3668 3669 3670
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3671 3672 3673
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3674 3675
{
	mddev_t *mddev = q->queuedata;
3676
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3677
	int max;
3678
	unsigned int chunk_sectors = mddev->chunk_sectors;
3679
	unsigned int bio_sectors = bvm->bi_size >> 9;
3680

3681
	if ((bvm->bi_rw & 1) == WRITE)
3682 3683
		return biovec->bv_len; /* always allow writes to be mergeable */

3684 3685
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3686 3687 3688 3689 3690 3691 3692 3693
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3694 3695 3696 3697

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3698
	unsigned int chunk_sectors = mddev->chunk_sectors;
3699 3700
	unsigned int bio_sectors = bio->bi_size >> 9;

3701 3702
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3703 3704 3705 3706
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3736
		conf->retry_read_aligned_list = bi->bi_next;
3737
		bi->bi_next = NULL;
3738 3739 3740 3741
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3742 3743 3744 3745 3746 3747 3748
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3749 3750 3751 3752 3753 3754
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3755
static void raid5_align_endio(struct bio *bi, int error)
3756 3757
{
	struct bio* raid_bi  = bi->bi_private;
3758 3759 3760 3761 3762
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3763
	bio_put(bi);
3764 3765 3766

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3767 3768
	mddev = rdev->mddev;
	conf = mddev->private;
3769 3770 3771 3772

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3773
		bio_endio(raid_bi, 0);
3774 3775
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3776
		return;
3777 3778 3779
	}


3780
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3781 3782

	add_bio_to_retry(raid_bi, conf);
3783 3784
}

3785 3786
static int bio_fits_rdev(struct bio *bi)
{
3787
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3788

3789
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3790 3791
		return 0;
	blk_recount_segments(q, bi);
3792
	if (bi->bi_phys_segments > queue_max_segments(q))
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3805
static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3806
{
3807
	raid5_conf_t *conf = mddev->private;
N
NeilBrown 已提交
3808
	int dd_idx;
3809 3810 3811 3812
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3813
		pr_debug("chunk_aligned_read : non aligned\n");
3814 3815 3816
		return 0;
	}
	/*
3817
	 * use bio_clone_mddev to make a copy of the bio
3818
	 */
3819
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3831 3832
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3833
						    &dd_idx, NULL);
3834 3835 3836 3837 3838 3839

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3840 3841 3842 3843 3844
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3845 3846 3847 3848 3849 3850 3851
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3852 3853 3854 3855 3856 3857 3858
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3859 3860 3861 3862
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3863
		bio_put(align_bi);
3864 3865 3866 3867
		return 0;
	}
}

3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3920

3921
static int make_request(mddev_t *mddev, struct bio * bi)
L
Linus Torvalds 已提交
3922
{
3923
	raid5_conf_t *conf = mddev->private;
3924
	int dd_idx;
L
Linus Torvalds 已提交
3925 3926 3927
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3928
	const int rw = bio_data_dir(bi);
3929
	int remaining;
L
Linus Torvalds 已提交
3930

T
Tejun Heo 已提交
3931 3932
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
3933 3934 3935
		return 0;
	}

3936
	md_write_start(mddev, bi);
3937

3938
	if (rw == READ &&
3939
	     mddev->reshape_position == MaxSector &&
3940
	     chunk_aligned_read(mddev,bi))
3941
		return 0;
3942

L
Linus Torvalds 已提交
3943 3944 3945 3946
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3947

L
Linus Torvalds 已提交
3948 3949
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3950
		int disks, data_disks;
3951
		int previous;
3952

3953
	retry:
3954
		previous = 0;
3955
		disks = conf->raid_disks;
3956
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3957
		if (unlikely(conf->reshape_progress != MaxSector)) {
3958
			/* spinlock is needed as reshape_progress may be
3959 3960
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3961
			 * Ofcourse reshape_progress could change after
3962 3963 3964 3965
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3966
			spin_lock_irq(&conf->device_lock);
3967 3968 3969
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3970
				disks = conf->previous_raid_disks;
3971 3972
				previous = 1;
			} else {
3973 3974 3975
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3976 3977 3978 3979 3980
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3981 3982
			spin_unlock_irq(&conf->device_lock);
		}
3983 3984
		data_disks = disks - conf->max_degraded;

3985 3986
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3987
						  &dd_idx, NULL);
3988
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3989 3990 3991
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3992
		sh = get_active_stripe(conf, new_sector, previous,
3993
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
3994
		if (sh) {
3995
			if (unlikely(previous)) {
3996
				/* expansion might have moved on while waiting for a
3997 3998 3999 4000 4001 4002
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
4003 4004 4005
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
4006 4007 4008
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
4009 4010 4011 4012 4013
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
4014
					schedule();
4015 4016 4017
					goto retry;
				}
			}
4018

4019 4020
			if (bio_data_dir(bi) == WRITE &&
			    logical_sector >= mddev->suspend_lo &&
4021 4022
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
4033 4034
				goto retry;
			}
4035 4036 4037 4038 4039

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
4040 4041
				 * and wait a while
				 */
N
NeilBrown 已提交
4042
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
4043 4044 4045 4046 4047
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
4048 4049
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
T
Tejun Heo 已提交
4050
			if ((bi->bi_rw & REQ_SYNC) &&
4051 4052
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
L
Linus Torvalds 已提交
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
	spin_lock_irq(&conf->device_lock);
4063
	remaining = raid5_dec_bi_phys_segments(bi);
4064 4065
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
4066

4067
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4068
			md_write_end(mddev);
4069

4070
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4071
	}
4072

L
Linus Torvalds 已提交
4073 4074 4075
	return 0;
}

D
Dan Williams 已提交
4076 4077
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

4078
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4079
{
4080 4081 4082 4083 4084 4085 4086 4087 4088
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4089
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4090
	struct stripe_head *sh;
4091
	sector_t first_sector, last_sector;
4092 4093 4094
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4095 4096
	int i;
	int dd_idx;
4097
	sector_t writepos, readpos, safepos;
4098
	sector_t stripe_addr;
4099
	int reshape_sectors;
4100
	struct list_head stripes;
4101

4102 4103 4104 4105 4106 4107
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4108
		} else if (mddev->delta_disks >= 0 &&
4109 4110
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4111
		sector_div(sector_nr, new_data_disks);
4112
		if (sector_nr) {
4113 4114
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4115 4116 4117
			*skipped = 1;
			return sector_nr;
		}
4118 4119
	}

4120 4121 4122 4123
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4124 4125
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4126
	else
4127
		reshape_sectors = mddev->chunk_sectors;
4128

4129 4130 4131 4132 4133
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
4134 4135
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
4136
	 */
4137
	writepos = conf->reshape_progress;
4138
	sector_div(writepos, new_data_disks);
4139 4140
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4141
	safepos = conf->reshape_safe;
4142
	sector_div(safepos, data_disks);
4143
	if (mddev->delta_disks < 0) {
4144
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4145
		readpos += reshape_sectors;
4146
		safepos += reshape_sectors;
4147
	} else {
4148
		writepos += reshape_sectors;
4149 4150
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4151
	}
4152

4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4170
	if ((mddev->delta_disks < 0
4171 4172 4173
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4174 4175 4176
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4177
		mddev->reshape_position = conf->reshape_progress;
4178
		mddev->curr_resync_completed = sector_nr;
4179
		conf->reshape_checkpoint = jiffies;
4180
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4181
		md_wakeup_thread(mddev->thread);
4182
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4183 4184
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4185
		conf->reshape_safe = mddev->reshape_position;
4186 4187
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4188
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4189 4190
	}

4191 4192 4193 4194
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
4195 4196
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
4197 4198
		       != sector_nr);
	} else {
4199
		BUG_ON(writepos != sector_nr + reshape_sectors);
4200 4201
		stripe_addr = sector_nr;
	}
4202
	INIT_LIST_HEAD(&stripes);
4203
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4204
		int j;
4205
		int skipped_disk = 0;
4206
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4207 4208 4209 4210 4211 4212 4213 4214 4215
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4216
			if (conf->level == 6 &&
4217
			    j == sh->qd_idx)
4218
				continue;
4219
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4220
			if (s < raid5_size(mddev, 0, 0)) {
4221
				skipped_disk = 1;
4222 4223 4224 4225 4226 4227
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4228
		if (!skipped_disk) {
4229 4230 4231
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4232
		list_add(&sh->lru, &stripes);
4233 4234
	}
	spin_lock_irq(&conf->device_lock);
4235
	if (mddev->delta_disks < 0)
4236
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4237
	else
4238
		conf->reshape_progress += reshape_sectors * new_data_disks;
4239 4240 4241 4242 4243 4244 4245
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4246
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4247
				     1, &dd_idx, NULL);
4248
	last_sector =
4249
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4250
					    * new_data_disks - 1),
4251
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4252 4253
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4254
	while (first_sector <= last_sector) {
4255
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4256 4257 4258 4259 4260
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4261 4262 4263 4264 4265 4266 4267 4268
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4269 4270 4271
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4272
	sector_nr += reshape_sectors;
4273 4274
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4275 4276 4277
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4278
		mddev->reshape_position = conf->reshape_progress;
4279
		mddev->curr_resync_completed = sector_nr;
4280
		conf->reshape_checkpoint = jiffies;
4281 4282 4283 4284 4285 4286
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4287
		conf->reshape_safe = mddev->reshape_position;
4288 4289
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4290
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4291
	}
4292
	return reshape_sectors;
4293 4294 4295 4296 4297
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
4298
	raid5_conf_t *conf = mddev->private;
4299
	struct stripe_head *sh;
A
Andre Noll 已提交
4300
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
4301
	sector_t sync_blocks;
4302 4303
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4304

4305
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4306
		/* just being told to finish up .. nothing much to do */
4307

4308 4309 4310 4311
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4312 4313 4314 4315

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4316
		else /* completed sync */
4317 4318 4319
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4320 4321
		return 0;
	}
4322

4323 4324 4325
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4326 4327
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4328

4329 4330 4331 4332 4333 4334
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4335
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4336 4337 4338
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4339
	if (mddev->degraded >= conf->max_degraded &&
4340
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4341
		sector_t rv = mddev->dev_sectors - sector_nr;
4342
		*skipped = 1;
L
Linus Torvalds 已提交
4343 4344
		return rv;
	}
4345
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4346
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4347 4348 4349 4350 4351 4352
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4353

N
NeilBrown 已提交
4354 4355 4356

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4357
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4358
	if (sh == NULL) {
4359
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4360
		/* make sure we don't swamp the stripe cache if someone else
4361
		 * is trying to get access
L
Linus Torvalds 已提交
4362
		 */
4363
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4364
	}
4365 4366 4367 4368
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4369
	for (i = 0; i < conf->raid_disks; i++)
4370 4371 4372 4373 4374 4375
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
4376 4377 4378 4379
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

4380
	handle_stripe(sh);
L
Linus Torvalds 已提交
4381 4382 4383 4384 4385
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4399
	int dd_idx;
4400 4401 4402 4403 4404 4405
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4406
	sector = raid5_compute_sector(conf, logical_sector,
4407
				      0, &dd_idx, NULL);
4408 4409 4410
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4411 4412 4413
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4414

4415
		if (scnt < raid5_bi_hw_segments(raid_bio))
4416 4417 4418
			/* already done this stripe */
			continue;

4419
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4420 4421 4422

		if (!sh) {
			/* failed to get a stripe - must wait */
4423
			raid5_set_bi_hw_segments(raid_bio, scnt);
4424 4425 4426 4427 4428
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4429 4430
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4431
			raid5_set_bi_hw_segments(raid_bio, scnt);
4432 4433 4434 4435
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4436
		handle_stripe(sh);
4437 4438 4439 4440
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4441
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4442
	spin_unlock_irq(&conf->device_lock);
4443 4444
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4445 4446 4447 4448 4449 4450
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4451 4452 4453 4454 4455 4456 4457
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4458
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4459 4460
{
	struct stripe_head *sh;
4461
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4462
	int handled;
4463
	struct blk_plug plug;
L
Linus Torvalds 已提交
4464

4465
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4466 4467 4468

	md_check_recovery(mddev);

4469
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
4470 4471 4472
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4473
		struct bio *bio;
L
Linus Torvalds 已提交
4474

4475
		if (conf->seq_flush != conf->seq_write) {
4476
			int seq = conf->seq_flush;
4477
			spin_unlock_irq(&conf->device_lock);
4478
			bitmap_unplug(mddev->bitmap);
4479
			spin_lock_irq(&conf->device_lock);
4480 4481 4482 4483
			conf->seq_write = seq;
			activate_bit_delay(conf);
		}

4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4494 4495
		sh = __get_priority_stripe(conf);

4496
		if (!sh)
L
Linus Torvalds 已提交
4497 4498 4499 4500
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4501 4502 4503
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4504 4505 4506

		spin_lock_irq(&conf->device_lock);
	}
4507
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4508 4509 4510

	spin_unlock_irq(&conf->device_lock);

4511
	async_tx_issue_pending_all();
4512
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
4513

4514
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4515 4516
}

4517
static ssize_t
4518
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4519
{
4520
	raid5_conf_t *conf = mddev->private;
4521 4522 4523 4524
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4525 4526
}

4527 4528
int
raid5_set_cache_size(mddev_t *mddev, int size)
4529
{
4530
	raid5_conf_t *conf = mddev->private;
4531 4532
	int err;

4533
	if (size <= 16 || size > 32768)
4534
		return -EINVAL;
4535
	while (size < conf->max_nr_stripes) {
4536 4537 4538 4539 4540
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4541 4542 4543
	err = md_allow_write(mddev);
	if (err)
		return err;
4544
	while (size > conf->max_nr_stripes) {
4545 4546 4547 4548
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
{
	raid5_conf_t *conf = mddev->private;
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4570 4571
	return len;
}
4572

4573 4574 4575 4576
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4577

4578 4579 4580
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4581
	raid5_conf_t *conf = mddev->private;
4582 4583 4584 4585 4586 4587 4588 4589 4590
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4591
	raid5_conf_t *conf = mddev->private;
4592
	unsigned long new;
4593 4594 4595 4596 4597
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4598
	if (strict_strtoul(page, 10, &new))
4599
		return -EINVAL;
4600
	if (new > conf->max_nr_stripes)
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4612
static ssize_t
4613
stripe_cache_active_show(mddev_t *mddev, char *page)
4614
{
4615
	raid5_conf_t *conf = mddev->private;
4616 4617 4618 4619
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4620 4621
}

4622 4623
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4624

4625
static struct attribute *raid5_attrs[] =  {
4626 4627
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4628
	&raid5_preread_bypass_threshold.attr,
4629 4630
	NULL,
};
4631 4632 4633
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4634 4635
};

4636 4637 4638
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4639
	raid5_conf_t *conf = mddev->private;
4640 4641 4642

	if (!sectors)
		sectors = mddev->dev_sectors;
4643
	if (!raid_disks)
4644
		/* size is defined by the smallest of previous and new size */
4645
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4646

4647
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4648
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4649 4650 4651
	return sectors * (raid_disks - conf->max_degraded);
}

4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4664
		kfree(percpu->scribble);
4665 4666 4667 4668 4669 4670 4671 4672 4673
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4674 4675 4676
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4677
	raid5_free_percpu(conf);
4678 4679 4680 4681 4682
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4694
		if (conf->level == 6 && !percpu->spare_page)
4695
			percpu->spare_page = alloc_page(GFP_KERNEL);
4696 4697 4698 4699 4700 4701 4702
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4703 4704
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
4705
			return notifier_from_errno(-ENOMEM);
4706 4707 4708 4709 4710
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4711
		kfree(percpu->scribble);
4712
		percpu->spare_page = NULL;
4713
		percpu->scribble = NULL;
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
4726
	struct raid5_percpu __percpu *allcpus;
4727
	void *scribble;
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4738 4739 4740 4741 4742 4743 4744 4745
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4746
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4747
		if (!scribble) {
4748 4749 4750
			err = -ENOMEM;
			break;
		}
4751
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4764
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4765 4766
{
	raid5_conf_t *conf;
4767
	int raid_disk, memory, max_disks;
L
Linus Torvalds 已提交
4768 4769 4770
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4771 4772 4773
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4774
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4775 4776
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4777
	}
N
NeilBrown 已提交
4778 4779 4780 4781
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4782
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4783 4784
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4785
	}
N
NeilBrown 已提交
4786
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4787
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4788 4789
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4790 4791
	}

4792 4793 4794
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4795 4796
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4797
		return ERR_PTR(-EINVAL);
4798 4799
	}

N
NeilBrown 已提交
4800 4801
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4802
		goto abort;
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
N
NeilBrown 已提交
4815 4816 4817 4818 4819

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4820
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4821 4822
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4823

4824
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4825 4826 4827
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4828

L
Linus Torvalds 已提交
4829 4830
	conf->mddev = mddev;

4831
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4832 4833
		goto abort;

4834 4835 4836 4837
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4838
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4839

4840
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4841
		raid_disk = rdev->raid_disk;
4842
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4843 4844 4845 4846 4847 4848
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4849
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4850
			char b[BDEVNAME_SIZE];
4851 4852 4853
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4854 4855 4856
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4857 4858
	}

4859
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4860
	conf->level = mddev->new_level;
4861 4862 4863 4864
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4865
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4866
	conf->max_nr_stripes = NR_STRIPES;
4867
	conf->reshape_progress = mddev->reshape_position;
4868
	if (conf->reshape_progress != MaxSector) {
4869
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4870 4871
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4872

N
NeilBrown 已提交
4873
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4874
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4875 4876
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4877 4878
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4879 4880
		goto abort;
	} else
4881 4882
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4883

4884
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4885 4886
	if (!conf->thread) {
		printk(KERN_ERR
4887
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4888
		       mdname(mddev));
4889 4890
		goto abort;
	}
N
NeilBrown 已提交
4891 4892 4893 4894 4895

	return conf;

 abort:
	if (conf) {
4896
		free_conf(conf);
N
NeilBrown 已提交
4897 4898 4899 4900 4901
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

N
NeilBrown 已提交
4929 4930 4931
static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
4932
	int working_disks = 0;
4933
	int dirty_parity_disks = 0;
N
NeilBrown 已提交
4934
	mdk_rdev_t *rdev;
4935
	sector_t reshape_offset = 0;
N
NeilBrown 已提交
4936

4937
	if (mddev->recovery_cp != MaxSector)
4938
		printk(KERN_NOTICE "md/raid:%s: not clean"
4939 4940
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
4941 4942 4943 4944 4945 4946 4947 4948
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4949
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4950

4951
		if (mddev->new_level != mddev->level) {
4952
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4963
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
4964
			       (mddev->raid_disks - max_degraded))) {
4965 4966
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
4967 4968
			return -EINVAL;
		}
4969
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
4970 4971
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
4972
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
4973 4974 4975
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
4987 4988 4989
				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
				       " in read-only mode - aborting\n",
				       mdname(mddev));
4990 4991 4992 4993 4994 4995 4996
				return -EINVAL;
			}
		} else if (mddev->delta_disks < 0
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
4997
			/* Reading from the same stripe as writing to - bad */
4998 4999 5000
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
5001 5002
			return -EINVAL;
		}
5003 5004
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
5005 5006 5007 5008
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
5009
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
5010
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
5011
	}
N
NeilBrown 已提交
5012

5013 5014 5015 5016 5017
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
5028 5029 5030
	list_for_each_entry(rdev, &mddev->disks, same_set) {
		if (rdev->raid_disk < 0)
			continue;
5031
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
5032
			working_disks++;
5033 5034
			continue;
		}
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
5063

5064 5065
	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
			   - working_disks);
N
NeilBrown 已提交
5066

5067
	if (has_failed(conf)) {
5068
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
5069
			" (%d/%d failed)\n",
5070
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
5071 5072 5073
		goto abort;
	}

N
NeilBrown 已提交
5074
	/* device size must be a multiple of chunk size */
5075
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
5076 5077
	mddev->resync_max_sectors = mddev->dev_sectors;

5078
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
5079
	    mddev->recovery_cp != MaxSector) {
5080 5081
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
5082 5083
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
5084 5085 5086
			       mdname(mddev));
		else {
			printk(KERN_ERR
5087
			       "md/raid:%s: cannot start dirty degraded array.\n",
5088 5089 5090
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
5091 5092 5093
	}

	if (mddev->degraded == 0)
5094 5095
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5096 5097
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
5098
	else
5099 5100 5101 5102 5103
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
5104 5105 5106

	print_raid5_conf(conf);

5107 5108
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
5109 5110 5111 5112 5113 5114
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5115
							"reshape");
5116 5117
	}

L
Linus Torvalds 已提交
5118 5119

	/* Ok, everything is just fine now */
5120 5121
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
5122 5123
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5124
		printk(KERN_WARNING
5125
		       "raid5: failed to create sysfs attributes for %s\n",
5126
		       mdname(mddev));
5127
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5128

5129
	if (mddev->queue) {
5130
		int chunk_size;
5131 5132 5133 5134 5135 5136 5137 5138 5139
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
5140

5141
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5142

N
NeilBrown 已提交
5143 5144
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5145
		mddev->queue->queue_lock = &conf->device_lock;
5146

5147 5148 5149 5150
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
5151

5152 5153 5154 5155
		list_for_each_entry(rdev, &mddev->disks, same_set)
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
	}
5156

L
Linus Torvalds 已提交
5157 5158
	return 0;
abort:
5159
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
5160
	mddev->thread = NULL;
L
Linus Torvalds 已提交
5161 5162
	if (conf) {
		print_raid5_conf(conf);
5163
		free_conf(conf);
L
Linus Torvalds 已提交
5164 5165
	}
	mddev->private = NULL;
5166
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
5167 5168 5169
	return -EIO;
}

5170
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
5171
{
5172
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5173 5174 5175

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
N
NeilBrown 已提交
5176 5177
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
5178
	free_conf(conf);
5179 5180
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5181 5182 5183
	return 0;
}

5184
#ifdef DEBUG
5185
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
5186 5187 5188
{
	int i;

5189 5190 5191 5192 5193
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5194
	for (i = 0; i < sh->disks; i++) {
5195 5196
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
5197
	}
5198
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
5199 5200
}

5201
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
5202 5203
{
	struct stripe_head *sh;
5204
	struct hlist_node *hn;
L
Linus Torvalds 已提交
5205 5206 5207 5208
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
5209
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
5210 5211
			if (sh->raid_conf != conf)
				continue;
5212
			print_sh(seq, sh);
L
Linus Torvalds 已提交
5213 5214 5215 5216 5217 5218
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

5219
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
5220
{
5221
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5222 5223
	int i;

5224 5225
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5226
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5227 5228 5229
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5230
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5231
	seq_printf (seq, "]");
5232
#ifdef DEBUG
5233 5234
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
5235 5236 5237 5238 5239 5240 5241 5242
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

5243
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
5244 5245 5246 5247
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5248 5249 5250
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5251 5252 5253 5254 5255

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
5256 5257 5258
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
5259 5260 5261 5262 5263 5264 5265 5266
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;
5267 5268
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
5269 5270 5271 5272

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
5273
		    && tmp->rdev->recovery_offset == MaxSector
5274
		    && !test_bit(Faulty, &tmp->rdev->flags)
5275
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5276
			count++;
5277
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
5278 5279
		}
	}
5280 5281 5282
	spin_lock_irqsave(&conf->device_lock, flags);
	mddev->degraded -= count;
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5283
	print_raid5_conf(conf);
5284
	return count;
L
Linus Torvalds 已提交
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
5297 5298 5299 5300
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

5301
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
5302 5303 5304 5305
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
5306 5307 5308 5309
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
5310
		    !has_failed(conf) &&
5311
		    number < conf->raid_disks) {
5312 5313 5314
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
5315
		p->rdev = NULL;
5316
		synchronize_rcu();
L
Linus Torvalds 已提交
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
5332
	int err = -EEXIST;
L
Linus Torvalds 已提交
5333 5334
	int disk;
	struct disk_info *p;
5335 5336
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5337

5338
	if (has_failed(conf))
L
Linus Torvalds 已提交
5339
		/* no point adding a device */
5340
		return -EINVAL;
L
Linus Torvalds 已提交
5341

5342 5343
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5344 5345

	/*
5346 5347
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5348
	 */
5349
	if (rdev->saved_raid_disk >= 0 &&
5350
	    rdev->saved_raid_disk >= first &&
5351 5352 5353
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
5354 5355
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
5356
		if ((p=conf->disks + disk)->rdev == NULL) {
5357
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5358
			rdev->raid_disk = disk;
5359
			err = 0;
5360 5361
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5362
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5363 5364 5365
			break;
		}
	print_raid5_conf(conf);
5366
	return err;
L
Linus Torvalds 已提交
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5378
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5379 5380
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5381 5382 5383
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5384
	set_capacity(mddev->gendisk, mddev->array_sectors);
5385
	revalidate_disk(mddev->gendisk);
A
Andre Noll 已提交
5386 5387
	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5388 5389
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5390
	mddev->dev_sectors = sectors;
5391
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5392 5393 5394
	return 0;
}

5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
static int check_stripe_cache(mddev_t *mddev)
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
	raid5_conf_t *conf = mddev->private;
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5410 5411
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5412 5413 5414 5415 5416 5417 5418
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5419
static int check_reshape(mddev_t *mddev)
5420
{
5421
	raid5_conf_t *conf = mddev->private;
5422

5423 5424
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5425
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5426
		return 0; /* nothing to do */
5427 5428 5429
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5430
	if (has_failed(conf))
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5444

5445
	if (!check_stripe_cache(mddev))
5446 5447
		return -ENOSPC;

5448
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5449 5450 5451 5452
}

static int raid5_start_reshape(mddev_t *mddev)
{
5453
	raid5_conf_t *conf = mddev->private;
5454 5455
	mdk_rdev_t *rdev;
	int spares = 0;
5456
	unsigned long flags;
5457

5458
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5459 5460
		return -EBUSY;

5461 5462 5463
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5464
	list_for_each_entry(rdev, &mddev->disks, same_set)
5465 5466
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
5467
			spares++;
5468

5469
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5470 5471 5472 5473 5474
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5475 5476 5477 5478 5479 5480
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5481
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5482 5483 5484 5485
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5486
	atomic_set(&conf->reshape_stripes, 0);
5487 5488
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5489
	conf->raid_disks += mddev->delta_disks;
5490 5491
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5492 5493
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5494 5495 5496 5497 5498
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5499
	conf->generation++;
5500 5501 5502 5503
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5504 5505 5506 5507
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5508
	 */
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525
	if (mddev->delta_disks >= 0) {
		int added_devices = 0;
		list_for_each_entry(rdev, &mddev->disks, same_set)
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					char nm[20];
					if (rdev->raid_disk
					    >= conf->previous_raid_disks) {
						set_bit(In_sync, &rdev->flags);
						added_devices++;
					} else
						rdev->recovery_offset = 0;
					sprintf(nm, "rd%d", rdev->raid_disk);
					if (sysfs_create_link(&mddev->kobj,
							      &rdev->kobj, nm))
						/* Failure here is OK */;
5526
				}
5527 5528 5529 5530 5531 5532
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
				added_devices++;
			}
5533

5534 5535 5536 5537
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
5538
		spin_lock_irqsave(&conf->device_lock, flags);
5539
		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5540 5541 5542
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5543
	mddev->raid_disks = conf->raid_disks;
5544
	mddev->reshape_position = conf->reshape_progress;
5545
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5546

5547 5548 5549 5550 5551
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5552
						"reshape");
5553 5554 5555 5556
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5557
		conf->reshape_progress = MaxSector;
5558 5559 5560
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5561
	conf->reshape_checkpoint = jiffies;
5562 5563 5564 5565 5566
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5567 5568 5569
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5570 5571 5572
static void end_reshape(raid5_conf_t *conf)
{

5573 5574 5575
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5576
		conf->previous_raid_disks = conf->raid_disks;
5577
		conf->reshape_progress = MaxSector;
5578
		spin_unlock_irq(&conf->device_lock);
5579
		wake_up(&conf->wait_for_overlap);
5580 5581 5582 5583

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
5584
		if (conf->mddev->queue) {
5585
			int data_disks = conf->raid_disks - conf->max_degraded;
5586
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5587
						   / PAGE_SIZE);
5588 5589 5590
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5591 5592 5593
	}
}

5594 5595 5596
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5597 5598
static void raid5_finish_reshape(mddev_t *mddev)
{
5599
	raid5_conf_t *conf = mddev->private;
5600 5601 5602

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5603 5604 5605
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5606
			revalidate_disk(mddev->gendisk);
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5617 5618 5619 5620 5621 5622 5623 5624 5625
			     d++) {
				mdk_rdev_t *rdev = conf->disks[d].rdev;
				if (rdev && raid5_remove_disk(mddev, d) == 0) {
					char nm[20];
					sprintf(nm, "rd%d", rdev->raid_disk);
					sysfs_remove_link(&mddev->kobj, nm);
					rdev->raid_disk = -1;
				}
			}
5626
		}
5627
		mddev->layout = conf->algorithm;
5628
		mddev->chunk_sectors = conf->chunk_sectors;
5629 5630
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5631 5632 5633
	}
}

5634 5635
static void raid5_quiesce(mddev_t *mddev, int state)
{
5636
	raid5_conf_t *conf = mddev->private;
5637 5638

	switch(state) {
5639 5640 5641 5642
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5643 5644
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5645 5646 5647 5648
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5649
		wait_event_lock_irq(conf->wait_for_stripe,
5650 5651
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5652
				    conf->device_lock, /* nothing */);
5653
		conf->quiesce = 1;
5654
		spin_unlock_irq(&conf->device_lock);
5655 5656
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5657 5658 5659 5660 5661 5662
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5663
		wake_up(&conf->wait_for_overlap);
5664 5665 5666 5667
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5668

5669

D
Dan Williams 已提交
5670
static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5671
{
D
Dan Williams 已提交
5672
	struct raid0_private_data *raid0_priv = mddev->private;
5673

D
Dan Williams 已提交
5674 5675
	/* for raid0 takeover only one zone is supported */
	if (raid0_priv->nr_strip_zones > 1) {
5676 5677
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5678 5679 5680 5681
		return ERR_PTR(-EINVAL);
	}

	mddev->new_level = level;
5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5715
	mddev->new_chunk_sectors = chunksect;
5716 5717 5718 5719

	return setup_conf(mddev);
}

5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5753

5754
static int raid5_check_reshape(mddev_t *mddev)
5755
{
5756 5757 5758 5759
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5760
	 */
5761
	raid5_conf_t *conf = mddev->private;
5762
	int new_chunk = mddev->new_chunk_sectors;
5763

5764
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5765 5766
		return -EINVAL;
	if (new_chunk > 0) {
5767
		if (!is_power_of_2(new_chunk))
5768
			return -EINVAL;
5769
		if (new_chunk < (PAGE_SIZE>>9))
5770
			return -EINVAL;
5771
		if (mddev->array_sectors & (new_chunk-1))
5772 5773 5774 5775 5776 5777
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5778
	if (mddev->raid_disks == 2) {
5779 5780 5781 5782
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5783 5784
		}
		if (new_chunk > 0) {
5785 5786
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5787 5788 5789
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5790
	}
5791
	return check_reshape(mddev);
5792 5793
}

5794
static int raid6_check_reshape(mddev_t *mddev)
5795
{
5796
	int new_chunk = mddev->new_chunk_sectors;
5797

5798
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5799
		return -EINVAL;
5800
	if (new_chunk > 0) {
5801
		if (!is_power_of_2(new_chunk))
5802
			return -EINVAL;
5803
		if (new_chunk < (PAGE_SIZE >> 9))
5804
			return -EINVAL;
5805
		if (mddev->array_sectors & (new_chunk-1))
5806 5807
			/* not factor of array size */
			return -EINVAL;
5808
	}
5809 5810

	/* They look valid */
5811
	return check_reshape(mddev);
5812 5813
}

5814 5815 5816
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
D
Dan Williams 已提交
5817
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5818 5819 5820 5821
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
5822 5823
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
5824 5825
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5826 5827 5828 5829 5830
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5831 5832
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5833 5834 5835 5836

	return ERR_PTR(-EINVAL);
}

5837 5838
static void *raid4_takeover(mddev_t *mddev)
{
D
Dan Williams 已提交
5839 5840 5841
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
5842
	 */
D
Dan Williams 已提交
5843 5844
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
5845 5846 5847 5848 5849 5850 5851 5852
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
5853

5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5918
	.size		= raid5_size,
5919
	.check_reshape	= raid6_check_reshape,
5920
	.start_reshape  = raid5_start_reshape,
5921
	.finish_reshape = raid5_finish_reshape,
5922
	.quiesce	= raid5_quiesce,
5923
	.takeover	= raid6_takeover,
5924
};
5925
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5926 5927
{
	.name		= "raid5",
5928
	.level		= 5,
L
Linus Torvalds 已提交
5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5940
	.size		= raid5_size,
5941 5942
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5943
	.finish_reshape = raid5_finish_reshape,
5944
	.quiesce	= raid5_quiesce,
5945
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
5946 5947
};

5948
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5949
{
5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5963
	.size		= raid5_size,
5964 5965
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5966
	.finish_reshape = raid5_finish_reshape,
5967
	.quiesce	= raid5_quiesce,
5968
	.takeover	= raid4_takeover,
5969 5970 5971 5972
};

static int __init raid5_init(void)
{
5973
	register_md_personality(&raid6_personality);
5974 5975 5976
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5977 5978
}

5979
static void raid5_exit(void)
L
Linus Torvalds 已提交
5980
{
5981
	unregister_md_personality(&raid6_personality);
5982 5983
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5984 5985 5986 5987 5988
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
5989
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
5990
MODULE_ALIAS("md-personality-4"); /* RAID5 */
5991 5992
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
5993 5994
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
5995 5996 5997 5998 5999 6000 6001
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");