raid5.c 217.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/module.h>
51
#include <linux/async.h>
52
#include <linux/seq_file.h>
53
#include <linux/cpu.h>
54
#include <linux/slab.h>
55
#include <linux/ratelimit.h>
56
#include <linux/nodemask.h>
57
#include <linux/flex_array.h>
N
NeilBrown 已提交
58 59
#include <trace/events/block.h>

60
#include "md.h"
61
#include "raid5.h"
62
#include "raid0.h"
63
#include "bitmap.h"
64

65 66 67
#define cpu_to_group(cpu) cpu_to_node(cpu)
#define ANY_GROUP NUMA_NO_NODE

68 69 70 71
static bool devices_handle_discard_safely = false;
module_param(devices_handle_discard_safely, bool, 0644);
MODULE_PARM_DESC(devices_handle_discard_safely,
		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72
static struct workqueue_struct *raid5_wq;
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
82
#define BYPASS_THRESHOLD	1
83
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
84
#define HASH_MASK		(NR_HASH - 1)
85
#define MAX_STRIPE_BATCH	8
L
Linus Torvalds 已提交
86

87
static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 89 90 91
{
	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
	return &conf->stripe_hashtbl[hash];
}
L
Linus Torvalds 已提交
92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
static inline int stripe_hash_locks_hash(sector_t sect)
{
	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
}

static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
{
	spin_lock_irq(conf->hash_locks + hash);
	spin_lock(&conf->device_lock);
}

static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
{
	spin_unlock(&conf->device_lock);
	spin_unlock_irq(conf->hash_locks + hash);
}

static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
{
	int i;
	local_irq_disable();
	spin_lock(conf->hash_locks);
	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
	spin_lock(&conf->device_lock);
}

static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
{
	int i;
	spin_unlock(&conf->device_lock);
	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
		spin_unlock(conf->hash_locks + i - 1);
	local_irq_enable();
}

L
Linus Torvalds 已提交
129 130 131 132 133 134
/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
135
 * This function is used to determine the 'next' bio in the list, given the sector
L
Linus Torvalds 已提交
136 137
 * of the current stripe+device
 */
138 139
static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
{
140
	int sectors = bio_sectors(bio);
141
	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 143 144 145
		return bio->bi_next;
	else
		return NULL;
}
L
Linus Torvalds 已提交
146

147
/*
148 149
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150
 */
151
static inline int raid5_bi_processed_stripes(struct bio *bio)
152
{
153 154
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	return (atomic_read(segments) >> 16) & 0xffff;
155 156
}

157
static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158
{
159 160
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	return atomic_sub_return(1, segments) & 0xffff;
161 162
}

163
static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164
{
165 166
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	atomic_inc(segments);
167 168
}

169 170
static inline void raid5_set_bi_processed_stripes(struct bio *bio,
	unsigned int cnt)
171
{
172 173
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	int old, new;
174

175 176 177 178
	do {
		old = atomic_read(segments);
		new = (old & 0xffff) | (cnt << 16);
	} while (atomic_cmpxchg(segments, old, new) != old);
179 180
}

181
static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182
{
183 184
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	atomic_set(segments, cnt);
185 186
}

187 188 189
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
190 191 192 193
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
194 195 196 197 198
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
199 200 201 202 203
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
204

205 206 207 208 209
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
210 211
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
212
{
213
	int slot = *count;
214

215
	if (sh->ddf_layout)
216
		(*count)++;
217
	if (idx == sh->pd_idx)
218
		return syndrome_disks;
219
	if (idx == sh->qd_idx)
220
		return syndrome_disks + 1;
221
	if (!sh->ddf_layout)
222
		(*count)++;
223 224 225
	return slot;
}

226 227 228 229 230 231 232
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
233
		bi->bi_iter.bi_size = 0;
234 235
		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
					 bi, 0);
236
		bio_endio(bi, 0);
237 238 239 240
		bi = return_bi;
	}
}

241
static void print_raid5_conf (struct r5conf *conf);
L
Linus Torvalds 已提交
242

243 244 245 246 247 248 249
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

250 251 252 253
static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
{
	struct r5conf *conf = sh->raid_conf;
	struct r5worker_group *group;
254
	int thread_cnt;
255 256 257 258 259 260 261 262 263 264 265
	int i, cpu = sh->cpu;

	if (!cpu_online(cpu)) {
		cpu = cpumask_any(cpu_online_mask);
		sh->cpu = cpu;
	}

	if (list_empty(&sh->lru)) {
		struct r5worker_group *group;
		group = conf->worker_groups + cpu_to_group(cpu);
		list_add_tail(&sh->lru, &group->handle_list);
266 267
		group->stripes_cnt++;
		sh->group = group;
268 269 270 271 272 273 274 275 276
	}

	if (conf->worker_cnt_per_group == 0) {
		md_wakeup_thread(conf->mddev->thread);
		return;
	}

	group = conf->worker_groups + cpu_to_group(sh->cpu);

277 278 279 280 281 282 283 284 285 286 287 288 289 290
	group->workers[0].working = true;
	/* at least one worker should run to avoid race */
	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);

	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
	/* wakeup more workers */
	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
		if (group->workers[i].working == false) {
			group->workers[i].working = true;
			queue_work_on(sh->cpu, raid5_wq,
				      &group->workers[i].work);
			thread_cnt--;
		}
	}
291 292
}

293 294
static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
			      struct list_head *temp_inactive_list)
L
Linus Torvalds 已提交
295
{
296 297 298 299
	BUG_ON(!list_empty(&sh->lru));
	BUG_ON(atomic_read(&conf->active_stripes)==0);
	if (test_bit(STRIPE_HANDLE, &sh->state)) {
		if (test_bit(STRIPE_DELAYED, &sh->state) &&
300
		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301
			list_add_tail(&sh->lru, &conf->delayed_list);
302
		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303 304 305 306 307
			   sh->bm_seq - conf->seq_write > 0)
			list_add_tail(&sh->lru, &conf->bitmap_list);
		else {
			clear_bit(STRIPE_DELAYED, &sh->state);
			clear_bit(STRIPE_BIT_DELAY, &sh->state);
308 309 310 311 312 313
			if (conf->worker_cnt_per_group == 0) {
				list_add_tail(&sh->lru, &conf->handle_list);
			} else {
				raid5_wakeup_stripe_thread(sh);
				return;
			}
314 315 316 317 318 319 320 321 322
		}
		md_wakeup_thread(conf->mddev->thread);
	} else {
		BUG_ON(stripe_operations_active(sh));
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			if (atomic_dec_return(&conf->preread_active_stripes)
			    < IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		atomic_dec(&conf->active_stripes);
323 324
		if (!test_bit(STRIPE_EXPANDING, &sh->state))
			list_add_tail(&sh->lru, temp_inactive_list);
L
Linus Torvalds 已提交
325 326
	}
}
327

328 329
static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
			     struct list_head *temp_inactive_list)
330 331
{
	if (atomic_dec_and_test(&sh->count))
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
		do_release_stripe(conf, sh, temp_inactive_list);
}

/*
 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
 *
 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
 * given time. Adding stripes only takes device lock, while deleting stripes
 * only takes hash lock.
 */
static void release_inactive_stripe_list(struct r5conf *conf,
					 struct list_head *temp_inactive_list,
					 int hash)
{
	int size;
	bool do_wakeup = false;
	unsigned long flags;

	if (hash == NR_STRIPE_HASH_LOCKS) {
		size = NR_STRIPE_HASH_LOCKS;
		hash = NR_STRIPE_HASH_LOCKS - 1;
	} else
		size = 1;
	while (size) {
		struct list_head *list = &temp_inactive_list[size - 1];

		/*
		 * We don't hold any lock here yet, get_active_stripe() might
		 * remove stripes from the list
		 */
		if (!list_empty_careful(list)) {
			spin_lock_irqsave(conf->hash_locks + hash, flags);
364 365 366
			if (list_empty(conf->inactive_list + hash) &&
			    !list_empty(list))
				atomic_dec(&conf->empty_inactive_list_nr);
367 368 369 370 371 372 373 374 375 376 377 378 379
			list_splice_tail_init(list, conf->inactive_list + hash);
			do_wakeup = true;
			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
		}
		size--;
		hash--;
	}

	if (do_wakeup) {
		wake_up(&conf->wait_for_stripe);
		if (conf->retry_read_aligned)
			md_wakeup_thread(conf->mddev->thread);
	}
380 381
}

S
Shaohua Li 已提交
382
/* should hold conf->device_lock already */
383 384
static int release_stripe_list(struct r5conf *conf,
			       struct list_head *temp_inactive_list)
S
Shaohua Li 已提交
385 386 387 388 389 390
{
	struct stripe_head *sh;
	int count = 0;
	struct llist_node *head;

	head = llist_del_all(&conf->released_stripes);
S
Shaohua Li 已提交
391
	head = llist_reverse_order(head);
S
Shaohua Li 已提交
392
	while (head) {
393 394
		int hash;

S
Shaohua Li 已提交
395 396 397 398 399 400 401 402 403 404
		sh = llist_entry(head, struct stripe_head, release_list);
		head = llist_next(head);
		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
		smp_mb();
		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
		/*
		 * Don't worry the bit is set here, because if the bit is set
		 * again, the count is always > 1. This is true for
		 * STRIPE_ON_UNPLUG_LIST bit too.
		 */
405 406
		hash = sh->hash_lock_index;
		__release_stripe(conf, sh, &temp_inactive_list[hash]);
S
Shaohua Li 已提交
407 408 409 410 411 412
		count++;
	}

	return count;
}

L
Linus Torvalds 已提交
413 414
static void release_stripe(struct stripe_head *sh)
{
415
	struct r5conf *conf = sh->raid_conf;
L
Linus Torvalds 已提交
416
	unsigned long flags;
417 418
	struct list_head list;
	int hash;
S
Shaohua Li 已提交
419
	bool wakeup;
420

421 422 423 424 425
	/* Avoid release_list until the last reference.
	 */
	if (atomic_add_unless(&sh->count, -1, 1))
		return;

426 427
	if (unlikely(!conf->mddev->thread) ||
		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
S
Shaohua Li 已提交
428 429 430 431 432 433
		goto slow_path;
	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
	if (wakeup)
		md_wakeup_thread(conf->mddev->thread);
	return;
slow_path:
434
	local_irq_save(flags);
S
Shaohua Li 已提交
435
	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436
	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437 438 439
		INIT_LIST_HEAD(&list);
		hash = sh->hash_lock_index;
		do_release_stripe(conf, sh, &list);
440
		spin_unlock(&conf->device_lock);
441
		release_inactive_stripe_list(conf, &list, hash);
442 443
	}
	local_irq_restore(flags);
L
Linus Torvalds 已提交
444 445
}

446
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
447
{
448 449
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
450

451
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
452 453
}

454
static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
455
{
456
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
457

458 459
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
460

461
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
462 463 464
}

/* find an idle stripe, make sure it is unhashed, and return it. */
465
static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
L
Linus Torvalds 已提交
466 467 468 469
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

470
	if (list_empty(conf->inactive_list + hash))
L
Linus Torvalds 已提交
471
		goto out;
472
	first = (conf->inactive_list + hash)->next;
L
Linus Torvalds 已提交
473 474 475 476
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
477
	BUG_ON(hash != sh->hash_lock_index);
478 479
	if (list_empty(conf->inactive_list + hash))
		atomic_inc(&conf->empty_inactive_list_nr);
L
Linus Torvalds 已提交
480 481 482 483
out:
	return sh;
}

484
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
485 486 487
{
	struct page *p;
	int i;
488
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
489

490
	for (i = 0; i < num ; i++) {
491
		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
L
Linus Torvalds 已提交
492 493 494 495
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
496
		put_page(p);
L
Linus Torvalds 已提交
497 498 499
	}
}

500
static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
L
Linus Torvalds 已提交
501 502
{
	int i;
503
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
504

505
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
506 507
		struct page *page;

508
		if (!(page = alloc_page(gfp))) {
L
Linus Torvalds 已提交
509 510 511
			return 1;
		}
		sh->dev[i].page = page;
512
		sh->dev[i].orig_page = page;
L
Linus Torvalds 已提交
513 514 515 516
	}
	return 0;
}

517
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
520

521
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
522
{
523
	struct r5conf *conf = sh->raid_conf;
524
	int i, seq;
L
Linus Torvalds 已提交
525

526 527
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528
	BUG_ON(stripe_operations_active(sh));
529
	BUG_ON(sh->batch_head);
530

531
	pr_debug("init_stripe called, stripe %llu\n",
532
		(unsigned long long)sector);
533 534
retry:
	seq = read_seqcount_begin(&conf->gen_lock);
535
	sh->generation = conf->generation - previous;
536
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
537
	sh->sector = sector;
538
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
539 540
	sh->state = 0;

541
	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
542 543
		struct r5dev *dev = &sh->dev[i];

544
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
545
		    test_bit(R5_LOCKED, &dev->flags)) {
546
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
547
			       (unsigned long long)sh->sector, i, dev->toread,
548
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
549
			       test_bit(R5_LOCKED, &dev->flags));
550
			WARN_ON(1);
L
Linus Torvalds 已提交
551 552
		}
		dev->flags = 0;
553
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
554
	}
555 556
	if (read_seqcount_retry(&conf->gen_lock, seq))
		goto retry;
557
	sh->overwrite_disks = 0;
L
Linus Torvalds 已提交
558
	insert_hash(conf, sh);
559
	sh->cpu = smp_processor_id();
560
	set_bit(STRIPE_BATCH_READY, &sh->state);
L
Linus Torvalds 已提交
561 562
}

563
static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
564
					 short generation)
L
Linus Torvalds 已提交
565 566 567
{
	struct stripe_head *sh;

568
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
569
	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
570
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
571
			return sh;
572
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
573 574 575
	return NULL;
}

576 577 578 579 580 581 582 583 584 585 586 587 588
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
589
static int calc_degraded(struct r5conf *conf)
590
{
591
	int degraded, degraded2;
592 593 594 595 596
	int i;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
597
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
598 599
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = rcu_dereference(conf->disks[i].replacement);
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
618 619
	if (conf->raid_disks == conf->previous_raid_disks)
		return degraded;
620
	rcu_read_lock();
621
	degraded2 = 0;
622
	for (i = 0; i < conf->raid_disks; i++) {
623
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
624 625
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = rcu_dereference(conf->disks[i].replacement);
626
		if (!rdev || test_bit(Faulty, &rdev->flags))
627
			degraded2++;
628 629 630 631 632 633 634 635 636
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
637
				degraded2++;
638 639
	}
	rcu_read_unlock();
640 641 642 643 644 645 646 647 648 649 650 651 652
	if (degraded2 > degraded)
		return degraded2;
	return degraded;
}

static int has_failed(struct r5conf *conf)
{
	int degraded;

	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	degraded = calc_degraded(conf);
653 654 655 656 657
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

658
static struct stripe_head *
659
get_active_stripe(struct r5conf *conf, sector_t sector,
660
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
661 662
{
	struct stripe_head *sh;
663
	int hash = stripe_hash_locks_hash(sector);
L
Linus Torvalds 已提交
664

665
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
666

667
	spin_lock_irq(conf->hash_locks + hash);
L
Linus Torvalds 已提交
668 669

	do {
670
		wait_event_lock_irq(conf->wait_for_stripe,
671
				    conf->quiesce == 0 || noquiesce,
672
				    *(conf->hash_locks + hash));
673
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
674
		if (!sh) {
675
			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
676
				sh = get_free_stripe(conf, hash);
677 678 679 680 681
				if (!sh && llist_empty(&conf->released_stripes) &&
				    !test_bit(R5_DID_ALLOC, &conf->cache_state))
					set_bit(R5_ALLOC_MORE,
						&conf->cache_state);
			}
L
Linus Torvalds 已提交
682 683 684
			if (noblock && sh == NULL)
				break;
			if (!sh) {
685 686
				set_bit(R5_INACTIVE_BLOCKED,
					&conf->cache_state);
687 688 689 690 691
				wait_event_lock_irq(
					conf->wait_for_stripe,
					!list_empty(conf->inactive_list + hash) &&
					(atomic_read(&conf->active_stripes)
					 < (conf->max_nr_stripes * 3 / 4)
692 693
					 || !test_bit(R5_INACTIVE_BLOCKED,
						      &conf->cache_state)),
694
					*(conf->hash_locks + hash));
695 696
				clear_bit(R5_INACTIVE_BLOCKED,
					  &conf->cache_state);
697
			} else {
698
				init_stripe(sh, sector, previous);
699 700
				atomic_inc(&sh->count);
			}
701
		} else if (!atomic_inc_not_zero(&sh->count)) {
702
			spin_lock(&conf->device_lock);
703
			if (!atomic_read(&sh->count)) {
L
Linus Torvalds 已提交
704 705
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
706 707
				BUG_ON(list_empty(&sh->lru) &&
				       !test_bit(STRIPE_EXPANDING, &sh->state));
708
				list_del_init(&sh->lru);
709 710 711 712
				if (sh->group) {
					sh->group->stripes_cnt--;
					sh->group = NULL;
				}
L
Linus Torvalds 已提交
713
			}
714
			atomic_inc(&sh->count);
715
			spin_unlock(&conf->device_lock);
L
Linus Torvalds 已提交
716 717 718
		}
	} while (sh == NULL);

719
	spin_unlock_irq(conf->hash_locks + hash);
L
Linus Torvalds 已提交
720 721 722
	return sh;
}

723 724 725 726 727 728
static bool is_full_stripe_write(struct stripe_head *sh)
{
	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
}

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
{
	local_irq_disable();
	if (sh1 > sh2) {
		spin_lock(&sh2->stripe_lock);
		spin_lock_nested(&sh1->stripe_lock, 1);
	} else {
		spin_lock(&sh1->stripe_lock);
		spin_lock_nested(&sh2->stripe_lock, 1);
	}
}

static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
{
	spin_unlock(&sh1->stripe_lock);
	spin_unlock(&sh2->stripe_lock);
	local_irq_enable();
}

/* Only freshly new full stripe normal write stripe can be added to a batch list */
static bool stripe_can_batch(struct stripe_head *sh)
{
	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
		is_full_stripe_write(sh);
}

/* we only do back search */
static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
{
	struct stripe_head *head;
	sector_t head_sector, tmp_sec;
	int hash;
	int dd_idx;

	if (!stripe_can_batch(sh))
		return;
	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
	tmp_sec = sh->sector;
	if (!sector_div(tmp_sec, conf->chunk_sectors))
		return;
	head_sector = sh->sector - STRIPE_SECTORS;

	hash = stripe_hash_locks_hash(head_sector);
	spin_lock_irq(conf->hash_locks + hash);
	head = __find_stripe(conf, head_sector, conf->generation);
	if (head && !atomic_inc_not_zero(&head->count)) {
		spin_lock(&conf->device_lock);
		if (!atomic_read(&head->count)) {
			if (!test_bit(STRIPE_HANDLE, &head->state))
				atomic_inc(&conf->active_stripes);
			BUG_ON(list_empty(&head->lru) &&
			       !test_bit(STRIPE_EXPANDING, &head->state));
			list_del_init(&head->lru);
			if (head->group) {
				head->group->stripes_cnt--;
				head->group = NULL;
			}
		}
		atomic_inc(&head->count);
		spin_unlock(&conf->device_lock);
	}
	spin_unlock_irq(conf->hash_locks + hash);

	if (!head)
		return;
	if (!stripe_can_batch(head))
		goto out;

	lock_two_stripes(head, sh);
	/* clear_batch_ready clear the flag */
	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
		goto unlock_out;

	if (sh->batch_head)
		goto unlock_out;

	dd_idx = 0;
	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
		dd_idx++;
	if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
		goto unlock_out;

	if (head->batch_head) {
		spin_lock(&head->batch_head->batch_lock);
		/* This batch list is already running */
		if (!stripe_can_batch(head)) {
			spin_unlock(&head->batch_head->batch_lock);
			goto unlock_out;
		}

		/*
		 * at this point, head's BATCH_READY could be cleared, but we
		 * can still add the stripe to batch list
		 */
		list_add(&sh->batch_list, &head->batch_list);
		spin_unlock(&head->batch_head->batch_lock);

		sh->batch_head = head->batch_head;
	} else {
		head->batch_head = head;
		sh->batch_head = head->batch_head;
		spin_lock(&head->batch_lock);
		list_add_tail(&sh->batch_list, &head->batch_list);
		spin_unlock(&head->batch_lock);
	}

	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
		if (atomic_dec_return(&conf->preread_active_stripes)
		    < IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);

	atomic_inc(&sh->count);
unlock_out:
	unlock_two_stripes(head, sh);
out:
	release_stripe(head);
}

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
/* Determine if 'data_offset' or 'new_data_offset' should be used
 * in this stripe_head.
 */
static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
{
	sector_t progress = conf->reshape_progress;
	/* Need a memory barrier to make sure we see the value
	 * of conf->generation, or ->data_offset that was set before
	 * reshape_progress was updated.
	 */
	smp_rmb();
	if (progress == MaxSector)
		return 0;
	if (sh->generation == conf->generation - 1)
		return 0;
	/* We are in a reshape, and this is a new-generation stripe,
	 * so use new_data_offset.
	 */
	return 1;
}

868 869 870 871
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
872

873
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
874
{
875
	struct r5conf *conf = sh->raid_conf;
876
	int i, disks = sh->disks;
877
	struct stripe_head *head_sh = sh;
878 879 880 881 882

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
883
		int replace_only = 0;
884 885
		struct bio *bi, *rbi;
		struct md_rdev *rdev, *rrdev = NULL;
886 887

		sh = head_sh;
T
Tejun Heo 已提交
888 889 890 891 892
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
893
			if (test_bit(R5_Discard, &sh->dev[i].flags))
S
Shaohua Li 已提交
894
				rw |= REQ_DISCARD;
T
Tejun Heo 已提交
895
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
896
			rw = READ;
897 898 899 900 901
		else if (test_and_clear_bit(R5_WantReplace,
					    &sh->dev[i].flags)) {
			rw = WRITE;
			replace_only = 1;
		} else
902
			continue;
S
Shaohua Li 已提交
903 904
		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
			rw |= REQ_SYNC;
905

906
again:
907
		bi = &sh->dev[i].req;
908
		rbi = &sh->dev[i].rreq; /* For writing to replacement */
909 910

		rcu_read_lock();
911
		rrdev = rcu_dereference(conf->disks[i].replacement);
912 913 914 915 916 917
		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev) {
			rdev = rrdev;
			rrdev = NULL;
		}
918 919 920
		if (rw & WRITE) {
			if (replace_only)
				rdev = NULL;
921 922 923
			if (rdev == rrdev)
				/* We raced and saw duplicates */
				rrdev = NULL;
924
		} else {
925
			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
926 927 928
				rdev = rrdev;
			rrdev = NULL;
		}
929

930 931 932 933
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
934 935 936 937
		if (rrdev && test_bit(Faulty, &rrdev->flags))
			rrdev = NULL;
		if (rrdev)
			atomic_inc(&rrdev->nr_pending);
938 939
		rcu_read_unlock();

940
		/* We have already checked bad blocks for reads.  Now
941 942
		 * need to check for writes.  We never accept write errors
		 * on the replacement, so we don't to check rrdev.
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
		 */
		while ((rw & WRITE) && rdev &&
		       test_bit(WriteErrorSeen, &rdev->flags)) {
			sector_t first_bad;
			int bad_sectors;
			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					      &first_bad, &bad_sectors);
			if (!bad)
				break;

			if (bad < 0) {
				set_bit(BlockedBadBlocks, &rdev->flags);
				if (!conf->mddev->external &&
				    conf->mddev->flags) {
					/* It is very unlikely, but we might
					 * still need to write out the
					 * bad block log - better give it
					 * a chance*/
					md_check_recovery(conf->mddev);
				}
963 964 965 966 967 968
				/*
				 * Because md_wait_for_blocked_rdev
				 * will dec nr_pending, we must
				 * increment it first.
				 */
				atomic_inc(&rdev->nr_pending);
969 970 971 972 973 974 975 976
				md_wait_for_blocked_rdev(rdev, conf->mddev);
			} else {
				/* Acknowledged bad block - skip the write */
				rdev_dec_pending(rdev, conf->mddev);
				rdev = NULL;
			}
		}

977
		if (rdev) {
978 979
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
980 981
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
982 983
			set_bit(STRIPE_IO_STARTED, &sh->state);

K
Kent Overstreet 已提交
984
			bio_reset(bi);
985
			bi->bi_bdev = rdev->bdev;
K
Kent Overstreet 已提交
986 987 988 989 990 991
			bi->bi_rw = rw;
			bi->bi_end_io = (rw & WRITE)
				? raid5_end_write_request
				: raid5_end_read_request;
			bi->bi_private = sh;

992
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
993
				__func__, (unsigned long long)sh->sector,
994 995
				bi->bi_rw, i);
			atomic_inc(&sh->count);
996 997
			if (sh != head_sh)
				atomic_inc(&head_sh->count);
998
			if (use_new_offset(conf, sh))
999
				bi->bi_iter.bi_sector = (sh->sector
1000 1001
						 + rdev->new_data_offset);
			else
1002
				bi->bi_iter.bi_sector = (sh->sector
1003
						 + rdev->data_offset);
1004
			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1005
				bi->bi_rw |= REQ_NOMERGE;
1006

1007 1008 1009
			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
			sh->dev[i].vec.bv_page = sh->dev[i].page;
K
Kent Overstreet 已提交
1010
			bi->bi_vcnt = 1;
1011 1012
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
1013
			bi->bi_iter.bi_size = STRIPE_SIZE;
1014 1015 1016 1017 1018 1019
			/*
			 * If this is discard request, set bi_vcnt 0. We don't
			 * want to confuse SCSI because SCSI will replace payload
			 */
			if (rw & REQ_DISCARD)
				bi->bi_vcnt = 0;
1020 1021
			if (rrdev)
				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1022 1023 1024 1025 1026

			if (conf->mddev->gendisk)
				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
						      bi, disk_devt(conf->mddev->gendisk),
						      sh->dev[i].sector);
1027
			generic_make_request(bi);
1028 1029
		}
		if (rrdev) {
1030 1031
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
1032 1033 1034 1035
				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);

			set_bit(STRIPE_IO_STARTED, &sh->state);

K
Kent Overstreet 已提交
1036
			bio_reset(rbi);
1037
			rbi->bi_bdev = rrdev->bdev;
K
Kent Overstreet 已提交
1038 1039 1040 1041 1042
			rbi->bi_rw = rw;
			BUG_ON(!(rw & WRITE));
			rbi->bi_end_io = raid5_end_write_request;
			rbi->bi_private = sh;

1043 1044 1045 1046 1047
			pr_debug("%s: for %llu schedule op %ld on "
				 "replacement disc %d\n",
				__func__, (unsigned long long)sh->sector,
				rbi->bi_rw, i);
			atomic_inc(&sh->count);
1048 1049
			if (sh != head_sh)
				atomic_inc(&head_sh->count);
1050
			if (use_new_offset(conf, sh))
1051
				rbi->bi_iter.bi_sector = (sh->sector
1052 1053
						  + rrdev->new_data_offset);
			else
1054
				rbi->bi_iter.bi_sector = (sh->sector
1055
						  + rrdev->data_offset);
1056 1057 1058
			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
			sh->dev[i].rvec.bv_page = sh->dev[i].page;
K
Kent Overstreet 已提交
1059
			rbi->bi_vcnt = 1;
1060 1061
			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			rbi->bi_io_vec[0].bv_offset = 0;
1062
			rbi->bi_iter.bi_size = STRIPE_SIZE;
1063 1064 1065 1066 1067 1068
			/*
			 * If this is discard request, set bi_vcnt 0. We don't
			 * want to confuse SCSI because SCSI will replace payload
			 */
			if (rw & REQ_DISCARD)
				rbi->bi_vcnt = 0;
1069 1070 1071 1072
			if (conf->mddev->gendisk)
				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
						      rbi, disk_devt(conf->mddev->gendisk),
						      sh->dev[i].sector);
1073 1074 1075
			generic_make_request(rbi);
		}
		if (!rdev && !rrdev) {
1076
			if (rw & WRITE)
1077 1078 1079 1080
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1081 1082 1083
			if (sh->batch_head)
				set_bit(STRIPE_BATCH_ERR,
					&sh->batch_head->state);
1084 1085
			set_bit(STRIPE_HANDLE, &sh->state);
		}
1086 1087 1088 1089 1090 1091 1092

		if (!head_sh->batch_head)
			continue;
		sh = list_first_entry(&sh->batch_list, struct stripe_head,
				      batch_list);
		if (sh != head_sh)
			goto again;
1093 1094 1095 1096
	}
}

static struct dma_async_tx_descriptor *
1097 1098 1099
async_copy_data(int frombio, struct bio *bio, struct page **page,
	sector_t sector, struct dma_async_tx_descriptor *tx,
	struct stripe_head *sh)
1100
{
1101 1102
	struct bio_vec bvl;
	struct bvec_iter iter;
1103 1104
	struct page *bio_page;
	int page_offset;
1105
	struct async_submit_ctl submit;
D
Dan Williams 已提交
1106
	enum async_tx_flags flags = 0;
1107

1108 1109
	if (bio->bi_iter.bi_sector >= sector)
		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1110
	else
1111
		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1112

D
Dan Williams 已提交
1113 1114 1115 1116
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

1117 1118
	bio_for_each_segment(bvl, bio, iter) {
		int len = bvl.bv_len;
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
1134 1135
			b_offset += bvl.bv_offset;
			bio_page = bvl.bv_page;
1136 1137 1138 1139 1140 1141 1142
			if (frombio) {
				if (sh->raid_conf->skip_copy &&
				    b_offset == 0 && page_offset == 0 &&
				    clen == STRIPE_SIZE)
					*page = bio_page;
				else
					tx = async_memcpy(*page, bio_page, page_offset,
1143
						  b_offset, clen, &submit);
1144 1145
			} else
				tx = async_memcpy(bio_page, *page, b_offset,
1146
						  page_offset, clen, &submit);
1147
		}
1148 1149 1150
		/* chain the operations */
		submit.depend_tx = tx;

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
1163
	int i;
1164

1165
	pr_debug("%s: stripe %llu\n", __func__,
1166 1167 1168 1169 1170 1171 1172
		(unsigned long long)sh->sector);

	/* clear completed biofills */
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
1173 1174
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
1175
		 * !STRIPE_BIOFILL_RUN
1176 1177
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1178 1179 1180 1181 1182
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
1183
			while (rbi && rbi->bi_iter.bi_sector <
1184 1185
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
1186
				if (!raid5_dec_bi_active_stripes(rbi)) {
1187 1188 1189 1190 1191 1192 1193
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
1194
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1195 1196 1197

	return_io(return_bi);

1198
	set_bit(STRIPE_HANDLE, &sh->state);
1199 1200 1201 1202 1203 1204
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
1205
	struct async_submit_ctl submit;
1206 1207
	int i;

1208
	BUG_ON(sh->batch_head);
1209
	pr_debug("%s: stripe %llu\n", __func__,
1210 1211 1212 1213 1214 1215
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
S
Shaohua Li 已提交
1216
			spin_lock_irq(&sh->stripe_lock);
1217 1218
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
S
Shaohua Li 已提交
1219
			spin_unlock_irq(&sh->stripe_lock);
1220
			while (rbi && rbi->bi_iter.bi_sector <
1221
				dev->sector + STRIPE_SECTORS) {
1222 1223
				tx = async_copy_data(0, rbi, &dev->page,
					dev->sector, tx, sh);
1224 1225 1226 1227 1228 1229
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
1230 1231
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
1232 1233
}

1234
static void mark_target_uptodate(struct stripe_head *sh, int target)
1235
{
1236
	struct r5dev *tgt;
1237

1238 1239
	if (target < 0)
		return;
1240

1241
	tgt = &sh->dev[target];
1242 1243 1244
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
1245 1246
}

1247
static void ops_complete_compute(void *stripe_head_ref)
1248 1249 1250
{
	struct stripe_head *sh = stripe_head_ref;

1251
	pr_debug("%s: stripe %llu\n", __func__,
1252 1253
		(unsigned long long)sh->sector);

1254
	/* mark the computed target(s) as uptodate */
1255
	mark_target_uptodate(sh, sh->ops.target);
1256
	mark_target_uptodate(sh, sh->ops.target2);
1257

1258 1259 1260
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
1261 1262 1263 1264
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1265 1266
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1267
				 struct raid5_percpu *percpu, int i)
1268
{
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	void *addr;

	addr = flex_array_get(percpu->scribble, i);
	return addr + sizeof(struct page *) * (sh->disks + 2);
}

/* return a pointer to the address conversion region of the scribble buffer */
static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
{
	void *addr;

	addr = flex_array_get(percpu->scribble, i);
	return addr;
1282 1283 1284 1285
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1286 1287
{
	int disks = sh->disks;
1288
	struct page **xor_srcs = to_addr_page(percpu, 0);
1289 1290 1291 1292 1293
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
1294
	struct async_submit_ctl submit;
1295 1296
	int i;

1297 1298
	BUG_ON(sh->batch_head);

1299
	pr_debug("%s: stripe %llu block: %d\n",
1300
		__func__, (unsigned long long)sh->sector, target);
1301 1302 1303 1304 1305 1306 1307 1308
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
1309
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1310
			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1311
	if (unlikely(count == 1))
1312
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1313
	else
1314
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1315 1316 1317 1318

	return tx;
}

1319 1320 1321 1322 1323 1324 1325 1326 1327
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
1328 1329 1330
static int set_syndrome_sources(struct page **srcs,
				struct stripe_head *sh,
				int srctype)
1331 1332 1333 1334 1335 1336 1337 1338
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
1339
		srcs[i] = NULL;
1340 1341 1342 1343 1344

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1345
		struct r5dev *dev = &sh->dev[i];
1346

1347 1348 1349 1350 1351 1352 1353
		if (i == sh->qd_idx || i == sh->pd_idx ||
		    (srctype == SYNDROME_SRC_ALL) ||
		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
		     test_bit(R5_Wantdrain, &dev->flags)) ||
		    (srctype == SYNDROME_SRC_WRITTEN &&
		     dev->written))
			srcs[slot] = sh->dev[i].page;
1354 1355 1356
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

1357
	return syndrome_disks;
1358 1359 1360 1361 1362 1363
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
1364
	struct page **blocks = to_addr_page(percpu, 0);
1365 1366 1367 1368 1369 1370 1371 1372 1373
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

1374
	BUG_ON(sh->batch_head);
1375 1376 1377 1378
	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
1379
	else
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
1393
		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1394 1395
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
1396 1397
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
1398
				  to_addr_conv(sh, percpu, 0));
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
1409 1410
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
1411
				  to_addr_conv(sh, percpu, 0));
1412 1413
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
1414 1415 1416 1417

	return tx;
}

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
1430
	struct page **blocks = to_addr_page(percpu, 0);
1431 1432
	struct async_submit_ctl submit;

1433
	BUG_ON(sh->batch_head);
1434 1435 1436 1437 1438 1439
	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

1440
	/* we need to open-code set_syndrome_sources to handle the
1441 1442 1443
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
1444
		blocks[i] = NULL;
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
1471 1472
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
1473
					  to_addr_conv(sh, percpu, 0));
1474
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
1494 1495 1496
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
1497
					  to_addr_conv(sh, percpu, 0));
1498 1499 1500
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

1501
			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
D
Dan Williams 已提交
1502 1503
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
1504
					  to_addr_conv(sh, percpu, 0));
1505 1506 1507 1508
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
1509 1510
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
1511
				  to_addr_conv(sh, percpu, 0));
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
1523 1524 1525
	}
}

1526 1527 1528 1529
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1530
	pr_debug("%s: stripe %llu\n", __func__,
1531 1532 1533 1534
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
1535 1536
ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
		struct dma_async_tx_descriptor *tx)
1537 1538
{
	int disks = sh->disks;
1539
	struct page **xor_srcs = to_addr_page(percpu, 0);
1540
	int count = 0, pd_idx = sh->pd_idx, i;
1541
	struct async_submit_ctl submit;
1542 1543 1544 1545

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

1546
	BUG_ON(sh->batch_head);
1547
	pr_debug("%s: stripe %llu\n", __func__,
1548 1549 1550 1551 1552
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
1553
		if (test_bit(R5_Wantdrain, &dev->flags))
1554 1555 1556
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1557
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1558
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1559
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1560 1561 1562 1563

	return tx;
}

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
static struct dma_async_tx_descriptor *
ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
		struct dma_async_tx_descriptor *tx)
{
	struct page **blocks = to_addr_page(percpu, 0);
	int count;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu\n", __func__,
		(unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);

	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);

	return tx;
}

1584
static struct dma_async_tx_descriptor *
1585
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1586 1587
{
	int disks = sh->disks;
1588
	int i;
1589
	struct stripe_head *head_sh = sh;
1590

1591
	pr_debug("%s: stripe %llu\n", __func__,
1592 1593 1594
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
1595
		struct r5dev *dev;
1596 1597
		struct bio *chosen;

1598 1599
		sh = head_sh;
		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1600 1601
			struct bio *wbi;

1602 1603
again:
			dev = &sh->dev[i];
S
Shaohua Li 已提交
1604
			spin_lock_irq(&sh->stripe_lock);
1605 1606
			chosen = dev->towrite;
			dev->towrite = NULL;
1607
			sh->overwrite_disks = 0;
1608 1609
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
S
Shaohua Li 已提交
1610
			spin_unlock_irq(&sh->stripe_lock);
1611
			WARN_ON(dev->page != dev->orig_page);
1612

1613
			while (wbi && wbi->bi_iter.bi_sector <
1614
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1615 1616
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1617 1618
				if (wbi->bi_rw & REQ_SYNC)
					set_bit(R5_SyncIO, &dev->flags);
1619
				if (wbi->bi_rw & REQ_DISCARD)
S
Shaohua Li 已提交
1620
					set_bit(R5_Discard, &dev->flags);
1621 1622 1623 1624 1625 1626 1627 1628 1629
				else {
					tx = async_copy_data(1, wbi, &dev->page,
						dev->sector, tx, sh);
					if (dev->page != dev->orig_page) {
						set_bit(R5_SkipCopy, &dev->flags);
						clear_bit(R5_UPTODATE, &dev->flags);
						clear_bit(R5_OVERWRITE, &dev->flags);
					}
				}
1630 1631
				wbi = r5_next_bio(wbi, dev->sector);
			}
1632 1633 1634 1635 1636 1637 1638 1639 1640

			if (head_sh->batch_head) {
				sh = list_first_entry(&sh->batch_list,
						      struct stripe_head,
						      batch_list);
				if (sh == head_sh)
					continue;
				goto again;
			}
1641 1642 1643 1644 1645 1646
		}
	}

	return tx;
}

1647
static void ops_complete_reconstruct(void *stripe_head_ref)
1648 1649
{
	struct stripe_head *sh = stripe_head_ref;
1650 1651 1652 1653
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
1654
	bool fua = false, sync = false, discard = false;
1655

1656
	pr_debug("%s: stripe %llu\n", __func__,
1657 1658
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1659
	for (i = disks; i--; ) {
T
Tejun Heo 已提交
1660
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
S
Shaohua Li 已提交
1661
		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1662
		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
S
Shaohua Li 已提交
1663
	}
T
Tejun Heo 已提交
1664

1665 1666
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1667

T
Tejun Heo 已提交
1668
		if (dev->written || i == pd_idx || i == qd_idx) {
1669
			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1670
				set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1671 1672
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1673 1674
			if (sync)
				set_bit(R5_SyncIO, &dev->flags);
T
Tejun Heo 已提交
1675
		}
1676 1677
	}

1678 1679 1680 1681 1682 1683 1684 1685
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1686 1687 1688 1689 1690 1691

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1692 1693
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1694 1695
{
	int disks = sh->disks;
1696
	struct page **xor_srcs;
1697
	struct async_submit_ctl submit;
1698
	int count, pd_idx = sh->pd_idx, i;
1699
	struct page *xor_dest;
1700
	int prexor = 0;
1701
	unsigned long flags;
1702 1703 1704
	int j = 0;
	struct stripe_head *head_sh = sh;
	int last_stripe;
1705

1706
	pr_debug("%s: stripe %llu\n", __func__,
1707 1708
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	for (i = 0; i < sh->disks; i++) {
		if (pd_idx == i)
			continue;
		if (!test_bit(R5_Discard, &sh->dev[i].flags))
			break;
	}
	if (i >= sh->disks) {
		atomic_inc(&sh->count);
		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
		ops_complete_reconstruct(sh);
		return;
	}
1721 1722 1723
again:
	count = 0;
	xor_srcs = to_addr_page(percpu, j);
1724 1725 1726
	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1727
	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1728
		prexor = 1;
1729 1730 1731
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
1732
			if (head_sh->dev[i].written)
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
	last_stripe = !head_sh->batch_head ||
		list_first_entry(&sh->batch_list,
				 struct stripe_head, batch_list) == head_sh;
	if (last_stripe) {
		flags = ASYNC_TX_ACK |
			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

		atomic_inc(&head_sh->count);
		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
				  to_addr_conv(sh, percpu, j));
	} else {
		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
		init_async_submit(&submit, flags, tx, NULL, NULL,
				  to_addr_conv(sh, percpu, j));
	}
1764

1765 1766 1767 1768
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1769 1770 1771 1772 1773 1774
	if (!last_stripe) {
		j++;
		sh = list_first_entry(&sh->batch_list, struct stripe_head,
				      batch_list);
		goto again;
	}
1775 1776
}

1777 1778 1779 1780 1781
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
1782 1783 1784 1785
	struct page **blocks;
	int count, i, j = 0;
	struct stripe_head *head_sh = sh;
	int last_stripe;
1786 1787
	int synflags;
	unsigned long txflags;
1788 1789 1790

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

S
Shaohua Li 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	for (i = 0; i < sh->disks; i++) {
		if (sh->pd_idx == i || sh->qd_idx == i)
			continue;
		if (!test_bit(R5_Discard, &sh->dev[i].flags))
			break;
	}
	if (i >= sh->disks) {
		atomic_inc(&sh->count);
		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
		ops_complete_reconstruct(sh);
		return;
	}

1805 1806
again:
	blocks = to_addr_page(percpu, j);
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816

	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		synflags = SYNDROME_SRC_WRITTEN;
		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
	} else {
		synflags = SYNDROME_SRC_ALL;
		txflags = ASYNC_TX_ACK;
	}

	count = set_syndrome_sources(blocks, sh, synflags);
1817 1818 1819 1820 1821 1822
	last_stripe = !head_sh->batch_head ||
		list_first_entry(&sh->batch_list,
				 struct stripe_head, batch_list) == head_sh;

	if (last_stripe) {
		atomic_inc(&head_sh->count);
1823
		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1824 1825 1826 1827
				  head_sh, to_addr_conv(sh, percpu, j));
	} else
		init_async_submit(&submit, 0, tx, NULL, NULL,
				  to_addr_conv(sh, percpu, j));
1828
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1829 1830 1831 1832 1833 1834
	if (!last_stripe) {
		j++;
		sh = list_first_entry(&sh->batch_list, struct stripe_head,
				      batch_list);
		goto again;
	}
1835 1836 1837 1838 1839 1840
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1841
	pr_debug("%s: stripe %llu\n", __func__,
1842 1843
		(unsigned long long)sh->sector);

1844
	sh->check_state = check_state_check_result;
1845 1846 1847 1848
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1849
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1850 1851
{
	int disks = sh->disks;
1852 1853 1854
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1855
	struct page **xor_srcs = to_addr_page(percpu, 0);
1856
	struct dma_async_tx_descriptor *tx;
1857
	struct async_submit_ctl submit;
1858 1859
	int count;
	int i;
1860

1861
	pr_debug("%s: stripe %llu\n", __func__,
1862 1863
		(unsigned long long)sh->sector);

1864
	BUG_ON(sh->batch_head);
1865 1866 1867
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1868
	for (i = disks; i--; ) {
1869 1870 1871
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1872 1873
	}

1874
	init_async_submit(&submit, 0, NULL, NULL, NULL,
1875
			  to_addr_conv(sh, percpu, 0));
D
Dan Williams 已提交
1876
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1877
			   &sh->ops.zero_sum_result, &submit);
1878 1879

	atomic_inc(&sh->count);
1880 1881
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1882 1883
}

1884 1885
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
1886
	struct page **srcs = to_addr_page(percpu, 0);
1887 1888 1889 1890 1891 1892
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

1893
	BUG_ON(sh->batch_head);
1894
	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1895 1896
	if (!checkp)
		srcs[count] = NULL;
1897 1898

	atomic_inc(&sh->count);
1899
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1900
			  sh, to_addr_conv(sh, percpu, 0));
1901 1902
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1903 1904
}

N
NeilBrown 已提交
1905
static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1906 1907 1908
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1909
	struct r5conf *conf = sh->raid_conf;
1910
	int level = conf->level;
1911 1912
	struct raid5_percpu *percpu;
	unsigned long cpu;
1913

1914 1915
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1916
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1917 1918 1919 1920
		ops_run_biofill(sh);
		overlap_clear++;
	}

1921
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1932 1933
			async_tx_ack(tx);
	}
1934

1935 1936 1937 1938 1939 1940
	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
		if (level < 6)
			tx = ops_run_prexor5(sh, percpu, tx);
		else
			tx = ops_run_prexor6(sh, percpu, tx);
	}
1941

1942
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1943
		tx = ops_run_biodrain(sh, tx);
1944 1945 1946
		overlap_clear++;
	}

1947 1948 1949 1950 1951 1952
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1953

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1964

1965
	if (overlap_clear && !sh->batch_head)
1966 1967 1968 1969 1970
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1971
	put_cpu();
1972 1973
}

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
{
	struct stripe_head *sh;

	sh = kmem_cache_zalloc(sc, gfp);
	if (sh) {
		spin_lock_init(&sh->stripe_lock);
		spin_lock_init(&sh->batch_lock);
		INIT_LIST_HEAD(&sh->batch_list);
		INIT_LIST_HEAD(&sh->lru);
		atomic_set(&sh->count, 1);
	}
	return sh;
}
1988
static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
L
Linus Torvalds 已提交
1989 1990
{
	struct stripe_head *sh;
1991 1992

	sh = alloc_stripe(conf->slab_cache, gfp);
1993 1994
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
1995

1996 1997
	sh->raid_conf = conf;

1998
	if (grow_buffers(sh, gfp)) {
1999
		shrink_buffers(sh);
2000 2001 2002
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
2003 2004
	sh->hash_lock_index =
		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2005 2006
	/* we just created an active stripe so... */
	atomic_inc(&conf->active_stripes);
2007

2008
	release_stripe(sh);
2009
	conf->max_nr_stripes++;
2010 2011 2012
	return 1;
}

2013
static int grow_stripes(struct r5conf *conf, int num)
2014
{
2015
	struct kmem_cache *sc;
2016
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
2017

2018 2019 2020 2021 2022 2023 2024 2025
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

2026 2027
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
2028
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2029
			       0, 0, NULL);
L
Linus Torvalds 已提交
2030 2031 2032
	if (!sc)
		return 1;
	conf->slab_cache = sc;
2033
	conf->pool_size = devs;
2034 2035
	while (num--)
		if (!grow_one_stripe(conf, GFP_KERNEL))
L
Linus Torvalds 已提交
2036
			return 1;
2037

L
Linus Torvalds 已提交
2038 2039
	return 0;
}
2040

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
2054
static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2055
{
2056
	struct flex_array *ret;
2057 2058 2059
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2060 2061 2062 2063 2064 2065 2066 2067 2068
	ret = flex_array_alloc(len, cnt, flags);
	if (!ret)
		return NULL;
	/* always prealloc all elements, so no locking is required */
	if (flex_array_prealloc(ret, 0, cnt, flags)) {
		flex_array_free(ret);
		return NULL;
	}
	return ret;
2069 2070
}

2071
static int resize_stripes(struct r5conf *conf, int newsize)
2072 2073 2074 2075 2076 2077 2078
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
M
Masanari Iida 已提交
2079
	 * 2/ gather all the old stripe_heads and transfer the pages across
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
2099
	unsigned long cpu;
2100
	int err;
2101
	struct kmem_cache *sc;
2102
	int i;
2103
	int hash, cnt;
2104 2105 2106 2107

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

2108 2109 2110
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
2111

2112 2113 2114
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2115
			       0, 0, NULL);
2116 2117 2118 2119
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
2120
		nsh = alloc_stripe(sc, GFP_KERNEL);
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
		if (!nsh)
			break;

		nsh->raid_conf = conf;
		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
2141 2142
	hash = 0;
	cnt = 0;
2143
	list_for_each_entry(nsh, &newstripes, lru) {
2144 2145 2146 2147 2148 2149 2150
		lock_device_hash_lock(conf, hash);
		wait_event_cmd(conf->wait_for_stripe,
				    !list_empty(conf->inactive_list + hash),
				    unlock_device_hash_lock(conf, hash),
				    lock_device_hash_lock(conf, hash));
		osh = get_free_stripe(conf, hash);
		unlock_device_hash_lock(conf, hash);
2151

2152
		for(i=0; i<conf->pool_size; i++) {
2153
			nsh->dev[i].page = osh->dev[i].page;
2154 2155
			nsh->dev[i].orig_page = osh->dev[i].page;
		}
2156
		nsh->hash_lock_index = hash;
2157
		kmem_cache_free(conf->slab_cache, osh);
2158 2159 2160 2161 2162 2163
		cnt++;
		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
			hash++;
			cnt = 0;
		}
2164 2165 2166 2167 2168 2169
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
2170
	 * conf->disks and the scribble region
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

2181 2182 2183
	get_online_cpus();
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
2184
		struct flex_array *scribble;
2185 2186

		percpu = per_cpu_ptr(conf->percpu, cpu);
2187 2188
		scribble = scribble_alloc(newsize, conf->chunk_sectors /
			STRIPE_SECTORS, GFP_NOIO);
2189 2190

		if (scribble) {
2191
			flex_array_free(percpu->scribble);
2192 2193 2194 2195 2196 2197 2198 2199
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

2200 2201 2202 2203
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
2204

2205 2206 2207 2208
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
2209
				nsh->dev[i].orig_page = p;
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
2222

2223
static int drop_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
2224 2225
{
	struct stripe_head *sh;
2226
	int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
L
Linus Torvalds 已提交
2227

2228 2229 2230
	spin_lock_irq(conf->hash_locks + hash);
	sh = get_free_stripe(conf, hash);
	spin_unlock_irq(conf->hash_locks + hash);
2231 2232
	if (!sh)
		return 0;
2233
	BUG_ON(atomic_read(&sh->count));
2234
	shrink_buffers(sh);
2235 2236
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
2237
	conf->max_nr_stripes--;
2238 2239 2240
	return 1;
}

2241
static void shrink_stripes(struct r5conf *conf)
2242
{
2243 2244 2245
	while (conf->max_nr_stripes &&
	       drop_one_stripe(conf))
		;
2246

N
NeilBrown 已提交
2247 2248
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
2249 2250 2251
	conf->slab_cache = NULL;
}

2252
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
2253
{
2254
	struct stripe_head *sh = bi->bi_private;
2255
	struct r5conf *conf = sh->raid_conf;
2256
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
2257
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2258
	char b[BDEVNAME_SIZE];
2259
	struct md_rdev *rdev = NULL;
2260
	sector_t s;
L
Linus Torvalds 已提交
2261 2262 2263 2264 2265

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

2266 2267
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
2268 2269 2270
		uptodate);
	if (i == disks) {
		BUG();
2271
		return;
L
Linus Torvalds 已提交
2272
	}
2273
	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2274 2275 2276 2277 2278
		/* If replacement finished while this request was outstanding,
		 * 'replacement' might be NULL already.
		 * In that case it moved down to 'rdev'.
		 * rdev is not removed until all requests are finished.
		 */
2279
		rdev = conf->disks[i].replacement;
2280
	if (!rdev)
2281
		rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
2282

2283 2284 2285 2286
	if (use_new_offset(conf, sh))
		s = sh->sector + rdev->new_data_offset;
	else
		s = sh->sector + rdev->data_offset;
L
Linus Torvalds 已提交
2287 2288
	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2289
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2290 2291 2292 2293
			/* Note that this cannot happen on a
			 * replacement device.  We just fail those on
			 * any error
			 */
2294 2295 2296 2297 2298
			printk_ratelimited(
				KERN_INFO
				"md/raid:%s: read error corrected"
				" (%lu sectors at %llu on %s)\n",
				mdname(conf->mddev), STRIPE_SECTORS,
2299
				(unsigned long long)s,
2300
				bdevname(rdev->bdev, b));
2301
			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2302 2303
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2304 2305 2306
		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);

2307 2308
		if (atomic_read(&rdev->read_errors))
			atomic_set(&rdev->read_errors, 0);
L
Linus Torvalds 已提交
2309
	} else {
2310
		const char *bdn = bdevname(rdev->bdev, b);
2311
		int retry = 0;
2312
		int set_bad = 0;
2313

L
Linus Torvalds 已提交
2314
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2315
		atomic_inc(&rdev->read_errors);
2316 2317 2318 2319 2320 2321
		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error on replacement device "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
2322
				(unsigned long long)s,
2323
				bdn);
2324 2325
		else if (conf->mddev->degraded >= conf->max_degraded) {
			set_bad = 1;
2326 2327 2328 2329 2330
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error not correctable "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
2331
				(unsigned long long)s,
2332
				bdn);
2333
		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2334
			/* Oh, no!!! */
2335
			set_bad = 1;
2336 2337 2338 2339 2340
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error NOT corrected!! "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
2341
				(unsigned long long)s,
2342
				bdn);
2343
		} else if (atomic_read(&rdev->read_errors)
2344
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
2345
			printk(KERN_WARNING
2346
			       "md/raid:%s: Too many read errors, failing device %s.\n",
2347
			       mdname(conf->mddev), bdn);
2348 2349
		else
			retry = 1;
2350 2351 2352
		if (set_bad && test_bit(In_sync, &rdev->flags)
		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
			retry = 1;
2353
		if (retry)
2354 2355 2356 2357 2358
			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
				set_bit(R5_ReadError, &sh->dev[i].flags);
				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
			} else
				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2359
		else {
2360 2361
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2362 2363 2364 2365 2366
			if (!(set_bad
			      && test_bit(In_sync, &rdev->flags)
			      && rdev_set_badblocks(
				      rdev, sh->sector, STRIPE_SECTORS, 0)))
				md_error(conf->mddev, rdev);
2367
		}
L
Linus Torvalds 已提交
2368
	}
2369
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
2370 2371 2372 2373 2374
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

2375
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
2376
{
2377
	struct stripe_head *sh = bi->bi_private;
2378
	struct r5conf *conf = sh->raid_conf;
2379
	int disks = sh->disks, i;
2380
	struct md_rdev *uninitialized_var(rdev);
L
Linus Torvalds 已提交
2381
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2382 2383
	sector_t first_bad;
	int bad_sectors;
2384
	int replacement = 0;
L
Linus Torvalds 已提交
2385

2386 2387 2388
	for (i = 0 ; i < disks; i++) {
		if (bi == &sh->dev[i].req) {
			rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
2389
			break;
2390 2391 2392
		}
		if (bi == &sh->dev[i].rreq) {
			rdev = conf->disks[i].replacement;
2393 2394 2395 2396 2397 2398 2399 2400
			if (rdev)
				replacement = 1;
			else
				/* rdev was removed and 'replacement'
				 * replaced it.  rdev is not removed
				 * until all requests are finished.
				 */
				rdev = conf->disks[i].rdev;
2401 2402 2403
			break;
		}
	}
2404
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
2405 2406 2407 2408
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
2409
		return;
L
Linus Torvalds 已提交
2410 2411
	}

2412 2413 2414 2415 2416 2417 2418 2419 2420
	if (replacement) {
		if (!uptodate)
			md_error(conf->mddev, rdev);
		else if (is_badblock(rdev, sh->sector,
				     STRIPE_SECTORS,
				     &first_bad, &bad_sectors))
			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
	} else {
		if (!uptodate) {
2421
			set_bit(STRIPE_DEGRADED, &sh->state);
2422 2423
			set_bit(WriteErrorSeen, &rdev->flags);
			set_bit(R5_WriteError, &sh->dev[i].flags);
2424 2425 2426
			if (!test_and_set_bit(WantReplacement, &rdev->flags))
				set_bit(MD_RECOVERY_NEEDED,
					&rdev->mddev->recovery);
2427 2428
		} else if (is_badblock(rdev, sh->sector,
				       STRIPE_SECTORS,
2429
				       &first_bad, &bad_sectors)) {
2430
			set_bit(R5_MadeGood, &sh->dev[i].flags);
2431 2432 2433 2434 2435 2436 2437
			if (test_bit(R5_ReadError, &sh->dev[i].flags))
				/* That was a successful write so make
				 * sure it looks like we already did
				 * a re-write.
				 */
				set_bit(R5_ReWrite, &sh->dev[i].flags);
		}
2438 2439
	}
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
2440

2441 2442 2443
	if (sh->batch_head && !uptodate)
		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);

2444 2445
	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
L
Linus Torvalds 已提交
2446
	set_bit(STRIPE_HANDLE, &sh->state);
2447
	release_stripe(sh);
2448 2449 2450

	if (sh->batch_head && sh != sh->batch_head)
		release_stripe(sh->batch_head);
L
Linus Torvalds 已提交
2451 2452
}

2453
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2454

2455
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
2456 2457 2458 2459 2460
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
2461
	dev->req.bi_max_vecs = 1;
L
Linus Torvalds 已提交
2462 2463
	dev->req.bi_private = sh;

2464 2465
	bio_init(&dev->rreq);
	dev->rreq.bi_io_vec = &dev->rvec;
2466
	dev->rreq.bi_max_vecs = 1;
2467 2468
	dev->rreq.bi_private = sh;

L
Linus Torvalds 已提交
2469
	dev->flags = 0;
2470
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
2471 2472
}

2473
static void error(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
2474 2475
{
	char b[BDEVNAME_SIZE];
2476
	struct r5conf *conf = mddev->private;
2477
	unsigned long flags;
2478
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
2479

2480 2481 2482 2483 2484 2485
	spin_lock_irqsave(&conf->device_lock, flags);
	clear_bit(In_sync, &rdev->flags);
	mddev->degraded = calc_degraded(conf);
	spin_unlock_irqrestore(&conf->device_lock, flags);
	set_bit(MD_RECOVERY_INTR, &mddev->recovery);

2486
	set_bit(Blocked, &rdev->flags);
2487 2488 2489 2490 2491 2492 2493 2494 2495
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
2496
}
L
Linus Torvalds 已提交
2497 2498 2499 2500 2501

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
2502
static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2503 2504
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
2505
{
N
NeilBrown 已提交
2506
	sector_t stripe, stripe2;
2507
	sector_t chunk_number;
L
Linus Torvalds 已提交
2508
	unsigned int chunk_offset;
2509
	int pd_idx, qd_idx;
2510
	int ddf_layout = 0;
L
Linus Torvalds 已提交
2511
	sector_t new_sector;
2512 2513
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
2514 2515
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2516 2517 2518
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
2531 2532
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
2533
	stripe2 = stripe;
L
Linus Torvalds 已提交
2534 2535 2536
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
2537
	pd_idx = qd_idx = -1;
2538 2539
	switch(conf->level) {
	case 4:
2540
		pd_idx = data_disks;
2541 2542
		break;
	case 5:
2543
		switch (algorithm) {
L
Linus Torvalds 已提交
2544
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
2545
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2546
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
2547 2548 2549
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
2550
			pd_idx = sector_div(stripe2, raid_disks);
2551
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
2552 2553 2554
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
2555
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2556
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
2557 2558
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2559
			pd_idx = sector_div(stripe2, raid_disks);
2560
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
2561
			break;
2562 2563 2564 2565 2566 2567 2568
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
2569
		default:
2570
			BUG();
2571 2572 2573 2574
		}
		break;
	case 6:

2575
		switch (algorithm) {
2576
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
2577
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2578 2579
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2580
				(*dd_idx)++;	/* Q D D D P */
2581 2582
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2583 2584 2585
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
2586
			pd_idx = sector_div(stripe2, raid_disks);
2587 2588
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2589
				(*dd_idx)++;	/* Q D D D P */
2590 2591
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2592 2593 2594
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
2595
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2596 2597
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2598 2599
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2600
			pd_idx = sector_div(stripe2, raid_disks);
2601 2602
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2603
			break;
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
2619
			pd_idx = sector_div(stripe2, raid_disks);
2620 2621 2622 2623 2624 2625
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2626
			ddf_layout = 1;
2627 2628 2629 2630 2631 2632 2633
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
2634 2635
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2636 2637 2638 2639 2640 2641
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2642
			ddf_layout = 1;
2643 2644 2645 2646
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
2647
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2648 2649
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2650
			ddf_layout = 1;
2651 2652 2653 2654
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
2655
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2656 2657 2658 2659 2660 2661
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
2662
			pd_idx = sector_div(stripe2, raid_disks-1);
2663 2664 2665 2666 2667 2668
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
2669
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2670 2671 2672 2673 2674
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
2675
			pd_idx = sector_div(stripe2, raid_disks-1);
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

2686
		default:
2687
			BUG();
2688 2689
		}
		break;
L
Linus Torvalds 已提交
2690 2691
	}

2692 2693 2694
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
2695
		sh->ddf_layout = ddf_layout;
2696
	}
L
Linus Torvalds 已提交
2697 2698 2699 2700 2701 2702 2703
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}

2704
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
2705
{
2706
	struct r5conf *conf = sh->raid_conf;
2707 2708
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2709
	sector_t new_sector = sh->sector, check;
2710 2711
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2712 2713
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
2714 2715
	sector_t stripe;
	int chunk_offset;
2716 2717
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
2718
	sector_t r_sector;
2719
	struct stripe_head sh2;
L
Linus Torvalds 已提交
2720 2721 2722 2723

	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

2724 2725 2726 2727 2728
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
2729
		switch (algorithm) {
L
Linus Torvalds 已提交
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
2741 2742 2743 2744 2745
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
2746
		default:
2747
			BUG();
2748 2749 2750
		}
		break;
	case 6:
2751
		if (i == sh->qd_idx)
2752
			return 0; /* It is the Q disk */
2753
		switch (algorithm) {
2754 2755
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
2756 2757 2758 2759
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2774 2775 2776 2777 2778 2779
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2780
			/* Like left_symmetric, but P is before Q */
2781 2782
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2783 2784 2785 2786 2787 2788
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2804
		default:
2805
			BUG();
2806 2807
		}
		break;
L
Linus Torvalds 已提交
2808 2809 2810
	}

	chunk_number = stripe * data_disks + i;
2811
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2812

2813
	check = raid5_compute_sector(conf, r_sector,
2814
				     previous, &dummy1, &sh2);
2815 2816
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2817 2818
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2819 2820 2821 2822 2823
		return 0;
	}
	return r_sector;
}

2824
static void
2825
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2826
			 int rcw, int expand)
2827
{
2828
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2829
	struct r5conf *conf = sh->raid_conf;
2830
	int level = conf->level;
2831 2832 2833 2834 2835 2836 2837 2838

	if (rcw) {

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2839
				set_bit(R5_Wantdrain, &dev->flags);
2840 2841
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2842
				s->locked++;
2843 2844
			}
		}
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
			if (!s->locked)
				/* False alarm, nothing to do */
				return;
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;

		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);

2860
		if (s->locked + conf->max_degraded == disks)
2861
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2862
				atomic_inc(&conf->pending_full_writes);
2863 2864 2865
	} else {
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2866 2867 2868
		BUG_ON(level == 6 &&
			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2869 2870 2871

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
2872
			if (i == pd_idx || i == qd_idx)
2873 2874 2875 2876
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2877 2878
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2879 2880
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2881
				s->locked++;
2882 2883
			}
		}
2884 2885 2886 2887 2888 2889 2890
		if (!s->locked)
			/* False alarm - nothing to do */
			return;
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2891 2892
	}

2893
	/* keep the parity disk(s) locked while asynchronous operations
2894 2895 2896 2897
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2898
	s->locked++;
2899

2900 2901 2902 2903 2904 2905 2906 2907 2908
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2909
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2910
		__func__, (unsigned long long)sh->sector,
2911
		s->locked, s->ops_request);
2912
}
2913

L
Linus Torvalds 已提交
2914 2915
/*
 * Each stripe/dev can have one or more bion attached.
2916
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2917 2918
 * The bi_next chain must be in order.
 */
2919 2920
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
			  int forwrite, int previous)
L
Linus Torvalds 已提交
2921 2922
{
	struct bio **bip;
2923
	struct r5conf *conf = sh->raid_conf;
2924
	int firstwrite=0;
L
Linus Torvalds 已提交
2925

2926
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2927
		(unsigned long long)bi->bi_iter.bi_sector,
L
Linus Torvalds 已提交
2928 2929
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
2930 2931 2932 2933 2934 2935 2936 2937 2938
	/*
	 * If several bio share a stripe. The bio bi_phys_segments acts as a
	 * reference count to avoid race. The reference count should already be
	 * increased before this function is called (for example, in
	 * make_request()), so other bio sharing this stripe will not free the
	 * stripe. If a stripe is owned by one stripe, the stripe lock will
	 * protect it.
	 */
	spin_lock_irq(&sh->stripe_lock);
2939 2940 2941
	/* Don't allow new IO added to stripes in batch list */
	if (sh->batch_head)
		goto overlap;
2942
	if (forwrite) {
L
Linus Torvalds 已提交
2943
		bip = &sh->dev[dd_idx].towrite;
2944
		if (*bip == NULL)
2945 2946
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2947
		bip = &sh->dev[dd_idx].toread;
2948 2949
	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
L
Linus Torvalds 已提交
2950 2951 2952
			goto overlap;
		bip = & (*bip)->bi_next;
	}
2953
	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
L
Linus Torvalds 已提交
2954 2955
		goto overlap;

2956 2957 2958
	if (!forwrite || previous)
		clear_bit(STRIPE_BATCH_READY, &sh->state);

2959
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2960 2961 2962
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2963
	raid5_inc_bi_active_stripes(bi);
2964

L
Linus Torvalds 已提交
2965 2966 2967 2968 2969
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2970
			     bi && bi->bi_iter.bi_sector <= sector;
L
Linus Torvalds 已提交
2971
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
K
Kent Overstreet 已提交
2972 2973
			if (bio_end_sector(bi) >= sector)
				sector = bio_end_sector(bi);
L
Linus Torvalds 已提交
2974 2975
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2976 2977
			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
				sh->overwrite_disks++;
L
Linus Torvalds 已提交
2978
	}
2979 2980

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2981
		(unsigned long long)(*bip)->bi_iter.bi_sector,
2982
		(unsigned long long)sh->sector, dd_idx);
2983
	spin_unlock_irq(&sh->stripe_lock);
2984 2985 2986 2987 2988 2989 2990

	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
		sh->bm_seq = conf->seq_flush+1;
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}
2991 2992 2993

	if (stripe_can_batch(sh))
		stripe_add_to_batch_list(conf, sh);
L
Linus Torvalds 已提交
2994 2995 2996 2997
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
S
Shaohua Li 已提交
2998
	spin_unlock_irq(&sh->stripe_lock);
L
Linus Torvalds 已提交
2999 3000 3001
	return 0;
}

3002
static void end_reshape(struct r5conf *conf);
3003

3004
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3005
			    struct stripe_head *sh)
3006
{
3007
	int sectors_per_chunk =
3008
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3009
	int dd_idx;
3010
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3011
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3012

3013 3014
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
3015
			     *sectors_per_chunk + chunk_offset,
3016
			     previous,
3017
			     &dd_idx, sh);
3018 3019
}

3020
static void
3021
handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3022 3023 3024 3025
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
3026
	BUG_ON(sh->batch_head);
3027 3028 3029 3030 3031
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3032
			struct md_rdev *rdev;
3033 3034 3035
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
3036 3037 3038
				atomic_inc(&rdev->nr_pending);
			else
				rdev = NULL;
3039
			rcu_read_unlock();
3040 3041 3042 3043 3044 3045 3046 3047
			if (rdev) {
				if (!rdev_set_badblocks(
					    rdev,
					    sh->sector,
					    STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
3048
		}
S
Shaohua Li 已提交
3049
		spin_lock_irq(&sh->stripe_lock);
3050 3051 3052
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
3053
		sh->overwrite_disks = 0;
S
Shaohua Li 已提交
3054
		spin_unlock_irq(&sh->stripe_lock);
3055
		if (bi)
3056 3057 3058 3059 3060
			bitmap_end = 1;

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

3061
		while (bi && bi->bi_iter.bi_sector <
3062 3063 3064
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3065
			if (!raid5_dec_bi_active_stripes(bi)) {
3066 3067 3068 3069 3070 3071
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
3072 3073 3074 3075
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
				STRIPE_SECTORS, 0, 0);
		bitmap_end = 0;
3076 3077 3078
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
3079 3080 3081 3082 3083
		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
			sh->dev[i].page = sh->dev[i].orig_page;
		}

3084
		if (bi) bitmap_end = 1;
3085
		while (bi && bi->bi_iter.bi_sector <
3086 3087 3088
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3089
			if (!raid5_dec_bi_active_stripes(bi)) {
3090 3091 3092 3093 3094 3095 3096
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

3097 3098 3099 3100 3101 3102
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3103
			spin_lock_irq(&sh->stripe_lock);
3104 3105
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
3106
			spin_unlock_irq(&sh->stripe_lock);
3107 3108
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
3109
			while (bi && bi->bi_iter.bi_sector <
3110 3111 3112 3113
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
3114
				if (!raid5_dec_bi_active_stripes(bi)) {
3115 3116 3117 3118 3119 3120 3121 3122 3123
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
3124 3125 3126 3127
		/* If we were in the middle of a write the parity block might
		 * still be locked - so just clear all R5_LOCKED flags
		 */
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3128 3129
	}

3130 3131 3132
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
3133 3134
}

3135
static void
3136
handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3137 3138 3139 3140 3141
		   struct stripe_head_state *s)
{
	int abort = 0;
	int i;

3142
	BUG_ON(sh->batch_head);
3143
	clear_bit(STRIPE_SYNCING, &sh->state);
3144 3145
	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
		wake_up(&conf->wait_for_overlap);
3146
	s->syncing = 0;
3147
	s->replacing = 0;
3148
	/* There is nothing more to do for sync/check/repair.
3149 3150 3151
	 * Don't even need to abort as that is handled elsewhere
	 * if needed, and not always wanted e.g. if there is a known
	 * bad block here.
3152
	 * For recover/replace we need to record a bad block on all
3153 3154
	 * non-sync devices, or abort the recovery
	 */
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
		/* During recovery devices cannot be removed, so
		 * locking and refcounting of rdevs is not needed
		 */
		for (i = 0; i < conf->raid_disks; i++) {
			struct md_rdev *rdev = conf->disks[i].rdev;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
			rdev = conf->disks[i].replacement;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
		}
		if (abort)
			conf->recovery_disabled =
				conf->mddev->recovery_disabled;
3178
	}
3179
	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3180 3181
}

3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
static int want_replace(struct stripe_head *sh, int disk_idx)
{
	struct md_rdev *rdev;
	int rv = 0;
	/* Doing recovery so rcu locking not required */
	rdev = sh->raid_conf->disks[disk_idx].replacement;
	if (rdev
	    && !test_bit(Faulty, &rdev->flags)
	    && !test_bit(In_sync, &rdev->flags)
	    && (rdev->recovery_offset <= sh->sector
		|| rdev->mddev->recovery_cp <= sh->sector))
		rv = 1;

	return rv;
}

3198
/* fetch_block - checks the given member device to see if its data needs
3199 3200 3201
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
3202
 * 0 to tell the loop in handle_stripe_fill to continue
3203
 */
3204 3205 3206

static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
			   int disk_idx, int disks)
3207
{
3208
	struct r5dev *dev = &sh->dev[disk_idx];
3209 3210
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
3211
	int i;
3212

3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239

	if (test_bit(R5_LOCKED, &dev->flags) ||
	    test_bit(R5_UPTODATE, &dev->flags))
		/* No point reading this as we already have it or have
		 * decided to get it.
		 */
		return 0;

	if (dev->toread ||
	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
		/* We need this block to directly satisfy a request */
		return 1;

	if (s->syncing || s->expanding ||
	    (s->replacing && want_replace(sh, disk_idx)))
		/* When syncing, or expanding we read everything.
		 * When replacing, we need the replaced block.
		 */
		return 1;

	if ((s->failed >= 1 && fdev[0]->toread) ||
	    (s->failed >= 2 && fdev[1]->toread))
		/* If we want to read from a failed device, then
		 * we need to actually read every other device.
		 */
		return 1;

3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
	/* Sometimes neither read-modify-write nor reconstruct-write
	 * cycles can work.  In those cases we read every block we
	 * can.  Then the parity-update is certain to have enough to
	 * work with.
	 * This can only be a problem when we need to write something,
	 * and some device has failed.  If either of those tests
	 * fail we need look no further.
	 */
	if (!s->failed || !s->to_write)
		return 0;

	if (test_bit(R5_Insync, &dev->flags) &&
	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
		/* Pre-reads at not permitted until after short delay
		 * to gather multiple requests.  However if this
		 * device is no Insync, the block could only be be computed
		 * and there is no need to delay that.
		 */
		return 0;
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284

	for (i = 0; i < s->failed; i++) {
		if (fdev[i]->towrite &&
		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
			/* If we have a partial write to a failed
			 * device, then we will need to reconstruct
			 * the content of that device, so all other
			 * devices must be read.
			 */
			return 1;
	}

	/* If we are forced to do a reconstruct-write, either because
	 * the current RAID6 implementation only supports that, or
	 * or because parity cannot be trusted and we are currently
	 * recovering it, there is extra need to be careful.
	 * If one of the devices that we would need to read, because
	 * it is not being overwritten (and maybe not written at all)
	 * is missing/faulty, then we need to read everything we can.
	 */
	if (sh->raid_conf->level != 6 &&
	    sh->sector < sh->raid_conf->mddev->recovery_cp)
		/* reconstruct-write isn't being forced */
		return 0;
	for (i = 0; i < s->failed; i++) {
3285 3286 3287
		if (s->failed_num[i] != sh->pd_idx &&
		    s->failed_num[i] != sh->qd_idx &&
		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3288 3289 3290 3291
		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
			return 1;
	}

3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	return 0;
}

static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
		       int disk_idx, int disks)
{
	struct r5dev *dev = &sh->dev[disk_idx];

	/* is the data in this block needed, and can we get it? */
	if (need_this_block(sh, s, disk_idx, disks)) {
3302 3303 3304 3305 3306
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3307
		BUG_ON(sh->batch_head);
3308
		if ((s->uptodate == disks - 1) &&
3309 3310
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
3311 3312
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
3313
			 */
3314 3315 3316 3317 3318 3319 3320 3321
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
3322 3323 3324 3325 3326 3327
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
3341
			}
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
3361 3362
		}
	}
3363 3364 3365 3366 3367

	return 0;
}

/**
3368
 * handle_stripe_fill - read or compute data to satisfy pending requests.
3369
 */
3370 3371 3372
static void handle_stripe_fill(struct stripe_head *sh,
			       struct stripe_head_state *s,
			       int disks)
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
3383
			if (fetch_block(sh, s, i, disks))
3384
				break;
3385 3386 3387
	set_bit(STRIPE_HANDLE, &sh->state);
}

3388
/* handle_stripe_clean_event
3389 3390 3391 3392
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
3393
static void handle_stripe_clean_event(struct r5conf *conf,
3394 3395 3396 3397
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;
3398
	int discard_pending = 0;
3399 3400 3401
	struct stripe_head *head_sh = sh;
	bool do_endio = false;
	int wakeup_nr = 0;
3402 3403 3404 3405 3406

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
3407
			    (test_bit(R5_UPTODATE, &dev->flags) ||
3408 3409
			     test_bit(R5_Discard, &dev->flags) ||
			     test_bit(R5_SkipCopy, &dev->flags))) {
3410 3411
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
3412
				pr_debug("Return write for disc %d\n", i);
3413 3414
				if (test_and_clear_bit(R5_Discard, &dev->flags))
					clear_bit(R5_UPTODATE, &dev->flags);
3415 3416 3417
				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
				}
3418 3419 3420 3421
				do_endio = true;

returnbi:
				dev->page = dev->orig_page;
3422 3423
				wbi = dev->written;
				dev->written = NULL;
3424
				while (wbi && wbi->bi_iter.bi_sector <
3425 3426
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
3427
					if (!raid5_dec_bi_active_stripes(wbi)) {
3428 3429 3430 3431 3432 3433
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
3434 3435
				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
						STRIPE_SECTORS,
3436
					 !test_bit(STRIPE_DEGRADED, &sh->state),
3437
						0);
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
				if (head_sh->batch_head) {
					sh = list_first_entry(&sh->batch_list,
							      struct stripe_head,
							      batch_list);
					if (sh != head_sh) {
						dev = &sh->dev[i];
						goto returnbi;
					}
				}
				sh = head_sh;
				dev = &sh->dev[i];
3449 3450
			} else if (test_bit(R5_Discard, &dev->flags))
				discard_pending = 1;
3451 3452
			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
			WARN_ON(dev->page != dev->orig_page);
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
		}
	if (!discard_pending &&
	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
		if (sh->qd_idx >= 0) {
			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
		}
		/* now that discard is done we can proceed with any sync */
		clear_bit(STRIPE_DISCARD, &sh->state);
S
Shaohua Li 已提交
3464 3465 3466 3467 3468 3469
		/*
		 * SCSI discard will change some bio fields and the stripe has
		 * no updated data, so remove it from hash list and the stripe
		 * will be reinitialized
		 */
		spin_lock_irq(&conf->device_lock);
3470
unhash:
S
Shaohua Li 已提交
3471
		remove_hash(sh);
3472 3473 3474 3475 3476 3477
		if (head_sh->batch_head) {
			sh = list_first_entry(&sh->batch_list,
					      struct stripe_head, batch_list);
			if (sh != head_sh)
					goto unhash;
		}
S
Shaohua Li 已提交
3478
		spin_unlock_irq(&conf->device_lock);
3479 3480
		sh = head_sh;

3481 3482 3483 3484
		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
			set_bit(STRIPE_HANDLE, &sh->state);

	}
3485 3486 3487 3488

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501

	if (!head_sh->batch_head || !do_endio)
		return;
	for (i = 0; i < head_sh->disks; i++) {
		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
			wakeup_nr++;
	}
	while (!list_empty(&head_sh->batch_list)) {
		int i;
		sh = list_first_entry(&head_sh->batch_list,
				      struct stripe_head, batch_list);
		list_del_init(&sh->batch_list);

3502 3503 3504 3505
		set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
			      head_sh->state & ~((1 << STRIPE_ACTIVE) |
						 (1 << STRIPE_PREREAD_ACTIVE) |
						 STRIPE_EXPAND_SYNC_FLAG));
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
		sh->check_state = head_sh->check_state;
		sh->reconstruct_state = head_sh->reconstruct_state;
		for (i = 0; i < sh->disks; i++) {
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wakeup_nr++;
			sh->dev[i].flags = head_sh->dev[i].flags;
		}

		spin_lock_irq(&sh->stripe_lock);
		sh->batch_head = NULL;
		spin_unlock_irq(&sh->stripe_lock);
3517 3518
		if (sh->state & STRIPE_EXPAND_SYNC_FLAG)
			set_bit(STRIPE_HANDLE, &sh->state);
3519 3520 3521 3522 3523 3524 3525
		release_stripe(sh);
	}

	spin_lock_irq(&head_sh->stripe_lock);
	head_sh->batch_head = NULL;
	spin_unlock_irq(&head_sh->stripe_lock);
	wake_up_nr(&conf->wait_for_overlap, wakeup_nr);
3526 3527
	if (head_sh->state & STRIPE_EXPAND_SYNC_FLAG)
		set_bit(STRIPE_HANDLE, &head_sh->state);
3528 3529
}

3530
static void handle_stripe_dirtying(struct r5conf *conf,
3531 3532 3533
				   struct stripe_head *sh,
				   struct stripe_head_state *s,
				   int disks)
3534 3535
{
	int rmw = 0, rcw = 0, i;
3536 3537
	sector_t recovery_cp = conf->mddev->recovery_cp;

3538
	/* Check whether resync is now happening or should start.
3539 3540 3541 3542 3543 3544
	 * If yes, then the array is dirty (after unclean shutdown or
	 * initial creation), so parity in some stripes might be inconsistent.
	 * In this case, we need to always do reconstruct-write, to ensure
	 * that in case of drive failure or read-error correction, we
	 * generate correct data from the parity.
	 */
3545
	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3546 3547
	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
	     s->failed == 0)) {
3548
		/* Calculate the real rcw later - for now make it
3549 3550 3551
		 * look like rcw is cheaper
		 */
		rcw = 1; rmw = 2;
3552 3553
		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
			 conf->rmw_level, (unsigned long long)recovery_cp,
3554
			 (unsigned long long)sh->sector);
3555
	} else for (i = disks; i--; ) {
3556 3557
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
3558
		if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3559
		    !test_bit(R5_LOCKED, &dev->flags) &&
3560 3561
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
3562 3563 3564 3565 3566 3567
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
3568 3569
		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
		    i != sh->pd_idx && i != sh->qd_idx &&
3570
		    !test_bit(R5_LOCKED, &dev->flags) &&
3571 3572
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
3573 3574
			if (test_bit(R5_Insync, &dev->flags))
				rcw++;
3575 3576 3577 3578
			else
				rcw += 2*disks;
		}
	}
3579
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3580 3581
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
3582
	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3583
		/* prefer read-modify-write, but need to get some data */
3584 3585 3586 3587
		if (conf->mddev->queue)
			blk_add_trace_msg(conf->mddev->queue,
					  "raid5 rmw %llu %d",
					  (unsigned long long)sh->sector, rmw);
3588 3589
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
3590
			if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3591
			    !test_bit(R5_LOCKED, &dev->flags) &&
3592 3593
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
3594
			    test_bit(R5_Insync, &dev->flags)) {
3595 3596 3597 3598
				if (test_bit(STRIPE_PREREAD_ACTIVE,
					     &sh->state)) {
					pr_debug("Read_old block %d for r-m-w\n",
						 i);
3599 3600 3601 3602 3603 3604 3605 3606 3607
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
N
NeilBrown 已提交
3608
	}
3609
	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3610
		/* want reconstruct write, but need to get some data */
N
NeilBrown 已提交
3611
		int qread =0;
3612
		rcw = 0;
3613 3614 3615
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3616
			    i != sh->pd_idx && i != sh->qd_idx &&
3617
			    !test_bit(R5_LOCKED, &dev->flags) &&
3618
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3619 3620
			      test_bit(R5_Wantcompute, &dev->flags))) {
				rcw++;
3621 3622 3623
				if (test_bit(R5_Insync, &dev->flags) &&
				    test_bit(STRIPE_PREREAD_ACTIVE,
					     &sh->state)) {
3624
					pr_debug("Read_old block "
3625 3626 3627 3628
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
N
NeilBrown 已提交
3629
					qread++;
3630 3631 3632 3633 3634 3635
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
3636
		if (rcw && conf->mddev->queue)
N
NeilBrown 已提交
3637 3638 3639
			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
					  (unsigned long long)sh->sector,
					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3640
	}
3641 3642 3643 3644 3645

	if (rcw > disks && rmw > disks &&
	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
		set_bit(STRIPE_DELAYED, &sh->state);

3646 3647 3648
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
3649 3650
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
3651 3652
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
3653 3654 3655
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
3656 3657 3658
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3659
		schedule_reconstruction(sh, s, rcw == 0, 0);
3660 3661
}

3662
static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3663 3664
				struct stripe_head_state *s, int disks)
{
3665
	struct r5dev *dev = NULL;
3666

3667
	BUG_ON(sh->batch_head);
3668
	set_bit(STRIPE_HANDLE, &sh->state);
3669

3670 3671 3672
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
3673 3674
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
3675 3676
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3677 3678
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
3679
			break;
3680
		}
3681
		dev = &sh->dev[s->failed_num[0]];
3682 3683 3684 3685 3686 3687 3688 3689 3690
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
3691

3692 3693 3694 3695 3696
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
3697
		s->locked++;
3698
		set_bit(R5_Wantwrite, &dev->flags);
3699

3700 3701
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
3718
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3719 3720 3721 3722 3723
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
3724
			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3725 3726 3727 3728 3729
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
3730
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3731 3732 3733 3734
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
3735
				sh->ops.target2 = -1;
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3747 3748 3749
	}
}

3750
static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3751
				  struct stripe_head_state *s,
3752
				  int disks)
3753 3754
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
3755
	int qd_idx = sh->qd_idx;
3756
	struct r5dev *dev;
3757

3758
	BUG_ON(sh->batch_head);
3759 3760 3761
	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
3762

3763 3764 3765 3766 3767 3768
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

3769 3770 3771
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
3772
		if (s->failed == s->q_failed) {
3773
			/* The only possible failed device holds Q, so it
3774 3775 3776
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
3777
			sh->check_state = check_state_run;
3778
		}
3779
		if (!s->q_failed && s->failed < 2) {
3780
			/* Q is not failed, and we didn't use it to generate
3781 3782
			 * anything, so it makes sense to check it
			 */
3783 3784 3785 3786
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
3787 3788
		}

3789 3790
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
3791

3792 3793 3794 3795
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
3796
		}
3797 3798 3799 3800 3801 3802 3803
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
3804 3805
		}

3806 3807 3808 3809 3810
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
3811

3812 3813 3814
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
3815 3816

		/* now write out any block on a failed drive,
3817
		 * or P or Q if they were recomputed
3818
		 */
3819
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3820
		if (s->failed == 2) {
3821
			dev = &sh->dev[s->failed_num[1]];
3822 3823 3824 3825 3826
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
3827
			dev = &sh->dev[s->failed_num[0]];
3828 3829 3830 3831
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3832
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3833 3834 3835 3836 3837
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3838
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3839 3840 3841 3842 3843 3844 3845 3846
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
3876
			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3911 3912 3913
	}
}

3914
static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3915 3916 3917 3918 3919 3920
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
3921
	struct dma_async_tx_descriptor *tx = NULL;
3922
	BUG_ON(sh->batch_head);
3923 3924
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
3925
		if (i != sh->pd_idx && i != sh->qd_idx) {
3926
			int dd_idx, j;
3927
			struct stripe_head *sh2;
3928
			struct async_submit_ctl submit;
3929

3930
			sector_t bn = compute_blocknr(sh, i, 1);
3931 3932
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
3933
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
3946 3947

			/* place all the copies on one channel */
3948
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3949
			tx = async_memcpy(sh2->dev[dd_idx].page,
3950
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3951
					  &submit);
3952

3953 3954 3955 3956
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
3957
				    j != sh2->qd_idx &&
3958 3959 3960 3961 3962 3963 3964
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
3965

3966
		}
3967
	/* done submitting copies, wait for them to complete */
3968
	async_tx_quiesce(&tx);
3969
}
L
Linus Torvalds 已提交
3970 3971 3972 3973

/*
 * handle_stripe - do things to a stripe.
 *
3974 3975
 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
 * state of various bits to see what needs to be done.
L
Linus Torvalds 已提交
3976
 * Possible results:
3977 3978
 *    return some read requests which now have data
 *    return some write requests which are safely on storage
L
Linus Torvalds 已提交
3979 3980 3981 3982 3983
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 */
3984

3985
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
3986
{
3987
	struct r5conf *conf = sh->raid_conf;
3988
	int disks = sh->disks;
3989 3990
	struct r5dev *dev;
	int i;
3991
	int do_recovery = 0;
L
Linus Torvalds 已提交
3992

3993 3994
	memset(s, 0, sizeof(*s));

3995 3996
	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
3997 3998
	s->failed_num[0] = -1;
	s->failed_num[1] = -1;
L
Linus Torvalds 已提交
3999

4000
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
4001
	rcu_read_lock();
4002
	for (i=disks; i--; ) {
4003
		struct md_rdev *rdev;
4004 4005 4006
		sector_t first_bad;
		int bad_sectors;
		int is_bad = 0;
4007

4008
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
4009

4010
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4011 4012
			 i, dev->flags,
			 dev->toread, dev->towrite, dev->written);
4013 4014 4015 4016 4017 4018 4019 4020
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
4021

4022
		/* now count some things */
4023 4024 4025 4026
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
4027
		if (test_bit(R5_Wantcompute, &dev->flags)) {
4028 4029
			s->compute++;
			BUG_ON(s->compute > 2);
4030
		}
L
Linus Torvalds 已提交
4031

4032
		if (test_bit(R5_Wantfill, &dev->flags))
4033
			s->to_fill++;
4034
		else if (dev->toread)
4035
			s->to_read++;
4036
		if (dev->towrite) {
4037
			s->to_write++;
4038
			if (!test_bit(R5_OVERWRITE, &dev->flags))
4039
				s->non_overwrite++;
4040
		}
4041
		if (dev->written)
4042
			s->written++;
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
		/* Prefer to use the replacement for reads, but only
		 * if it is recovered enough and has no bad blocks.
		 */
		rdev = rcu_dereference(conf->disks[i].replacement);
		if (rdev && !test_bit(Faulty, &rdev->flags) &&
		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
				 &first_bad, &bad_sectors))
			set_bit(R5_ReadRepl, &dev->flags);
		else {
4053 4054
			if (rdev)
				set_bit(R5_NeedReplace, &dev->flags);
4055 4056 4057
			rdev = rcu_dereference(conf->disks[i].rdev);
			clear_bit(R5_ReadRepl, &dev->flags);
		}
4058 4059
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
		if (rdev) {
			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					     &first_bad, &bad_sectors);
			if (s->blocked_rdev == NULL
			    && (test_bit(Blocked, &rdev->flags)
				|| is_bad < 0)) {
				if (is_bad < 0)
					set_bit(BlockedBadBlocks,
						&rdev->flags);
				s->blocked_rdev = rdev;
				atomic_inc(&rdev->nr_pending);
			}
4072
		}
4073 4074 4075
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
4076 4077
		else if (is_bad) {
			/* also not in-sync */
4078 4079
			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
			    test_bit(R5_UPTODATE, &dev->flags)) {
4080 4081 4082 4083 4084 4085 4086
				/* treat as in-sync, but with a read error
				 * which we can now try to correct
				 */
				set_bit(R5_Insync, &dev->flags);
				set_bit(R5_ReadError, &dev->flags);
			}
		} else if (test_bit(In_sync, &rdev->flags))
4087
			set_bit(R5_Insync, &dev->flags);
4088
		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4089
			/* in sync if before recovery_offset */
4090 4091 4092 4093 4094 4095 4096 4097 4098
			set_bit(R5_Insync, &dev->flags);
		else if (test_bit(R5_UPTODATE, &dev->flags) &&
			 test_bit(R5_Expanded, &dev->flags))
			/* If we've reshaped into here, we assume it is Insync.
			 * We will shortly update recovery_offset to make
			 * it official.
			 */
			set_bit(R5_Insync, &dev->flags);

4099
		if (test_bit(R5_WriteError, &dev->flags)) {
4100 4101 4102 4103 4104 4105 4106
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 == rdev)
				clear_bit(R5_Insync, &dev->flags);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4107
				s->handle_bad_blocks = 1;
4108
				atomic_inc(&rdev2->nr_pending);
4109 4110 4111
			} else
				clear_bit(R5_WriteError, &dev->flags);
		}
4112
		if (test_bit(R5_MadeGood, &dev->flags)) {
4113 4114 4115 4116 4117
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4118
				s->handle_bad_blocks = 1;
4119
				atomic_inc(&rdev2->nr_pending);
4120 4121 4122
			} else
				clear_bit(R5_MadeGood, &dev->flags);
		}
4123 4124 4125 4126 4127 4128 4129 4130 4131
		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].replacement);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
				s->handle_bad_blocks = 1;
				atomic_inc(&rdev2->nr_pending);
			} else
				clear_bit(R5_MadeGoodRepl, &dev->flags);
		}
4132
		if (!test_bit(R5_Insync, &dev->flags)) {
4133 4134 4135
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
4136
		}
4137 4138 4139
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
4140 4141 4142
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
4143 4144
			if (rdev && !test_bit(Faulty, &rdev->flags))
				do_recovery = 1;
4145
		}
L
Linus Torvalds 已提交
4146
	}
4147 4148 4149 4150
	if (test_bit(STRIPE_SYNCING, &sh->state)) {
		/* If there is a failed device being replaced,
		 *     we must be recovering.
		 * else if we are after recovery_cp, we must be syncing
4151
		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4152 4153 4154 4155 4156
		 * else we can only be replacing
		 * sync and recovery both need to read all devices, and so
		 * use the same flag.
		 */
		if (do_recovery ||
4157 4158
		    sh->sector >= conf->mddev->recovery_cp ||
		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4159 4160 4161 4162
			s->syncing = 1;
		else
			s->replacing = 1;
	}
L
Linus Torvalds 已提交
4163
	rcu_read_unlock();
4164 4165
}

4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
static int clear_batch_ready(struct stripe_head *sh)
{
	struct stripe_head *tmp;
	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
		return 0;
	spin_lock(&sh->stripe_lock);
	if (!sh->batch_head) {
		spin_unlock(&sh->stripe_lock);
		return 0;
	}

	/*
	 * this stripe could be added to a batch list before we check
	 * BATCH_READY, skips it
	 */
	if (sh->batch_head != sh) {
		spin_unlock(&sh->stripe_lock);
		return 1;
	}
	spin_lock(&sh->batch_lock);
	list_for_each_entry(tmp, &sh->batch_list, batch_list)
		clear_bit(STRIPE_BATCH_READY, &tmp->state);
	spin_unlock(&sh->batch_lock);
	spin_unlock(&sh->stripe_lock);

	/*
	 * BATCH_READY is cleared, no new stripes can be added.
	 * batch_list can be accessed without lock
	 */
	return 0;
}

4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
static void check_break_stripe_batch_list(struct stripe_head *sh)
{
	struct stripe_head *head_sh, *next;
	int i;

	if (!test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
		return;

	head_sh = sh;
	do {
		sh = list_first_entry(&sh->batch_list,
				      struct stripe_head, batch_list);
		BUG_ON(sh == head_sh);
	} while (!test_bit(STRIPE_DEGRADED, &sh->state));

	while (sh != head_sh) {
		next = list_first_entry(&sh->batch_list,
					struct stripe_head, batch_list);
		list_del_init(&sh->batch_list);

4218 4219 4220 4221 4222
		set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
			      head_sh->state & ~((1 << STRIPE_ACTIVE) |
						 (1 << STRIPE_PREREAD_ACTIVE) |
						 (1 << STRIPE_DEGRADED) |
						 STRIPE_EXPAND_SYNC_FLAG));
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
		sh->check_state = head_sh->check_state;
		sh->reconstruct_state = head_sh->reconstruct_state;
		for (i = 0; i < sh->disks; i++)
			sh->dev[i].flags = head_sh->dev[i].flags &
				(~((1 << R5_WriteError) | (1 << R5_Overlap)));

		spin_lock_irq(&sh->stripe_lock);
		sh->batch_head = NULL;
		spin_unlock_irq(&sh->stripe_lock);

		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);

		sh = next;
	}
}

4240 4241 4242
static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
4243
	struct r5conf *conf = sh->raid_conf;
4244
	int i;
4245 4246
	int prexor;
	int disks = sh->disks;
4247
	struct r5dev *pdev, *qdev;
4248 4249

	clear_bit(STRIPE_HANDLE, &sh->state);
4250
	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4251 4252 4253 4254 4255 4256
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

4257 4258 4259 4260 4261
	if (clear_batch_ready(sh) ) {
		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
		return;
	}

4262 4263
	check_break_stripe_batch_list(sh);

4264
	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4265 4266 4267 4268 4269 4270
		spin_lock(&sh->stripe_lock);
		/* Cannot process 'sync' concurrently with 'discard' */
		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
			set_bit(STRIPE_SYNCING, &sh->state);
			clear_bit(STRIPE_INSYNC, &sh->state);
4271
			clear_bit(STRIPE_REPLACED, &sh->state);
4272 4273
		}
		spin_unlock(&sh->stripe_lock);
4274 4275 4276 4277 4278 4279 4280 4281
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
4282

4283
	analyse_stripe(sh, &s);
4284

4285 4286 4287 4288 4289
	if (s.handle_bad_blocks) {
		set_bit(STRIPE_HANDLE, &sh->state);
		goto finish;
	}

4290 4291
	if (unlikely(s.blocked_rdev)) {
		if (s.syncing || s.expanding || s.expanded ||
4292
		    s.replacing || s.to_write || s.written) {
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
			set_bit(STRIPE_HANDLE, &sh->state);
			goto finish;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(s.blocked_rdev, conf->mddev);
		s.blocked_rdev = NULL;
	}

	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

	pr_debug("locked=%d uptodate=%d to_read=%d"
	       " to_write=%d failed=%d failed_num=%d,%d\n",
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       s.failed_num[0], s.failed_num[1]);
	/* check if the array has lost more than max_degraded devices and,
	 * if so, some requests might need to be failed.
	 */
4313 4314 4315 4316 4317
	if (s.failed > conf->max_degraded) {
		sh->check_state = 0;
		sh->reconstruct_state = 0;
		if (s.to_read+s.to_write+s.written)
			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4318
		if (s.syncing + s.replacing)
4319 4320
			handle_failed_sync(conf, sh, &s);
	}
4321

4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	prexor = 0;
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
		prexor = 1;
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
		sh->reconstruct_state = reconstruct_state_idle;

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
4335 4336
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4337
		BUG_ON(sh->qd_idx >= 0 &&
4338 4339
		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4340 4341 4342 4343 4344 4345 4346 4347 4348
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || i == sh->qd_idx ||
				 dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
				if (prexor)
					continue;
4349 4350
				if (s.failed > 1)
					continue;
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
				     s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			s.dec_preread_active = 1;
	}

4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[sh->pd_idx];
	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
	qdev = &sh->dev[sh->qd_idx];
	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
		|| conf->level < 6;

	if (s.written &&
	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
			     && !test_bit(R5_LOCKED, &pdev->flags)
			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
				 test_bit(R5_Discard, &pdev->flags))))) &&
	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
			     && !test_bit(R5_LOCKED, &qdev->flags)
			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
				 test_bit(R5_Discard, &qdev->flags))))))
		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
	if (s.to_read || s.non_overwrite
	    || (conf->level == 6 && s.to_write && s.failed)
	    || (s.syncing && (s.uptodate + s.compute < disks))
	    || s.replacing
	    || s.expanding)
		handle_stripe_fill(sh, &s, disks);

4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying(conf, sh, &s, disks);

	/* maybe we need to check and possibly fix the parity for this stripe
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
	 */
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state))) {
		if (conf->level == 6)
			handle_parity_checks6(conf, sh, &s, disks);
		else
			handle_parity_checks5(conf, sh, &s, disks);
	}
4418

4419 4420 4421
	if ((s.replacing || s.syncing) && s.locked == 0
	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4422 4423
		/* Write out to replacement devices where possible */
		for (i = 0; i < conf->raid_disks; i++)
4424 4425
			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4426 4427 4428 4429
				set_bit(R5_WantReplace, &sh->dev[i].flags);
				set_bit(R5_LOCKED, &sh->dev[i].flags);
				s.locked++;
			}
4430 4431 4432
		if (s.replacing)
			set_bit(STRIPE_INSYNC, &sh->state);
		set_bit(STRIPE_REPLACED, &sh->state);
4433 4434
	}
	if ((s.syncing || s.replacing) && s.locked == 0 &&
4435
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4436
	    test_bit(STRIPE_INSYNC, &sh->state)) {
4437 4438
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
		clear_bit(STRIPE_SYNCING, &sh->state);
4439 4440
		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
			wake_up(&conf->wait_for_overlap);
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			struct r5dev *dev = &sh->dev[s.failed_num[i]];
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				}
			}
		}

4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		struct stripe_head *sh_src
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
			/* sh cannot be written until sh_src has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh_src->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh_src);
			goto finish;
		}
		if (sh_src)
			release_stripe(sh_src);

		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}
4494

4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		stripe_set_idx(sh->sector, conf, 0, sh);
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
		handle_stripe_expansion(conf, sh);
4511

4512
finish:
4513
	/* wait for this device to become unblocked */
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
	if (unlikely(s.blocked_rdev)) {
		if (conf->mddev->external)
			md_wait_for_blocked_rdev(s.blocked_rdev,
						 conf->mddev);
		else
			/* Internal metadata will immediately
			 * be written by raid5d, so we don't
			 * need to wait here.
			 */
			rdev_dec_pending(s.blocked_rdev,
					 conf->mddev);
	}
4526

4527 4528
	if (s.handle_bad_blocks)
		for (i = disks; i--; ) {
4529
			struct md_rdev *rdev;
4530 4531 4532 4533 4534 4535 4536 4537 4538
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
				/* We own a safe reference to the rdev */
				rdev = conf->disks[i].rdev;
				if (!rdev_set_badblocks(rdev, sh->sector,
							STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
4539 4540 4541
			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
				rdev = conf->disks[i].rdev;
				rdev_clear_badblocks(rdev, sh->sector,
4542
						     STRIPE_SECTORS, 0);
4543 4544
				rdev_dec_pending(rdev, conf->mddev);
			}
4545 4546
			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
				rdev = conf->disks[i].replacement;
4547 4548 4549
				if (!rdev)
					/* rdev have been moved down */
					rdev = conf->disks[i].rdev;
4550
				rdev_clear_badblocks(rdev, sh->sector,
4551
						     STRIPE_SECTORS, 0);
4552 4553
				rdev_dec_pending(rdev, conf->mddev);
			}
4554 4555
		}

4556 4557 4558
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
4559
	ops_run_io(sh, &s);
4560

4561
	if (s.dec_preread_active) {
4562
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
4563
		 * is waiting on a flush, it won't continue until the writes
4564 4565 4566 4567 4568 4569 4570 4571
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

4572
	return_io(s.return_bi);
4573

4574
	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4575 4576
}

4577
static void raid5_activate_delayed(struct r5conf *conf)
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
4588
			list_add_tail(&sh->lru, &conf->hold_list);
4589
			raid5_wakeup_stripe_thread(sh);
4590
		}
N
NeilBrown 已提交
4591
	}
4592 4593
}

4594 4595
static void activate_bit_delay(struct r5conf *conf,
	struct list_head *temp_inactive_list)
4596 4597 4598 4599 4600 4601 4602
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4603
		int hash;
4604 4605
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
4606 4607
		hash = sh->hash_lock_index;
		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4608 4609 4610
	}
}

4611
static int raid5_congested(struct mddev *mddev, int bits)
4612
{
4613
	struct r5conf *conf = mddev->private;
4614 4615 4616 4617

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
4618

4619
	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4620 4621 4622
		return 1;
	if (conf->quiesce)
		return 1;
4623
	if (atomic_read(&conf->empty_inactive_list_nr))
4624 4625 4626 4627 4628
		return 1;

	return 0;
}

4629 4630 4631
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
4632
static int raid5_mergeable_bvec(struct mddev *mddev,
4633 4634
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
4635
{
4636
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4637
	int max;
4638
	unsigned int chunk_sectors = mddev->chunk_sectors;
4639
	unsigned int bio_sectors = bvm->bi_size >> 9;
4640

4641 4642 4643 4644 4645 4646
	/*
	 * always allow writes to be mergeable, read as well if array
	 * is degraded as we'll go through stripe cache anyway.
	 */
	if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
		return biovec->bv_len;
4647

4648 4649
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
4650 4651 4652 4653 4654 4655 4656 4657
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

4658
static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4659
{
4660
	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4661
	unsigned int chunk_sectors = mddev->chunk_sectors;
4662
	unsigned int bio_sectors = bio_sectors(bio);
4663

4664 4665
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
4666 4667 4668 4669
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

4670 4671 4672 4673
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
4674
static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}

4687
static struct bio *remove_bio_from_retry(struct r5conf *conf)
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
4698
		conf->retry_read_aligned_list = bi->bi_next;
4699
		bi->bi_next = NULL;
4700 4701 4702 4703
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
4704
		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4705 4706 4707 4708 4709
	}

	return bi;
}

4710 4711 4712 4713 4714 4715
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
4716
static void raid5_align_endio(struct bio *bi, int error)
4717 4718
{
	struct bio* raid_bi  = bi->bi_private;
4719
	struct mddev *mddev;
4720
	struct r5conf *conf;
4721
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4722
	struct md_rdev *rdev;
4723

4724
	bio_put(bi);
4725 4726 4727

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
4728 4729
	mddev = rdev->mddev;
	conf = mddev->private;
4730 4731 4732 4733

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
4734 4735
		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
					 raid_bi, 0);
4736
		bio_endio(raid_bi, 0);
4737 4738
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
4739
		return;
4740 4741
	}

4742
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4743 4744

	add_bio_to_retry(raid_bi, conf);
4745 4746
}

4747 4748
static int bio_fits_rdev(struct bio *bi)
{
4749
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4750

4751
	if (bio_sectors(bi) > queue_max_sectors(q))
4752 4753
		return 0;
	blk_recount_segments(q, bi);
4754
	if (bi->bi_phys_segments > queue_max_segments(q))
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}

4766
static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4767
{
4768
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
4769
	int dd_idx;
4770
	struct bio* align_bi;
4771
	struct md_rdev *rdev;
4772
	sector_t end_sector;
4773 4774

	if (!in_chunk_boundary(mddev, raid_bio)) {
4775
		pr_debug("chunk_aligned_read : non aligned\n");
4776 4777 4778
		return 0;
	}
	/*
4779
	 * use bio_clone_mddev to make a copy of the bio
4780
	 */
4781
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
4793 4794 4795
	align_bi->bi_iter.bi_sector =
		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
				     0, &dd_idx, NULL);
4796

K
Kent Overstreet 已提交
4797
	end_sector = bio_end_sector(align_bi);
4798
	rcu_read_lock();
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
	if (!rdev || test_bit(Faulty, &rdev->flags) ||
	    rdev->recovery_offset < end_sector) {
		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
		if (rdev &&
		    (test_bit(Faulty, &rdev->flags) ||
		    !(test_bit(In_sync, &rdev->flags) ||
		      rdev->recovery_offset >= end_sector)))
			rdev = NULL;
	}
	if (rdev) {
4810 4811 4812
		sector_t first_bad;
		int bad_sectors;

4813 4814
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
4815 4816
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
4817
		__clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4818

4819
		if (!bio_fits_rdev(align_bi) ||
4820 4821
		    is_badblock(rdev, align_bi->bi_iter.bi_sector,
				bio_sectors(align_bi),
4822 4823
				&first_bad, &bad_sectors)) {
			/* too big in some way, or has a known bad block */
4824 4825 4826 4827 4828
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

4829
		/* No reshape active, so we can trust rdev->data_offset */
4830
		align_bi->bi_iter.bi_sector += rdev->data_offset;
4831

4832 4833 4834
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
4835
				    conf->device_lock);
4836 4837 4838
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

4839 4840 4841
		if (mddev->gendisk)
			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
					      align_bi, disk_devt(mddev->gendisk),
4842
					      raid_bio->bi_iter.bi_sector);
4843 4844 4845 4846
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
4847
		bio_put(align_bi);
4848 4849 4850 4851
		return 0;
	}
}

4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
4862
static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4863
{
4864 4865
	struct stripe_head *sh = NULL, *tmp;
	struct list_head *handle_list = NULL;
4866
	struct r5worker_group *wg = NULL;
4867 4868 4869 4870 4871

	if (conf->worker_cnt_per_group == 0) {
		handle_list = &conf->handle_list;
	} else if (group != ANY_GROUP) {
		handle_list = &conf->worker_groups[group].handle_list;
4872
		wg = &conf->worker_groups[group];
4873 4874 4875 4876
	} else {
		int i;
		for (i = 0; i < conf->group_cnt; i++) {
			handle_list = &conf->worker_groups[i].handle_list;
4877
			wg = &conf->worker_groups[i];
4878 4879 4880 4881
			if (!list_empty(handle_list))
				break;
		}
	}
4882 4883 4884

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
4885
		  list_empty(handle_list) ? "empty" : "busy",
4886 4887 4888
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

4889 4890
	if (!list_empty(handle_list)) {
		sh = list_entry(handle_list->next, typeof(*sh), lru);
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923

		list_for_each_entry(tmp, &conf->hold_list,  lru) {
			if (conf->worker_cnt_per_group == 0 ||
			    group == ANY_GROUP ||
			    !cpu_online(tmp->cpu) ||
			    cpu_to_group(tmp->cpu) == group) {
				sh = tmp;
				break;
			}
		}

		if (sh) {
			conf->bypass_count -= conf->bypass_threshold;
			if (conf->bypass_count < 0)
				conf->bypass_count = 0;
		}
4924
		wg = NULL;
4925 4926 4927
	}

	if (!sh)
4928 4929
		return NULL;

4930 4931 4932 4933
	if (wg) {
		wg->stripes_cnt--;
		sh->group = NULL;
	}
4934
	list_del_init(&sh->lru);
4935
	BUG_ON(atomic_inc_return(&sh->count) != 1);
4936 4937
	return sh;
}
4938

4939 4940 4941
struct raid5_plug_cb {
	struct blk_plug_cb	cb;
	struct list_head	list;
4942
	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4943 4944 4945 4946 4947 4948 4949 4950 4951
};

static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
{
	struct raid5_plug_cb *cb = container_of(
		blk_cb, struct raid5_plug_cb, cb);
	struct stripe_head *sh;
	struct mddev *mddev = cb->cb.data;
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
4952
	int cnt = 0;
4953
	int hash;
4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964

	if (cb->list.next && !list_empty(&cb->list)) {
		spin_lock_irq(&conf->device_lock);
		while (!list_empty(&cb->list)) {
			sh = list_first_entry(&cb->list, struct stripe_head, lru);
			list_del_init(&sh->lru);
			/*
			 * avoid race release_stripe_plug() sees
			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
			 * is still in our list
			 */
4965
			smp_mb__before_atomic();
4966
			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
S
Shaohua Li 已提交
4967 4968 4969 4970
			/*
			 * STRIPE_ON_RELEASE_LIST could be set here. In that
			 * case, the count is always > 1 here
			 */
4971 4972
			hash = sh->hash_lock_index;
			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
N
NeilBrown 已提交
4973
			cnt++;
4974 4975 4976
		}
		spin_unlock_irq(&conf->device_lock);
	}
4977 4978
	release_inactive_stripe_list(conf, cb->temp_inactive_list,
				     NR_STRIPE_HASH_LOCKS);
4979 4980
	if (mddev->queue)
		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
	kfree(cb);
}

static void release_stripe_plug(struct mddev *mddev,
				struct stripe_head *sh)
{
	struct blk_plug_cb *blk_cb = blk_check_plugged(
		raid5_unplug, mddev,
		sizeof(struct raid5_plug_cb));
	struct raid5_plug_cb *cb;

	if (!blk_cb) {
		release_stripe(sh);
		return;
	}

	cb = container_of(blk_cb, struct raid5_plug_cb, cb);

4999 5000
	if (cb->list.next == NULL) {
		int i;
5001
		INIT_LIST_HEAD(&cb->list);
5002 5003 5004
		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
			INIT_LIST_HEAD(cb->temp_inactive_list + i);
	}
5005 5006 5007 5008 5009 5010 5011

	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
		list_add_tail(&sh->lru, &cb->list);
	else
		release_stripe(sh);
}

S
Shaohua Li 已提交
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
static void make_discard_request(struct mddev *mddev, struct bio *bi)
{
	struct r5conf *conf = mddev->private;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
	int remaining;
	int stripe_sectors;

	if (mddev->reshape_position != MaxSector)
		/* Skip discard while reshape is happening */
		return;

5024 5025
	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
S
Shaohua Li 已提交
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046

	bi->bi_next = NULL;
	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */

	stripe_sectors = conf->chunk_sectors *
		(conf->raid_disks - conf->max_degraded);
	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
					       stripe_sectors);
	sector_div(last_sector, stripe_sectors);

	logical_sector *= conf->chunk_sectors;
	last_sector *= conf->chunk_sectors;

	for (; logical_sector < last_sector;
	     logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
		int d;
	again:
		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
		prepare_to_wait(&conf->wait_for_overlap, &w,
				TASK_UNINTERRUPTIBLE);
5047 5048 5049 5050 5051 5052 5053
		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
		if (test_bit(STRIPE_SYNCING, &sh->state)) {
			release_stripe(sh);
			schedule();
			goto again;
		}
		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
S
Shaohua Li 已提交
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065
		spin_lock_irq(&sh->stripe_lock);
		for (d = 0; d < conf->raid_disks; d++) {
			if (d == sh->pd_idx || d == sh->qd_idx)
				continue;
			if (sh->dev[d].towrite || sh->dev[d].toread) {
				set_bit(R5_Overlap, &sh->dev[d].flags);
				spin_unlock_irq(&sh->stripe_lock);
				release_stripe(sh);
				schedule();
				goto again;
			}
		}
5066
		set_bit(STRIPE_DISCARD, &sh->state);
S
Shaohua Li 已提交
5067
		finish_wait(&conf->wait_for_overlap, &w);
5068
		sh->overwrite_disks = 0;
S
Shaohua Li 已提交
5069 5070 5071 5072 5073 5074
		for (d = 0; d < conf->raid_disks; d++) {
			if (d == sh->pd_idx || d == sh->qd_idx)
				continue;
			sh->dev[d].towrite = bi;
			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
			raid5_inc_bi_active_stripes(bi);
5075
			sh->overwrite_disks++;
S
Shaohua Li 已提交
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
		}
		spin_unlock_irq(&sh->stripe_lock);
		if (conf->mddev->bitmap) {
			for (d = 0;
			     d < conf->raid_disks - conf->max_degraded;
			     d++)
				bitmap_startwrite(mddev->bitmap,
						  sh->sector,
						  STRIPE_SECTORS,
						  0);
			sh->bm_seq = conf->seq_flush + 1;
			set_bit(STRIPE_BIT_DELAY, &sh->state);
		}

		set_bit(STRIPE_HANDLE, &sh->state);
		clear_bit(STRIPE_DELAYED, &sh->state);
		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			atomic_inc(&conf->preread_active_stripes);
		release_stripe_plug(mddev, sh);
	}

	remaining = raid5_dec_bi_active_stripes(bi);
	if (remaining == 0) {
		md_write_end(mddev);
		bio_endio(bi, 0);
	}
}

5104
static void make_request(struct mddev *mddev, struct bio * bi)
L
Linus Torvalds 已提交
5105
{
5106
	struct r5conf *conf = mddev->private;
5107
	int dd_idx;
L
Linus Torvalds 已提交
5108 5109 5110
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
5111
	const int rw = bio_data_dir(bi);
5112
	int remaining;
5113 5114
	DEFINE_WAIT(w);
	bool do_prepare;
L
Linus Torvalds 已提交
5115

T
Tejun Heo 已提交
5116 5117
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
5118
		return;
5119 5120
	}

5121
	md_write_start(mddev, bi);
5122

5123 5124 5125 5126 5127 5128
	/*
	 * If array is degraded, better not do chunk aligned read because
	 * later we might have to read it again in order to reconstruct
	 * data on failed drives.
	 */
	if (rw == READ && mddev->degraded == 0 &&
5129
	     mddev->reshape_position == MaxSector &&
5130
	     chunk_aligned_read(mddev,bi))
5131
		return;
5132

S
Shaohua Li 已提交
5133 5134 5135 5136 5137
	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
		make_discard_request(mddev, bi);
		return;
	}

5138
	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
K
Kent Overstreet 已提交
5139
	last_sector = bio_end_sector(bi);
L
Linus Torvalds 已提交
5140 5141
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5142

5143
	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5144
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5145
		int previous;
5146
		int seq;
5147

5148
		do_prepare = false;
5149
	retry:
5150
		seq = read_seqcount_begin(&conf->gen_lock);
5151
		previous = 0;
5152 5153 5154
		if (do_prepare)
			prepare_to_wait(&conf->wait_for_overlap, &w,
				TASK_UNINTERRUPTIBLE);
5155
		if (unlikely(conf->reshape_progress != MaxSector)) {
5156
			/* spinlock is needed as reshape_progress may be
5157 5158
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
5159
			 * Of course reshape_progress could change after
5160 5161 5162 5163
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
5164
			spin_lock_irq(&conf->device_lock);
5165
			if (mddev->reshape_backwards
5166 5167
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
5168 5169
				previous = 1;
			} else {
5170
				if (mddev->reshape_backwards
5171 5172
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
5173 5174
					spin_unlock_irq(&conf->device_lock);
					schedule();
5175
					do_prepare = true;
5176 5177 5178
					goto retry;
				}
			}
5179 5180
			spin_unlock_irq(&conf->device_lock);
		}
5181

5182 5183
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
5184
						  &dd_idx, NULL);
5185
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
5186
			(unsigned long long)new_sector,
L
Linus Torvalds 已提交
5187 5188
			(unsigned long long)logical_sector);

5189
		sh = get_active_stripe(conf, new_sector, previous,
5190
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
5191
		if (sh) {
5192
			if (unlikely(previous)) {
5193
				/* expansion might have moved on while waiting for a
5194 5195 5196 5197 5198 5199
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
5200 5201 5202
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
5203
				if (mddev->reshape_backwards
5204 5205
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
5206 5207 5208 5209 5210
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
5211
					schedule();
5212
					do_prepare = true;
5213 5214 5215
					goto retry;
				}
			}
5216 5217 5218 5219 5220 5221 5222
			if (read_seqcount_retry(&conf->gen_lock, seq)) {
				/* Might have got the wrong stripe_head
				 * by accident
				 */
				release_stripe(sh);
				goto retry;
			}
5223

5224
			if (rw == WRITE &&
5225
			    logical_sector >= mddev->suspend_lo &&
5226 5227
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
5228 5229 5230 5231 5232 5233 5234 5235
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
5236
				    logical_sector < mddev->suspend_hi) {
5237
					schedule();
5238 5239
					do_prepare = true;
				}
5240 5241
				goto retry;
			}
5242 5243

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5244
			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5245 5246
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
5247 5248
				 * and wait a while
				 */
N
NeilBrown 已提交
5249
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
5250 5251
				release_stripe(sh);
				schedule();
5252
				do_prepare = true;
L
Linus Torvalds 已提交
5253 5254
				goto retry;
			}
5255 5256
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
5257 5258
			if ((!sh->batch_head || sh == sh->batch_head) &&
			    (bi->bi_rw & REQ_SYNC) &&
5259 5260
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
5261
			release_stripe_plug(mddev, sh);
L
Linus Torvalds 已提交
5262 5263 5264 5265 5266 5267
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			break;
		}
	}
5268
	finish_wait(&conf->wait_for_overlap, &w);
5269

5270
	remaining = raid5_dec_bi_active_stripes(bi);
5271
	if (remaining == 0) {
L
Linus Torvalds 已提交
5272

5273
		if ( rw == WRITE )
L
Linus Torvalds 已提交
5274
			md_write_end(mddev);
5275

5276 5277
		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
					 bi, 0);
5278
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
5279 5280 5281
	}
}

5282
static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
D
Dan Williams 已提交
5283

5284
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
5285
{
5286 5287 5288 5289 5290 5291 5292 5293 5294
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
5295
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5296
	struct stripe_head *sh;
5297
	sector_t first_sector, last_sector;
5298 5299 5300
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
5301 5302
	int i;
	int dd_idx;
5303
	sector_t writepos, readpos, safepos;
5304
	sector_t stripe_addr;
5305
	int reshape_sectors;
5306
	struct list_head stripes;
5307

5308 5309
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
5310
		if (mddev->reshape_backwards &&
5311 5312 5313
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
5314
		} else if (!mddev->reshape_backwards &&
5315 5316
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
5317
		sector_div(sector_nr, new_data_disks);
5318
		if (sector_nr) {
5319 5320
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5321 5322 5323
			*skipped = 1;
			return sector_nr;
		}
5324 5325
	}

5326 5327 5328 5329
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
5330 5331
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
5332
	else
5333
		reshape_sectors = mddev->chunk_sectors;
5334

5335 5336 5337 5338 5339
	/* We update the metadata at least every 10 seconds, or when
	 * the data about to be copied would over-write the source of
	 * the data at the front of the range.  i.e. one new_stripe
	 * along from reshape_progress new_maps to after where
	 * reshape_safe old_maps to
5340
	 */
5341
	writepos = conf->reshape_progress;
5342
	sector_div(writepos, new_data_disks);
5343 5344
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
5345
	safepos = conf->reshape_safe;
5346
	sector_div(safepos, data_disks);
5347
	if (mddev->reshape_backwards) {
5348
		writepos -= min_t(sector_t, reshape_sectors, writepos);
5349
		readpos += reshape_sectors;
5350
		safepos += reshape_sectors;
5351
	} else {
5352
		writepos += reshape_sectors;
5353 5354
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
5355
	}
5356

5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
	/* Having calculated the 'writepos' possibly use it
	 * to set 'stripe_addr' which is where we will write to.
	 */
	if (mddev->reshape_backwards) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
		       != sector_nr);
	} else {
		BUG_ON(writepos != sector_nr + reshape_sectors);
		stripe_addr = sector_nr;
	}

5372 5373 5374 5375
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
5376 5377 5378 5379
	 * If there is a min_offset_diff, these are adjusted either by
	 * increasing the safepos/readpos if diff is negative, or
	 * increasing writepos if diff is positive.
	 * If 'readpos' is then behind 'writepos', there is no way that we can
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
5392 5393 5394 5395 5396 5397
	if (conf->min_offset_diff < 0) {
		safepos += -conf->min_offset_diff;
		readpos += -conf->min_offset_diff;
	} else
		writepos += conf->min_offset_diff;

5398
	if ((mddev->reshape_backwards
5399 5400 5401
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5402 5403
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
5404 5405 5406 5407
			   atomic_read(&conf->reshape_stripes)==0
			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (atomic_read(&conf->reshape_stripes) != 0)
			return 0;
5408
		mddev->reshape_position = conf->reshape_progress;
5409
		mddev->curr_resync_completed = sector_nr;
5410
		conf->reshape_checkpoint = jiffies;
5411
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5412
		md_wakeup_thread(mddev->thread);
5413
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
5414 5415 5416
			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
			return 0;
5417
		spin_lock_irq(&conf->device_lock);
5418
		conf->reshape_safe = mddev->reshape_position;
5419 5420
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
5421
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5422 5423
	}

5424
	INIT_LIST_HEAD(&stripes);
5425
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5426
		int j;
5427
		int skipped_disk = 0;
5428
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5429 5430 5431 5432 5433 5434 5435 5436 5437
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
5438
			if (conf->level == 6 &&
5439
			    j == sh->qd_idx)
5440
				continue;
5441
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
5442
			if (s < raid5_size(mddev, 0, 0)) {
5443
				skipped_disk = 1;
5444 5445 5446 5447 5448 5449
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
5450
		if (!skipped_disk) {
5451 5452 5453
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
5454
		list_add(&sh->lru, &stripes);
5455 5456
	}
	spin_lock_irq(&conf->device_lock);
5457
	if (mddev->reshape_backwards)
5458
		conf->reshape_progress -= reshape_sectors * new_data_disks;
5459
	else
5460
		conf->reshape_progress += reshape_sectors * new_data_disks;
5461 5462 5463 5464 5465 5466 5467
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
5468
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5469
				     1, &dd_idx, NULL);
5470
	last_sector =
5471
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5472
					    * new_data_disks - 1),
5473
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
5474 5475
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
5476
	while (first_sector <= last_sector) {
5477
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5478 5479 5480 5481 5482
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
5483 5484 5485 5486 5487 5488 5489 5490
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
5491 5492 5493
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
5494
	sector_nr += reshape_sectors;
5495 5496
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
5497 5498
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
5499 5500 5501 5502
			   atomic_read(&conf->reshape_stripes) == 0
			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (atomic_read(&conf->reshape_stripes) != 0)
			goto ret;
5503
		mddev->reshape_position = conf->reshape_progress;
5504
		mddev->curr_resync_completed = sector_nr;
5505
		conf->reshape_checkpoint = jiffies;
5506 5507 5508 5509
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5510 5511 5512
			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
			goto ret;
5513
		spin_lock_irq(&conf->device_lock);
5514
		conf->reshape_safe = mddev->reshape_position;
5515 5516
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
5517
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5518
	}
5519
ret:
5520
	return reshape_sectors;
5521 5522
}

5523
static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5524
{
5525
	struct r5conf *conf = mddev->private;
5526
	struct stripe_head *sh;
A
Andre Noll 已提交
5527
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
5528
	sector_t sync_blocks;
5529 5530
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
5531

5532
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
5533
		/* just being told to finish up .. nothing much to do */
5534

5535 5536 5537 5538
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
5539 5540 5541 5542

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
5543
		else /* completed sync */
5544 5545 5546
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
5547 5548
		return 0;
	}
5549

5550 5551 5552
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

5553 5554
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
5555

5556 5557 5558 5559 5560 5561
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

5562
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
5563 5564 5565
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
5566
	if (mddev->degraded >= conf->max_degraded &&
5567
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
5568
		sector_t rv = mddev->dev_sectors - sector_nr;
5569
		*skipped = 1;
L
Linus Torvalds 已提交
5570 5571
		return rv;
	}
5572 5573 5574 5575
	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
	    !conf->fullsync &&
	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
	    sync_blocks >= STRIPE_SECTORS) {
5576 5577 5578 5579 5580
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
5581

N
NeilBrown 已提交
5582 5583
	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

5584
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
5585
	if (sh == NULL) {
5586
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
5587
		/* make sure we don't swamp the stripe cache if someone else
5588
		 * is trying to get access
L
Linus Torvalds 已提交
5589
		 */
5590
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
5591
	}
5592
	/* Need to check if array will still be degraded after recovery/resync
5593 5594
	 * Note in case of > 1 drive failures it's possible we're rebuilding
	 * one drive while leaving another faulty drive in array.
5595
	 */
5596 5597 5598 5599 5600
	rcu_read_lock();
	for (i = 0; i < conf->raid_disks; i++) {
		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);

		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5601
			still_degraded = 1;
5602 5603
	}
	rcu_read_unlock();
5604 5605 5606

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

5607
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5608
	set_bit(STRIPE_HANDLE, &sh->state);
L
Linus Torvalds 已提交
5609 5610 5611 5612 5613 5614

	release_stripe(sh);

	return STRIPE_SECTORS;
}

5615
static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
5628
	int dd_idx;
5629 5630 5631 5632 5633
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

5634 5635
	logical_sector = raid_bio->bi_iter.bi_sector &
		~((sector_t)STRIPE_SECTORS-1);
5636
	sector = raid5_compute_sector(conf, logical_sector,
5637
				      0, &dd_idx, NULL);
K
Kent Overstreet 已提交
5638
	last_sector = bio_end_sector(raid_bio);
5639 5640

	for (; logical_sector < last_sector;
5641 5642 5643
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
5644

5645
		if (scnt < raid5_bi_processed_stripes(raid_bio))
5646 5647 5648
			/* already done this stripe */
			continue;

5649
		sh = get_active_stripe(conf, sector, 0, 1, 1);
5650 5651 5652

		if (!sh) {
			/* failed to get a stripe - must wait */
5653
			raid5_set_bi_processed_stripes(raid_bio, scnt);
5654 5655 5656 5657
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

5658
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5659
			release_stripe(sh);
5660
			raid5_set_bi_processed_stripes(raid_bio, scnt);
5661 5662 5663 5664
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

5665
		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5666
		handle_stripe(sh);
5667 5668 5669
		release_stripe(sh);
		handled++;
	}
5670
	remaining = raid5_dec_bi_active_stripes(raid_bio);
5671 5672 5673
	if (remaining == 0) {
		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
					 raid_bio, 0);
5674
		bio_endio(raid_bio, 0);
5675
	}
5676 5677 5678 5679 5680
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}

5681
static int handle_active_stripes(struct r5conf *conf, int group,
5682 5683
				 struct r5worker *worker,
				 struct list_head *temp_inactive_list)
5684 5685
{
	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5686 5687
	int i, batch_size = 0, hash;
	bool release_inactive = false;
5688 5689

	while (batch_size < MAX_STRIPE_BATCH &&
5690
			(sh = __get_priority_stripe(conf, group)) != NULL)
5691 5692
		batch[batch_size++] = sh;

5693 5694 5695 5696 5697 5698 5699 5700
	if (batch_size == 0) {
		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
			if (!list_empty(temp_inactive_list + i))
				break;
		if (i == NR_STRIPE_HASH_LOCKS)
			return batch_size;
		release_inactive = true;
	}
5701 5702
	spin_unlock_irq(&conf->device_lock);

5703 5704 5705 5706 5707 5708 5709 5710
	release_inactive_stripe_list(conf, temp_inactive_list,
				     NR_STRIPE_HASH_LOCKS);

	if (release_inactive) {
		spin_lock_irq(&conf->device_lock);
		return 0;
	}

5711 5712 5713 5714 5715 5716
	for (i = 0; i < batch_size; i++)
		handle_stripe(batch[i]);

	cond_resched();

	spin_lock_irq(&conf->device_lock);
5717 5718 5719 5720
	for (i = 0; i < batch_size; i++) {
		hash = batch[i]->hash_lock_index;
		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
	}
5721 5722
	return batch_size;
}
5723

5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
static void raid5_do_work(struct work_struct *work)
{
	struct r5worker *worker = container_of(work, struct r5worker, work);
	struct r5worker_group *group = worker->group;
	struct r5conf *conf = group->conf;
	int group_id = group - conf->worker_groups;
	int handled;
	struct blk_plug plug;

	pr_debug("+++ raid5worker active\n");

	blk_start_plug(&plug);
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
		int batch_size, released;

5741
		released = release_stripe_list(conf, worker->temp_inactive_list);
5742

5743 5744
		batch_size = handle_active_stripes(conf, group_id, worker,
						   worker->temp_inactive_list);
5745
		worker->working = false;
5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
		if (!batch_size && !released)
			break;
		handled += batch_size;
	}
	pr_debug("%d stripes handled\n", handled);

	spin_unlock_irq(&conf->device_lock);
	blk_finish_plug(&plug);

	pr_debug("--- raid5worker inactive\n");
}

L
Linus Torvalds 已提交
5758 5759 5760 5761 5762 5763 5764
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
S
Shaohua Li 已提交
5765
static void raid5d(struct md_thread *thread)
L
Linus Torvalds 已提交
5766
{
S
Shaohua Li 已提交
5767
	struct mddev *mddev = thread->mddev;
5768
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5769
	int handled;
5770
	struct blk_plug plug;
L
Linus Torvalds 已提交
5771

5772
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
5773 5774 5775

	md_check_recovery(mddev);

5776
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
5777 5778 5779
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
5780
		struct bio *bio;
S
Shaohua Li 已提交
5781 5782
		int batch_size, released;

5783
		released = release_stripe_list(conf, conf->temp_inactive_list);
5784 5785
		if (released)
			clear_bit(R5_DID_ALLOC, &conf->cache_state);
L
Linus Torvalds 已提交
5786

5787
		if (
5788 5789 5790
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
5791
			spin_unlock_irq(&conf->device_lock);
5792
			bitmap_unplug(mddev->bitmap);
5793
			spin_lock_irq(&conf->device_lock);
5794
			conf->seq_write = conf->seq_flush;
5795
			activate_bit_delay(conf, conf->temp_inactive_list);
5796
		}
5797
		raid5_activate_delayed(conf);
5798

5799 5800 5801 5802 5803 5804 5805 5806 5807 5808
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

5809 5810
		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
						   conf->temp_inactive_list);
S
Shaohua Li 已提交
5811
		if (!batch_size && !released)
L
Linus Torvalds 已提交
5812
			break;
5813
		handled += batch_size;
L
Linus Torvalds 已提交
5814

5815 5816
		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
			spin_unlock_irq(&conf->device_lock);
5817
			md_check_recovery(mddev);
5818 5819
			spin_lock_irq(&conf->device_lock);
		}
L
Linus Torvalds 已提交
5820
	}
5821
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
5822 5823

	spin_unlock_irq(&conf->device_lock);
5824 5825 5826 5827 5828 5829 5830
	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
		grow_one_stripe(conf, __GFP_NOWARN);
		/* Set flag even if allocation failed.  This helps
		 * slow down allocation requests when mem is short
		 */
		set_bit(R5_DID_ALLOC, &conf->cache_state);
	}
L
Linus Torvalds 已提交
5831

5832
	async_tx_issue_pending_all();
5833
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
5834

5835
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
5836 5837
}

5838
static ssize_t
5839
raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5840
{
5841 5842 5843 5844
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
5845
	if (conf)
5846
		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5847 5848
	spin_unlock(&mddev->lock);
	return ret;
5849 5850
}

5851
int
5852
raid5_set_cache_size(struct mddev *mddev, int size)
5853
{
5854
	struct r5conf *conf = mddev->private;
5855 5856
	int err;

5857
	if (size <= 16 || size > 32768)
5858
		return -EINVAL;
5859

5860
	conf->min_nr_stripes = size;
5861 5862 5863 5864
	while (size < conf->max_nr_stripes &&
	       drop_one_stripe(conf))
		;

5865

5866 5867 5868
	err = md_allow_write(mddev);
	if (err)
		return err;
5869 5870 5871 5872 5873

	while (size > conf->max_nr_stripes)
		if (!grow_one_stripe(conf, GFP_KERNEL))
			break;

5874 5875 5876 5877 5878
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
5879
raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5880
{
5881
	struct r5conf *conf;
5882 5883 5884 5885 5886
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
5887
	if (kstrtoul(page, 10, &new))
5888
		return -EINVAL;
5889
	err = mddev_lock(mddev);
5890 5891
	if (err)
		return err;
5892 5893 5894 5895 5896 5897 5898 5899
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
	else
		err = raid5_set_cache_size(mddev, new);
	mddev_unlock(mddev);

	return err ?: len;
5900
}
5901

5902 5903 5904 5905
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
5906

5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949
static ssize_t
raid5_show_rmw_level(struct mddev  *mddev, char *page)
{
	struct r5conf *conf = mddev->private;
	if (conf)
		return sprintf(page, "%d\n", conf->rmw_level);
	else
		return 0;
}

static ssize_t
raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
{
	struct r5conf *conf = mddev->private;
	unsigned long new;

	if (!conf)
		return -ENODEV;

	if (len >= PAGE_SIZE)
		return -EINVAL;

	if (kstrtoul(page, 10, &new))
		return -EINVAL;

	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
		return -EINVAL;

	if (new != PARITY_DISABLE_RMW &&
	    new != PARITY_ENABLE_RMW &&
	    new != PARITY_PREFER_RMW)
		return -EINVAL;

	conf->rmw_level = new;
	return len;
}

static struct md_sysfs_entry
raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
			 raid5_show_rmw_level,
			 raid5_store_rmw_level);


5950
static ssize_t
5951
raid5_show_preread_threshold(struct mddev *mddev, char *page)
5952
{
5953 5954 5955 5956
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
5957
	if (conf)
5958 5959 5960
		ret = sprintf(page, "%d\n", conf->bypass_threshold);
	spin_unlock(&mddev->lock);
	return ret;
5961 5962 5963
}

static ssize_t
5964
raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5965
{
5966
	struct r5conf *conf;
5967
	unsigned long new;
5968 5969
	int err;

5970 5971
	if (len >= PAGE_SIZE)
		return -EINVAL;
5972
	if (kstrtoul(page, 10, &new))
5973
		return -EINVAL;
5974 5975 5976 5977 5978 5979 5980

	err = mddev_lock(mddev);
	if (err)
		return err;
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
5981
	else if (new > conf->min_nr_stripes)
5982 5983 5984 5985 5986
		err = -EINVAL;
	else
		conf->bypass_threshold = new;
	mddev_unlock(mddev);
	return err ?: len;
5987 5988 5989 5990 5991 5992 5993 5994
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

5995 5996 5997
static ssize_t
raid5_show_skip_copy(struct mddev *mddev, char *page)
{
5998 5999 6000 6001
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
6002
	if (conf)
6003 6004 6005
		ret = sprintf(page, "%d\n", conf->skip_copy);
	spin_unlock(&mddev->lock);
	return ret;
6006 6007 6008 6009 6010
}

static ssize_t
raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
{
6011
	struct r5conf *conf;
6012
	unsigned long new;
6013 6014
	int err;

6015 6016 6017 6018 6019
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (kstrtoul(page, 10, &new))
		return -EINVAL;
	new = !!new;
6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039

	err = mddev_lock(mddev);
	if (err)
		return err;
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
	else if (new != conf->skip_copy) {
		mddev_suspend(mddev);
		conf->skip_copy = new;
		if (new)
			mddev->queue->backing_dev_info.capabilities |=
				BDI_CAP_STABLE_WRITES;
		else
			mddev->queue->backing_dev_info.capabilities &=
				~BDI_CAP_STABLE_WRITES;
		mddev_resume(mddev);
	}
	mddev_unlock(mddev);
	return err ?: len;
6040 6041 6042 6043 6044 6045 6046
}

static struct md_sysfs_entry
raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
					raid5_show_skip_copy,
					raid5_store_skip_copy);

6047
static ssize_t
6048
stripe_cache_active_show(struct mddev *mddev, char *page)
6049
{
6050
	struct r5conf *conf = mddev->private;
6051 6052 6053 6054
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
6055 6056
}

6057 6058
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6059

6060 6061 6062
static ssize_t
raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
{
6063 6064 6065 6066
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
6067
	if (conf)
6068 6069 6070
		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
	spin_unlock(&mddev->lock);
	return ret;
6071 6072
}

6073 6074 6075 6076
static int alloc_thread_groups(struct r5conf *conf, int cnt,
			       int *group_cnt,
			       int *worker_cnt_per_group,
			       struct r5worker_group **worker_groups);
6077 6078 6079
static ssize_t
raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
{
6080
	struct r5conf *conf;
6081 6082
	unsigned long new;
	int err;
6083 6084
	struct r5worker_group *new_groups, *old_groups;
	int group_cnt, worker_cnt_per_group;
6085 6086 6087 6088 6089 6090

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (kstrtoul(page, 10, &new))
		return -EINVAL;

6091 6092 6093 6094 6095 6096 6097 6098
	err = mddev_lock(mddev);
	if (err)
		return err;
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
	else if (new != conf->worker_cnt_per_group) {
		mddev_suspend(mddev);
6099

6100 6101 6102
		old_groups = conf->worker_groups;
		if (old_groups)
			flush_workqueue(raid5_wq);
6103

6104 6105 6106 6107 6108 6109 6110 6111 6112
		err = alloc_thread_groups(conf, new,
					  &group_cnt, &worker_cnt_per_group,
					  &new_groups);
		if (!err) {
			spin_lock_irq(&conf->device_lock);
			conf->group_cnt = group_cnt;
			conf->worker_cnt_per_group = worker_cnt_per_group;
			conf->worker_groups = new_groups;
			spin_unlock_irq(&conf->device_lock);
6113

6114 6115 6116 6117 6118
			if (old_groups)
				kfree(old_groups[0].workers);
			kfree(old_groups);
		}
		mddev_resume(mddev);
6119
	}
6120
	mddev_unlock(mddev);
6121

6122
	return err ?: len;
6123 6124 6125 6126 6127 6128 6129
}

static struct md_sysfs_entry
raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
				raid5_show_group_thread_cnt,
				raid5_store_group_thread_cnt);

6130
static struct attribute *raid5_attrs[] =  {
6131 6132
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
6133
	&raid5_preread_bypass_threshold.attr,
6134
	&raid5_group_thread_cnt.attr,
6135
	&raid5_skip_copy.attr,
6136
	&raid5_rmw_level.attr,
6137 6138
	NULL,
};
6139 6140 6141
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
6142 6143
};

6144 6145 6146 6147
static int alloc_thread_groups(struct r5conf *conf, int cnt,
			       int *group_cnt,
			       int *worker_cnt_per_group,
			       struct r5worker_group **worker_groups)
6148
{
6149
	int i, j, k;
6150 6151 6152
	ssize_t size;
	struct r5worker *workers;

6153
	*worker_cnt_per_group = cnt;
6154
	if (cnt == 0) {
6155 6156
		*group_cnt = 0;
		*worker_groups = NULL;
6157 6158
		return 0;
	}
6159
	*group_cnt = num_possible_nodes();
6160
	size = sizeof(struct r5worker) * cnt;
6161 6162 6163 6164
	workers = kzalloc(size * *group_cnt, GFP_NOIO);
	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
				*group_cnt, GFP_NOIO);
	if (!*worker_groups || !workers) {
6165
		kfree(workers);
6166
		kfree(*worker_groups);
6167 6168 6169
		return -ENOMEM;
	}

6170
	for (i = 0; i < *group_cnt; i++) {
6171 6172
		struct r5worker_group *group;

6173
		group = &(*worker_groups)[i];
6174 6175 6176 6177 6178
		INIT_LIST_HEAD(&group->handle_list);
		group->conf = conf;
		group->workers = workers + i * cnt;

		for (j = 0; j < cnt; j++) {
6179 6180 6181 6182 6183 6184
			struct r5worker *worker = group->workers + j;
			worker->group = group;
			INIT_WORK(&worker->work, raid5_do_work);

			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198
		}
	}

	return 0;
}

static void free_thread_groups(struct r5conf *conf)
{
	if (conf->worker_groups)
		kfree(conf->worker_groups[0].workers);
	kfree(conf->worker_groups);
	conf->worker_groups = NULL;
}

6199
static sector_t
6200
raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6201
{
6202
	struct r5conf *conf = mddev->private;
6203 6204 6205

	if (!sectors)
		sectors = mddev->dev_sectors;
6206
	if (!raid_disks)
6207
		/* size is defined by the smallest of previous and new size */
6208
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6209

6210
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6211
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6212 6213 6214
	return sectors * (raid_disks - conf->max_degraded);
}

6215 6216 6217
static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
{
	safe_put_page(percpu->spare_page);
6218 6219
	if (percpu->scribble)
		flex_array_free(percpu->scribble);
6220 6221 6222 6223 6224 6225 6226 6227 6228
	percpu->spare_page = NULL;
	percpu->scribble = NULL;
}

static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
{
	if (conf->level == 6 && !percpu->spare_page)
		percpu->spare_page = alloc_page(GFP_KERNEL);
	if (!percpu->scribble)
6229 6230 6231
		percpu->scribble = scribble_alloc(max(conf->raid_disks,
			conf->previous_raid_disks), conf->chunk_sectors /
			STRIPE_SECTORS, GFP_KERNEL);
6232 6233 6234 6235 6236 6237 6238 6239 6240

	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
		free_scratch_buffer(conf, percpu);
		return -ENOMEM;
	}

	return 0;
}

6241
static void raid5_free_percpu(struct r5conf *conf)
6242 6243 6244 6245 6246 6247 6248 6249 6250
{
	unsigned long cpu;

	if (!conf->percpu)
		return;

#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
6251 6252 6253 6254

	get_online_cpus();
	for_each_possible_cpu(cpu)
		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6255 6256 6257 6258 6259
	put_online_cpus();

	free_percpu(conf->percpu);
}

6260
static void free_conf(struct r5conf *conf)
6261
{
6262 6263
	if (conf->shrinker.seeks)
		unregister_shrinker(&conf->shrinker);
6264
	free_thread_groups(conf);
6265
	shrink_stripes(conf);
6266
	raid5_free_percpu(conf);
6267 6268 6269 6270 6271
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

6272 6273 6274 6275
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
6276
	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6277 6278 6279 6280 6281 6282
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
6283
		if (alloc_scratch_buffer(conf, percpu)) {
6284 6285
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
6286
			return notifier_from_errno(-ENOMEM);
6287 6288 6289 6290
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
6291
		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6292 6293 6294 6295 6296 6297 6298 6299
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

6300
static int raid5_alloc_percpu(struct r5conf *conf)
6301 6302
{
	unsigned long cpu;
6303
	int err = 0;
6304

6305 6306
	conf->percpu = alloc_percpu(struct raid5_percpu);
	if (!conf->percpu)
6307
		return -ENOMEM;
6308 6309 6310 6311 6312 6313 6314 6315

#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	err = register_cpu_notifier(&conf->cpu_notify);
	if (err)
		return err;
#endif
6316 6317 6318

	get_online_cpus();
	for_each_present_cpu(cpu) {
6319 6320 6321 6322
		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
		if (err) {
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
6323 6324 6325 6326 6327 6328 6329 6330
			break;
		}
	}
	put_online_cpus();

	return err;
}

6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354
static unsigned long raid5_cache_scan(struct shrinker *shrink,
				      struct shrink_control *sc)
{
	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
	int ret = 0;
	while (ret < sc->nr_to_scan) {
		if (drop_one_stripe(conf) == 0)
			return SHRINK_STOP;
		ret++;
	}
	return ret;
}

static unsigned long raid5_cache_count(struct shrinker *shrink,
				       struct shrink_control *sc)
{
	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);

	if (conf->max_nr_stripes < conf->min_nr_stripes)
		/* unlikely, but not impossible */
		return 0;
	return conf->max_nr_stripes - conf->min_nr_stripes;
}

6355
static struct r5conf *setup_conf(struct mddev *mddev)
L
Linus Torvalds 已提交
6356
{
6357
	struct r5conf *conf;
6358
	int raid_disk, memory, max_disks;
6359
	struct md_rdev *rdev;
L
Linus Torvalds 已提交
6360
	struct disk_info *disk;
6361
	char pers_name[6];
6362
	int i;
6363 6364
	int group_cnt, worker_cnt_per_group;
	struct r5worker_group *new_group;
L
Linus Torvalds 已提交
6365

N
NeilBrown 已提交
6366 6367 6368
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
6369
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
6370 6371
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
6372
	}
N
NeilBrown 已提交
6373 6374 6375 6376
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
6377
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
6378 6379
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
6380
	}
N
NeilBrown 已提交
6381
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6382
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
6383 6384
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
6385 6386
	}

6387 6388 6389
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
6390 6391
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
6392
		return ERR_PTR(-EINVAL);
6393 6394
	}

6395
	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
N
NeilBrown 已提交
6396
	if (conf == NULL)
L
Linus Torvalds 已提交
6397
		goto abort;
6398
	/* Don't enable multi-threading by default*/
6399 6400 6401 6402 6403 6404
	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
				 &new_group)) {
		conf->group_cnt = group_cnt;
		conf->worker_cnt_per_group = worker_cnt_per_group;
		conf->worker_groups = new_group;
	} else
6405
		goto abort;
6406
	spin_lock_init(&conf->device_lock);
6407
	seqcount_init(&conf->gen_lock);
6408 6409 6410 6411 6412 6413
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
S
Shaohua Li 已提交
6414
	init_llist_head(&conf->released_stripes);
6415 6416 6417 6418
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
6419
	conf->recovery_disabled = mddev->recovery_disabled - 1;
N
NeilBrown 已提交
6420 6421 6422 6423 6424

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
6425
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6426
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6427

6428
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6429 6430 6431
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
6432

L
Linus Torvalds 已提交
6433 6434
	conf->mddev = mddev;

6435
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
6436 6437
		goto abort;

6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452
	/* We init hash_locks[0] separately to that it can be used
	 * as the reference lock in the spin_lock_nest_lock() call
	 * in lock_all_device_hash_locks_irq in order to convince
	 * lockdep that we know what we are doing.
	 */
	spin_lock_init(conf->hash_locks);
	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
		spin_lock_init(conf->hash_locks + i);

	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
		INIT_LIST_HEAD(conf->inactive_list + i);

	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
		INIT_LIST_HEAD(conf->temp_inactive_list + i);

6453
	conf->level = mddev->new_level;
6454
	conf->chunk_sectors = mddev->new_chunk_sectors;
6455 6456 6457
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

6458
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
6459

N
NeilBrown 已提交
6460
	rdev_for_each(rdev, mddev) {
L
Linus Torvalds 已提交
6461
		raid_disk = rdev->raid_disk;
6462
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
6463 6464 6465 6466
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

6467 6468 6469 6470 6471 6472 6473 6474 6475
		if (test_bit(Replacement, &rdev->flags)) {
			if (disk->replacement)
				goto abort;
			disk->replacement = rdev;
		} else {
			if (disk->rdev)
				goto abort;
			disk->rdev = rdev;
		}
L
Linus Torvalds 已提交
6476

6477
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
6478
			char b[BDEVNAME_SIZE];
6479 6480 6481
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
6482
		} else if (rdev->saved_raid_disk != raid_disk)
6483 6484
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
6485 6486
	}

N
NeilBrown 已提交
6487
	conf->level = mddev->new_level;
6488
	if (conf->level == 6) {
6489
		conf->max_degraded = 2;
6490 6491 6492 6493 6494
		if (raid6_call.xor_syndrome)
			conf->rmw_level = PARITY_ENABLE_RMW;
		else
			conf->rmw_level = PARITY_DISABLE_RMW;
	} else {
6495
		conf->max_degraded = 1;
6496 6497
		conf->rmw_level = PARITY_ENABLE_RMW;
	}
N
NeilBrown 已提交
6498
	conf->algorithm = mddev->new_layout;
6499
	conf->reshape_progress = mddev->reshape_position;
6500
	if (conf->reshape_progress != MaxSector) {
6501
		conf->prev_chunk_sectors = mddev->chunk_sectors;
6502 6503
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
6504

6505 6506
	conf->min_nr_stripes = NR_STRIPES;
	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6507
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6508
	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6509
	if (grow_stripes(conf, conf->min_nr_stripes)) {
N
NeilBrown 已提交
6510
		printk(KERN_ERR
6511 6512
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
6513 6514
		goto abort;
	} else
6515 6516
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527
	/*
	 * Losing a stripe head costs more than the time to refill it,
	 * it reduces the queue depth and so can hurt throughput.
	 * So set it rather large, scaled by number of devices.
	 */
	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
	conf->shrinker.scan_objects = raid5_cache_scan;
	conf->shrinker.count_objects = raid5_cache_count;
	conf->shrinker.batch = 128;
	conf->shrinker.flags = 0;
	register_shrinker(&conf->shrinker);
L
Linus Torvalds 已提交
6528

6529 6530
	sprintf(pers_name, "raid%d", mddev->new_level);
	conf->thread = md_register_thread(raid5d, mddev, pers_name);
N
NeilBrown 已提交
6531 6532
	if (!conf->thread) {
		printk(KERN_ERR
6533
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
6534
		       mdname(mddev));
6535 6536
		goto abort;
	}
N
NeilBrown 已提交
6537 6538 6539 6540 6541

	return conf;

 abort:
	if (conf) {
6542
		free_conf(conf);
N
NeilBrown 已提交
6543 6544 6545 6546 6547
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559
static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
6560
		if (raid_disk == 0 ||
6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

6574
static int run(struct mddev *mddev)
N
NeilBrown 已提交
6575
{
6576
	struct r5conf *conf;
6577
	int working_disks = 0;
6578
	int dirty_parity_disks = 0;
6579
	struct md_rdev *rdev;
6580
	sector_t reshape_offset = 0;
6581
	int i;
6582 6583
	long long min_offset_diff = 0;
	int first = 1;
N
NeilBrown 已提交
6584

6585
	if (mddev->recovery_cp != MaxSector)
6586
		printk(KERN_NOTICE "md/raid:%s: not clean"
6587 6588
		       " -- starting background reconstruction\n",
		       mdname(mddev));
6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605

	rdev_for_each(rdev, mddev) {
		long long diff;
		if (rdev->raid_disk < 0)
			continue;
		diff = (rdev->new_data_offset - rdev->data_offset);
		if (first) {
			min_offset_diff = diff;
			first = 0;
		} else if (mddev->reshape_backwards &&
			 diff < min_offset_diff)
			min_offset_diff = diff;
		else if (!mddev->reshape_backwards &&
			 diff > min_offset_diff)
			min_offset_diff = diff;
	}

N
NeilBrown 已提交
6606 6607
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
6608 6609 6610 6611 6612 6613 6614 6615 6616 6617
		 * Difficulties arise if the stripe we would write to
		 * next is at or after the stripe we would read from next.
		 * For a reshape that changes the number of devices, this
		 * is only possible for a very short time, and mdadm makes
		 * sure that time appears to have past before assembling
		 * the array.  So we fail if that time hasn't passed.
		 * For a reshape that keeps the number of devices the same
		 * mdadm must be monitoring the reshape can keeping the
		 * critical areas read-only and backed up.  It will start
		 * the array in read-only mode, so we check for that.
N
NeilBrown 已提交
6618 6619 6620
		 */
		sector_t here_new, here_old;
		int old_disks;
6621
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
6622

6623
		if (mddev->new_level != mddev->level) {
6624
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
6625 6626 6627 6628 6629 6630 6631 6632 6633 6634
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
6635
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
6636
			       (mddev->raid_disks - max_degraded))) {
6637 6638
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
6639 6640
			return -EINVAL;
		}
6641
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
6642 6643
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
6644
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
6645 6646 6647
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
6648
		if (mddev->delta_disks == 0) {
6649 6650 6651 6652 6653 6654
			if ((here_new * mddev->new_chunk_sectors !=
			     here_old * mddev->chunk_sectors)) {
				printk(KERN_ERR "md/raid:%s: reshape position is"
				       " confused - aborting\n", mdname(mddev));
				return -EINVAL;
			}
6655
			/* We cannot be sure it is safe to start an in-place
6656
			 * reshape.  It is only safe if user-space is monitoring
6657 6658 6659 6660 6661
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
6662 6663 6664 6665 6666 6667 6668
			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
				/* not really in-place - so OK */;
			else if (mddev->ro == 0) {
				printk(KERN_ERR "md/raid:%s: in-place reshape "
				       "must be started in read-only mode "
				       "- aborting\n",
6669
				       mdname(mddev));
6670 6671
				return -EINVAL;
			}
6672
		} else if (mddev->reshape_backwards
6673
		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6674 6675
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
6676
		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
N
NeilBrown 已提交
6677
			/* Reading from the same stripe as writing to - bad */
6678 6679 6680
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
6681 6682
			return -EINVAL;
		}
6683 6684
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
6685 6686 6687 6688
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
6689
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
6690
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
6691
	}
N
NeilBrown 已提交
6692

6693 6694 6695 6696 6697
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
6698 6699 6700
	if (IS_ERR(conf))
		return PTR_ERR(conf);

6701
	conf->min_offset_diff = min_offset_diff;
N
NeilBrown 已提交
6702 6703 6704 6705
	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
	     i++) {
		rdev = conf->disks[i].rdev;
		if (!rdev && conf->disks[i].replacement) {
			/* The replacement is all we have yet */
			rdev = conf->disks[i].replacement;
			conf->disks[i].replacement = NULL;
			clear_bit(Replacement, &rdev->flags);
			conf->disks[i].rdev = rdev;
		}
		if (!rdev)
6717
			continue;
6718 6719 6720 6721 6722 6723 6724
		if (conf->disks[i].replacement &&
		    conf->reshape_progress != MaxSector) {
			/* replacements and reshape simply do not mix. */
			printk(KERN_ERR "md: cannot handle concurrent "
			       "replacement and reshape.\n");
			goto abort;
		}
6725
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
6726
			working_disks++;
6727 6728
			continue;
		}
6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
6741

6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
6757

6758 6759 6760
	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
6761
	mddev->degraded = calc_degraded(conf);
N
NeilBrown 已提交
6762

6763
	if (has_failed(conf)) {
6764
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
6765
			" (%d/%d failed)\n",
6766
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
6767 6768 6769
		goto abort;
	}

N
NeilBrown 已提交
6770
	/* device size must be a multiple of chunk size */
6771
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
6772 6773
	mddev->resync_max_sectors = mddev->dev_sectors;

6774
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
6775
	    mddev->recovery_cp != MaxSector) {
6776 6777
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
6778 6779
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
6780 6781 6782
			       mdname(mddev));
		else {
			printk(KERN_ERR
6783
			       "md/raid:%s: cannot start dirty degraded array.\n",
6784 6785 6786
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
6787 6788 6789
	}

	if (mddev->degraded == 0)
6790 6791
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6792 6793
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
6794
	else
6795 6796 6797 6798 6799
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
6800 6801 6802

	print_raid5_conf(conf);

6803 6804
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
6805 6806 6807 6808 6809 6810
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6811
							"reshape");
6812 6813
	}

L
Linus Torvalds 已提交
6814
	/* Ok, everything is just fine now */
6815 6816
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
6817 6818
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6819
		printk(KERN_WARNING
6820
		       "raid5: failed to create sysfs attributes for %s\n",
6821
		       mdname(mddev));
6822
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6823

6824
	if (mddev->queue) {
6825
		int chunk_size;
S
Shaohua Li 已提交
6826
		bool discard_supported = true;
6827 6828 6829 6830 6831 6832 6833 6834 6835
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
6836

6837 6838 6839 6840
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
6841
		mddev->queue->limits.raid_partial_stripes_expensive = 1;
S
Shaohua Li 已提交
6842 6843 6844 6845 6846
		/*
		 * We can only discard a whole stripe. It doesn't make sense to
		 * discard data disk but write parity disk
		 */
		stripe = stripe * PAGE_SIZE;
6847 6848 6849 6850
		/* Round up to power of 2, as discard handling
		 * currently assumes that */
		while ((stripe-1) & stripe)
			stripe = (stripe | (stripe-1)) + 1;
S
Shaohua Li 已提交
6851 6852 6853 6854
		mddev->queue->limits.discard_alignment = stripe;
		mddev->queue->limits.discard_granularity = stripe;
		/*
		 * unaligned part of discard request will be ignored, so can't
6855
		 * guarantee discard_zeroes_data
S
Shaohua Li 已提交
6856 6857
		 */
		mddev->queue->limits.discard_zeroes_data = 0;
6858

6859 6860
		blk_queue_max_write_same_sectors(mddev->queue, 0);

6861
		rdev_for_each(rdev, mddev) {
6862 6863
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
6864 6865
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->new_data_offset << 9);
S
Shaohua Li 已提交
6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879
			/*
			 * discard_zeroes_data is required, otherwise data
			 * could be lost. Consider a scenario: discard a stripe
			 * (the stripe could be inconsistent if
			 * discard_zeroes_data is 0); write one disk of the
			 * stripe (the stripe could be inconsistent again
			 * depending on which disks are used to calculate
			 * parity); the disk is broken; The stripe data of this
			 * disk is lost.
			 */
			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
			    !bdev_get_queue(rdev->bdev)->
						limits.discard_zeroes_data)
				discard_supported = false;
6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891
			/* Unfortunately, discard_zeroes_data is not currently
			 * a guarantee - just a hint.  So we only allow DISCARD
			 * if the sysadmin has confirmed that only safe devices
			 * are in use by setting a module parameter.
			 */
			if (!devices_handle_discard_safely) {
				if (discard_supported) {
					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
				}
				discard_supported = false;
			}
6892
		}
S
Shaohua Li 已提交
6893 6894 6895 6896 6897 6898 6899 6900 6901

		if (discard_supported &&
		   mddev->queue->limits.max_discard_sectors >= stripe &&
		   mddev->queue->limits.discard_granularity >= stripe)
			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
						mddev->queue);
		else
			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
						mddev->queue);
6902
	}
6903

L
Linus Torvalds 已提交
6904 6905
	return 0;
abort:
6906
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
6907 6908
	print_raid5_conf(conf);
	free_conf(conf);
L
Linus Torvalds 已提交
6909
	mddev->private = NULL;
6910
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
6911 6912 6913
	return -EIO;
}

N
NeilBrown 已提交
6914
static void raid5_free(struct mddev *mddev, void *priv)
L
Linus Torvalds 已提交
6915
{
N
NeilBrown 已提交
6916
	struct r5conf *conf = priv;
L
Linus Torvalds 已提交
6917

6918
	free_conf(conf);
6919
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
6920 6921
}

6922
static void status(struct seq_file *seq, struct mddev *mddev)
L
Linus Torvalds 已提交
6923
{
6924
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
6925 6926
	int i;

6927 6928
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
6929
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
6930 6931 6932
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
6933
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
6934 6935 6936
	seq_printf (seq, "]");
}

6937
static void print_raid5_conf (struct r5conf *conf)
L
Linus Torvalds 已提交
6938 6939 6940 6941
{
	int i;
	struct disk_info *tmp;

6942
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
6943 6944 6945 6946
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
6947 6948 6949
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
6950 6951 6952 6953 6954

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
6955 6956 6957
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
6958 6959 6960
	}
}

6961
static int raid5_spare_active(struct mddev *mddev)
L
Linus Torvalds 已提交
6962 6963
{
	int i;
6964
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
6965
	struct disk_info *tmp;
6966 6967
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
6968 6969 6970

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989
		if (tmp->replacement
		    && tmp->replacement->recovery_offset == MaxSector
		    && !test_bit(Faulty, &tmp->replacement->flags)
		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
			/* Replacement has just become active. */
			if (!tmp->rdev
			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
				count++;
			if (tmp->rdev) {
				/* Replaced device not technically faulty,
				 * but we need to be sure it gets removed
				 * and never re-added.
				 */
				set_bit(Faulty, &tmp->rdev->flags);
				sysfs_notify_dirent_safe(
					tmp->rdev->sysfs_state);
			}
			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
		} else if (tmp->rdev
6990
		    && tmp->rdev->recovery_offset == MaxSector
6991
		    && !test_bit(Faulty, &tmp->rdev->flags)
6992
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6993
			count++;
6994
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
6995 6996
		}
	}
6997
	spin_lock_irqsave(&conf->device_lock, flags);
6998
	mddev->degraded = calc_degraded(conf);
6999
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
7000
	print_raid5_conf(conf);
7001
	return count;
L
Linus Torvalds 已提交
7002 7003
}

7004
static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
7005
{
7006
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
7007
	int err = 0;
7008
	int number = rdev->raid_disk;
7009
	struct md_rdev **rdevp;
L
Linus Torvalds 已提交
7010 7011 7012
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034
	if (rdev == p->rdev)
		rdevp = &p->rdev;
	else if (rdev == p->replacement)
		rdevp = &p->replacement;
	else
		return 0;

	if (number >= conf->raid_disks &&
	    conf->reshape_progress == MaxSector)
		clear_bit(In_sync, &rdev->flags);

	if (test_bit(In_sync, &rdev->flags) ||
	    atomic_read(&rdev->nr_pending)) {
		err = -EBUSY;
		goto abort;
	}
	/* Only remove non-faulty devices if recovery
	 * isn't possible.
	 */
	if (!test_bit(Faulty, &rdev->flags) &&
	    mddev->recovery_disabled != conf->recovery_disabled &&
	    !has_failed(conf) &&
7035
	    (!p->replacement || p->replacement == rdev) &&
7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
	    number < conf->raid_disks) {
		err = -EBUSY;
		goto abort;
	}
	*rdevp = NULL;
	synchronize_rcu();
	if (atomic_read(&rdev->nr_pending)) {
		/* lost the race, try later */
		err = -EBUSY;
		*rdevp = rdev;
7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059
	} else if (p->replacement) {
		/* We must have just cleared 'rdev' */
		p->rdev = p->replacement;
		clear_bit(Replacement, &p->replacement->flags);
		smp_mb(); /* Make sure other CPUs may see both as identical
			   * but will never see neither - if they are careful
			   */
		p->replacement = NULL;
		clear_bit(WantReplacement, &rdev->flags);
	} else
		/* We might have just removed the Replacement as faulty-
		 * clear the bit just in case
		 */
		clear_bit(WantReplacement, &rdev->flags);
L
Linus Torvalds 已提交
7060 7061 7062 7063 7064 7065
abort:

	print_raid5_conf(conf);
	return err;
}

7066
static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
7067
{
7068
	struct r5conf *conf = mddev->private;
7069
	int err = -EEXIST;
L
Linus Torvalds 已提交
7070 7071
	int disk;
	struct disk_info *p;
7072 7073
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
7074

7075 7076 7077
	if (mddev->recovery_disabled == conf->recovery_disabled)
		return -EBUSY;

N
NeilBrown 已提交
7078
	if (rdev->saved_raid_disk < 0 && has_failed(conf))
L
Linus Torvalds 已提交
7079
		/* no point adding a device */
7080
		return -EINVAL;
L
Linus Torvalds 已提交
7081

7082 7083
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
7084 7085

	/*
7086 7087
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
7088
	 */
7089
	if (rdev->saved_raid_disk >= 0 &&
7090
	    rdev->saved_raid_disk >= first &&
7091
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7092 7093 7094
		first = rdev->saved_raid_disk;

	for (disk = first; disk <= last; disk++) {
7095 7096
		p = conf->disks + disk;
		if (p->rdev == NULL) {
7097
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
7098
			rdev->raid_disk = disk;
7099
			err = 0;
7100 7101
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
7102
			rcu_assign_pointer(p->rdev, rdev);
7103
			goto out;
L
Linus Torvalds 已提交
7104
		}
7105 7106 7107
	}
	for (disk = first; disk <= last; disk++) {
		p = conf->disks + disk;
7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118
		if (test_bit(WantReplacement, &p->rdev->flags) &&
		    p->replacement == NULL) {
			clear_bit(In_sync, &rdev->flags);
			set_bit(Replacement, &rdev->flags);
			rdev->raid_disk = disk;
			err = 0;
			conf->fullsync = 1;
			rcu_assign_pointer(p->replacement, rdev);
			break;
		}
	}
7119
out:
L
Linus Torvalds 已提交
7120
	print_raid5_conf(conf);
7121
	return err;
L
Linus Torvalds 已提交
7122 7123
}

7124
static int raid5_resize(struct mddev *mddev, sector_t sectors)
L
Linus Torvalds 已提交
7125 7126 7127 7128 7129 7130 7131 7132
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
7133
	sector_t newsize;
7134
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7135 7136 7137
	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
	if (mddev->external_size &&
	    mddev->array_sectors > newsize)
D
Dan Williams 已提交
7138
		return -EINVAL;
7139 7140 7141 7142 7143 7144
	if (mddev->bitmap) {
		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
		if (ret)
			return ret;
	}
	md_set_array_sectors(mddev, newsize);
7145
	set_capacity(mddev->gendisk, mddev->array_sectors);
7146
	revalidate_disk(mddev->gendisk);
7147 7148
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
7149
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
7150 7151
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
7152
	mddev->dev_sectors = sectors;
7153
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
7154 7155 7156
	return 0;
}

7157
static int check_stripe_cache(struct mddev *mddev)
7158 7159 7160 7161 7162 7163 7164 7165 7166
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
7167
	struct r5conf *conf = mddev->private;
7168
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7169
	    > conf->min_nr_stripes ||
7170
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7171
	    > conf->min_nr_stripes) {
7172 7173
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
7174 7175 7176 7177 7178 7179 7180
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

7181
static int check_reshape(struct mddev *mddev)
7182
{
7183
	struct r5conf *conf = mddev->private;
7184

7185 7186
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
7187
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7188
		return 0; /* nothing to do */
7189
	if (has_failed(conf))
7190
		return -EINVAL;
7191
	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
7203

7204
	if (!check_stripe_cache(mddev))
7205 7206
		return -ENOSPC;

7207 7208
	return resize_stripes(conf, (conf->previous_raid_disks
				     + mddev->delta_disks));
7209 7210
}

7211
static int raid5_start_reshape(struct mddev *mddev)
7212
{
7213
	struct r5conf *conf = mddev->private;
7214
	struct md_rdev *rdev;
7215
	int spares = 0;
7216
	unsigned long flags;
7217

7218
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7219 7220
		return -EBUSY;

7221 7222 7223
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

7224 7225 7226
	if (has_failed(conf))
		return -EINVAL;

7227
	rdev_for_each(rdev, mddev) {
7228 7229
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
7230
			spares++;
7231
	}
7232

7233
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7234 7235 7236 7237 7238
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

7239 7240 7241 7242 7243 7244
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
7245
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
7246 7247 7248 7249
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

7250
	atomic_set(&conf->reshape_stripes, 0);
7251
	spin_lock_irq(&conf->device_lock);
7252
	write_seqcount_begin(&conf->gen_lock);
7253
	conf->previous_raid_disks = conf->raid_disks;
7254
	conf->raid_disks += mddev->delta_disks;
7255 7256
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
7257 7258
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
7259 7260 7261 7262 7263
	conf->generation++;
	/* Code that selects data_offset needs to see the generation update
	 * if reshape_progress has been set - so a memory barrier needed.
	 */
	smp_mb();
7264
	if (mddev->reshape_backwards)
7265 7266 7267 7268
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
7269
	write_seqcount_end(&conf->gen_lock);
7270 7271
	spin_unlock_irq(&conf->device_lock);

7272 7273 7274 7275 7276 7277 7278
	/* Now make sure any requests that proceeded on the assumption
	 * the reshape wasn't running - like Discard or Read - have
	 * completed.
	 */
	mddev_suspend(mddev);
	mddev_resume(mddev);

7279 7280
	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
7281 7282 7283 7284
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
7285
	 */
7286
	if (mddev->delta_disks >= 0) {
N
NeilBrown 已提交
7287
		rdev_for_each(rdev, mddev)
7288 7289 7290 7291
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					if (rdev->raid_disk
7292
					    >= conf->previous_raid_disks)
7293
						set_bit(In_sync, &rdev->flags);
7294
					else
7295
						rdev->recovery_offset = 0;
7296 7297

					if (sysfs_link_rdev(mddev, rdev))
7298
						/* Failure here is OK */;
7299
				}
7300 7301 7302 7303 7304
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
			}
7305

7306 7307 7308 7309
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
7310
		spin_lock_irqsave(&conf->device_lock, flags);
7311
		mddev->degraded = calc_degraded(conf);
7312 7313
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
7314
	mddev->raid_disks = conf->raid_disks;
7315
	mddev->reshape_position = conf->reshape_progress;
7316
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7317

7318 7319 7320 7321 7322
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7323
						"reshape");
7324 7325 7326
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
7327
		write_seqcount_begin(&conf->gen_lock);
7328
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7329 7330 7331
		mddev->new_chunk_sectors =
			conf->chunk_sectors = conf->prev_chunk_sectors;
		mddev->new_layout = conf->algorithm = conf->prev_algo;
7332 7333 7334
		rdev_for_each(rdev, mddev)
			rdev->new_data_offset = rdev->data_offset;
		smp_wmb();
7335
		conf->generation --;
7336
		conf->reshape_progress = MaxSector;
7337
		mddev->reshape_position = MaxSector;
7338
		write_seqcount_end(&conf->gen_lock);
7339 7340 7341
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
7342
	conf->reshape_checkpoint = jiffies;
7343 7344 7345 7346 7347
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

7348 7349 7350
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
7351
static void end_reshape(struct r5conf *conf)
7352 7353
{

7354
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7355
		struct md_rdev *rdev;
7356 7357

		spin_lock_irq(&conf->device_lock);
7358
		conf->previous_raid_disks = conf->raid_disks;
7359 7360 7361
		rdev_for_each(rdev, conf->mddev)
			rdev->data_offset = rdev->new_data_offset;
		smp_wmb();
7362
		conf->reshape_progress = MaxSector;
7363
		spin_unlock_irq(&conf->device_lock);
7364
		wake_up(&conf->wait_for_overlap);
7365 7366 7367 7368

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
7369
		if (conf->mddev->queue) {
7370
			int data_disks = conf->raid_disks - conf->max_degraded;
7371
			int stripe = data_disks * ((conf->chunk_sectors << 9)
7372
						   / PAGE_SIZE);
7373 7374 7375
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
7376 7377 7378
	}
}

7379 7380 7381
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
7382
static void raid5_finish_reshape(struct mddev *mddev)
7383
{
7384
	struct r5conf *conf = mddev->private;
7385 7386 7387

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

7388 7389 7390
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
7391
			revalidate_disk(mddev->gendisk);
7392 7393
		} else {
			int d;
7394 7395 7396
			spin_lock_irq(&conf->device_lock);
			mddev->degraded = calc_degraded(conf);
			spin_unlock_irq(&conf->device_lock);
7397 7398
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
7399
			     d++) {
7400
				struct md_rdev *rdev = conf->disks[d].rdev;
7401 7402 7403 7404 7405
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
				rdev = conf->disks[d].replacement;
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
7406
			}
7407
		}
7408
		mddev->layout = conf->algorithm;
7409
		mddev->chunk_sectors = conf->chunk_sectors;
7410 7411
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
7412
		mddev->reshape_backwards = 0;
7413 7414 7415
	}
}

7416
static void raid5_quiesce(struct mddev *mddev, int state)
7417
{
7418
	struct r5conf *conf = mddev->private;
7419 7420

	switch(state) {
7421 7422 7423 7424
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

7425
	case 1: /* stop all writes */
7426
		lock_all_device_hash_locks_irq(conf);
7427 7428 7429 7430
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
7431
		wait_event_cmd(conf->wait_for_stripe,
7432 7433
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
7434 7435
				    unlock_all_device_hash_locks_irq(conf),
				    lock_all_device_hash_locks_irq(conf));
7436
		conf->quiesce = 1;
7437
		unlock_all_device_hash_locks_irq(conf);
7438 7439
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
7440 7441 7442
		break;

	case 0: /* re-enable writes */
7443
		lock_all_device_hash_locks_irq(conf);
7444 7445
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
7446
		wake_up(&conf->wait_for_overlap);
7447
		unlock_all_device_hash_locks_irq(conf);
7448 7449 7450
		break;
	}
}
7451

7452
static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7453
{
7454
	struct r0conf *raid0_conf = mddev->private;
7455
	sector_t sectors;
7456

D
Dan Williams 已提交
7457
	/* for raid0 takeover only one zone is supported */
7458
	if (raid0_conf->nr_strip_zones > 1) {
7459 7460
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
7461 7462 7463
		return ERR_PTR(-EINVAL);
	}

7464 7465
	sectors = raid0_conf->strip_zone[0].zone_end;
	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7466
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
7467
	mddev->new_level = level;
7468 7469 7470 7471 7472 7473 7474 7475 7476 7477
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}

7478
static void *raid5_takeover_raid1(struct mddev *mddev)
7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7500
	mddev->new_chunk_sectors = chunksect;
7501 7502 7503 7504

	return setup_conf(mddev);
}

7505
static void *raid5_takeover_raid6(struct mddev *mddev)
7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

7538
static int raid5_check_reshape(struct mddev *mddev)
7539
{
7540 7541 7542 7543
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
7544
	 */
7545
	struct r5conf *conf = mddev->private;
7546
	int new_chunk = mddev->new_chunk_sectors;
7547

7548
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7549 7550
		return -EINVAL;
	if (new_chunk > 0) {
7551
		if (!is_power_of_2(new_chunk))
7552
			return -EINVAL;
7553
		if (new_chunk < (PAGE_SIZE>>9))
7554
			return -EINVAL;
7555
		if (mddev->array_sectors & (new_chunk-1))
7556 7557 7558 7559 7560 7561
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

7562
	if (mddev->raid_disks == 2) {
7563 7564 7565 7566
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
7567 7568
		}
		if (new_chunk > 0) {
7569 7570
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
7571 7572 7573
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
7574
	}
7575
	return check_reshape(mddev);
7576 7577
}

7578
static int raid6_check_reshape(struct mddev *mddev)
7579
{
7580
	int new_chunk = mddev->new_chunk_sectors;
7581

7582
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7583
		return -EINVAL;
7584
	if (new_chunk > 0) {
7585
		if (!is_power_of_2(new_chunk))
7586
			return -EINVAL;
7587
		if (new_chunk < (PAGE_SIZE >> 9))
7588
			return -EINVAL;
7589
		if (mddev->array_sectors & (new_chunk-1))
7590 7591
			/* not factor of array size */
			return -EINVAL;
7592
	}
7593 7594

	/* They look valid */
7595
	return check_reshape(mddev);
7596 7597
}

7598
static void *raid5_takeover(struct mddev *mddev)
7599 7600
{
	/* raid5 can take over:
D
Dan Williams 已提交
7601
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7602 7603 7604 7605
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
7606 7607
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
7608 7609
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
7610 7611 7612 7613 7614
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
7615 7616
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
7617 7618 7619 7620

	return ERR_PTR(-EINVAL);
}

7621
static void *raid4_takeover(struct mddev *mddev)
7622
{
D
Dan Williams 已提交
7623 7624 7625
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
7626
	 */
D
Dan Williams 已提交
7627 7628
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
7629 7630 7631 7632 7633 7634 7635 7636
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
7637

7638
static struct md_personality raid5_personality;
7639

7640
static void *raid6_takeover(struct mddev *mddev)
7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}

7686
static struct md_personality raid6_personality =
7687 7688 7689 7690 7691 7692
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
N
NeilBrown 已提交
7693
	.free		= raid5_free,
7694 7695 7696 7697 7698 7699 7700
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
7701
	.size		= raid5_size,
7702
	.check_reshape	= raid6_check_reshape,
7703
	.start_reshape  = raid5_start_reshape,
7704
	.finish_reshape = raid5_finish_reshape,
7705
	.quiesce	= raid5_quiesce,
7706
	.takeover	= raid6_takeover,
7707
	.congested	= raid5_congested,
7708
	.mergeable_bvec	= raid5_mergeable_bvec,
7709
};
7710
static struct md_personality raid5_personality =
L
Linus Torvalds 已提交
7711 7712
{
	.name		= "raid5",
7713
	.level		= 5,
L
Linus Torvalds 已提交
7714 7715 7716
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
N
NeilBrown 已提交
7717
	.free		= raid5_free,
L
Linus Torvalds 已提交
7718 7719 7720 7721 7722 7723 7724
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
7725
	.size		= raid5_size,
7726 7727
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
7728
	.finish_reshape = raid5_finish_reshape,
7729
	.quiesce	= raid5_quiesce,
7730
	.takeover	= raid5_takeover,
7731
	.congested	= raid5_congested,
7732
	.mergeable_bvec	= raid5_mergeable_bvec,
L
Linus Torvalds 已提交
7733 7734
};

7735
static struct md_personality raid4_personality =
L
Linus Torvalds 已提交
7736
{
7737 7738 7739 7740 7741
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
N
NeilBrown 已提交
7742
	.free		= raid5_free,
7743 7744 7745 7746 7747 7748 7749
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
7750
	.size		= raid5_size,
7751 7752
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
7753
	.finish_reshape = raid5_finish_reshape,
7754
	.quiesce	= raid5_quiesce,
7755
	.takeover	= raid4_takeover,
7756
	.congested	= raid5_congested,
7757
	.mergeable_bvec	= raid5_mergeable_bvec,
7758 7759 7760 7761
};

static int __init raid5_init(void)
{
7762 7763 7764 7765
	raid5_wq = alloc_workqueue("raid5wq",
		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
	if (!raid5_wq)
		return -ENOMEM;
7766
	register_md_personality(&raid6_personality);
7767 7768 7769
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
7770 7771
}

7772
static void raid5_exit(void)
L
Linus Torvalds 已提交
7773
{
7774
	unregister_md_personality(&raid6_personality);
7775 7776
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
7777
	destroy_workqueue(raid5_wq);
L
Linus Torvalds 已提交
7778 7779 7780 7781 7782
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
7783
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
7784
MODULE_ALIAS("md-personality-4"); /* RAID5 */
7785 7786
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
7787 7788
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
7789 7790 7791 7792 7793 7794 7795
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");