raid5.c 167.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/module.h>
51
#include <linux/async.h>
52
#include <linux/seq_file.h>
53
#include <linux/cpu.h>
54
#include <linux/slab.h>
55
#include <linux/ratelimit.h>
56
#include "md.h"
57
#include "raid5.h"
58
#include "raid0.h"
59
#include "bitmap.h"
60

L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68 69
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
70
#define BYPASS_THRESHOLD	1
71
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
72 73
#define HASH_MASK		(NR_HASH - 1)

74
static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 76 77 78
{
	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
	return &conf->stripe_hashtbl[hash];
}
L
Linus Torvalds 已提交
79 80 81 82 83 84 85

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
86
 * This function is used to determine the 'next' bio in the list, given the sector
L
Linus Torvalds 已提交
87 88
 * of the current stripe+device
 */
89 90 91 92 93 94 95 96
static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
{
	int sectors = bio->bi_size >> 9;
	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
		return bio->bi_next;
	else
		return NULL;
}
L
Linus Torvalds 已提交
97

98
/*
99 100
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101 102 103
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
104
	return bio->bi_phys_segments & 0xffff;
105 106 107 108
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
109
	return (bio->bi_phys_segments >> 16) & 0xffff;
110 111 112 113 114 115 116 117 118 119 120 121 122
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
123
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124 125 126 127 128
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
129
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130 131
}

132 133 134
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
135 136 137 138
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
139 140 141 142 143
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
144 145 146 147 148
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
149

150 151 152 153 154
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
155 156
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
157
{
158
	int slot = *count;
159

160
	if (sh->ddf_layout)
161
		(*count)++;
162
	if (idx == sh->pd_idx)
163
		return syndrome_disks;
164
	if (idx == sh->qd_idx)
165
		return syndrome_disks + 1;
166
	if (!sh->ddf_layout)
167
		(*count)++;
168 169 170
	return slot;
}

171 172 173 174 175 176 177 178
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
179
		bio_endio(bi, 0);
180 181 182 183
		bi = return_bi;
	}
}

184
static void print_raid5_conf (struct r5conf *conf);
L
Linus Torvalds 已提交
185

186 187 188 189 190 191 192
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

193
static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
194 195
{
	if (atomic_dec_and_test(&sh->count)) {
196 197
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
198
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
N
NeilBrown 已提交
199
			if (test_bit(STRIPE_DELAYED, &sh->state))
L
Linus Torvalds 已提交
200
				list_add_tail(&sh->lru, &conf->delayed_list);
N
NeilBrown 已提交
201 202
			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
				   sh->bm_seq - conf->seq_write > 0)
203
				list_add_tail(&sh->lru, &conf->bitmap_list);
N
NeilBrown 已提交
204
			else {
205
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
206
				list_add_tail(&sh->lru, &conf->handle_list);
207
			}
L
Linus Torvalds 已提交
208 209
			md_wakeup_thread(conf->mddev->thread);
		} else {
210
			BUG_ON(stripe_operations_active(sh));
211 212 213
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				if (atomic_dec_return(&conf->preread_active_stripes)
				    < IO_THRESHOLD)
L
Linus Torvalds 已提交
214 215
					md_wakeup_thread(conf->mddev->thread);
			atomic_dec(&conf->active_stripes);
216 217
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
218
				wake_up(&conf->wait_for_stripe);
219 220
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
221
			}
L
Linus Torvalds 已提交
222 223 224
		}
	}
}
225

L
Linus Torvalds 已提交
226 227
static void release_stripe(struct stripe_head *sh)
{
228
	struct r5conf *conf = sh->raid_conf;
L
Linus Torvalds 已提交
229
	unsigned long flags;
230

L
Linus Torvalds 已提交
231 232 233 234 235
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

236
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
237
{
238 239
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
240

241
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
242 243
}

244
static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
245
{
246
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
247

248 249
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
250

251
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
252 253 254 255
}


/* find an idle stripe, make sure it is unhashed, and return it. */
256
static struct stripe_head *get_free_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

272
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
273 274 275
{
	struct page *p;
	int i;
276
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
277

278
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
279 280 281 282
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
283
		put_page(p);
L
Linus Torvalds 已提交
284 285 286
	}
}

287
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
288 289
{
	int i;
290
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
291

292
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
293 294 295 296 297 298 299 300 301 302
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

303
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
304
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
305
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
306

307
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
308
{
309
	struct r5conf *conf = sh->raid_conf;
310
	int i;
L
Linus Torvalds 已提交
311

312 313
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
314
	BUG_ON(stripe_operations_active(sh));
315

316
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
317 318 319
		(unsigned long long)sh->sector);

	remove_hash(sh);
320

321
	sh->generation = conf->generation - previous;
322
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
323
	sh->sector = sector;
324
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
325 326
	sh->state = 0;

327 328

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
329 330
		struct r5dev *dev = &sh->dev[i];

331
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
332
		    test_bit(R5_LOCKED, &dev->flags)) {
333
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
334
			       (unsigned long long)sh->sector, i, dev->toread,
335
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
336
			       test_bit(R5_LOCKED, &dev->flags));
337
			WARN_ON(1);
L
Linus Torvalds 已提交
338 339
		}
		dev->flags = 0;
340
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
341 342 343 344
	}
	insert_hash(conf, sh);
}

345
static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
346
					 short generation)
L
Linus Torvalds 已提交
347 348
{
	struct stripe_head *sh;
349
	struct hlist_node *hn;
L
Linus Torvalds 已提交
350

351
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
352
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
353
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
354
			return sh;
355
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
356 357 358
	return NULL;
}

359 360 361 362 363 364 365 366 367 368 369 370 371
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
372
static int calc_degraded(struct r5conf *conf)
373
{
374
	int degraded, degraded2;
375 376 377 378 379
	int i;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
380
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
399 400
	if (conf->raid_disks == conf->previous_raid_disks)
		return degraded;
401
	rcu_read_lock();
402
	degraded2 = 0;
403
	for (i = 0; i < conf->raid_disks; i++) {
404
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
405
		if (!rdev || test_bit(Faulty, &rdev->flags))
406
			degraded2++;
407 408 409 410 411 412 413 414 415
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
416
				degraded2++;
417 418
	}
	rcu_read_unlock();
419 420 421 422 423 424 425 426 427 428 429 430 431
	if (degraded2 > degraded)
		return degraded2;
	return degraded;
}

static int has_failed(struct r5conf *conf)
{
	int degraded;

	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	degraded = calc_degraded(conf);
432 433 434 435 436
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

437
static struct stripe_head *
438
get_active_stripe(struct r5conf *conf, sector_t sector,
439
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
440 441 442
{
	struct stripe_head *sh;

443
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
444 445 446 447

	spin_lock_irq(&conf->device_lock);

	do {
448
		wait_event_lock_irq(conf->wait_for_stripe,
449
				    conf->quiesce == 0 || noquiesce,
450
				    conf->device_lock, /* nothing */);
451
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
452 453 454 455 456 457 458 459 460
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
461 462
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
463 464
						     || !conf->inactive_blocked),
						    conf->device_lock,
465
						    );
L
Linus Torvalds 已提交
466 467
				conf->inactive_blocked = 0;
			} else
468
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
469 470
		} else {
			if (atomic_read(&sh->count)) {
471 472
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
473 474 475
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
476 477
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
478 479
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
480 481 482 483 484 485 486 487 488 489 490
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

491 492 493 494
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
495

496
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
497
{
498
	struct r5conf *conf = sh->raid_conf;
499 500 501 502 503 504
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
505
		int replace_only = 0;
506 507
		struct bio *bi, *rbi;
		struct md_rdev *rdev, *rrdev = NULL;
T
Tejun Heo 已提交
508 509 510 511 512 513
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
514
			rw = READ;
515 516 517 518 519
		else if (test_and_clear_bit(R5_WantReplace,
					    &sh->dev[i].flags)) {
			rw = WRITE;
			replace_only = 1;
		} else
520 521 522
			continue;

		bi = &sh->dev[i].req;
523
		rbi = &sh->dev[i].rreq; /* For writing to replacement */
524 525

		bi->bi_rw = rw;
526 527
		rbi->bi_rw = rw;
		if (rw & WRITE) {
528
			bi->bi_end_io = raid5_end_write_request;
529 530
			rbi->bi_end_io = raid5_end_write_request;
		} else
531 532 533
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
534
		rrdev = rcu_dereference(conf->disks[i].replacement);
535 536 537 538 539 540
		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev) {
			rdev = rrdev;
			rrdev = NULL;
		}
541 542 543
		if (rw & WRITE) {
			if (replace_only)
				rdev = NULL;
544 545 546
			if (rdev == rrdev)
				/* We raced and saw duplicates */
				rrdev = NULL;
547
		} else {
548
			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
549 550 551
				rdev = rrdev;
			rrdev = NULL;
		}
552

553 554 555 556
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
557 558 559 560
		if (rrdev && test_bit(Faulty, &rrdev->flags))
			rrdev = NULL;
		if (rrdev)
			atomic_inc(&rrdev->nr_pending);
561 562
		rcu_read_unlock();

563
		/* We have already checked bad blocks for reads.  Now
564 565
		 * need to check for writes.  We never accept write errors
		 * on the replacement, so we don't to check rrdev.
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
		 */
		while ((rw & WRITE) && rdev &&
		       test_bit(WriteErrorSeen, &rdev->flags)) {
			sector_t first_bad;
			int bad_sectors;
			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					      &first_bad, &bad_sectors);
			if (!bad)
				break;

			if (bad < 0) {
				set_bit(BlockedBadBlocks, &rdev->flags);
				if (!conf->mddev->external &&
				    conf->mddev->flags) {
					/* It is very unlikely, but we might
					 * still need to write out the
					 * bad block log - better give it
					 * a chance*/
					md_check_recovery(conf->mddev);
				}
				md_wait_for_blocked_rdev(rdev, conf->mddev);
			} else {
				/* Acknowledged bad block - skip the write */
				rdev_dec_pending(rdev, conf->mddev);
				rdev = NULL;
			}
		}

594
		if (rdev) {
595 596
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
597 598
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
599 600
			set_bit(STRIPE_IO_STARTED, &sh->state);

601 602
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
603
				__func__, (unsigned long long)sh->sector,
604 605 606 607 608 609 610 611 612
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_idx = 0;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
613 614
			if (rrdev)
				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
615
			generic_make_request(bi);
616 617
		}
		if (rrdev) {
618 619
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);

			set_bit(STRIPE_IO_STARTED, &sh->state);

			rbi->bi_bdev = rrdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on "
				 "replacement disc %d\n",
				__func__, (unsigned long long)sh->sector,
				rbi->bi_rw, i);
			atomic_inc(&sh->count);
			rbi->bi_sector = sh->sector + rrdev->data_offset;
			rbi->bi_flags = 1 << BIO_UPTODATE;
			rbi->bi_idx = 0;
			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			rbi->bi_io_vec[0].bv_offset = 0;
			rbi->bi_size = STRIPE_SIZE;
			rbi->bi_next = NULL;
			generic_make_request(rbi);
		}
		if (!rdev && !rrdev) {
640
			if (rw & WRITE)
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
658
	struct async_submit_ctl submit;
D
Dan Williams 已提交
659
	enum async_tx_flags flags = 0;
660 661 662 663 664

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
665

D
Dan Williams 已提交
666 667 668 669
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

670
	bio_for_each_segment(bvl, bio, i) {
671
		int len = bvl->bv_len;
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
687 688
			b_offset += bvl->bv_offset;
			bio_page = bvl->bv_page;
689 690
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
691
						  b_offset, clen, &submit);
692 693
			else
				tx = async_memcpy(bio_page, page, b_offset,
694
						  page_offset, clen, &submit);
695
		}
696 697 698
		/* chain the operations */
		submit.depend_tx = tx;

699 700 701 702 703 704 705 706 707 708 709 710
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
711
	struct r5conf *conf = sh->raid_conf;
712
	int i;
713

714
	pr_debug("%s: stripe %llu\n", __func__,
715 716 717
		(unsigned long long)sh->sector);

	/* clear completed biofills */
718
	spin_lock_irq(&conf->device_lock);
719 720 721 722
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
723 724
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
725
		 * !STRIPE_BIOFILL_RUN
726 727
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
728 729 730 731 732 733 734 735
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
736
				if (!raid5_dec_bi_phys_segments(rbi)) {
737 738 739 740 741 742 743
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
744 745
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
746 747 748

	return_io(return_bi);

749
	set_bit(STRIPE_HANDLE, &sh->state);
750 751 752 753 754 755
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
756
	struct r5conf *conf = sh->raid_conf;
757
	struct async_submit_ctl submit;
758 759
	int i;

760
	pr_debug("%s: stripe %llu\n", __func__,
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
781 782
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
783 784
}

785
static void mark_target_uptodate(struct stripe_head *sh, int target)
786
{
787
	struct r5dev *tgt;
788

789 790
	if (target < 0)
		return;
791

792
	tgt = &sh->dev[target];
793 794 795
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
796 797
}

798
static void ops_complete_compute(void *stripe_head_ref)
799 800 801
{
	struct stripe_head *sh = stripe_head_ref;

802
	pr_debug("%s: stripe %llu\n", __func__,
803 804
		(unsigned long long)sh->sector);

805
	/* mark the computed target(s) as uptodate */
806
	mark_target_uptodate(sh, sh->ops.target);
807
	mark_target_uptodate(sh, sh->ops.target2);
808

809 810 811
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
812 813 814 815
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

816 817 818 819 820 821 822 823 824
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
825 826
{
	int disks = sh->disks;
827
	struct page **xor_srcs = percpu->scribble;
828 829 830 831 832
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
833
	struct async_submit_ctl submit;
834 835 836
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
837
		__func__, (unsigned long long)sh->sector, target);
838 839 840 841 842 843 844 845
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
846
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
847
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
848
	if (unlikely(count == 1))
849
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
850
	else
851
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
852 853 854 855

	return tx;
}

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
874
		srcs[i] = NULL;
875 876 877 878 879 880 881 882 883 884

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

885
	return syndrome_disks;
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
906
	else
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
923 924
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
925 926 927 928 929 930 931 932 933 934 935
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
936 937
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
938 939 940
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
941 942 943 944

	return tx;
}

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

966
	/* we need to open-code set_syndrome_sources to handle the
967 968 969
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
970
		blocks[i] = NULL;
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
997 998 999
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
1000
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
1020 1021 1022 1023
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
1024 1025 1026 1027
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
1028 1029 1030
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
1031 1032 1033 1034
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
1049 1050 1051 1052
	}
}


1053 1054 1055 1056
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1057
	pr_debug("%s: stripe %llu\n", __func__,
1058 1059 1060 1061
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
1062 1063
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
1064 1065
{
	int disks = sh->disks;
1066
	struct page **xor_srcs = percpu->scribble;
1067
	int count = 0, pd_idx = sh->pd_idx, i;
1068
	struct async_submit_ctl submit;
1069 1070 1071 1072

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

1073
	pr_debug("%s: stripe %llu\n", __func__,
1074 1075 1076 1077 1078
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
1079
		if (test_bit(R5_Wantdrain, &dev->flags))
1080 1081 1082
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1083
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1084
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1085
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1086 1087 1088 1089 1090

	return tx;
}

static struct dma_async_tx_descriptor *
1091
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1092 1093
{
	int disks = sh->disks;
1094
	int i;
1095

1096
	pr_debug("%s: stripe %llu\n", __func__,
1097 1098 1099 1100 1101 1102
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1103
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1104 1105
			struct bio *wbi;

1106
			spin_lock_irq(&sh->raid_conf->device_lock);
1107 1108 1109 1110
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
1111
			spin_unlock_irq(&sh->raid_conf->device_lock);
1112 1113 1114

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1115 1116
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1127
static void ops_complete_reconstruct(void *stripe_head_ref)
1128 1129
{
	struct stripe_head *sh = stripe_head_ref;
1130 1131 1132 1133
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
T
Tejun Heo 已提交
1134
	bool fua = false;
1135

1136
	pr_debug("%s: stripe %llu\n", __func__,
1137 1138
		(unsigned long long)sh->sector);

T
Tejun Heo 已提交
1139 1140 1141
	for (i = disks; i--; )
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);

1142 1143
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1144

T
Tejun Heo 已提交
1145
		if (dev->written || i == pd_idx || i == qd_idx) {
1146
			set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1147 1148 1149
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
		}
1150 1151
	}

1152 1153 1154 1155 1156 1157 1158 1159
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1160 1161 1162 1163 1164 1165

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1166 1167
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1168 1169
{
	int disks = sh->disks;
1170
	struct page **xor_srcs = percpu->scribble;
1171
	struct async_submit_ctl submit;
1172 1173
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1174
	int prexor = 0;
1175 1176
	unsigned long flags;

1177
	pr_debug("%s: stripe %llu\n", __func__,
1178 1179 1180 1181 1182
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1183 1184
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1205
	flags = ASYNC_TX_ACK |
1206 1207 1208 1209
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1210
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1211
			  to_addr_conv(sh, percpu));
1212 1213 1214 1215
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1216 1217
}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1235 1236 1237 1238 1239 1240
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1241
	pr_debug("%s: stripe %llu\n", __func__,
1242 1243
		(unsigned long long)sh->sector);

1244
	sh->check_state = check_state_check_result;
1245 1246 1247 1248
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1249
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1250 1251
{
	int disks = sh->disks;
1252 1253 1254
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1255
	struct page **xor_srcs = percpu->scribble;
1256
	struct dma_async_tx_descriptor *tx;
1257
	struct async_submit_ctl submit;
1258 1259
	int count;
	int i;
1260

1261
	pr_debug("%s: stripe %llu\n", __func__,
1262 1263
		(unsigned long long)sh->sector);

1264 1265 1266
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1267
	for (i = disks; i--; ) {
1268 1269 1270
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1271 1272
	}

1273 1274
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1275
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1276
			   &sh->ops.zero_sum_result, &submit);
1277 1278

	atomic_inc(&sh->count);
1279 1280
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1281 1282
}

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1295 1296

	atomic_inc(&sh->count);
1297 1298 1299 1300
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1301 1302
}

1303
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1304 1305 1306
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1307
	struct r5conf *conf = sh->raid_conf;
1308
	int level = conf->level;
1309 1310
	struct raid5_percpu *percpu;
	unsigned long cpu;
1311

1312 1313
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1314
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1315 1316 1317 1318
		ops_run_biofill(sh);
		overlap_clear++;
	}

1319
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1330 1331
			async_tx_ack(tx);
	}
1332

1333
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1334
		tx = ops_run_prexor(sh, percpu, tx);
1335

1336
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1337
		tx = ops_run_biodrain(sh, tx);
1338 1339 1340
		overlap_clear++;
	}

1341 1342 1343 1344 1345 1346
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1347

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1358 1359 1360 1361 1362 1363 1364

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1365
	put_cpu();
1366 1367
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1398
static int grow_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
1399 1400
{
	struct stripe_head *sh;
N
Namhyung Kim 已提交
1401
	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1402 1403
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
1404

1405
	sh->raid_conf = conf;
1406 1407 1408
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1409

1410 1411
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

1423
static int grow_stripes(struct r5conf *conf, int num)
1424
{
1425
	struct kmem_cache *sc;
1426
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1427

1428 1429 1430 1431 1432 1433 1434 1435
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1436 1437
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1438
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1439
			       0, 0, NULL);
L
Linus Torvalds 已提交
1440 1441 1442
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1443
	conf->pool_size = devs;
1444
	while (num--)
1445
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1446 1447 1448
			return 1;
	return 0;
}
1449

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1472
static int resize_stripes(struct r5conf *conf, int newsize)
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1500
	unsigned long cpu;
1501
	int err;
1502
	struct kmem_cache *sc;
1503 1504 1505 1506 1507
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1508 1509 1510
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1511

1512 1513 1514
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1515
			       0, 0, NULL);
1516 1517 1518 1519
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
N
Namhyung Kim 已提交
1520
		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1521 1522 1523 1524
		if (!nsh)
			break;

		nsh->raid_conf = conf;
1525 1526 1527
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
N
NeilBrown 已提交
1550
				    );
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1565
	 * conf->disks and the scribble region
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1595 1596 1597 1598
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1599

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1616

1617
static int drop_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
1618 1619 1620
{
	struct stripe_head *sh;

1621 1622 1623 1624 1625
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1626
	BUG_ON(atomic_read(&sh->count));
1627
	shrink_buffers(sh);
1628 1629 1630 1631 1632
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

1633
static void shrink_stripes(struct r5conf *conf)
1634 1635 1636 1637
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1638 1639
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1640 1641 1642
	conf->slab_cache = NULL;
}

1643
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1644
{
1645
	struct stripe_head *sh = bi->bi_private;
1646
	struct r5conf *conf = sh->raid_conf;
1647
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1648
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1649
	char b[BDEVNAME_SIZE];
1650
	struct md_rdev *rdev = NULL;
L
Linus Torvalds 已提交
1651 1652 1653 1654 1655 1656


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1657 1658
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1659 1660 1661
		uptodate);
	if (i == disks) {
		BUG();
1662
		return;
L
Linus Torvalds 已提交
1663
	}
1664
	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1665 1666 1667 1668 1669
		/* If replacement finished while this request was outstanding,
		 * 'replacement' might be NULL already.
		 * In that case it moved down to 'rdev'.
		 * rdev is not removed until all requests are finished.
		 */
1670
		rdev = conf->disks[i].replacement;
1671
	if (!rdev)
1672
		rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
1673 1674 1675

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1676
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1677 1678 1679 1680
			/* Note that this cannot happen on a
			 * replacement device.  We just fail those on
			 * any error
			 */
1681 1682 1683 1684 1685 1686 1687 1688
			printk_ratelimited(
				KERN_INFO
				"md/raid:%s: read error corrected"
				" (%lu sectors at %llu on %s)\n",
				mdname(conf->mddev), STRIPE_SECTORS,
				(unsigned long long)(sh->sector
						     + rdev->data_offset),
				bdevname(rdev->bdev, b));
1689
			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1690 1691 1692
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1693 1694
		if (atomic_read(&rdev->read_errors))
			atomic_set(&rdev->read_errors, 0);
L
Linus Torvalds 已提交
1695
	} else {
1696
		const char *bdn = bdevname(rdev->bdev, b);
1697
		int retry = 0;
1698

L
Linus Torvalds 已提交
1699
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1700
		atomic_inc(&rdev->read_errors);
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error on replacement device "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
				(unsigned long long)(sh->sector
						     + rdev->data_offset),
				bdn);
		else if (conf->mddev->degraded >= conf->max_degraded)
1711 1712 1713 1714 1715 1716 1717 1718
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error not correctable "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
				(unsigned long long)(sh->sector
						     + rdev->data_offset),
				bdn);
1719
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1720
			/* Oh, no!!! */
1721 1722 1723 1724 1725 1726 1727 1728
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error NOT corrected!! "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
				(unsigned long long)(sh->sector
						     + rdev->data_offset),
				bdn);
1729
		else if (atomic_read(&rdev->read_errors)
1730
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1731
			printk(KERN_WARNING
1732
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1733
			       mdname(conf->mddev), bdn);
1734 1735 1736 1737 1738
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1739 1740
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1741
			md_error(conf->mddev, rdev);
1742
		}
L
Linus Torvalds 已提交
1743
	}
1744
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
1745 1746 1747 1748 1749
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1750
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1751
{
1752
	struct stripe_head *sh = bi->bi_private;
1753
	struct r5conf *conf = sh->raid_conf;
1754
	int disks = sh->disks, i;
1755
	struct md_rdev *uninitialized_var(rdev);
L
Linus Torvalds 已提交
1756
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1757 1758
	sector_t first_bad;
	int bad_sectors;
1759
	int replacement = 0;
L
Linus Torvalds 已提交
1760

1761 1762 1763
	for (i = 0 ; i < disks; i++) {
		if (bi == &sh->dev[i].req) {
			rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
1764
			break;
1765 1766 1767
		}
		if (bi == &sh->dev[i].rreq) {
			rdev = conf->disks[i].replacement;
1768 1769 1770 1771 1772 1773 1774 1775
			if (rdev)
				replacement = 1;
			else
				/* rdev was removed and 'replacement'
				 * replaced it.  rdev is not removed
				 * until all requests are finished.
				 */
				rdev = conf->disks[i].rdev;
1776 1777 1778
			break;
		}
	}
1779
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1780 1781 1782 1783
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1784
		return;
L
Linus Torvalds 已提交
1785 1786
	}

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	if (replacement) {
		if (!uptodate)
			md_error(conf->mddev, rdev);
		else if (is_badblock(rdev, sh->sector,
				     STRIPE_SECTORS,
				     &first_bad, &bad_sectors))
			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
	} else {
		if (!uptodate) {
			set_bit(WriteErrorSeen, &rdev->flags);
			set_bit(R5_WriteError, &sh->dev[i].flags);
1798 1799 1800
			if (!test_and_set_bit(WantReplacement, &rdev->flags))
				set_bit(MD_RECOVERY_NEEDED,
					&rdev->mddev->recovery);
1801 1802 1803 1804 1805 1806
		} else if (is_badblock(rdev, sh->sector,
				       STRIPE_SECTORS,
				       &first_bad, &bad_sectors))
			set_bit(R5_MadeGood, &sh->dev[i].flags);
	}
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
1807

1808 1809
	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
L
Linus Torvalds 已提交
1810
	set_bit(STRIPE_HANDLE, &sh->state);
1811
	release_stripe(sh);
L
Linus Torvalds 已提交
1812 1813
}

1814
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1815
	
1816
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1817 1818 1819 1820 1821 1822 1823 1824
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->req.bi_private = sh;
1825
	dev->vec.bv_page = dev->page;
L
Linus Torvalds 已提交
1826

1827 1828 1829 1830 1831 1832 1833
	bio_init(&dev->rreq);
	dev->rreq.bi_io_vec = &dev->rvec;
	dev->rreq.bi_vcnt++;
	dev->rreq.bi_max_vecs++;
	dev->rreq.bi_private = sh;
	dev->rvec.bv_page = dev->page;

L
Linus Torvalds 已提交
1834
	dev->flags = 0;
1835
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1836 1837
}

1838
static void error(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
1839 1840
{
	char b[BDEVNAME_SIZE];
1841
	struct r5conf *conf = mddev->private;
1842
	unsigned long flags;
1843
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1844

1845 1846 1847 1848 1849 1850
	spin_lock_irqsave(&conf->device_lock, flags);
	clear_bit(In_sync, &rdev->flags);
	mddev->degraded = calc_degraded(conf);
	spin_unlock_irqrestore(&conf->device_lock, flags);
	set_bit(MD_RECOVERY_INTR, &mddev->recovery);

1851
	set_bit(Blocked, &rdev->flags);
1852 1853 1854 1855 1856 1857 1858 1859 1860
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
1861
}
L
Linus Torvalds 已提交
1862 1863 1864 1865 1866

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1867
static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1868 1869
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1870
{
N
NeilBrown 已提交
1871
	sector_t stripe, stripe2;
1872
	sector_t chunk_number;
L
Linus Torvalds 已提交
1873
	unsigned int chunk_offset;
1874
	int pd_idx, qd_idx;
1875
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1876
	sector_t new_sector;
1877 1878
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1879 1880
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1881 1882 1883
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1896 1897
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1898
	stripe2 = stripe;
L
Linus Torvalds 已提交
1899 1900 1901
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1902
	pd_idx = qd_idx = -1;
1903 1904
	switch(conf->level) {
	case 4:
1905
		pd_idx = data_disks;
1906 1907
		break;
	case 5:
1908
		switch (algorithm) {
L
Linus Torvalds 已提交
1909
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1910
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1911
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1912 1913 1914
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1915
			pd_idx = sector_div(stripe2, raid_disks);
1916
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1917 1918 1919
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1920
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1921
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1922 1923
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1924
			pd_idx = sector_div(stripe2, raid_disks);
1925
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1926
			break;
1927 1928 1929 1930 1931 1932 1933
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1934
		default:
1935
			BUG();
1936 1937 1938 1939
		}
		break;
	case 6:

1940
		switch (algorithm) {
1941
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1942
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1943 1944
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1945
				(*dd_idx)++;	/* Q D D D P */
1946 1947
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1948 1949 1950
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1951
			pd_idx = sector_div(stripe2, raid_disks);
1952 1953
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1954
				(*dd_idx)++;	/* Q D D D P */
1955 1956
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1957 1958 1959
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1960
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1961 1962
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1963 1964
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1965
			pd_idx = sector_div(stripe2, raid_disks);
1966 1967
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1968
			break;
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
1984
			pd_idx = sector_div(stripe2, raid_disks);
1985 1986 1987 1988 1989 1990
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1991
			ddf_layout = 1;
1992 1993 1994 1995 1996 1997 1998
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
1999 2000
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2001 2002 2003 2004 2005 2006
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2007
			ddf_layout = 1;
2008 2009 2010 2011
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
2012
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2013 2014
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2015
			ddf_layout = 1;
2016 2017 2018 2019
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
2020
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2021 2022 2023 2024 2025 2026
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
2027
			pd_idx = sector_div(stripe2, raid_disks-1);
2028 2029 2030 2031 2032 2033
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
2034
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2035 2036 2037 2038 2039
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
2040
			pd_idx = sector_div(stripe2, raid_disks-1);
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

2051
		default:
2052
			BUG();
2053 2054
		}
		break;
L
Linus Torvalds 已提交
2055 2056
	}

2057 2058 2059
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
2060
		sh->ddf_layout = ddf_layout;
2061
	}
L
Linus Torvalds 已提交
2062 2063 2064 2065 2066 2067 2068 2069
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


2070
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
2071
{
2072
	struct r5conf *conf = sh->raid_conf;
2073 2074
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2075
	sector_t new_sector = sh->sector, check;
2076 2077
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2078 2079
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
2080 2081
	sector_t stripe;
	int chunk_offset;
2082 2083
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
2084
	sector_t r_sector;
2085
	struct stripe_head sh2;
L
Linus Torvalds 已提交
2086

2087

L
Linus Torvalds 已提交
2088 2089 2090
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

2091 2092 2093 2094 2095
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
2096
		switch (algorithm) {
L
Linus Torvalds 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
2108 2109 2110 2111 2112
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
2113
		default:
2114
			BUG();
2115 2116 2117
		}
		break;
	case 6:
2118
		if (i == sh->qd_idx)
2119
			return 0; /* It is the Q disk */
2120
		switch (algorithm) {
2121 2122
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
2123 2124 2125 2126
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2141 2142 2143 2144 2145 2146
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2147
			/* Like left_symmetric, but P is before Q */
2148 2149
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2150 2151 2152 2153 2154 2155
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2171
		default:
2172
			BUG();
2173 2174
		}
		break;
L
Linus Torvalds 已提交
2175 2176 2177
	}

	chunk_number = stripe * data_disks + i;
2178
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2179

2180
	check = raid5_compute_sector(conf, r_sector,
2181
				     previous, &dummy1, &sh2);
2182 2183
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2184 2185
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2186 2187 2188 2189 2190 2191
		return 0;
	}
	return r_sector;
}


2192
static void
2193
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2194
			 int rcw, int expand)
2195 2196
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2197
	struct r5conf *conf = sh->raid_conf;
2198
	int level = conf->level;
2199 2200 2201 2202 2203 2204 2205

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2206 2207 2208 2209
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2210

2211
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2212 2213 2214 2215 2216 2217

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2218
				set_bit(R5_Wantdrain, &dev->flags);
2219 2220
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2221
				s->locked++;
2222 2223
			}
		}
2224
		if (s->locked + conf->max_degraded == disks)
2225
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2226
				atomic_inc(&conf->pending_full_writes);
2227
	} else {
2228
		BUG_ON(level == 6);
2229 2230 2231
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2232
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2233 2234
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2235
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2236 2237 2238 2239 2240 2241 2242 2243

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2244 2245
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2246 2247
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2248
				s->locked++;
2249 2250 2251 2252
			}
		}
	}

2253
	/* keep the parity disk(s) locked while asynchronous operations
2254 2255 2256 2257
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2258
	s->locked++;
2259

2260 2261 2262 2263 2264 2265 2266 2267 2268
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2269
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2270
		__func__, (unsigned long long)sh->sector,
2271
		s->locked, s->ops_request);
2272
}
2273

L
Linus Torvalds 已提交
2274 2275
/*
 * Each stripe/dev can have one or more bion attached.
2276
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2277 2278 2279 2280 2281
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
2282
	struct r5conf *conf = sh->raid_conf;
2283
	int firstwrite=0;
L
Linus Torvalds 已提交
2284

2285
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2286 2287 2288 2289 2290
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock_irq(&conf->device_lock);
2291
	if (forwrite) {
L
Linus Torvalds 已提交
2292
		bip = &sh->dev[dd_idx].towrite;
2293 2294 2295
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2296 2297 2298 2299 2300 2301 2302 2303 2304
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2305
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2306 2307 2308
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2309
	bi->bi_phys_segments++;
2310

L
Linus Torvalds 已提交
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	spin_unlock_irq(&conf->device_lock);

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
		(unsigned long long)(*bip)->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
		sh->bm_seq = conf->seq_flush+1;
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}
L
Linus Torvalds 已提交
2336 2337 2338 2339 2340 2341 2342 2343
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	return 0;
}

2344
static void end_reshape(struct r5conf *conf);
2345

2346
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2347
			    struct stripe_head *sh)
2348
{
2349
	int sectors_per_chunk =
2350
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2351
	int dd_idx;
2352
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2353
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2354

2355 2356
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2357
			     *sectors_per_chunk + chunk_offset,
2358
			     previous,
2359
			     &dd_idx, sh);
2360 2361
}

2362
static void
2363
handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2364 2365 2366 2367 2368 2369 2370 2371 2372
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2373
			struct md_rdev *rdev;
2374 2375 2376
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
2377 2378 2379
				atomic_inc(&rdev->nr_pending);
			else
				rdev = NULL;
2380
			rcu_read_unlock();
2381 2382 2383 2384 2385 2386 2387 2388
			if (rdev) {
				if (!rdev_set_badblocks(
					    rdev,
					    sh->sector,
					    STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2406
			if (!raid5_dec_bi_phys_segments(bi)) {
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2421
			if (!raid5_dec_bi_phys_segments(bi)) {
2422 2423 2424 2425 2426 2427 2428
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2429 2430 2431 2432 2433 2434
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2445
				if (!raid5_dec_bi_phys_segments(bi)) {
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
2456 2457 2458 2459
		/* If we were in the middle of a write the parity block might
		 * still be locked - so just clear all R5_LOCKED flags
		 */
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2460 2461
	}

2462 2463 2464
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2465 2466
}

2467
static void
2468
handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2469 2470 2471 2472 2473 2474 2475
		   struct stripe_head_state *s)
{
	int abort = 0;
	int i;

	clear_bit(STRIPE_SYNCING, &sh->state);
	s->syncing = 0;
2476
	s->replacing = 0;
2477
	/* There is nothing more to do for sync/check/repair.
2478 2479 2480
	 * Don't even need to abort as that is handled elsewhere
	 * if needed, and not always wanted e.g. if there is a known
	 * bad block here.
2481
	 * For recover/replace we need to record a bad block on all
2482 2483
	 * non-sync devices, or abort the recovery
	 */
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
		/* During recovery devices cannot be removed, so
		 * locking and refcounting of rdevs is not needed
		 */
		for (i = 0; i < conf->raid_disks; i++) {
			struct md_rdev *rdev = conf->disks[i].rdev;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
			rdev = conf->disks[i].replacement;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
		}
		if (abort)
			conf->recovery_disabled =
				conf->mddev->recovery_disabled;
2507
	}
2508
	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2509 2510
}

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
static int want_replace(struct stripe_head *sh, int disk_idx)
{
	struct md_rdev *rdev;
	int rv = 0;
	/* Doing recovery so rcu locking not required */
	rdev = sh->raid_conf->disks[disk_idx].replacement;
	if (rdev
	    && !test_bit(Faulty, &rdev->flags)
	    && !test_bit(In_sync, &rdev->flags)
	    && (rdev->recovery_offset <= sh->sector
		|| rdev->mddev->recovery_cp <= sh->sector))
		rv = 1;

	return rv;
}

2527
/* fetch_block - checks the given member device to see if its data needs
2528 2529 2530
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
2531
 * 0 to tell the loop in handle_stripe_fill to continue
2532
 */
2533 2534
static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
		       int disk_idx, int disks)
2535
{
2536
	struct r5dev *dev = &sh->dev[disk_idx];
2537 2538
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
2539

2540
	/* is the data in this block needed, and can we get it? */
2541 2542 2543 2544 2545
	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
2546
	     (s->replacing && want_replace(sh, disk_idx)) ||
2547 2548
	     (s->failed >= 1 && fdev[0]->toread) ||
	     (s->failed >= 2 && fdev[1]->toread) ||
2549 2550 2551
	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2552 2553 2554 2555 2556 2557
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
2558 2559
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
2560 2561
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2562
			 */
2563 2564 2565 2566 2567 2568 2569 2570
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
2571 2572 2573 2574 2575 2576
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2590
			}
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2610 2611
		}
	}
2612 2613 2614 2615 2616

	return 0;
}

/**
2617
 * handle_stripe_fill - read or compute data to satisfy pending requests.
2618
 */
2619 2620 2621
static void handle_stripe_fill(struct stripe_head *sh,
			       struct stripe_head_state *s,
			       int disks)
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
2632
			if (fetch_block(sh, s, i, disks))
2633
				break;
2634 2635 2636 2637
	set_bit(STRIPE_HANDLE, &sh->state);
}


2638
/* handle_stripe_clean_event
2639 2640 2641 2642
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2643
static void handle_stripe_clean_event(struct r5conf *conf,
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2657
				pr_debug("Return write for disc %d\n", i);
2658 2659 2660 2661 2662 2663
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2664
					if (!raid5_dec_bi_phys_segments(wbi)) {
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2682 2683 2684 2685

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2686 2687
}

2688
static void handle_stripe_dirtying(struct r5conf *conf,
2689 2690 2691
				   struct stripe_head *sh,
				   struct stripe_head_state *s,
				   int disks)
2692 2693
{
	int rmw = 0, rcw = 0, i;
2694 2695 2696 2697 2698 2699 2700
	if (conf->max_degraded == 2) {
		/* RAID6 requires 'rcw' in current implementation
		 * Calculate the real rcw later - for now fake it
		 * look like rcw is cheaper
		 */
		rcw = 1; rmw = 2;
	} else for (i = disks; i--; ) {
2701 2702 2703 2704
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2705 2706
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2707 2708 2709 2710 2711 2712 2713 2714
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2715 2716 2717
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2718 2719 2720 2721
			else
				rcw += 2*disks;
		}
	}
2722
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2723 2724 2725 2726 2727 2728 2729 2730
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2731 2732
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2733 2734 2735
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2736
					pr_debug("Read_old block "
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2747
	if (rcw <= rmw && rcw > 0) {
2748
		/* want reconstruct write, but need to get some data */
2749
		rcw = 0;
2750 2751 2752
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2753
			    i != sh->pd_idx && i != sh->qd_idx &&
2754
			    !test_bit(R5_LOCKED, &dev->flags) &&
2755
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2756 2757 2758 2759
			      test_bit(R5_Wantcompute, &dev->flags))) {
				rcw++;
				if (!test_bit(R5_Insync, &dev->flags))
					continue; /* it's a failed drive */
2760 2761
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2762
					pr_debug("Read_old block "
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2773
	}
2774 2775 2776
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2777 2778
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2779 2780
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2781 2782 2783
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2784 2785 2786
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2787
		schedule_reconstruction(sh, s, rcw == 0, 0);
2788 2789
}

2790
static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2791 2792
				struct stripe_head_state *s, int disks)
{
2793
	struct r5dev *dev = NULL;
2794

2795
	set_bit(STRIPE_HANDLE, &sh->state);
2796

2797 2798 2799
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2800 2801
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2802 2803
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2804 2805
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2806
			break;
2807
		}
2808
		dev = &sh->dev[s->failed_num[0]];
2809 2810 2811 2812 2813 2814 2815 2816 2817
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2818

2819 2820 2821 2822 2823
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2824
		s->locked++;
2825
		set_bit(R5_Wantwrite, &dev->flags);
2826

2827 2828
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2845
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2857
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2858 2859 2860 2861
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2862
				sh->ops.target2 = -1;
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2874 2875 2876 2877
	}
}


2878
static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2879
				  struct stripe_head_state *s,
2880
				  int disks)
2881 2882
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2883
	int qd_idx = sh->qd_idx;
2884
	struct r5dev *dev;
2885 2886 2887 2888

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2889

2890 2891 2892 2893 2894 2895
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2896 2897 2898
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2899
		if (s->failed == s->q_failed) {
2900
			/* The only possible failed device holds Q, so it
2901 2902 2903
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2904
			sh->check_state = check_state_run;
2905
		}
2906
		if (!s->q_failed && s->failed < 2) {
2907
			/* Q is not failed, and we didn't use it to generate
2908 2909
			 * anything, so it makes sense to check it
			 */
2910 2911 2912 2913
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2914 2915
		}

2916 2917
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2918

2919 2920 2921 2922
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2923
		}
2924 2925 2926 2927 2928 2929 2930
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2931 2932
		}

2933 2934 2935 2936 2937
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2938

2939 2940 2941
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2942 2943

		/* now write out any block on a failed drive,
2944
		 * or P or Q if they were recomputed
2945
		 */
2946
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2947
		if (s->failed == 2) {
2948
			dev = &sh->dev[s->failed_num[1]];
2949 2950 2951 2952 2953
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
2954
			dev = &sh->dev[s->failed_num[0]];
2955 2956 2957 2958
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2959
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2960 2961 2962 2963 2964
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2965
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2966 2967 2968 2969 2970 2971 2972 2973
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3038 3039 3040
	}
}

3041
static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3042 3043 3044 3045 3046 3047
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
3048
	struct dma_async_tx_descriptor *tx = NULL;
3049 3050
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
3051
		if (i != sh->pd_idx && i != sh->qd_idx) {
3052
			int dd_idx, j;
3053
			struct stripe_head *sh2;
3054
			struct async_submit_ctl submit;
3055

3056
			sector_t bn = compute_blocknr(sh, i, 1);
3057 3058
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
3059
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
3072 3073

			/* place all the copies on one channel */
3074
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3075
			tx = async_memcpy(sh2->dev[dd_idx].page,
3076
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3077
					  &submit);
3078

3079 3080 3081 3082
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
3083
				    j != sh2->qd_idx &&
3084 3085 3086 3087 3088 3089 3090
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
3091

3092
		}
3093 3094 3095 3096 3097
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
3098
}
L
Linus Torvalds 已提交
3099 3100 3101 3102

/*
 * handle_stripe - do things to a stripe.
 *
3103 3104
 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
 * state of various bits to see what needs to be done.
L
Linus Torvalds 已提交
3105
 * Possible results:
3106 3107
 *    return some read requests which now have data
 *    return some write requests which are safely on storage
L
Linus Torvalds 已提交
3108 3109 3110 3111 3112
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 */
3113

3114
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
3115
{
3116
	struct r5conf *conf = sh->raid_conf;
3117
	int disks = sh->disks;
3118 3119
	struct r5dev *dev;
	int i;
3120
	int do_recovery = 0;
L
Linus Torvalds 已提交
3121

3122 3123 3124 3125 3126 3127
	memset(s, 0, sizeof(*s));

	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
	s->failed_num[0] = -1;
	s->failed_num[1] = -1;
L
Linus Torvalds 已提交
3128

3129
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3130
	rcu_read_lock();
3131
	spin_lock_irq(&conf->device_lock);
3132
	for (i=disks; i--; ) {
3133
		struct md_rdev *rdev;
3134 3135 3136
		sector_t first_bad;
		int bad_sectors;
		int is_bad = 0;
3137

3138
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3139

3140
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3141 3142
			 i, dev->flags,
			 dev->toread, dev->towrite, dev->written);
3143 3144 3145 3146 3147 3148 3149 3150
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3151

3152
		/* now count some things */
3153 3154 3155 3156
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
3157
		if (test_bit(R5_Wantcompute, &dev->flags)) {
3158 3159
			s->compute++;
			BUG_ON(s->compute > 2);
3160
		}
L
Linus Torvalds 已提交
3161

3162
		if (test_bit(R5_Wantfill, &dev->flags))
3163
			s->to_fill++;
3164
		else if (dev->toread)
3165
			s->to_read++;
3166
		if (dev->towrite) {
3167
			s->to_write++;
3168
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3169
				s->non_overwrite++;
3170
		}
3171
		if (dev->written)
3172
			s->written++;
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
		/* Prefer to use the replacement for reads, but only
		 * if it is recovered enough and has no bad blocks.
		 */
		rdev = rcu_dereference(conf->disks[i].replacement);
		if (rdev && !test_bit(Faulty, &rdev->flags) &&
		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
				 &first_bad, &bad_sectors))
			set_bit(R5_ReadRepl, &dev->flags);
		else {
3183 3184
			if (rdev)
				set_bit(R5_NeedReplace, &dev->flags);
3185 3186 3187
			rdev = rcu_dereference(conf->disks[i].rdev);
			clear_bit(R5_ReadRepl, &dev->flags);
		}
3188 3189
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
		if (rdev) {
			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					     &first_bad, &bad_sectors);
			if (s->blocked_rdev == NULL
			    && (test_bit(Blocked, &rdev->flags)
				|| is_bad < 0)) {
				if (is_bad < 0)
					set_bit(BlockedBadBlocks,
						&rdev->flags);
				s->blocked_rdev = rdev;
				atomic_inc(&rdev->nr_pending);
			}
3202
		}
3203 3204 3205
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
3206 3207
		else if (is_bad) {
			/* also not in-sync */
3208 3209
			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
			    test_bit(R5_UPTODATE, &dev->flags)) {
3210 3211 3212 3213 3214 3215 3216
				/* treat as in-sync, but with a read error
				 * which we can now try to correct
				 */
				set_bit(R5_Insync, &dev->flags);
				set_bit(R5_ReadError, &dev->flags);
			}
		} else if (test_bit(In_sync, &rdev->flags))
3217
			set_bit(R5_Insync, &dev->flags);
3218
		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3219
			/* in sync if before recovery_offset */
3220 3221 3222 3223 3224 3225 3226 3227 3228
			set_bit(R5_Insync, &dev->flags);
		else if (test_bit(R5_UPTODATE, &dev->flags) &&
			 test_bit(R5_Expanded, &dev->flags))
			/* If we've reshaped into here, we assume it is Insync.
			 * We will shortly update recovery_offset to make
			 * it official.
			 */
			set_bit(R5_Insync, &dev->flags);

A
Adam Kwolek 已提交
3229
		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3230 3231 3232 3233 3234 3235 3236
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 == rdev)
				clear_bit(R5_Insync, &dev->flags);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3237
				s->handle_bad_blocks = 1;
3238
				atomic_inc(&rdev2->nr_pending);
3239 3240 3241
			} else
				clear_bit(R5_WriteError, &dev->flags);
		}
A
Adam Kwolek 已提交
3242
		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3243 3244 3245 3246 3247
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3248
				s->handle_bad_blocks = 1;
3249
				atomic_inc(&rdev2->nr_pending);
3250 3251 3252
			} else
				clear_bit(R5_MadeGood, &dev->flags);
		}
3253 3254 3255 3256 3257 3258 3259 3260 3261
		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].replacement);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
				s->handle_bad_blocks = 1;
				atomic_inc(&rdev2->nr_pending);
			} else
				clear_bit(R5_MadeGoodRepl, &dev->flags);
		}
3262
		if (!test_bit(R5_Insync, &dev->flags)) {
3263 3264 3265
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3266
		}
3267 3268 3269
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3270 3271 3272
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
3273 3274
			if (rdev && !test_bit(Faulty, &rdev->flags))
				do_recovery = 1;
3275
		}
L
Linus Torvalds 已提交
3276
	}
3277
	spin_unlock_irq(&conf->device_lock);
3278 3279 3280 3281
	if (test_bit(STRIPE_SYNCING, &sh->state)) {
		/* If there is a failed device being replaced,
		 *     we must be recovering.
		 * else if we are after recovery_cp, we must be syncing
3282
		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3283 3284 3285 3286 3287
		 * else we can only be replacing
		 * sync and recovery both need to read all devices, and so
		 * use the same flag.
		 */
		if (do_recovery ||
3288 3289
		    sh->sector >= conf->mddev->recovery_cp ||
		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3290 3291 3292 3293
			s->syncing = 1;
		else
			s->replacing = 1;
	}
L
Linus Torvalds 已提交
3294
	rcu_read_unlock();
3295 3296 3297 3298 3299
}

static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
3300
	struct r5conf *conf = sh->raid_conf;
3301
	int i;
3302 3303
	int prexor;
	int disks = sh->disks;
3304
	struct r5dev *pdev, *qdev;
3305 3306

	clear_bit(STRIPE_HANDLE, &sh->state);
3307
	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
		set_bit(STRIPE_SYNCING, &sh->state);
		clear_bit(STRIPE_INSYNC, &sh->state);
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
3325

3326
	analyse_stripe(sh, &s);
3327

3328 3329 3330 3331 3332
	if (s.handle_bad_blocks) {
		set_bit(STRIPE_HANDLE, &sh->state);
		goto finish;
	}

3333 3334
	if (unlikely(s.blocked_rdev)) {
		if (s.syncing || s.expanding || s.expanded ||
3335
		    s.replacing || s.to_write || s.written) {
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
			set_bit(STRIPE_HANDLE, &sh->state);
			goto finish;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(s.blocked_rdev, conf->mddev);
		s.blocked_rdev = NULL;
	}

	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

	pr_debug("locked=%d uptodate=%d to_read=%d"
	       " to_write=%d failed=%d failed_num=%d,%d\n",
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       s.failed_num[0], s.failed_num[1]);
	/* check if the array has lost more than max_degraded devices and,
	 * if so, some requests might need to be failed.
	 */
3356 3357 3358 3359 3360
	if (s.failed > conf->max_degraded) {
		sh->check_state = 0;
		sh->reconstruct_state = 0;
		if (s.to_read+s.to_write+s.written)
			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3361
		if (s.syncing + s.replacing)
3362 3363
			handle_failed_sync(conf, sh, &s);
	}
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[sh->pd_idx];
	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
	qdev = &sh->dev[sh->qd_idx];
	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
		|| conf->level < 6;

	if (s.written &&
	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
			     && !test_bit(R5_LOCKED, &pdev->flags)
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
			     && !test_bit(R5_LOCKED, &qdev->flags)
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
	if (s.to_read || s.non_overwrite
	    || (conf->level == 6 && s.to_write && s.failed)
3392 3393 3394
	    || (s.syncing && (s.uptodate + s.compute < disks))
	    || s.replacing
	    || s.expanding)
3395 3396
		handle_stripe_fill(sh, &s, disks);

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	prexor = 0;
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
		prexor = 1;
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
		sh->reconstruct_state = reconstruct_state_idle;

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(sh->qd_idx >= 0 &&
		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || i == sh->qd_idx ||
				 dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
				if (prexor)
					continue;
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
				     s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			s.dec_preread_active = 1;
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying(conf, sh, &s, disks);

	/* maybe we need to check and possibly fix the parity for this stripe
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
	 */
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state))) {
		if (conf->level == 6)
			handle_parity_checks6(conf, sh, &s, disks);
		else
			handle_parity_checks5(conf, sh, &s, disks);
	}
3455

3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
	if (s.replacing && s.locked == 0
	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
		/* Write out to replacement devices where possible */
		for (i = 0; i < conf->raid_disks; i++)
			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
				set_bit(R5_WantReplace, &sh->dev[i].flags);
				set_bit(R5_LOCKED, &sh->dev[i].flags);
				s.locked++;
			}
		set_bit(STRIPE_INSYNC, &sh->state);
	}
	if ((s.syncing || s.replacing) && s.locked == 0 &&
	    test_bit(STRIPE_INSYNC, &sh->state)) {
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			struct r5dev *dev = &sh->dev[s.failed_num[i]];
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				}
			}
		}


3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		struct stripe_head *sh_src
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
			/* sh cannot be written until sh_src has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh_src->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh_src);
			goto finish;
		}
		if (sh_src)
			release_stripe(sh_src);

		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}
3526

3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		stripe_set_idx(sh->sector, conf, 0, sh);
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
		handle_stripe_expansion(conf, sh);
3543

3544
finish:
3545
	/* wait for this device to become unblocked */
3546
	if (conf->mddev->external && unlikely(s.blocked_rdev))
3547
		md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3548

3549 3550
	if (s.handle_bad_blocks)
		for (i = disks; i--; ) {
3551
			struct md_rdev *rdev;
3552 3553 3554 3555 3556 3557 3558 3559 3560
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
				/* We own a safe reference to the rdev */
				rdev = conf->disks[i].rdev;
				if (!rdev_set_badblocks(rdev, sh->sector,
							STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
3561 3562 3563 3564 3565 3566
			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
				rdev = conf->disks[i].rdev;
				rdev_clear_badblocks(rdev, sh->sector,
						     STRIPE_SECTORS);
				rdev_dec_pending(rdev, conf->mddev);
			}
3567 3568
			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
				rdev = conf->disks[i].replacement;
3569 3570 3571
				if (!rdev)
					/* rdev have been moved down */
					rdev = conf->disks[i].rdev;
3572 3573 3574 3575
				rdev_clear_badblocks(rdev, sh->sector,
						     STRIPE_SECTORS);
				rdev_dec_pending(rdev, conf->mddev);
			}
3576 3577
		}

3578 3579 3580
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3581
	ops_run_io(sh, &s);
3582

3583
	if (s.dec_preread_active) {
3584
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3585
		 * is waiting on a flush, it won't continue until the writes
3586 3587 3588 3589 3590 3591 3592 3593
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

3594
	return_io(s.return_bi);
3595

3596
	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3597 3598
}

3599
static void raid5_activate_delayed(struct r5conf *conf)
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3610
			list_add_tail(&sh->lru, &conf->hold_list);
3611
		}
N
NeilBrown 已提交
3612
	}
3613 3614
}

3615
static void activate_bit_delay(struct r5conf *conf)
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

3629
int md_raid5_congested(struct mddev *mddev, int bits)
3630
{
3631
	struct r5conf *conf = mddev->private;
3632 3633 3634 3635

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3636

3637 3638 3639 3640 3641 3642 3643 3644 3645
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3646 3647 3648 3649
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
3650
	struct mddev *mddev = data;
N
NeilBrown 已提交
3651 3652 3653 3654

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3655

3656 3657 3658
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3659 3660 3661
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3662
{
3663
	struct mddev *mddev = q->queuedata;
3664
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3665
	int max;
3666
	unsigned int chunk_sectors = mddev->chunk_sectors;
3667
	unsigned int bio_sectors = bvm->bi_size >> 9;
3668

3669
	if ((bvm->bi_rw & 1) == WRITE)
3670 3671
		return biovec->bv_len; /* always allow writes to be mergeable */

3672 3673
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3674 3675 3676 3677 3678 3679 3680 3681
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3682

3683
static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3684 3685
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3686
	unsigned int chunk_sectors = mddev->chunk_sectors;
3687 3688
	unsigned int bio_sectors = bio->bi_size >> 9;

3689 3690
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3691 3692 3693 3694
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3695 3696 3697 3698
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
3699
static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


3713
static struct bio *remove_bio_from_retry(struct r5conf *conf)
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3724
		conf->retry_read_aligned_list = bi->bi_next;
3725
		bi->bi_next = NULL;
3726 3727 3728 3729
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3730 3731 3732 3733 3734 3735 3736
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3737 3738 3739 3740 3741 3742
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3743
static void raid5_align_endio(struct bio *bi, int error)
3744 3745
{
	struct bio* raid_bi  = bi->bi_private;
3746
	struct mddev *mddev;
3747
	struct r5conf *conf;
3748
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3749
	struct md_rdev *rdev;
3750

3751
	bio_put(bi);
3752 3753 3754

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3755 3756
	mddev = rdev->mddev;
	conf = mddev->private;
3757 3758 3759 3760

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3761
		bio_endio(raid_bi, 0);
3762 3763
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3764
		return;
3765 3766 3767
	}


3768
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3769 3770

	add_bio_to_retry(raid_bi, conf);
3771 3772
}

3773 3774
static int bio_fits_rdev(struct bio *bi)
{
3775
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3776

3777
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3778 3779
		return 0;
	blk_recount_segments(q, bi);
3780
	if (bi->bi_phys_segments > queue_max_segments(q))
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3793
static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3794
{
3795
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
3796
	int dd_idx;
3797
	struct bio* align_bi;
3798
	struct md_rdev *rdev;
3799
	sector_t end_sector;
3800 3801

	if (!in_chunk_boundary(mddev, raid_bio)) {
3802
		pr_debug("chunk_aligned_read : non aligned\n");
3803 3804 3805
		return 0;
	}
	/*
3806
	 * use bio_clone_mddev to make a copy of the bio
3807
	 */
3808
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3820 3821
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3822
						    &dd_idx, NULL);
3823

3824
	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3825
	rcu_read_lock();
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
	if (!rdev || test_bit(Faulty, &rdev->flags) ||
	    rdev->recovery_offset < end_sector) {
		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
		if (rdev &&
		    (test_bit(Faulty, &rdev->flags) ||
		    !(test_bit(In_sync, &rdev->flags) ||
		      rdev->recovery_offset >= end_sector)))
			rdev = NULL;
	}
	if (rdev) {
3837 3838 3839
		sector_t first_bad;
		int bad_sectors;

3840 3841
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3842 3843 3844 3845 3846
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3847 3848 3849 3850
		if (!bio_fits_rdev(align_bi) ||
		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
				&first_bad, &bad_sectors)) {
			/* too big in some way, or has a known bad block */
3851 3852 3853 3854 3855
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3856 3857 3858 3859 3860 3861 3862
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3863 3864 3865 3866
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3867
		bio_put(align_bi);
3868 3869 3870 3871
		return 0;
	}
}

3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
3882
static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3924

3925
static void make_request(struct mddev *mddev, struct bio * bi)
L
Linus Torvalds 已提交
3926
{
3927
	struct r5conf *conf = mddev->private;
3928
	int dd_idx;
L
Linus Torvalds 已提交
3929 3930 3931
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3932
	const int rw = bio_data_dir(bi);
3933
	int remaining;
3934
	int plugged;
L
Linus Torvalds 已提交
3935

T
Tejun Heo 已提交
3936 3937
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
3938
		return;
3939 3940
	}

3941
	md_write_start(mddev, bi);
3942

3943
	if (rw == READ &&
3944
	     mddev->reshape_position == MaxSector &&
3945
	     chunk_aligned_read(mddev,bi))
3946
		return;
3947

L
Linus Torvalds 已提交
3948 3949 3950 3951
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3952

3953
	plugged = mddev_check_plugged(mddev);
L
Linus Torvalds 已提交
3954 3955
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3956
		int disks, data_disks;
3957
		int previous;
3958

3959
	retry:
3960
		previous = 0;
3961
		disks = conf->raid_disks;
3962
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3963
		if (unlikely(conf->reshape_progress != MaxSector)) {
3964
			/* spinlock is needed as reshape_progress may be
3965 3966
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3967
			 * Of course reshape_progress could change after
3968 3969 3970 3971
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3972
			spin_lock_irq(&conf->device_lock);
3973
			if (mddev->reshape_backwards
3974 3975
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3976
				disks = conf->previous_raid_disks;
3977 3978
				previous = 1;
			} else {
3979
				if (mddev->reshape_backwards
3980 3981
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3982 3983 3984 3985 3986
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3987 3988
			spin_unlock_irq(&conf->device_lock);
		}
3989 3990
		data_disks = disks - conf->max_degraded;

3991 3992
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3993
						  &dd_idx, NULL);
3994
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3995 3996 3997
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3998
		sh = get_active_stripe(conf, new_sector, previous,
3999
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
4000
		if (sh) {
4001
			if (unlikely(previous)) {
4002
				/* expansion might have moved on while waiting for a
4003 4004 4005 4006 4007 4008
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
4009 4010 4011
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
4012
				if (mddev->reshape_backwards
4013 4014
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
4015 4016 4017 4018 4019
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
4020
					schedule();
4021 4022 4023
					goto retry;
				}
			}
4024

4025
			if (rw == WRITE &&
4026
			    logical_sector >= mddev->suspend_lo &&
4027 4028
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
4039 4040
				goto retry;
			}
4041 4042

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4043
			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4044 4045
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
4046 4047
				 * and wait a while
				 */
N
NeilBrown 已提交
4048
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
4049 4050 4051 4052 4053
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
4054 4055
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
T
Tejun Heo 已提交
4056
			if ((bi->bi_rw & REQ_SYNC) &&
4057 4058
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
L
Linus Torvalds 已提交
4059 4060 4061 4062 4063 4064 4065 4066 4067
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
4068 4069 4070
	if (!plugged)
		md_wakeup_thread(mddev->thread);

L
Linus Torvalds 已提交
4071
	spin_lock_irq(&conf->device_lock);
4072
	remaining = raid5_dec_bi_phys_segments(bi);
4073 4074
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
4075

4076
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4077
			md_write_end(mddev);
4078

4079
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4080 4081 4082
	}
}

4083
static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
D
Dan Williams 已提交
4084

4085
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4086
{
4087 4088 4089 4090 4091 4092 4093 4094 4095
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4096
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
4097
	struct stripe_head *sh;
4098
	sector_t first_sector, last_sector;
4099 4100 4101
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4102 4103
	int i;
	int dd_idx;
4104
	sector_t writepos, readpos, safepos;
4105
	sector_t stripe_addr;
4106
	int reshape_sectors;
4107
	struct list_head stripes;
4108

4109 4110
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
4111
		if (mddev->reshape_backwards &&
4112 4113 4114
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4115
		} else if (!mddev->reshape_backwards &&
4116 4117
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4118
		sector_div(sector_nr, new_data_disks);
4119
		if (sector_nr) {
4120 4121
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4122 4123 4124
			*skipped = 1;
			return sector_nr;
		}
4125 4126
	}

4127 4128 4129 4130
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4131 4132
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4133
	else
4134
		reshape_sectors = mddev->chunk_sectors;
4135

4136 4137 4138 4139 4140
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
4141 4142
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
4143
	 */
4144
	writepos = conf->reshape_progress;
4145
	sector_div(writepos, new_data_disks);
4146 4147
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4148
	safepos = conf->reshape_safe;
4149
	sector_div(safepos, data_disks);
4150
	if (mddev->reshape_backwards) {
4151
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4152
		readpos += reshape_sectors;
4153
		safepos += reshape_sectors;
4154
	} else {
4155
		writepos += reshape_sectors;
4156 4157
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4158
	}
4159

4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4177
	if ((mddev->reshape_backwards
4178 4179 4180
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4181 4182 4183
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4184
		mddev->reshape_position = conf->reshape_progress;
4185
		mddev->curr_resync_completed = sector_nr;
4186
		conf->reshape_checkpoint = jiffies;
4187
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4188
		md_wakeup_thread(mddev->thread);
4189
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4190 4191
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4192
		conf->reshape_safe = mddev->reshape_position;
4193 4194
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4195
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4196 4197
	}

4198
	if (mddev->reshape_backwards) {
4199 4200 4201
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
4202 4203
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
4204 4205
		       != sector_nr);
	} else {
4206
		BUG_ON(writepos != sector_nr + reshape_sectors);
4207 4208
		stripe_addr = sector_nr;
	}
4209
	INIT_LIST_HEAD(&stripes);
4210
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4211
		int j;
4212
		int skipped_disk = 0;
4213
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4214 4215 4216 4217 4218 4219 4220 4221 4222
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4223
			if (conf->level == 6 &&
4224
			    j == sh->qd_idx)
4225
				continue;
4226
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4227
			if (s < raid5_size(mddev, 0, 0)) {
4228
				skipped_disk = 1;
4229 4230 4231 4232 4233 4234
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4235
		if (!skipped_disk) {
4236 4237 4238
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4239
		list_add(&sh->lru, &stripes);
4240 4241
	}
	spin_lock_irq(&conf->device_lock);
4242
	if (mddev->reshape_backwards)
4243
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4244
	else
4245
		conf->reshape_progress += reshape_sectors * new_data_disks;
4246 4247 4248 4249 4250 4251 4252
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4253
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4254
				     1, &dd_idx, NULL);
4255
	last_sector =
4256
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4257
					    * new_data_disks - 1),
4258
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4259 4260
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4261
	while (first_sector <= last_sector) {
4262
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4263 4264 4265 4266 4267
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4268 4269 4270 4271 4272 4273 4274 4275
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4276 4277 4278
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4279
	sector_nr += reshape_sectors;
4280 4281
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4282 4283 4284
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4285
		mddev->reshape_position = conf->reshape_progress;
4286
		mddev->curr_resync_completed = sector_nr;
4287
		conf->reshape_checkpoint = jiffies;
4288 4289 4290 4291 4292 4293
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4294
		conf->reshape_safe = mddev->reshape_position;
4295 4296
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4297
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4298
	}
4299
	return reshape_sectors;
4300 4301 4302
}

/* FIXME go_faster isn't used */
4303
static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4304
{
4305
	struct r5conf *conf = mddev->private;
4306
	struct stripe_head *sh;
A
Andre Noll 已提交
4307
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
4308
	sector_t sync_blocks;
4309 4310
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4311

4312
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4313
		/* just being told to finish up .. nothing much to do */
4314

4315 4316 4317 4318
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4319 4320 4321 4322

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4323
		else /* completed sync */
4324 4325 4326
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4327 4328
		return 0;
	}
4329

4330 4331 4332
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4333 4334
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4335

4336 4337 4338 4339 4340 4341
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4342
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4343 4344 4345
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4346
	if (mddev->degraded >= conf->max_degraded &&
4347
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4348
		sector_t rv = mddev->dev_sectors - sector_nr;
4349
		*skipped = 1;
L
Linus Torvalds 已提交
4350 4351
		return rv;
	}
4352
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4353
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4354 4355 4356 4357 4358 4359
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4360

N
NeilBrown 已提交
4361 4362
	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4363
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4364
	if (sh == NULL) {
4365
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4366
		/* make sure we don't swamp the stripe cache if someone else
4367
		 * is trying to get access
L
Linus Torvalds 已提交
4368
		 */
4369
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4370
	}
4371 4372 4373 4374
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4375
	for (i = 0; i < conf->raid_disks; i++)
4376 4377 4378 4379 4380
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

4381
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
L
Linus Torvalds 已提交
4382

4383
	handle_stripe(sh);
L
Linus Torvalds 已提交
4384 4385 4386 4387 4388
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4389
static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4402
	int dd_idx;
4403 4404 4405 4406 4407 4408
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4409
	sector = raid5_compute_sector(conf, logical_sector,
4410
				      0, &dd_idx, NULL);
4411 4412 4413
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4414 4415 4416
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4417

4418
		if (scnt < raid5_bi_hw_segments(raid_bio))
4419 4420 4421
			/* already done this stripe */
			continue;

4422
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4423 4424 4425

		if (!sh) {
			/* failed to get a stripe - must wait */
4426
			raid5_set_bi_hw_segments(raid_bio, scnt);
4427 4428 4429 4430
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4431 4432
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4433
			raid5_set_bi_hw_segments(raid_bio, scnt);
4434 4435 4436 4437
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4438
		handle_stripe(sh);
4439 4440 4441 4442
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4443
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4444
	spin_unlock_irq(&conf->device_lock);
4445 4446
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4447 4448 4449 4450 4451 4452
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4453 4454 4455 4456 4457 4458 4459
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4460
static void raid5d(struct mddev *mddev)
L
Linus Torvalds 已提交
4461 4462
{
	struct stripe_head *sh;
4463
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
4464
	int handled;
4465
	struct blk_plug plug;
L
Linus Torvalds 已提交
4466

4467
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4468 4469 4470

	md_check_recovery(mddev);

4471
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
4472 4473 4474
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4475
		struct bio *bio;
L
Linus Torvalds 已提交
4476

4477 4478 4479 4480
		if (atomic_read(&mddev->plug_cnt) == 0 &&
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
4481
			spin_unlock_irq(&conf->device_lock);
4482
			bitmap_unplug(mddev->bitmap);
4483
			spin_lock_irq(&conf->device_lock);
4484
			conf->seq_write = conf->seq_flush;
4485 4486
			activate_bit_delay(conf);
		}
4487 4488
		if (atomic_read(&mddev->plug_cnt) == 0)
			raid5_activate_delayed(conf);
4489

4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4500 4501
		sh = __get_priority_stripe(conf);

4502
		if (!sh)
L
Linus Torvalds 已提交
4503 4504 4505 4506
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4507 4508 4509
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4510

4511 4512 4513
		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
			md_check_recovery(mddev);

L
Linus Torvalds 已提交
4514 4515
		spin_lock_irq(&conf->device_lock);
	}
4516
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4517 4518 4519

	spin_unlock_irq(&conf->device_lock);

4520
	async_tx_issue_pending_all();
4521
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
4522

4523
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4524 4525
}

4526
static ssize_t
4527
raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4528
{
4529
	struct r5conf *conf = mddev->private;
4530 4531 4532 4533
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4534 4535
}

4536
int
4537
raid5_set_cache_size(struct mddev *mddev, int size)
4538
{
4539
	struct r5conf *conf = mddev->private;
4540 4541
	int err;

4542
	if (size <= 16 || size > 32768)
4543
		return -EINVAL;
4544
	while (size < conf->max_nr_stripes) {
4545 4546 4547 4548 4549
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4550 4551 4552
	err = md_allow_write(mddev);
	if (err)
		return err;
4553
	while (size > conf->max_nr_stripes) {
4554 4555 4556 4557
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4558 4559 4560 4561 4562
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
4563
raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4564
{
4565
	struct r5conf *conf = mddev->private;
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4579 4580
	return len;
}
4581

4582 4583 4584 4585
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4586

4587
static ssize_t
4588
raid5_show_preread_threshold(struct mddev *mddev, char *page)
4589
{
4590
	struct r5conf *conf = mddev->private;
4591 4592 4593 4594 4595 4596 4597
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
4598
raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4599
{
4600
	struct r5conf *conf = mddev->private;
4601
	unsigned long new;
4602 4603 4604 4605 4606
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4607
	if (strict_strtoul(page, 10, &new))
4608
		return -EINVAL;
4609
	if (new > conf->max_nr_stripes)
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4621
static ssize_t
4622
stripe_cache_active_show(struct mddev *mddev, char *page)
4623
{
4624
	struct r5conf *conf = mddev->private;
4625 4626 4627 4628
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4629 4630
}

4631 4632
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4633

4634
static struct attribute *raid5_attrs[] =  {
4635 4636
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4637
	&raid5_preread_bypass_threshold.attr,
4638 4639
	NULL,
};
4640 4641 4642
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4643 4644
};

4645
static sector_t
4646
raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4647
{
4648
	struct r5conf *conf = mddev->private;
4649 4650 4651

	if (!sectors)
		sectors = mddev->dev_sectors;
4652
	if (!raid_disks)
4653
		/* size is defined by the smallest of previous and new size */
4654
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4655

4656
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4657
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4658 4659 4660
	return sectors * (raid_disks - conf->max_degraded);
}

4661
static void raid5_free_percpu(struct r5conf *conf)
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4673
		kfree(percpu->scribble);
4674 4675 4676 4677 4678 4679 4680 4681 4682
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4683
static void free_conf(struct r5conf *conf)
4684 4685
{
	shrink_stripes(conf);
4686
	raid5_free_percpu(conf);
4687 4688 4689 4690 4691
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4692 4693 4694 4695
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
4696
	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4697 4698 4699 4700 4701 4702
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4703
		if (conf->level == 6 && !percpu->spare_page)
4704
			percpu->spare_page = alloc_page(GFP_KERNEL);
4705 4706 4707 4708 4709 4710 4711
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4712 4713
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
4714
			return notifier_from_errno(-ENOMEM);
4715 4716 4717 4718 4719
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4720
		kfree(percpu->scribble);
4721
		percpu->spare_page = NULL;
4722
		percpu->scribble = NULL;
4723 4724 4725 4726 4727 4728 4729 4730
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

4731
static int raid5_alloc_percpu(struct r5conf *conf)
4732 4733 4734
{
	unsigned long cpu;
	struct page *spare_page;
4735
	struct raid5_percpu __percpu *allcpus;
4736
	void *scribble;
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4747 4748 4749 4750 4751 4752 4753 4754
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4755
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4756
		if (!scribble) {
4757 4758 4759
			err = -ENOMEM;
			break;
		}
4760
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

4773
static struct r5conf *setup_conf(struct mddev *mddev)
L
Linus Torvalds 已提交
4774
{
4775
	struct r5conf *conf;
4776
	int raid_disk, memory, max_disks;
4777
	struct md_rdev *rdev;
L
Linus Torvalds 已提交
4778 4779
	struct disk_info *disk;

N
NeilBrown 已提交
4780 4781 4782
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4783
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4784 4785
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4786
	}
N
NeilBrown 已提交
4787 4788 4789 4790
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4791
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4792 4793
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4794
	}
N
NeilBrown 已提交
4795
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4796
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4797 4798
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4799 4800
	}

4801 4802 4803
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4804 4805
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4806
		return ERR_PTR(-EINVAL);
4807 4808
	}

4809
	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
N
NeilBrown 已提交
4810
	if (conf == NULL)
L
Linus Torvalds 已提交
4811
		goto abort;
4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
4824
	conf->recovery_disabled = mddev->recovery_disabled - 1;
N
NeilBrown 已提交
4825 4826 4827 4828 4829

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4830
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4831 4832
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4833

4834
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4835 4836 4837
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4838

L
Linus Torvalds 已提交
4839 4840
	conf->mddev = mddev;

4841
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4842 4843
		goto abort;

4844 4845 4846 4847
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4848
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4849

N
NeilBrown 已提交
4850
	rdev_for_each(rdev, mddev) {
L
Linus Torvalds 已提交
4851
		raid_disk = rdev->raid_disk;
4852
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4853 4854 4855 4856
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

4857 4858 4859 4860 4861 4862 4863 4864 4865
		if (test_bit(Replacement, &rdev->flags)) {
			if (disk->replacement)
				goto abort;
			disk->replacement = rdev;
		} else {
			if (disk->rdev)
				goto abort;
			disk->rdev = rdev;
		}
L
Linus Torvalds 已提交
4866

4867
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4868
			char b[BDEVNAME_SIZE];
4869 4870 4871
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
4872
		} else if (rdev->saved_raid_disk != raid_disk)
4873 4874
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4875 4876
	}

4877
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4878
	conf->level = mddev->new_level;
4879 4880 4881 4882
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4883
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4884
	conf->max_nr_stripes = NR_STRIPES;
4885
	conf->reshape_progress = mddev->reshape_position;
4886
	if (conf->reshape_progress != MaxSector) {
4887
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4888 4889
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4890

N
NeilBrown 已提交
4891
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4892
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4893 4894
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4895 4896
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4897 4898
		goto abort;
	} else
4899 4900
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4901

4902
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4903 4904
	if (!conf->thread) {
		printk(KERN_ERR
4905
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4906
		       mdname(mddev));
4907 4908
		goto abort;
	}
N
NeilBrown 已提交
4909 4910 4911 4912 4913

	return conf;

 abort:
	if (conf) {
4914
		free_conf(conf);
N
NeilBrown 已提交
4915 4916 4917 4918 4919
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

4947
static int run(struct mddev *mddev)
N
NeilBrown 已提交
4948
{
4949
	struct r5conf *conf;
4950
	int working_disks = 0;
4951
	int dirty_parity_disks = 0;
4952
	struct md_rdev *rdev;
4953
	sector_t reshape_offset = 0;
4954
	int i;
N
NeilBrown 已提交
4955

4956
	if (mddev->recovery_cp != MaxSector)
4957
		printk(KERN_NOTICE "md/raid:%s: not clean"
4958 4959
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
4960 4961 4962 4963 4964 4965 4966 4967
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4968
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4969

4970
		if (mddev->new_level != mddev->level) {
4971
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4982
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
4983
			       (mddev->raid_disks - max_degraded))) {
4984 4985
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
4986 4987
			return -EINVAL;
		}
4988
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
4989 4990
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
4991
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
4992 4993 4994
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
5006 5007 5008
				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
				       " in read-only mode - aborting\n",
				       mdname(mddev));
5009 5010
				return -EINVAL;
			}
5011
		} else if (mddev->reshape_backwards
5012 5013 5014 5015
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
5016
			/* Reading from the same stripe as writing to - bad */
5017 5018 5019
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
5020 5021
			return -EINVAL;
		}
5022 5023
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
5024 5025 5026 5027
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
5028
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
5029
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
5030
	}
N
NeilBrown 已提交
5031

5032 5033 5034 5035 5036
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
5037 5038 5039 5040 5041 5042 5043
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
	     i++) {
		rdev = conf->disks[i].rdev;
		if (!rdev && conf->disks[i].replacement) {
			/* The replacement is all we have yet */
			rdev = conf->disks[i].replacement;
			conf->disks[i].replacement = NULL;
			clear_bit(Replacement, &rdev->flags);
			conf->disks[i].rdev = rdev;
		}
		if (!rdev)
5055
			continue;
5056 5057 5058 5059 5060 5061 5062
		if (conf->disks[i].replacement &&
		    conf->reshape_progress != MaxSector) {
			/* replacements and reshape simply do not mix. */
			printk(KERN_ERR "md: cannot handle concurrent "
			       "replacement and reshape.\n");
			goto abort;
		}
5063
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
5064
			working_disks++;
5065 5066
			continue;
		}
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
5095

5096 5097 5098
	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
5099
	mddev->degraded = calc_degraded(conf);
N
NeilBrown 已提交
5100

5101
	if (has_failed(conf)) {
5102
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
5103
			" (%d/%d failed)\n",
5104
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
5105 5106 5107
		goto abort;
	}

N
NeilBrown 已提交
5108
	/* device size must be a multiple of chunk size */
5109
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
5110 5111
	mddev->resync_max_sectors = mddev->dev_sectors;

5112
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
5113
	    mddev->recovery_cp != MaxSector) {
5114 5115
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
5116 5117
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
5118 5119 5120
			       mdname(mddev));
		else {
			printk(KERN_ERR
5121
			       "md/raid:%s: cannot start dirty degraded array.\n",
5122 5123 5124
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
5125 5126 5127
	}

	if (mddev->degraded == 0)
5128 5129
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5130 5131
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
5132
	else
5133 5134 5135 5136 5137
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
5138 5139 5140

	print_raid5_conf(conf);

5141 5142
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
5143 5144 5145 5146 5147 5148
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5149
							"reshape");
5150 5151
	}

L
Linus Torvalds 已提交
5152 5153

	/* Ok, everything is just fine now */
5154 5155
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
5156 5157
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5158
		printk(KERN_WARNING
5159
		       "raid5: failed to create sysfs attributes for %s\n",
5160
		       mdname(mddev));
5161
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5162

5163
	if (mddev->queue) {
5164
		int chunk_size;
5165 5166 5167 5168 5169 5170 5171 5172 5173
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
5174

5175
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5176

N
NeilBrown 已提交
5177 5178
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5179

5180 5181 5182 5183
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
5184

N
NeilBrown 已提交
5185
		rdev_for_each(rdev, mddev)
5186 5187 5188
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
	}
5189

L
Linus Torvalds 已提交
5190 5191
	return 0;
abort:
5192
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
5193 5194
	print_raid5_conf(conf);
	free_conf(conf);
L
Linus Torvalds 已提交
5195
	mddev->private = NULL;
5196
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
5197 5198 5199
	return -EIO;
}

5200
static int stop(struct mddev *mddev)
L
Linus Torvalds 已提交
5201
{
5202
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5203

5204
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
5205 5206
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
5207
	free_conf(conf);
5208 5209
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5210 5211 5212
	return 0;
}

5213
static void status(struct seq_file *seq, struct mddev *mddev)
L
Linus Torvalds 已提交
5214
{
5215
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5216 5217
	int i;

5218 5219
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5220
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5221 5222 5223
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5224
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5225 5226 5227
	seq_printf (seq, "]");
}

5228
static void print_raid5_conf (struct r5conf *conf)
L
Linus Torvalds 已提交
5229 5230 5231 5232
{
	int i;
	struct disk_info *tmp;

5233
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
5234 5235 5236 5237
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5238 5239 5240
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5241 5242 5243 5244 5245

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
5246 5247 5248
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
5249 5250 5251
	}
}

5252
static int raid5_spare_active(struct mddev *mddev)
L
Linus Torvalds 已提交
5253 5254
{
	int i;
5255
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5256
	struct disk_info *tmp;
5257 5258
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
5259 5260 5261

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
		if (tmp->replacement
		    && tmp->replacement->recovery_offset == MaxSector
		    && !test_bit(Faulty, &tmp->replacement->flags)
		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
			/* Replacement has just become active. */
			if (!tmp->rdev
			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
				count++;
			if (tmp->rdev) {
				/* Replaced device not technically faulty,
				 * but we need to be sure it gets removed
				 * and never re-added.
				 */
				set_bit(Faulty, &tmp->rdev->flags);
				sysfs_notify_dirent_safe(
					tmp->rdev->sysfs_state);
			}
			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
		} else if (tmp->rdev
5281
		    && tmp->rdev->recovery_offset == MaxSector
5282
		    && !test_bit(Faulty, &tmp->rdev->flags)
5283
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5284
			count++;
5285
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
5286 5287
		}
	}
5288
	spin_lock_irqsave(&conf->device_lock, flags);
5289
	mddev->degraded = calc_degraded(conf);
5290
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5291
	print_raid5_conf(conf);
5292
	return count;
L
Linus Torvalds 已提交
5293 5294
}

5295
static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
5296
{
5297
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5298
	int err = 0;
5299
	int number = rdev->raid_disk;
5300
	struct md_rdev **rdevp;
L
Linus Torvalds 已提交
5301 5302 5303
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
	if (rdev == p->rdev)
		rdevp = &p->rdev;
	else if (rdev == p->replacement)
		rdevp = &p->replacement;
	else
		return 0;

	if (number >= conf->raid_disks &&
	    conf->reshape_progress == MaxSector)
		clear_bit(In_sync, &rdev->flags);

	if (test_bit(In_sync, &rdev->flags) ||
	    atomic_read(&rdev->nr_pending)) {
		err = -EBUSY;
		goto abort;
	}
	/* Only remove non-faulty devices if recovery
	 * isn't possible.
	 */
	if (!test_bit(Faulty, &rdev->flags) &&
	    mddev->recovery_disabled != conf->recovery_disabled &&
	    !has_failed(conf) &&
5326
	    (!p->replacement || p->replacement == rdev) &&
5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
	    number < conf->raid_disks) {
		err = -EBUSY;
		goto abort;
	}
	*rdevp = NULL;
	synchronize_rcu();
	if (atomic_read(&rdev->nr_pending)) {
		/* lost the race, try later */
		err = -EBUSY;
		*rdevp = rdev;
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
	} else if (p->replacement) {
		/* We must have just cleared 'rdev' */
		p->rdev = p->replacement;
		clear_bit(Replacement, &p->replacement->flags);
		smp_mb(); /* Make sure other CPUs may see both as identical
			   * but will never see neither - if they are careful
			   */
		p->replacement = NULL;
		clear_bit(WantReplacement, &rdev->flags);
	} else
		/* We might have just removed the Replacement as faulty-
		 * clear the bit just in case
		 */
		clear_bit(WantReplacement, &rdev->flags);
L
Linus Torvalds 已提交
5351 5352 5353 5354 5355 5356
abort:

	print_raid5_conf(conf);
	return err;
}

5357
static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
5358
{
5359
	struct r5conf *conf = mddev->private;
5360
	int err = -EEXIST;
L
Linus Torvalds 已提交
5361 5362
	int disk;
	struct disk_info *p;
5363 5364
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5365

5366 5367 5368
	if (mddev->recovery_disabled == conf->recovery_disabled)
		return -EBUSY;

N
NeilBrown 已提交
5369
	if (rdev->saved_raid_disk < 0 && has_failed(conf))
L
Linus Torvalds 已提交
5370
		/* no point adding a device */
5371
		return -EINVAL;
L
Linus Torvalds 已提交
5372

5373 5374
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5375 5376

	/*
5377 5378
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5379
	 */
5380
	if (rdev->saved_raid_disk >= 0 &&
5381
	    rdev->saved_raid_disk >= first &&
5382 5383 5384
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
5385
		disk = first;
5386 5387 5388
	for ( ; disk <= last ; disk++) {
		p = conf->disks + disk;
		if (p->rdev == NULL) {
5389
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5390
			rdev->raid_disk = disk;
5391
			err = 0;
5392 5393
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5394
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5395 5396
			break;
		}
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
		if (test_bit(WantReplacement, &p->rdev->flags) &&
		    p->replacement == NULL) {
			clear_bit(In_sync, &rdev->flags);
			set_bit(Replacement, &rdev->flags);
			rdev->raid_disk = disk;
			err = 0;
			conf->fullsync = 1;
			rcu_assign_pointer(p->replacement, rdev);
			break;
		}
	}
L
Linus Torvalds 已提交
5408
	print_raid5_conf(conf);
5409
	return err;
L
Linus Torvalds 已提交
5410 5411
}

5412
static int raid5_resize(struct mddev *mddev, sector_t sectors)
L
Linus Torvalds 已提交
5413 5414 5415 5416 5417 5418 5419 5420
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5421
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5422 5423
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5424 5425 5426
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5427
	set_capacity(mddev->gendisk, mddev->array_sectors);
5428
	revalidate_disk(mddev->gendisk);
5429 5430
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
5431
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5432 5433
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5434
	mddev->dev_sectors = sectors;
5435
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5436 5437 5438
	return 0;
}

5439
static int check_stripe_cache(struct mddev *mddev)
5440 5441 5442 5443 5444 5445 5446 5447 5448
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
5449
	struct r5conf *conf = mddev->private;
5450 5451 5452 5453
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5454 5455
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5456 5457 5458 5459 5460 5461 5462
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5463
static int check_reshape(struct mddev *mddev)
5464
{
5465
	struct r5conf *conf = mddev->private;
5466

5467 5468
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5469
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5470
		return 0; /* nothing to do */
5471 5472 5473
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5474
	if (has_failed(conf))
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5488

5489
	if (!check_stripe_cache(mddev))
5490 5491
		return -ENOSPC;

5492
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5493 5494
}

5495
static int raid5_start_reshape(struct mddev *mddev)
5496
{
5497
	struct r5conf *conf = mddev->private;
5498
	struct md_rdev *rdev;
5499
	int spares = 0;
5500
	unsigned long flags;
5501

5502
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5503 5504
		return -EBUSY;

5505 5506 5507
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

N
NeilBrown 已提交
5508
	rdev_for_each(rdev, mddev)
5509 5510
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
5511
			spares++;
5512

5513
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5514 5515 5516 5517 5518
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5519 5520 5521 5522 5523 5524
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5525
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5526 5527 5528 5529
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5530
	atomic_set(&conf->reshape_stripes, 0);
5531 5532
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5533
	conf->raid_disks += mddev->delta_disks;
5534 5535
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5536 5537
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5538
	if (mddev->reshape_backwards)
5539 5540 5541 5542
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5543
	conf->generation++;
5544 5545 5546 5547
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5548 5549 5550 5551
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5552
	 */
5553
	if (mddev->delta_disks >= 0) {
N
NeilBrown 已提交
5554
		rdev_for_each(rdev, mddev)
5555 5556 5557 5558
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					if (rdev->raid_disk
5559
					    >= conf->previous_raid_disks)
5560
						set_bit(In_sync, &rdev->flags);
5561
					else
5562
						rdev->recovery_offset = 0;
5563 5564

					if (sysfs_link_rdev(mddev, rdev))
5565
						/* Failure here is OK */;
5566
				}
5567 5568 5569 5570 5571
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
			}
5572

5573 5574 5575 5576
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
5577
		spin_lock_irqsave(&conf->device_lock, flags);
5578
		mddev->degraded = calc_degraded(conf);
5579 5580
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5581
	mddev->raid_disks = conf->raid_disks;
5582
	mddev->reshape_position = conf->reshape_progress;
5583
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5584

5585 5586 5587 5588 5589
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5590
						"reshape");
5591 5592 5593 5594
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5595
		conf->reshape_progress = MaxSector;
5596
		mddev->reshape_position = MaxSector;
5597 5598 5599
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5600
	conf->reshape_checkpoint = jiffies;
5601 5602 5603 5604 5605
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5606 5607 5608
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5609
static void end_reshape(struct r5conf *conf)
5610 5611
{

5612 5613 5614
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5615
		conf->previous_raid_disks = conf->raid_disks;
5616
		conf->reshape_progress = MaxSector;
5617
		spin_unlock_irq(&conf->device_lock);
5618
		wake_up(&conf->wait_for_overlap);
5619 5620 5621 5622

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
5623
		if (conf->mddev->queue) {
5624
			int data_disks = conf->raid_disks - conf->max_degraded;
5625
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5626
						   / PAGE_SIZE);
5627 5628 5629
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5630 5631 5632
	}
}

5633 5634 5635
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5636
static void raid5_finish_reshape(struct mddev *mddev)
5637
{
5638
	struct r5conf *conf = mddev->private;
5639 5640 5641

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5642 5643 5644
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5645
			revalidate_disk(mddev->gendisk);
5646 5647
		} else {
			int d;
5648 5649 5650
			spin_lock_irq(&conf->device_lock);
			mddev->degraded = calc_degraded(conf);
			spin_unlock_irq(&conf->device_lock);
5651 5652
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5653
			     d++) {
5654
				struct md_rdev *rdev = conf->disks[d].rdev;
5655 5656
				if (rdev &&
				    raid5_remove_disk(mddev, rdev) == 0) {
5657
					sysfs_unlink_rdev(mddev, rdev);
5658 5659 5660
					rdev->raid_disk = -1;
				}
			}
5661
		}
5662
		mddev->layout = conf->algorithm;
5663
		mddev->chunk_sectors = conf->chunk_sectors;
5664 5665
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5666
		mddev->reshape_backwards = 0;
5667 5668 5669
	}
}

5670
static void raid5_quiesce(struct mddev *mddev, int state)
5671
{
5672
	struct r5conf *conf = mddev->private;
5673 5674

	switch(state) {
5675 5676 5677 5678
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5679 5680
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5681 5682 5683 5684
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5685
		wait_event_lock_irq(conf->wait_for_stripe,
5686 5687
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5688
				    conf->device_lock, /* nothing */);
5689
		conf->quiesce = 1;
5690
		spin_unlock_irq(&conf->device_lock);
5691 5692
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5693 5694 5695 5696 5697 5698
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5699
		wake_up(&conf->wait_for_overlap);
5700 5701 5702 5703
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5704

5705

5706
static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5707
{
5708
	struct r0conf *raid0_conf = mddev->private;
5709
	sector_t sectors;
5710

D
Dan Williams 已提交
5711
	/* for raid0 takeover only one zone is supported */
5712
	if (raid0_conf->nr_strip_zones > 1) {
5713 5714
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5715 5716 5717
		return ERR_PTR(-EINVAL);
	}

5718 5719
	sectors = raid0_conf->strip_zone[0].zone_end;
	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5720
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
5721
	mddev->new_level = level;
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5733
static void *raid5_takeover_raid1(struct mddev *mddev)
5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5755
	mddev->new_chunk_sectors = chunksect;
5756 5757 5758 5759

	return setup_conf(mddev);
}

5760
static void *raid5_takeover_raid6(struct mddev *mddev)
5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5793

5794
static int raid5_check_reshape(struct mddev *mddev)
5795
{
5796 5797 5798 5799
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5800
	 */
5801
	struct r5conf *conf = mddev->private;
5802
	int new_chunk = mddev->new_chunk_sectors;
5803

5804
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5805 5806
		return -EINVAL;
	if (new_chunk > 0) {
5807
		if (!is_power_of_2(new_chunk))
5808
			return -EINVAL;
5809
		if (new_chunk < (PAGE_SIZE>>9))
5810
			return -EINVAL;
5811
		if (mddev->array_sectors & (new_chunk-1))
5812 5813 5814 5815 5816 5817
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5818
	if (mddev->raid_disks == 2) {
5819 5820 5821 5822
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5823 5824
		}
		if (new_chunk > 0) {
5825 5826
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5827 5828 5829
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5830
	}
5831
	return check_reshape(mddev);
5832 5833
}

5834
static int raid6_check_reshape(struct mddev *mddev)
5835
{
5836
	int new_chunk = mddev->new_chunk_sectors;
5837

5838
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5839
		return -EINVAL;
5840
	if (new_chunk > 0) {
5841
		if (!is_power_of_2(new_chunk))
5842
			return -EINVAL;
5843
		if (new_chunk < (PAGE_SIZE >> 9))
5844
			return -EINVAL;
5845
		if (mddev->array_sectors & (new_chunk-1))
5846 5847
			/* not factor of array size */
			return -EINVAL;
5848
	}
5849 5850

	/* They look valid */
5851
	return check_reshape(mddev);
5852 5853
}

5854
static void *raid5_takeover(struct mddev *mddev)
5855 5856
{
	/* raid5 can take over:
D
Dan Williams 已提交
5857
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5858 5859 5860 5861
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
5862 5863
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
5864 5865
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5866 5867 5868 5869 5870
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5871 5872
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5873 5874 5875 5876

	return ERR_PTR(-EINVAL);
}

5877
static void *raid4_takeover(struct mddev *mddev)
5878
{
D
Dan Williams 已提交
5879 5880 5881
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
5882
	 */
D
Dan Williams 已提交
5883 5884
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
5885 5886 5887 5888 5889 5890 5891 5892
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
5893

5894
static struct md_personality raid5_personality;
5895

5896
static void *raid6_takeover(struct mddev *mddev)
5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5943
static struct md_personality raid6_personality =
5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5958
	.size		= raid5_size,
5959
	.check_reshape	= raid6_check_reshape,
5960
	.start_reshape  = raid5_start_reshape,
5961
	.finish_reshape = raid5_finish_reshape,
5962
	.quiesce	= raid5_quiesce,
5963
	.takeover	= raid6_takeover,
5964
};
5965
static struct md_personality raid5_personality =
L
Linus Torvalds 已提交
5966 5967
{
	.name		= "raid5",
5968
	.level		= 5,
L
Linus Torvalds 已提交
5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5980
	.size		= raid5_size,
5981 5982
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5983
	.finish_reshape = raid5_finish_reshape,
5984
	.quiesce	= raid5_quiesce,
5985
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
5986 5987
};

5988
static struct md_personality raid4_personality =
L
Linus Torvalds 已提交
5989
{
5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6003
	.size		= raid5_size,
6004 6005
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6006
	.finish_reshape = raid5_finish_reshape,
6007
	.quiesce	= raid5_quiesce,
6008
	.takeover	= raid4_takeover,
6009 6010 6011 6012
};

static int __init raid5_init(void)
{
6013
	register_md_personality(&raid6_personality);
6014 6015 6016
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
6017 6018
}

6019
static void raid5_exit(void)
L
Linus Torvalds 已提交
6020
{
6021
	unregister_md_personality(&raid6_personality);
6022 6023
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
6024 6025 6026 6027 6028
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
6029
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
6030
MODULE_ALIAS("md-personality-4"); /* RAID5 */
6031 6032
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
6033 6034
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
6035 6036 6037 6038 6039 6040 6041
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");