ctree.c 141.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2
/*
C
Chris Mason 已提交
3
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
4 5
 */

6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/rbtree.h>
9
#include <linux/mm.h>
10 11
#include "ctree.h"
#include "disk-io.h"
12
#include "transaction.h"
13
#include "print-tree.h"
14
#include "locking.h"
15
#include "volumes.h"
16
#include "qgroup.h"
17

18 19
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
20 21 22
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
23
static int push_node_left(struct btrfs_trans_handle *trans,
24
			  struct extent_buffer *dst,
25
			  struct extent_buffer *src, int empty);
26 27 28
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
29 30
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
31

32 33
static const struct btrfs_csums {
	u16		size;
34 35
	const char	name[10];
	const char	driver[12];
36 37
} btrfs_csums[] = {
	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
38
	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
39
	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
40 41
	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
				     .driver = "blake2b-256" },
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
};

int btrfs_super_csum_size(const struct btrfs_super_block *s)
{
	u16 t = btrfs_super_csum_type(s);
	/*
	 * csum type is validated at mount time
	 */
	return btrfs_csums[t].size;
}

const char *btrfs_super_csum_name(u16 csum_type)
{
	/* csum type is validated at mount time */
	return btrfs_csums[csum_type].name;
}

59 60 61 62 63 64 65
/*
 * Return driver name if defined, otherwise the name that's also a valid driver
 * name
 */
const char *btrfs_super_csum_driver(u16 csum_type)
{
	/* csum type is validated at mount time */
66 67
	return btrfs_csums[csum_type].driver[0] ?
		btrfs_csums[csum_type].driver :
68 69 70
		btrfs_csums[csum_type].name;
}

71
size_t __attribute_const__ btrfs_get_num_csums(void)
72 73 74 75
{
	return ARRAY_SIZE(btrfs_csums);
}

C
Chris Mason 已提交
76
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
77
{
78
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
79 80
}

C
Chris Mason 已提交
81
/* this also releases the path */
C
Chris Mason 已提交
82
void btrfs_free_path(struct btrfs_path *p)
83
{
84 85
	if (!p)
		return;
86
	btrfs_release_path(p);
C
Chris Mason 已提交
87
	kmem_cache_free(btrfs_path_cachep, p);
88 89
}

C
Chris Mason 已提交
90 91 92 93 94 95
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
96
noinline void btrfs_release_path(struct btrfs_path *p)
97 98
{
	int i;
99

C
Chris Mason 已提交
100
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
101
		p->slots[i] = 0;
102
		if (!p->nodes[i])
103 104
			continue;
		if (p->locks[i]) {
105
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
106 107
			p->locks[i] = 0;
		}
108
		free_extent_buffer(p->nodes[i]);
109
		p->nodes[i] = NULL;
110 111 112
	}
}

C
Chris Mason 已提交
113 114 115 116 117 118 119 120 121 122
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
123 124 125
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
126

127 128 129 130 131 132
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
133
		 * it was COWed but we may not get the new root node yet so do
134 135 136 137 138 139 140 141 142 143
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
144 145 146
	return eb;
}

147 148 149 150
/*
 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 * just get put onto a simple dirty list.  Transaction walks this list to make
 * sure they get properly updated on disk.
C
Chris Mason 已提交
151
 */
152 153
static void add_root_to_dirty_list(struct btrfs_root *root)
{
154 155
	struct btrfs_fs_info *fs_info = root->fs_info;

156 157 158 159
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

160
	spin_lock(&fs_info->trans_lock);
161 162
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
163
		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
164
			list_move_tail(&root->dirty_list,
165
				       &fs_info->dirty_cowonly_roots);
166 167
		else
			list_move(&root->dirty_list,
168
				  &fs_info->dirty_cowonly_roots);
169
	}
170
	spin_unlock(&fs_info->trans_lock);
171 172
}

C
Chris Mason 已提交
173 174 175 176 177
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
178 179 180 181 182
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
183
	struct btrfs_fs_info *fs_info = root->fs_info;
184 185 186
	struct extent_buffer *cow;
	int ret = 0;
	int level;
187
	struct btrfs_disk_key disk_key;
188

189
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
190
		trans->transid != fs_info->running_transaction->transid);
191
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192
		trans->transid != root->last_trans);
193 194

	level = btrfs_header_level(buf);
195 196 197 198
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
199

200
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
201 202
				     &disk_key, level, buf->start, 0,
				     BTRFS_NESTING_NEW_ROOT);
203
	if (IS_ERR(cow))
204 205
		return PTR_ERR(cow);

206
	copy_extent_buffer_full(cow, buf);
207 208
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
209 210 211 212 213 214 215
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
216

217
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
218

219
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
220
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
221
		ret = btrfs_inc_ref(trans, root, cow, 1);
222
	else
223
		ret = btrfs_inc_ref(trans, root, cow, 0);
224

225 226 227 228 229 230 231 232
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
250
	u64 logical;
251
	u64 seq;
252 253 254 255 256 257 258 259 260 261 262 263 264
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
265 266 267 268
	struct {
		int dst_slot;
		int nr_items;
	} move;
269 270 271 272 273

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

274
/*
J
Josef Bacik 已提交
275
 * Pull a new tree mod seq number for our operation.
276
 */
J
Josef Bacik 已提交
277
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
278 279 280 281
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

282 283 284 285 286 287 288 289 290 291
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
292
{
293
	write_lock(&fs_info->tree_mod_log_lock);
294
	if (!elem->seq) {
J
Josef Bacik 已提交
295
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
296 297
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
298
	write_unlock(&fs_info->tree_mod_log_lock);
299

J
Josef Bacik 已提交
300
	return elem->seq;
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

316
	write_lock(&fs_info->tree_mod_log_lock);
317
	list_del(&elem->list);
318
	elem->seq = 0;
319

320 321 322 323 324 325 326 327 328 329 330 331
	if (!list_empty(&fs_info->tree_mod_seq_list)) {
		struct seq_list *first;

		first = list_first_entry(&fs_info->tree_mod_seq_list,
					 struct seq_list, list);
		if (seq_putting > first->seq) {
			/*
			 * Blocker with lower sequence number exists, we
			 * cannot remove anything from the log.
			 */
			write_unlock(&fs_info->tree_mod_log_lock);
			return;
332
		}
333
		min_seq = first->seq;
334
	}
335

336 337 338 339 340 341 342
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
343
		tm = rb_entry(node, struct tree_mod_elem, node);
344
		if (tm->seq >= min_seq)
345 346 347 348
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
349
	write_unlock(&fs_info->tree_mod_log_lock);
350 351 352 353
}

/*
 * key order of the log:
354
 *       node/leaf start address -> sequence
355
 *
356 357 358
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
359 360 361 362 363 364 365 366
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
367

368 369
	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);

J
Josef Bacik 已提交
370
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
371 372 373 374

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
375
		cur = rb_entry(*new, struct tree_mod_elem, node);
376
		parent = *new;
377
		if (cur->logical < tm->logical)
378
			new = &((*new)->rb_left);
379
		else if (cur->logical > tm->logical)
380
			new = &((*new)->rb_right);
381
		else if (cur->seq < tm->seq)
382
			new = &((*new)->rb_left);
383
		else if (cur->seq > tm->seq)
384
			new = &((*new)->rb_right);
385 386
		else
			return -EEXIST;
387 388 389 390
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
391
	return 0;
392 393
}

394 395 396 397
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
398
 * write unlock fs_info::tree_mod_log_lock.
399
 */
400 401 402 403 404
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
405 406
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
407

408
	write_lock(&fs_info->tree_mod_log_lock);
409
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
410
		write_unlock(&fs_info->tree_mod_log_lock);
411 412 413
		return 1;
	}

414 415 416
	return 0;
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
433
{
434
	struct tree_mod_elem *tm;
435

436 437
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
438
		return NULL;
439

440
	tm->logical = eb->start;
441 442 443 444 445 446 447
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
448
	RB_CLEAR_NODE(&tm->node);
449

450
	return tm;
451 452
}

453 454
static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
		enum mod_log_op op, gfp_t flags)
455
{
456 457 458
	struct tree_mod_elem *tm;
	int ret;

459
	if (!tree_mod_need_log(eb->fs_info, eb))
460 461 462 463 464 465
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

466
	if (tree_mod_dont_log(eb->fs_info, eb)) {
467
		kfree(tm);
468
		return 0;
469 470
	}

471
	ret = __tree_mod_log_insert(eb->fs_info, tm);
472
	write_unlock(&eb->fs_info->tree_mod_log_lock);
473 474
	if (ret)
		kfree(tm);
475

476
	return ret;
477 478
}

479 480
static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
		int dst_slot, int src_slot, int nr_items)
481
{
482 483 484
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
485
	int i;
486
	int locked = 0;
487

488
	if (!tree_mod_need_log(eb->fs_info, eb))
J
Jan Schmidt 已提交
489
		return 0;
490

491
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
492 493 494
	if (!tm_list)
		return -ENOMEM;

495
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
496 497 498 499 500
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

501
	tm->logical = eb->start;
502 503 504 505 506 507 508
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
509
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
510 511 512 513 514 515
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

516
	if (tree_mod_dont_log(eb->fs_info, eb))
517 518 519
		goto free_tms;
	locked = 1;

520 521 522 523 524
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
525
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
526
		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
527 528
		if (ret)
			goto free_tms;
529 530
	}

531
	ret = __tree_mod_log_insert(eb->fs_info, tm);
532 533
	if (ret)
		goto free_tms;
534
	write_unlock(&eb->fs_info->tree_mod_log_lock);
535
	kfree(tm_list);
J
Jan Schmidt 已提交
536

537 538 539 540
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
541
			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
542 543 544
		kfree(tm_list[i]);
	}
	if (locked)
545
		write_unlock(&eb->fs_info->tree_mod_log_lock);
546 547
	kfree(tm_list);
	kfree(tm);
548

549
	return ret;
550 551
}

552 553 554 555
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
556
{
557
	int i, j;
558 559 560
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
561 562 563 564 565 566 567
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
568
	}
569 570

	return 0;
571 572
}

573 574
static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
			 struct extent_buffer *new_root, int log_removal)
575
{
576
	struct btrfs_fs_info *fs_info = old_root->fs_info;
577 578 579 580 581
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
582

583
	if (!tree_mod_need_log(fs_info, NULL))
584 585
		return 0;

586 587
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
588
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
589
				  GFP_NOFS);
590 591 592 593 594 595
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
596
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
597 598 599 600 601 602
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
603

604
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
605 606 607 608
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
609

610
	tm->logical = new_root->start;
611 612 613 614 615
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

616 617 618 619 620 621 622 623
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

624
	write_unlock(&fs_info->tree_mod_log_lock);
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
640 641 642 643 644 645 646 647 648 649 650
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

651
	read_lock(&fs_info->tree_mod_log_lock);
652 653 654
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
655
		cur = rb_entry(node, struct tree_mod_elem, node);
656
		if (cur->logical < start) {
657
			node = node->rb_left;
658
		} else if (cur->logical > start) {
659
			node = node->rb_right;
660
		} else if (cur->seq < min_seq) {
661 662 663 664
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
665
				BUG_ON(found->seq > cur->seq);
666 667
			found = cur;
			node = node->rb_left;
668
		} else if (cur->seq > min_seq) {
669 670
			/* we want the node with the smallest seq */
			if (found)
671
				BUG_ON(found->seq < cur->seq);
672 673 674 675 676 677 678
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
679
	read_unlock(&fs_info->tree_mod_log_lock);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

707
static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
708
		     struct extent_buffer *src, unsigned long dst_offset,
709
		     unsigned long src_offset, int nr_items)
710
{
711
	struct btrfs_fs_info *fs_info = dst->fs_info;
712 713 714
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
715
	int i;
716
	int locked = 0;
717

718 719
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
720

721
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
722 723
		return 0;

724
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
725 726 727
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
728

729 730
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
731
	for (i = 0; i < nr_items; i++) {
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
758
	}
759

760
	write_unlock(&fs_info->tree_mod_log_lock);
761 762 763 764 765 766 767 768 769 770 771
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
772
		write_unlock(&fs_info->tree_mod_log_lock);
773 774 775
	kfree(tm_list);

	return ret;
776 777
}

778
static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
779
{
780 781 782 783 784 785 786 787
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

788
	if (!tree_mod_need_log(eb->fs_info, NULL))
789 790 791
		return 0;

	nritems = btrfs_header_nritems(eb);
792
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
793 794 795 796 797 798 799 800 801 802 803 804
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

805
	if (tree_mod_dont_log(eb->fs_info, eb))
806 807
		goto free_tms;

808
	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
809
	write_unlock(&eb->fs_info->tree_mod_log_lock);
810 811 812 813 814 815 816 817 818 819 820 821
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
822 823
}

824 825 826 827 828 829 830
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
831 832 833
	 * Tree blocks not in shareable trees and tree roots are never shared.
	 * If a block was allocated after the last snapshot and the block was
	 * not allocated by tree relocation, we know the block is not shared.
834
	 */
835
	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
836 837 838 839 840
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
841

842 843 844 845 846 847
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
848 849
				       struct extent_buffer *cow,
				       int *last_ref)
850
{
851
	struct btrfs_fs_info *fs_info = root->fs_info;
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
876
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
877 878
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
879 880
		if (ret)
			return ret;
881 882
		if (refs == 0) {
			ret = -EROFS;
883
			btrfs_handle_fs_error(fs_info, ret, NULL);
884 885
			return ret;
		}
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
903
			ret = btrfs_inc_ref(trans, root, buf, 1);
904 905
			if (ret)
				return ret;
906 907 908

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
909
				ret = btrfs_dec_ref(trans, root, buf, 0);
910 911
				if (ret)
					return ret;
912
				ret = btrfs_inc_ref(trans, root, cow, 1);
913 914
				if (ret)
					return ret;
915 916 917 918 919 920
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
921
				ret = btrfs_inc_ref(trans, root, cow, 1);
922
			else
923
				ret = btrfs_inc_ref(trans, root, cow, 0);
924 925
			if (ret)
				return ret;
926 927
		}
		if (new_flags != 0) {
928 929
			int level = btrfs_header_level(buf);

930
			ret = btrfs_set_disk_extent_flags(trans, buf,
931
							  new_flags, level, 0);
932 933
			if (ret)
				return ret;
934 935 936 937 938
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
939
				ret = btrfs_inc_ref(trans, root, cow, 1);
940
			else
941
				ret = btrfs_inc_ref(trans, root, cow, 0);
942 943
			if (ret)
				return ret;
944
			ret = btrfs_dec_ref(trans, root, buf, 1);
945 946
			if (ret)
				return ret;
947
		}
948
		btrfs_clean_tree_block(buf);
949
		*last_ref = 1;
950 951 952 953
	}
	return 0;
}

954 955 956 957 958 959 960
static struct extent_buffer *alloc_tree_block_no_bg_flush(
					  struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  u64 parent_start,
					  const struct btrfs_disk_key *disk_key,
					  int level,
					  u64 hint,
961 962
					  u64 empty_size,
					  enum btrfs_lock_nesting nest)
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *ret;

	/*
	 * If we are COWing a node/leaf from the extent, chunk, device or free
	 * space trees, make sure that we do not finish block group creation of
	 * pending block groups. We do this to avoid a deadlock.
	 * COWing can result in allocation of a new chunk, and flushing pending
	 * block groups (btrfs_create_pending_block_groups()) can be triggered
	 * when finishing allocation of a new chunk. Creation of a pending block
	 * group modifies the extent, chunk, device and free space trees,
	 * therefore we could deadlock with ourselves since we are holding a
	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
	 * try to COW later.
	 * For similar reasons, we also need to delay flushing pending block
	 * groups when splitting a leaf or node, from one of those trees, since
	 * we are holding a write lock on it and its parent or when inserting a
	 * new root node for one of those trees.
	 */
	if (root == fs_info->extent_root ||
	    root == fs_info->chunk_root ||
	    root == fs_info->dev_root ||
	    root == fs_info->free_space_root)
		trans->can_flush_pending_bgs = false;

	ret = btrfs_alloc_tree_block(trans, root, parent_start,
				     root->root_key.objectid, disk_key, level,
991
				     hint, empty_size, nest);
992 993 994 995 996
	trans->can_flush_pending_bgs = true;

	return ret;
}

C
Chris Mason 已提交
997
/*
C
Chris Mason 已提交
998 999 1000 1001
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1002 1003 1004
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1005 1006 1007
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1008
 */
C
Chris Mason 已提交
1009
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1010 1011 1012 1013
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1014 1015
			     u64 search_start, u64 empty_size,
			     enum btrfs_lock_nesting nest)
C
Chris Mason 已提交
1016
{
1017
	struct btrfs_fs_info *fs_info = root->fs_info;
1018
	struct btrfs_disk_key disk_key;
1019
	struct extent_buffer *cow;
1020
	int level, ret;
1021
	int last_ref = 0;
1022
	int unlock_orig = 0;
1023
	u64 parent_start = 0;
1024

1025 1026 1027
	if (*cow_ret == buf)
		unlock_orig = 1;

1028
	btrfs_assert_tree_locked(buf);
1029

1030
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1031
		trans->transid != fs_info->running_transaction->transid);
1032
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1033
		trans->transid != root->last_trans);
1034

1035
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1036

1037 1038 1039 1040 1041
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1042 1043
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1044

1045
	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1046
					   level, search_start, empty_size, nest);
1047 1048
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1049

1050 1051
	/* cow is set to blocking by btrfs_init_new_buffer */

1052
	copy_extent_buffer_full(cow, buf);
1053
	btrfs_set_header_bytenr(cow, cow->start);
1054
	btrfs_set_header_generation(cow, trans->transid);
1055 1056 1057 1058 1059 1060 1061
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1062

1063
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
1064

1065
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1066
	if (ret) {
J
Josef Bacik 已提交
1067 1068
		btrfs_tree_unlock(cow);
		free_extent_buffer(cow);
1069
		btrfs_abort_transaction(trans, ret);
1070 1071
		return ret;
	}
Z
Zheng Yan 已提交
1072

1073
	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
1074
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1075
		if (ret) {
J
Josef Bacik 已提交
1076 1077
			btrfs_tree_unlock(cow);
			free_extent_buffer(cow);
1078
			btrfs_abort_transaction(trans, ret);
1079
			return ret;
1080
		}
1081
	}
1082

C
Chris Mason 已提交
1083
	if (buf == root->node) {
1084
		WARN_ON(parent && parent != buf);
1085 1086 1087
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1088

D
David Sterba 已提交
1089
		atomic_inc(&cow->refs);
1090 1091
		ret = tree_mod_log_insert_root(root->node, cow, 1);
		BUG_ON(ret < 0);
1092
		rcu_assign_pointer(root->node, cow);
1093

1094
		btrfs_free_tree_block(trans, root, buf, parent_start,
1095
				      last_ref);
1096
		free_extent_buffer(buf);
1097
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1098
	} else {
1099
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1100
		tree_mod_log_insert_key(parent, parent_slot,
1101
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1102
		btrfs_set_node_blockptr(parent, parent_slot,
1103
					cow->start);
1104 1105
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1106
		btrfs_mark_buffer_dirty(parent);
1107
		if (last_ref) {
1108
			ret = tree_mod_log_free_eb(buf);
1109
			if (ret) {
J
Josef Bacik 已提交
1110 1111
				btrfs_tree_unlock(cow);
				free_extent_buffer(cow);
1112
				btrfs_abort_transaction(trans, ret);
1113 1114 1115
				return ret;
			}
		}
1116
		btrfs_free_tree_block(trans, root, buf, parent_start,
1117
				      last_ref);
C
Chris Mason 已提交
1118
	}
1119 1120
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1121
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1122
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1123
	*cow_ret = cow;
C
Chris Mason 已提交
1124 1125 1126
	return 0;
}

J
Jan Schmidt 已提交
1127 1128 1129 1130
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
1131 1132
static struct tree_mod_elem *__tree_mod_log_oldest_root(
		struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1133 1134 1135
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1136
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1137 1138 1139
	int looped = 0;

	if (!time_seq)
1140
		return NULL;
J
Jan Schmidt 已提交
1141 1142

	/*
1143 1144 1145 1146
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1147 1148
	 */
	while (1) {
1149
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
J
Jan Schmidt 已提交
1150 1151
						time_seq);
		if (!looped && !tm)
1152
			return NULL;
J
Jan Schmidt 已提交
1153
		/*
1154 1155 1156
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1157
		 */
1158 1159
		if (!tm)
			break;
J
Jan Schmidt 已提交
1160

1161 1162 1163 1164 1165
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1166 1167 1168 1169 1170 1171 1172 1173
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1174 1175 1176 1177
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1178 1179 1180 1181 1182
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1183
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1184 1185 1186
 * time_seq).
 */
static void
1187 1188
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1198
	read_lock(&fs_info->tree_mod_log_lock);
1199
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1200 1201 1202 1203 1204 1205 1206 1207
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1208
			fallthrough;
1209
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1210
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1211 1212 1213 1214
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1215
			n++;
J
Jan Schmidt 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1225
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1226 1227 1228
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1229 1230 1231
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1249
		tm = rb_entry(next, struct tree_mod_elem, node);
1250
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1251 1252
			break;
	}
1253
	read_unlock(&fs_info->tree_mod_log_lock);
J
Jan Schmidt 已提交
1254 1255 1256
	btrfs_set_header_nritems(eb, n);
}

1257
/*
1258
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1259 1260 1261 1262 1263
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1264
static struct extent_buffer *
1265 1266
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1283
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1284
		if (!eb_rewin) {
1285
			btrfs_tree_read_unlock(eb);
1286 1287 1288
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1289 1290 1291 1292
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1293
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1294 1295
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1296
		if (!eb_rewin) {
1297
			btrfs_tree_read_unlock(eb);
1298 1299 1300
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1301 1302
	}

1303
	btrfs_tree_read_unlock(eb);
J
Jan Schmidt 已提交
1304 1305
	free_extent_buffer(eb);

1306 1307
	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
				       eb_rewin, btrfs_header_level(eb_rewin));
1308
	btrfs_tree_read_lock(eb_rewin);
1309
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1310
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1311
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1312 1313 1314 1315

	return eb_rewin;
}

1316 1317 1318 1319 1320 1321 1322
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1323 1324 1325
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1326
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1327
	struct tree_mod_elem *tm;
1328 1329
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1330
	u64 eb_root_owner = 0;
1331
	struct extent_buffer *old;
1332
	struct tree_mod_root *old_root = NULL;
1333
	u64 old_generation = 0;
1334
	u64 logical;
1335
	int level;
J
Jan Schmidt 已提交
1336

1337
	eb_root = btrfs_read_lock_root_node(root);
1338
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1339
	if (!tm)
1340
		return eb_root;
J
Jan Schmidt 已提交
1341

1342 1343 1344 1345
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
1346
		level = old_root->level;
1347
	} else {
1348
		logical = eb_root->start;
1349
		level = btrfs_header_level(eb_root);
1350
	}
J
Jan Schmidt 已提交
1351

1352
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1353
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1354 1355
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1356 1357
		old = read_tree_block(fs_info, logical, root->root_key.objectid,
				      0, level, NULL);
1358 1359 1360
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1361 1362 1363
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1364
		} else {
1365 1366
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1367 1368
		}
	} else if (old_root) {
1369
		eb_root_owner = btrfs_header_owner(eb_root);
1370 1371
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1372
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1373
	} else {
1374
		eb = btrfs_clone_extent_buffer(eb_root);
1375
		btrfs_tree_read_unlock(eb_root);
1376
		free_extent_buffer(eb_root);
1377 1378
	}

1379 1380
	if (!eb)
		return NULL;
1381
	if (old_root) {
J
Jan Schmidt 已提交
1382 1383
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1384
		btrfs_set_header_owner(eb, eb_root_owner);
1385 1386
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1387
	}
1388 1389 1390
	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
				       btrfs_header_level(eb));
	btrfs_tree_read_lock(eb);
1391
	if (tm)
1392
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1393 1394
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1395
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1396 1397 1398 1399

	return eb;
}

J
Jan Schmidt 已提交
1400 1401 1402 1403
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1404
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1405

1406
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1407 1408 1409
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1410
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1411
	}
1412
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1413 1414 1415 1416

	return level;
}

1417 1418 1419 1420
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1421
	if (btrfs_is_testing(root->fs_info))
1422
		return 0;
1423

1424 1425
	/* Ensure we can see the FORCE_COW bit */
	smp_mb__before_atomic();
1426 1427 1428 1429 1430 1431 1432 1433

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1434
	 *    when we create snapshot during committing the transaction,
1435
	 *    after we've finished copying src root, we must COW the shared
1436 1437
	 *    block to ensure the metadata consistency.
	 */
1438 1439 1440
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1441
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1442
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1443 1444 1445 1446
		return 0;
	return 1;
}

C
Chris Mason 已提交
1447 1448
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1449
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1450 1451
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1452
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1453 1454
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1455 1456
		    struct extent_buffer **cow_ret,
		    enum btrfs_lock_nesting nest)
1457
{
1458
	struct btrfs_fs_info *fs_info = root->fs_info;
1459
	u64 search_start;
1460
	int ret;
C
Chris Mason 已提交
1461

1462 1463 1464 1465
	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
		btrfs_err(fs_info,
			"COW'ing blocks on a fs root that's being dropped");

1466
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1467
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1468
		       trans->transid,
1469
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1470

1471
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1472
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1473
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1474

1475
	if (!should_cow_block(trans, root, buf)) {
1476
		trans->dirty = true;
1477 1478 1479
		*cow_ret = buf;
		return 0;
	}
1480

1481
	search_start = buf->start & ~((u64)SZ_1G - 1);
1482

1483 1484 1485 1486 1487 1488 1489
	/*
	 * Before CoWing this block for later modification, check if it's
	 * the subtree root and do the delayed subtree trace if needed.
	 *
	 * Also We don't care about the error, as it's handled internally.
	 */
	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1490
	ret = __btrfs_cow_block(trans, root, buf, parent,
1491
				 parent_slot, cow_ret, search_start, 0, nest);
1492 1493 1494

	trace_btrfs_cow_block(root, buf, *cow_ret);

1495
	return ret;
1496 1497
}

C
Chris Mason 已提交
1498 1499 1500 1501
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1502
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1503
{
1504
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1505
		return 1;
1506
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1507 1508 1509 1510
		return 1;
	return 0;
}

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
#ifdef __LITTLE_ENDIAN

/*
 * Compare two keys, on little-endian the disk order is same as CPU order and
 * we can avoid the conversion.
 */
static int comp_keys(const struct btrfs_disk_key *disk_key,
		     const struct btrfs_key *k2)
{
	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;

	return btrfs_comp_cpu_keys(k1, k2);
}

#else

1527 1528 1529
/*
 * compare two keys in a memcmp fashion
 */
1530 1531
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1532 1533 1534 1535 1536
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1537
	return btrfs_comp_cpu_keys(&k1, k2);
1538
}
1539
#endif
1540

1541 1542 1543
/*
 * same as comp_keys only with two btrfs_key's
 */
1544
int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1560

C
Chris Mason 已提交
1561 1562 1563 1564 1565
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1566
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1567
		       struct btrfs_root *root, struct extent_buffer *parent,
1568
		       int start_slot, u64 *last_ret,
1569
		       struct btrfs_key *progress)
1570
{
1571
	struct btrfs_fs_info *fs_info = root->fs_info;
1572
	struct extent_buffer *cur;
1573
	u64 blocknr;
1574 1575
	u64 search_start = *last_ret;
	u64 last_block = 0;
1576 1577 1578 1579 1580
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1581
	u32 blocksize;
1582 1583
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1584

1585 1586
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1587

1588
	parent_nritems = btrfs_header_nritems(parent);
1589
	blocksize = fs_info->nodesize;
1590
	end_slot = parent_nritems - 1;
1591

1592
	if (parent_nritems <= 1)
1593 1594
		return 0;

1595
	for (i = start_slot; i <= end_slot; i++) {
1596
		int close = 1;
1597

1598 1599 1600 1601 1602
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1603
		blocknr = btrfs_node_blockptr(parent, i);
1604 1605
		if (last_block == 0)
			last_block = blocknr;
1606

1607
		if (i > 0) {
1608 1609
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1610
		}
1611
		if (!close && i < end_slot) {
1612 1613
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1614
		}
1615 1616
		if (close) {
			last_block = blocknr;
1617
			continue;
1618
		}
1619

1620 1621 1622
		cur = btrfs_read_node_slot(parent, i);
		if (IS_ERR(cur))
			return PTR_ERR(cur);
1623
		if (search_start == 0)
1624
			search_start = last_block;
1625

1626
		btrfs_tree_lock(cur);
1627
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1628
					&cur, search_start,
1629
					min(16 * blocksize,
1630 1631
					    (end_slot - i) * blocksize),
					BTRFS_NESTING_COW);
Y
Yan 已提交
1632
		if (err) {
1633
			btrfs_tree_unlock(cur);
1634
			free_extent_buffer(cur);
1635
			break;
Y
Yan 已提交
1636
		}
1637 1638
		search_start = cur->start;
		last_block = cur->start;
1639
		*last_ret = search_start;
1640 1641
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1642 1643 1644 1645
	}
	return err;
}

C
Chris Mason 已提交
1646
/*
1647 1648 1649
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1650 1651 1652 1653 1654 1655
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1656
static noinline int generic_bin_search(struct extent_buffer *eb,
1657 1658
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1659
				       int max, int *slot)
1660 1661 1662 1663
{
	int low = 0;
	int high = max;
	int ret;
1664
	const int key_size = sizeof(struct btrfs_disk_key);
1665

1666 1667 1668 1669 1670 1671 1672 1673
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1674
	while (low < high) {
1675 1676 1677 1678 1679 1680
		unsigned long oip;
		unsigned long offset;
		struct btrfs_disk_key *tmp;
		struct btrfs_disk_key unaligned;
		int mid;

1681
		mid = (low + high) / 2;
1682
		offset = p + mid * item_size;
1683
		oip = offset_in_page(offset);
1684

1685 1686 1687
		if (oip + key_size <= PAGE_SIZE) {
			const unsigned long idx = offset >> PAGE_SHIFT;
			char *kaddr = page_address(eb->pages[idx]);
1688

1689
			tmp = (struct btrfs_disk_key *)(kaddr + oip);
1690
		} else {
1691 1692
			read_extent_buffer(eb, &unaligned, offset, key_size);
			tmp = &unaligned;
1693
		}
1694

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1710 1711 1712 1713
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1714
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1715
		     int *slot)
1716
{
1717
	if (btrfs_header_level(eb) == 0)
1718 1719
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1720
					  sizeof(struct btrfs_item),
1721
					  key, btrfs_header_nritems(eb),
1722
					  slot);
1723
	else
1724 1725
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1726
					  sizeof(struct btrfs_key_ptr),
1727
					  key, btrfs_header_nritems(eb),
1728
					  slot);
1729 1730
}

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1747 1748 1749
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1750 1751
struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
					   int slot)
1752
{
1753
	int level = btrfs_header_level(parent);
1754
	struct extent_buffer *eb;
1755
	struct btrfs_key first_key;
1756

1757 1758
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1759 1760 1761

	BUG_ON(level == 0);

1762
	btrfs_node_key_to_cpu(parent, &first_key, slot);
1763
	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1764
			     btrfs_header_owner(parent),
1765 1766
			     btrfs_node_ptr_generation(parent, slot),
			     level - 1, &first_key);
1767 1768 1769
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1770 1771 1772
	}

	return eb;
1773 1774
}

C
Chris Mason 已提交
1775 1776 1777 1778 1779
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1780
static noinline int balance_level(struct btrfs_trans_handle *trans,
1781 1782
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1783
{
1784
	struct btrfs_fs_info *fs_info = root->fs_info;
1785 1786 1787 1788
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1789 1790 1791 1792
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1793
	u64 orig_ptr;
1794

1795
	ASSERT(level > 0);
1796

1797
	mid = path->nodes[level];
1798

1799
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1800 1801
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1802
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1803

L
Li Zefan 已提交
1804
	if (level < BTRFS_MAX_LEVEL - 1) {
1805
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1806 1807
		pslot = path->slots[level + 1];
	}
1808

C
Chris Mason 已提交
1809 1810 1811 1812
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1813 1814
	if (!parent) {
		struct extent_buffer *child;
1815

1816
		if (btrfs_header_nritems(mid) != 1)
1817 1818 1819
			return 0;

		/* promote the child to a root */
1820
		child = btrfs_read_node_slot(mid, 0);
1821 1822
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1823
			btrfs_handle_fs_error(fs_info, ret, NULL);
1824 1825 1826
			goto enospc;
		}

1827
		btrfs_tree_lock(child);
1828 1829
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
				      BTRFS_NESTING_COW);
1830 1831 1832 1833 1834
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1835

1836 1837
		ret = tree_mod_log_insert_root(root->node, child, 1);
		BUG_ON(ret < 0);
1838
		rcu_assign_pointer(root->node, child);
1839

1840
		add_root_to_dirty_list(root);
1841
		btrfs_tree_unlock(child);
1842

1843
		path->locks[level] = 0;
1844
		path->nodes[level] = NULL;
1845
		btrfs_clean_tree_block(mid);
1846
		btrfs_tree_unlock(mid);
1847
		/* once for the path */
1848
		free_extent_buffer(mid);
1849 1850

		root_sub_used(root, mid->len);
1851
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1852
		/* once for the root ptr */
1853
		free_extent_buffer_stale(mid);
1854
		return 0;
1855
	}
1856
	if (btrfs_header_nritems(mid) >
1857
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1858 1859
		return 0;

1860
	left = btrfs_read_node_slot(parent, pslot - 1);
1861 1862 1863
	if (IS_ERR(left))
		left = NULL;

1864
	if (left) {
1865
		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1866
		wret = btrfs_cow_block(trans, root, left,
1867
				       parent, pslot - 1, &left,
1868
				       BTRFS_NESTING_LEFT_COW);
1869 1870 1871 1872
		if (wret) {
			ret = wret;
			goto enospc;
		}
1873
	}
1874

1875
	right = btrfs_read_node_slot(parent, pslot + 1);
1876 1877 1878
	if (IS_ERR(right))
		right = NULL;

1879
	if (right) {
1880
		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1881
		wret = btrfs_cow_block(trans, root, right,
1882
				       parent, pslot + 1, &right,
1883
				       BTRFS_NESTING_RIGHT_COW);
1884 1885 1886 1887 1888 1889 1890
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1891 1892
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1893
		wret = push_node_left(trans, left, mid, 1);
1894 1895
		if (wret < 0)
			ret = wret;
1896
	}
1897 1898 1899 1900

	/*
	 * then try to empty the right most buffer into the middle
	 */
1901
	if (right) {
1902
		wret = push_node_left(trans, mid, right, 1);
1903
		if (wret < 0 && wret != -ENOSPC)
1904
			ret = wret;
1905
		if (btrfs_header_nritems(right) == 0) {
1906
			btrfs_clean_tree_block(right);
1907
			btrfs_tree_unlock(right);
1908
			del_ptr(root, path, level + 1, pslot + 1);
1909
			root_sub_used(root, right->len);
1910
			btrfs_free_tree_block(trans, root, right, 0, 1);
1911
			free_extent_buffer_stale(right);
1912
			right = NULL;
1913
		} else {
1914 1915
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1916 1917 1918
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
1919 1920
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1921 1922
		}
	}
1923
	if (btrfs_header_nritems(mid) == 1) {
1924 1925 1926 1927 1928 1929 1930 1931 1932
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
1933 1934
		if (!left) {
			ret = -EROFS;
1935
			btrfs_handle_fs_error(fs_info, ret, NULL);
1936 1937
			goto enospc;
		}
1938
		wret = balance_node_right(trans, mid, left);
1939
		if (wret < 0) {
1940
			ret = wret;
1941 1942
			goto enospc;
		}
1943
		if (wret == 1) {
1944
			wret = push_node_left(trans, left, mid, 1);
1945 1946 1947
			if (wret < 0)
				ret = wret;
		}
1948 1949
		BUG_ON(wret == 1);
	}
1950
	if (btrfs_header_nritems(mid) == 0) {
1951
		btrfs_clean_tree_block(mid);
1952
		btrfs_tree_unlock(mid);
1953
		del_ptr(root, path, level + 1, pslot);
1954
		root_sub_used(root, mid->len);
1955
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1956
		free_extent_buffer_stale(mid);
1957
		mid = NULL;
1958 1959
	} else {
		/* update the parent key to reflect our changes */
1960 1961
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
1962 1963 1964
		ret = tree_mod_log_insert_key(parent, pslot,
				MOD_LOG_KEY_REPLACE, GFP_NOFS);
		BUG_ON(ret < 0);
1965 1966
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
1967
	}
1968

1969
	/* update the path */
1970 1971
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
D
David Sterba 已提交
1972
			atomic_inc(&left->refs);
1973
			/* left was locked after cow */
1974
			path->nodes[level] = left;
1975 1976
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
1977 1978
			if (mid) {
				btrfs_tree_unlock(mid);
1979
				free_extent_buffer(mid);
1980
			}
1981
		} else {
1982
			orig_slot -= btrfs_header_nritems(left);
1983 1984 1985
			path->slots[level] = orig_slot;
		}
	}
1986
	/* double check we haven't messed things up */
C
Chris Mason 已提交
1987
	if (orig_ptr !=
1988
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1989
		BUG();
1990
enospc:
1991 1992
	if (right) {
		btrfs_tree_unlock(right);
1993
		free_extent_buffer(right);
1994 1995 1996 1997
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
1998
		free_extent_buffer(left);
1999
	}
2000 2001 2002
	return ret;
}

C
Chris Mason 已提交
2003 2004 2005 2006
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2007
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2008 2009
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2010
{
2011
	struct btrfs_fs_info *fs_info = root->fs_info;
2012 2013 2014 2015
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2016 2017 2018 2019 2020 2021 2022 2023
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2024
	mid = path->nodes[level];
2025
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2026

L
Li Zefan 已提交
2027
	if (level < BTRFS_MAX_LEVEL - 1) {
2028
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2029 2030
		pslot = path->slots[level + 1];
	}
2031

2032
	if (!parent)
2033 2034
		return 1;

2035
	left = btrfs_read_node_slot(parent, pslot - 1);
2036 2037
	if (IS_ERR(left))
		left = NULL;
2038 2039

	/* first, try to make some room in the middle buffer */
2040
	if (left) {
2041
		u32 left_nr;
2042

2043
		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
2044

2045
		left_nr = btrfs_header_nritems(left);
2046
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2047 2048
			wret = 1;
		} else {
2049
			ret = btrfs_cow_block(trans, root, left, parent,
2050
					      pslot - 1, &left,
2051
					      BTRFS_NESTING_LEFT_COW);
2052 2053 2054
			if (ret)
				wret = 1;
			else {
2055
				wret = push_node_left(trans, left, mid, 0);
2056
			}
C
Chris Mason 已提交
2057
		}
2058 2059 2060
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2061
			struct btrfs_disk_key disk_key;
2062
			orig_slot += left_nr;
2063
			btrfs_node_key(mid, &disk_key, 0);
2064 2065 2066
			ret = tree_mod_log_insert_key(parent, pslot,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2067 2068 2069 2070
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2071 2072
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2073
				btrfs_tree_unlock(mid);
2074
				free_extent_buffer(mid);
2075 2076
			} else {
				orig_slot -=
2077
					btrfs_header_nritems(left);
2078
				path->slots[level] = orig_slot;
2079
				btrfs_tree_unlock(left);
2080
				free_extent_buffer(left);
2081 2082 2083
			}
			return 0;
		}
2084
		btrfs_tree_unlock(left);
2085
		free_extent_buffer(left);
2086
	}
2087
	right = btrfs_read_node_slot(parent, pslot + 1);
2088 2089
	if (IS_ERR(right))
		right = NULL;
2090 2091 2092 2093

	/*
	 * then try to empty the right most buffer into the middle
	 */
2094
	if (right) {
C
Chris Mason 已提交
2095
		u32 right_nr;
2096

2097
		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2098

2099
		right_nr = btrfs_header_nritems(right);
2100
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2101 2102
			wret = 1;
		} else {
2103 2104
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2105
					      &right, BTRFS_NESTING_RIGHT_COW);
2106 2107 2108
			if (ret)
				wret = 1;
			else {
2109
				wret = balance_node_right(trans, right, mid);
2110
			}
C
Chris Mason 已提交
2111
		}
2112 2113 2114
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2115 2116 2117
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2118 2119 2120
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2121 2122 2123 2124 2125
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2126 2127
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2128
					btrfs_header_nritems(mid);
2129
				btrfs_tree_unlock(mid);
2130
				free_extent_buffer(mid);
2131
			} else {
2132
				btrfs_tree_unlock(right);
2133
				free_extent_buffer(right);
2134 2135 2136
			}
			return 0;
		}
2137
		btrfs_tree_unlock(right);
2138
		free_extent_buffer(right);
2139 2140 2141 2142
	}
	return 1;
}

2143
/*
C
Chris Mason 已提交
2144 2145
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2146
 */
2147
static void reada_for_search(struct btrfs_fs_info *fs_info,
2148 2149
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2150
{
2151
	struct extent_buffer *node;
2152
	struct btrfs_disk_key disk_key;
2153 2154
	u32 nritems;
	u64 search;
2155
	u64 target;
2156
	u64 nread = 0;
2157
	struct extent_buffer *eb;
2158 2159 2160
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2161

2162
	if (level != 1)
2163 2164 2165
		return;

	if (!path->nodes[level])
2166 2167
		return;

2168
	node = path->nodes[level];
2169

2170
	search = btrfs_node_blockptr(node, slot);
2171 2172
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2173 2174
	if (eb) {
		free_extent_buffer(eb);
2175 2176 2177
		return;
	}

2178
	target = search;
2179

2180
	nritems = btrfs_header_nritems(node);
2181
	nr = slot;
2182

C
Chris Mason 已提交
2183
	while (1) {
2184
		if (path->reada == READA_BACK) {
2185 2186 2187
			if (nr == 0)
				break;
			nr--;
2188
		} else if (path->reada == READA_FORWARD) {
2189 2190 2191
			nr++;
			if (nr >= nritems)
				break;
2192
		}
2193
		if (path->reada == READA_BACK && objectid) {
2194 2195 2196 2197
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2198
		search = btrfs_node_blockptr(node, nr);
2199 2200
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2201
			btrfs_readahead_node_child(node, nr);
2202 2203 2204
			nread += blocksize;
		}
		nscan++;
2205
		if ((nread > 65536 || nscan > 32))
2206
			break;
2207 2208
	}
}
2209

2210
static noinline void reada_for_balance(struct btrfs_path *path, int level)
2211
{
2212
	struct extent_buffer *parent;
2213 2214 2215
	int slot;
	int nritems;

2216
	parent = path->nodes[level + 1];
2217
	if (!parent)
J
Josef Bacik 已提交
2218
		return;
2219 2220

	nritems = btrfs_header_nritems(parent);
2221
	slot = path->slots[level + 1];
2222

2223 2224 2225 2226
	if (slot > 0)
		btrfs_readahead_node_child(parent, slot - 1);
	if (slot + 1 < nritems)
		btrfs_readahead_node_child(parent, slot + 1);
2227 2228 2229
}


C
Chris Mason 已提交
2230
/*
C
Chris Mason 已提交
2231 2232 2233 2234
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2235
 *
C
Chris Mason 已提交
2236 2237 2238
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2239
 *
C
Chris Mason 已提交
2240 2241
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2242
 */
2243
static noinline void unlock_up(struct btrfs_path *path, int level,
2244 2245
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2246 2247 2248
{
	int i;
	int skip_level = level;
2249
	int no_skips = 0;
2250 2251 2252 2253 2254 2255 2256
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2257
		if (!no_skips && path->slots[i] == 0) {
2258 2259 2260
			skip_level = i + 1;
			continue;
		}
2261
		if (!no_skips && path->keep_locks) {
2262 2263 2264
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2265
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2266 2267 2268 2269
				skip_level = i + 1;
				continue;
			}
		}
2270 2271 2272
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2273
		t = path->nodes[i];
2274
		if (i >= lowest_unlock && i > skip_level) {
2275
			btrfs_tree_unlock_rw(t, path->locks[i]);
2276
			path->locks[i] = 0;
2277 2278 2279 2280 2281
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2282 2283 2284 2285
		}
	}
}

2286 2287 2288 2289 2290 2291 2292 2293 2294
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2295 2296
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2297
		      const struct btrfs_key *key)
2298
{
2299
	struct btrfs_fs_info *fs_info = root->fs_info;
2300 2301 2302
	u64 blocknr;
	u64 gen;
	struct extent_buffer *tmp;
2303
	struct btrfs_key first_key;
2304
	int ret;
2305
	int parent_level;
2306

2307 2308 2309 2310
	blocknr = btrfs_node_blockptr(*eb_ret, slot);
	gen = btrfs_node_ptr_generation(*eb_ret, slot);
	parent_level = btrfs_header_level(*eb_ret);
	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
2311

2312
	tmp = find_extent_buffer(fs_info, blocknr);
2313
	if (tmp) {
2314
		/* first we do an atomic uptodate check */
2315
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2316 2317 2318 2319 2320
			/*
			 * Do extra check for first_key, eb can be stale due to
			 * being cached, read from scrub, or have multiple
			 * parents (shared tree blocks).
			 */
2321
			if (btrfs_verify_level_key(tmp,
2322 2323 2324 2325
					parent_level - 1, &first_key, gen)) {
				free_extent_buffer(tmp);
				return -EUCLEAN;
			}
2326 2327 2328 2329 2330
			*eb_ret = tmp;
			return 0;
		}

		/* now we're allowed to do a blocking uptodate check */
2331
		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2332 2333 2334
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2335
		}
2336 2337 2338
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2339 2340 2341 2342 2343
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2344 2345 2346
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2347
	 */
2348 2349
	btrfs_unlock_up_safe(p, level + 1);

2350
	if (p->reada != READA_NONE)
2351
		reada_for_search(fs_info, p, level, slot, key->objectid);
2352

2353
	ret = -EAGAIN;
2354 2355
	tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
			      gen, parent_level - 1, &first_key);
2356
	if (!IS_ERR(tmp)) {
2357 2358 2359 2360 2361 2362
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2363
		if (!extent_buffer_uptodate(tmp))
2364
			ret = -EIO;
2365
		free_extent_buffer(tmp);
2366 2367
	} else {
		ret = PTR_ERR(tmp);
2368
	}
2369 2370

	btrfs_release_path(p);
2371
	return ret;
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2386 2387
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2388
{
2389
	struct btrfs_fs_info *fs_info = root->fs_info;
2390
	int ret;
2391

2392
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2393
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2394 2395
		int sret;

2396 2397 2398 2399 2400 2401
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2402
		reada_for_balance(p, level);
2403 2404 2405 2406 2407 2408 2409 2410 2411
		sret = split_node(trans, root, p, level);

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2412
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2413 2414
		int sret;

2415 2416 2417 2418 2419 2420
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2421
		reada_for_balance(p, level);
2422 2423 2424 2425 2426 2427 2428 2429
		sret = balance_level(trans, root, p, level);

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2430
			btrfs_release_path(p);
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2443
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2444 2445 2446 2447 2448 2449
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2450 2451

	ASSERT(path);
2452
	ASSERT(found_key);
2453 2454 2455 2456 2457 2458

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2459
	if (ret < 0)
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
							struct btrfs_path *p,
							int write_lock_level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *b;
	int root_lock;
	int level = 0;

	/* We try very hard to do read locks on the root */
	root_lock = BTRFS_READ_LOCK;

	if (p->search_commit_root) {
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
		/*
		 * The commit roots are read only so we always do read locks,
		 * and we always must hold the commit_root_sem when doing
		 * searches on them, the only exception is send where we don't
		 * want to block transaction commits for a long time, so
		 * we need to clone the commit root in order to avoid races
		 * with transaction commits that create a snapshot of one of
		 * the roots used by a send operation.
		 */
		if (p->need_commit_sem) {
2501
			down_read(&fs_info->commit_root_sem);
2502
			b = btrfs_clone_extent_buffer(root->commit_root);
2503
			up_read(&fs_info->commit_root_sem);
2504 2505 2506 2507 2508
			if (!b)
				return ERR_PTR(-ENOMEM);

		} else {
			b = root->commit_root;
D
David Sterba 已提交
2509
			atomic_inc(&b->refs);
2510 2511
		}
		level = btrfs_header_level(b);
2512 2513 2514 2515 2516
		/*
		 * Ensure that all callers have set skip_locking when
		 * p->search_commit_root = 1.
		 */
		ASSERT(p->skip_locking == 1);
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527

		goto out;
	}

	if (p->skip_locking) {
		b = btrfs_root_node(root);
		level = btrfs_header_level(b);
		goto out;
	}

	/*
2528 2529
	 * If the level is set to maximum, we can skip trying to get the read
	 * lock.
2530
	 */
2531 2532 2533 2534 2535
	if (write_lock_level < BTRFS_MAX_LEVEL) {
		/*
		 * We don't know the level of the root node until we actually
		 * have it read locked
		 */
J
Josef Bacik 已提交
2536
		b = __btrfs_read_lock_root_node(root, 0);
2537 2538 2539 2540 2541 2542 2543 2544
		level = btrfs_header_level(b);
		if (level > write_lock_level)
			goto out;

		/* Whoops, must trade for write lock */
		btrfs_tree_read_unlock(b);
		free_extent_buffer(b);
	}
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562

	b = btrfs_lock_root_node(root);
	root_lock = BTRFS_WRITE_LOCK;

	/* The level might have changed, check again */
	level = btrfs_header_level(b);

out:
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
	/*
	 * Callers are responsible for dropping b's references.
	 */
	return b;
}


C
Chris Mason 已提交
2563
/*
2564 2565
 * btrfs_search_slot - look for a key in a tree and perform necessary
 * modifications to preserve tree invariants.
C
Chris Mason 已提交
2566
 *
2567 2568 2569 2570 2571 2572 2573 2574
 * @trans:	Handle of transaction, used when modifying the tree
 * @p:		Holds all btree nodes along the search path
 * @root:	The root node of the tree
 * @key:	The key we are looking for
 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
 *		deletions it's -1. 0 for plain searches
 * @cow:	boolean should CoW operations be performed. Must always be 1
 *		when modifying the tree.
C
Chris Mason 已提交
2575
 *
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 *
 * If @key is found, 0 is returned and you can find the item in the leaf level
 * of the path (level 0)
 *
 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 * points to the slot where it should be inserted
 *
 * If an error is encountered while searching the tree a negative error number
 * is returned
C
Chris Mason 已提交
2587
 */
2588 2589 2590
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2591
{
2592
	struct extent_buffer *b;
2593 2594
	int slot;
	int ret;
2595
	int err;
2596
	int level;
2597
	int lowest_unlock = 1;
2598 2599
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2600
	u8 lowest_level = 0;
2601
	int min_write_lock_level;
2602
	int prev_cmp;
2603

2604
	lowest_level = p->lowest_level;
2605
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2606
	WARN_ON(p->nodes[0] != NULL);
2607
	BUG_ON(!cow && ins_len);
2608

2609
	if (ins_len < 0) {
2610
		lowest_unlock = 2;
2611

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2628
	if (cow && (p->keep_locks || p->lowest_level))
2629 2630
		write_lock_level = BTRFS_MAX_LEVEL;

2631 2632
	min_write_lock_level = write_lock_level;

2633
again:
2634
	prev_cmp = -1;
2635
	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2636 2637 2638 2639
	if (IS_ERR(b)) {
		ret = PTR_ERR(b);
		goto done;
	}
2640

2641
	while (b) {
2642 2643
		int dec = 0;

2644
		level = btrfs_header_level(b);
2645

C
Chris Mason 已提交
2646
		if (cow) {
2647 2648
			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));

2649 2650 2651 2652 2653
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2654 2655
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2656
				goto cow_done;
2657
			}
2658

2659 2660 2661 2662
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2663 2664 2665 2666
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2667 2668 2669 2670 2671
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2672 2673
			if (last_level)
				err = btrfs_cow_block(trans, root, b, NULL, 0,
2674 2675
						      &b,
						      BTRFS_NESTING_COW);
2676 2677 2678
			else
				err = btrfs_cow_block(trans, root, b,
						      p->nodes[level + 1],
2679 2680
						      p->slots[level + 1], &b,
						      BTRFS_NESTING_COW);
2681 2682
			if (err) {
				ret = err;
2683
				goto done;
2684
			}
C
Chris Mason 已提交
2685
		}
2686
cow_done:
2687
		p->nodes[level] = b;
L
Liu Bo 已提交
2688 2689 2690 2691
		/*
		 * Leave path with blocking locks to avoid massive
		 * lock context switch, this is made on purpose.
		 */
2692 2693 2694 2695 2696 2697 2698

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2699 2700 2701 2702
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2703
		 */
2704 2705 2706 2707 2708 2709 2710 2711
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2712

N
Nikolay Borisov 已提交
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
		/*
		 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
		 * we can safely assume the target key will always be in slot 0
		 * on lower levels due to the invariants BTRFS' btree provides,
		 * namely that a btrfs_key_ptr entry always points to the
		 * lowest key in the child node, thus we can skip searching
		 * lower levels
		 */
		if (prev_cmp == 0) {
			slot = 0;
			ret = 0;
		} else {
			ret = btrfs_bin_search(b, key, &slot);
			prev_cmp = ret;
			if (ret < 0)
				goto done;
		}
2730

2731
		if (level == 0) {
2732
			p->slots[level] = slot;
2733
			if (ins_len > 0 &&
2734
			    btrfs_leaf_free_space(b) < ins_len) {
2735 2736 2737 2738 2739 2740
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2741 2742
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2743

2744 2745 2746
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2747 2748
					goto done;
				}
C
Chris Mason 已提交
2749
			}
2750
			if (!p->search_for_split)
2751
				unlock_up(p, level, lowest_unlock,
2752
					  min_write_lock_level, NULL);
2753
			goto done;
2754
		}
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
		if (ret && slot > 0) {
			dec = 1;
			slot--;
		}
		p->slots[level] = slot;
		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
					     &write_lock_level);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
			goto done;
		}
		b = p->nodes[level];
		slot = p->slots[level];

		/*
		 * Slot 0 is special, if we change the key we have to update
		 * the parent pointer which means we must have a write lock on
		 * the parent
		 */
		if (slot == 0 && ins_len && write_lock_level < level + 1) {
			write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

		unlock_up(p, level, lowest_unlock, min_write_lock_level,
			  &write_lock_level);

		if (level == lowest_level) {
			if (dec)
				p->slots[level]++;
			goto done;
		}

		err = read_block_for_search(root, p, &b, level, slot, key);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
			goto done;
		}

		if (!p->skip_locking) {
			level = btrfs_header_level(b);
			if (level <= write_lock_level) {
2802
				btrfs_tree_lock(b);
2803 2804
				p->locks[level] = BTRFS_WRITE_LOCK;
			} else {
J
Josef Bacik 已提交
2805
				__btrfs_tree_read_lock(b, BTRFS_NESTING_NORMAL, 0);
2806 2807 2808 2809
				p->locks[level] = BTRFS_READ_LOCK;
			}
			p->nodes[level] = b;
		}
2810
	}
2811 2812
	ret = 1;
done:
2813
	if (ret < 0 && !p->skip_release_on_error)
2814
		btrfs_release_path(p);
2815
	return ret;
2816 2817
}

J
Jan Schmidt 已提交
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2829
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2830 2831
			  struct btrfs_path *p, u64 time_seq)
{
2832
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
2851 2852 2853 2854
	if (!b) {
		ret = -EIO;
		goto done;
	}
J
Jan Schmidt 已提交
2855 2856 2857 2858
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
2859 2860
		int dec = 0;

J
Jan Schmidt 已提交
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
		level = btrfs_header_level(b);
		p->nodes[level] = b;

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

N
Nikolay Borisov 已提交
2872
		ret = btrfs_bin_search(b, key, &slot);
2873 2874
		if (ret < 0)
			goto done;
J
Jan Schmidt 已提交
2875

2876
		if (level == 0) {
J
Jan Schmidt 已提交
2877 2878
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
2879 2880
			goto done;
		}
J
Jan Schmidt 已提交
2881

2882 2883 2884 2885 2886 2887
		if (ret && slot > 0) {
			dec = 1;
			slot--;
		}
		p->slots[level] = slot;
		unlock_up(p, level, lowest_unlock, 0, NULL);
J
Jan Schmidt 已提交
2888

2889 2890 2891 2892 2893
		if (level == lowest_level) {
			if (dec)
				p->slots[level]++;
			goto done;
		}
J
Jan Schmidt 已提交
2894

2895 2896 2897 2898 2899
		err = read_block_for_search(root, p, &b, level, slot, key);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
J
Jan Schmidt 已提交
2900 2901
			goto done;
		}
2902 2903

		level = btrfs_header_level(b);
2904
		btrfs_tree_read_lock(b);
2905 2906 2907 2908 2909 2910 2911
		b = tree_mod_log_rewind(fs_info, p, b, time_seq);
		if (!b) {
			ret = -ENOMEM;
			goto done;
		}
		p->locks[level] = BTRFS_READ_LOCK;
		p->nodes[level] = b;
J
Jan Schmidt 已提交
2912 2913 2914 2915 2916 2917 2918 2919 2920
	}
	ret = 1;
done:
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
2934 2935 2936
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
2971 2972 2973 2974 2975
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
2976 2977 2978
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
2979
				return 0;
2980
			}
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
2992 2993 2994 2995 2996 2997
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
2998 2999 3000 3001 3002 3003
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3004
 *
C
Chris Mason 已提交
3005
 */
3006
static void fixup_low_keys(struct btrfs_path *path,
3007
			   struct btrfs_disk_key *key, int level)
3008 3009
{
	int i;
3010
	struct extent_buffer *t;
3011
	int ret;
3012

C
Chris Mason 已提交
3013
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3014
		int tslot = path->slots[i];
3015

3016
		if (!path->nodes[i])
3017
			break;
3018
		t = path->nodes[i];
3019 3020 3021
		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
				GFP_ATOMIC);
		BUG_ON(ret < 0);
3022
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3023
		btrfs_mark_buffer_dirty(path->nodes[i]);
3024 3025 3026 3027 3028
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3029 3030 3031 3032 3033 3034
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3035 3036
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3037
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3038 3039 3040 3041 3042 3043 3044 3045 3046
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
			btrfs_crit(fs_info,
		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
				   slot, btrfs_disk_key_objectid(&disk_key),
				   btrfs_disk_key_type(&disk_key),
				   btrfs_disk_key_offset(&disk_key),
				   new_key->objectid, new_key->type,
				   new_key->offset);
			btrfs_print_leaf(eb);
			BUG();
		}
Z
Zheng Yan 已提交
3058 3059 3060
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
			btrfs_crit(fs_info,
		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
				   slot, btrfs_disk_key_objectid(&disk_key),
				   btrfs_disk_key_type(&disk_key),
				   btrfs_disk_key_offset(&disk_key),
				   new_key->objectid, new_key->type,
				   new_key->offset);
			btrfs_print_leaf(eb);
			BUG();
		}
Z
Zheng Yan 已提交
3072 3073 3074 3075 3076 3077
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3078
		fixup_low_keys(path, &disk_key, 1);
Z
Zheng Yan 已提交
3079 3080
}

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
/*
 * Check key order of two sibling extent buffers.
 *
 * Return true if something is wrong.
 * Return false if everything is fine.
 *
 * Tree-checker only works inside one tree block, thus the following
 * corruption can not be detected by tree-checker:
 *
 * Leaf @left			| Leaf @right
 * --------------------------------------------------------------
 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
 *
 * Key f6 in leaf @left itself is valid, but not valid when the next
 * key in leaf @right is 7.
 * This can only be checked at tree block merge time.
 * And since tree checker has ensured all key order in each tree block
 * is correct, we only need to bother the last key of @left and the first
 * key of @right.
 */
static bool check_sibling_keys(struct extent_buffer *left,
			       struct extent_buffer *right)
{
	struct btrfs_key left_last;
	struct btrfs_key right_first;
	int level = btrfs_header_level(left);
	int nr_left = btrfs_header_nritems(left);
	int nr_right = btrfs_header_nritems(right);

	/* No key to check in one of the tree blocks */
	if (!nr_left || !nr_right)
		return false;

	if (level) {
		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
		btrfs_node_key_to_cpu(right, &right_first, 0);
	} else {
		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
		btrfs_item_key_to_cpu(right, &right_first, 0);
	}

	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
		btrfs_crit(left->fs_info,
"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
			   left_last.objectid, left_last.type,
			   left_last.offset, right_first.objectid,
			   right_first.type, right_first.offset);
		return true;
	}
	return false;
}

C
Chris Mason 已提交
3133 3134
/*
 * try to push data from one node into the next node left in the
3135
 * tree.
C
Chris Mason 已提交
3136 3137 3138
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3139
 */
3140
static int push_node_left(struct btrfs_trans_handle *trans,
3141
			  struct extent_buffer *dst,
3142
			  struct extent_buffer *src, int empty)
3143
{
3144
	struct btrfs_fs_info *fs_info = trans->fs_info;
3145
	int push_items = 0;
3146 3147
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3148
	int ret = 0;
3149

3150 3151
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3152
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3153 3154
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3155

3156
	if (!empty && src_nritems <= 8)
3157 3158
		return 1;

C
Chris Mason 已提交
3159
	if (push_items <= 0)
3160 3161
		return 1;

3162
	if (empty) {
3163
		push_items = min(src_nritems, push_items);
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3176

3177 3178 3179 3180 3181 3182
	/* dst is the left eb, src is the middle eb */
	if (check_sibling_keys(dst, src)) {
		ret = -EUCLEAN;
		btrfs_abort_transaction(trans, ret);
		return ret;
	}
3183
	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3184
	if (ret) {
3185
		btrfs_abort_transaction(trans, ret);
3186 3187
		return ret;
	}
3188 3189 3190
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3191
			   push_items * sizeof(struct btrfs_key_ptr));
3192

3193
	if (push_items < src_nritems) {
3194
		/*
3195 3196
		 * Don't call tree_mod_log_insert_move here, key removal was
		 * already fully logged by tree_mod_log_eb_copy above.
3197
		 */
3198 3199 3200 3201 3202 3203 3204 3205 3206
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3207

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3220 3221 3222
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3223
{
3224
	struct btrfs_fs_info *fs_info = trans->fs_info;
3225 3226 3227 3228 3229 3230
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3231 3232 3233
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3234 3235
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3236
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3237
	if (push_items <= 0)
3238
		return 1;
3239

C
Chris Mason 已提交
3240
	if (src_nritems < 4)
3241
		return 1;
3242 3243 3244

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3245
	if (max_push >= src_nritems)
3246
		return 1;
Y
Yan 已提交
3247

3248 3249 3250
	if (max_push < push_items)
		push_items = max_push;

3251 3252 3253 3254 3255 3256
	/* dst is the right eb, src is the middle eb */
	if (check_sibling_keys(src, dst)) {
		ret = -EUCLEAN;
		btrfs_abort_transaction(trans, ret);
		return ret;
	}
3257 3258
	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
	BUG_ON(ret < 0);
3259 3260 3261 3262
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3263

3264 3265
	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
				   push_items);
3266
	if (ret) {
3267
		btrfs_abort_transaction(trans, ret);
3268 3269
		return ret;
	}
3270 3271 3272
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3273
			   push_items * sizeof(struct btrfs_key_ptr));
3274

3275 3276
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3277

3278 3279
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3280

C
Chris Mason 已提交
3281
	return ret;
3282 3283
}

C
Chris Mason 已提交
3284 3285 3286 3287
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3288 3289
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3290
 */
C
Chris Mason 已提交
3291
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3292
			   struct btrfs_root *root,
3293
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3294
{
3295
	struct btrfs_fs_info *fs_info = root->fs_info;
3296
	u64 lower_gen;
3297 3298
	struct extent_buffer *lower;
	struct extent_buffer *c;
3299
	struct extent_buffer *old;
3300
	struct btrfs_disk_key lower_key;
3301
	int ret;
C
Chris Mason 已提交
3302 3303 3304 3305

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3306 3307 3308 3309 3310 3311
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3312
	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3313
					 root->node->start, 0,
3314
					 BTRFS_NESTING_NEW_ROOT);
3315 3316
	if (IS_ERR(c))
		return PTR_ERR(c);
3317

3318
	root_add_used(root, fs_info->nodesize);
3319

3320 3321
	btrfs_set_header_nritems(c, 1);
	btrfs_set_node_key(c, &lower_key, 0);
3322
	btrfs_set_node_blockptr(c, 0, lower->start);
3323
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3324
	WARN_ON(lower_gen != trans->transid);
3325 3326

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3327

3328
	btrfs_mark_buffer_dirty(c);
3329

3330
	old = root->node;
3331 3332
	ret = tree_mod_log_insert_root(root->node, c, 0);
	BUG_ON(ret < 0);
3333
	rcu_assign_pointer(root->node, c);
3334 3335 3336 3337

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3338
	add_root_to_dirty_list(root);
D
David Sterba 已提交
3339
	atomic_inc(&c->refs);
3340
	path->nodes[level] = c;
3341
	path->locks[level] = BTRFS_WRITE_LOCK;
C
Chris Mason 已提交
3342 3343 3344 3345
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3346 3347 3348
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3349
 *
C
Chris Mason 已提交
3350 3351 3352
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3353
static void insert_ptr(struct btrfs_trans_handle *trans,
3354
		       struct btrfs_path *path,
3355
		       struct btrfs_disk_key *key, u64 bytenr,
3356
		       int slot, int level)
C
Chris Mason 已提交
3357
{
3358
	struct extent_buffer *lower;
C
Chris Mason 已提交
3359
	int nritems;
3360
	int ret;
C
Chris Mason 已提交
3361 3362

	BUG_ON(!path->nodes[level]);
3363
	btrfs_assert_tree_locked(path->nodes[level]);
3364 3365
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3366
	BUG_ON(slot > nritems);
3367
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
C
Chris Mason 已提交
3368
	if (slot != nritems) {
3369 3370
		if (level) {
			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3371
					nritems - slot);
3372 3373
			BUG_ON(ret < 0);
		}
3374 3375 3376
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3377
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3378
	}
3379
	if (level) {
3380 3381
		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
				GFP_NOFS);
3382 3383
		BUG_ON(ret < 0);
	}
3384
	btrfs_set_node_key(lower, key, slot);
3385
	btrfs_set_node_blockptr(lower, slot, bytenr);
3386 3387
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3388 3389
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3390 3391
}

C
Chris Mason 已提交
3392 3393 3394 3395 3396 3397
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3398 3399
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3400
 */
3401 3402 3403
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3404
{
3405
	struct btrfs_fs_info *fs_info = root->fs_info;
3406 3407 3408
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3409
	int mid;
C
Chris Mason 已提交
3410
	int ret;
3411
	u32 c_nritems;
3412

3413
	c = path->nodes[level];
3414
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3415
	if (c == root->node) {
3416
		/*
3417 3418
		 * trying to split the root, lets make a new one
		 *
3419
		 * tree mod log: We don't log_removal old root in
3420 3421 3422 3423 3424
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3425
		 */
3426
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3427 3428
		if (ret)
			return ret;
3429
	} else {
3430
		ret = push_nodes_for_insert(trans, root, path, level);
3431 3432
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3433
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3434
			return 0;
3435 3436
		if (ret < 0)
			return ret;
3437
	}
3438

3439
	c_nritems = btrfs_header_nritems(c);
3440 3441
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3442

3443
	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3444
					     c->start, 0, BTRFS_NESTING_SPLIT);
3445 3446 3447
	if (IS_ERR(split))
		return PTR_ERR(split);

3448
	root_add_used(root, fs_info->nodesize);
3449
	ASSERT(btrfs_header_level(c) == level);
3450

3451
	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3452
	if (ret) {
3453
		btrfs_abort_transaction(trans, ret);
3454 3455
		return ret;
	}
3456 3457 3458 3459 3460 3461
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3462 3463
	ret = 0;

3464 3465 3466
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3467
	insert_ptr(trans, path, &disk_key, split->start,
3468
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3469

C
Chris Mason 已提交
3470
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3471
		path->slots[level] -= mid;
3472
		btrfs_tree_unlock(c);
3473 3474
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3475 3476
		path->slots[level + 1] += 1;
	} else {
3477
		btrfs_tree_unlock(split);
3478
		free_extent_buffer(split);
3479
	}
C
Chris Mason 已提交
3480
	return ret;
3481 3482
}

C
Chris Mason 已提交
3483 3484 3485 3486 3487
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3488
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3489
{
J
Josef Bacik 已提交
3490 3491
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
3492
	int data_len;
3493
	int nritems = btrfs_header_nritems(l);
3494
	int end = min(nritems, start + nr) - 1;
3495 3496 3497

	if (!nr)
		return 0;
3498 3499
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
3500 3501 3502
	data_len = btrfs_item_offset(l, start_item) +
		   btrfs_item_size(l, start_item);
	data_len = data_len - btrfs_item_offset(l, end_item);
C
Chris Mason 已提交
3503
	data_len += sizeof(struct btrfs_item) * nr;
3504
	WARN_ON(data_len < 0);
3505 3506 3507
	return data_len;
}

3508 3509 3510 3511 3512
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3513
noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3514
{
3515
	struct btrfs_fs_info *fs_info = leaf->fs_info;
3516 3517
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3518 3519

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3520
	if (ret < 0) {
3521 3522 3523 3524 3525
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3526 3527
	}
	return ret;
3528 3529
}

3530 3531 3532 3533
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3534
static noinline int __push_leaf_right(struct btrfs_path *path,
3535 3536
				      int data_size, int empty,
				      struct extent_buffer *right,
3537 3538
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3539
{
3540
	struct btrfs_fs_info *fs_info = right->fs_info;
3541
	struct extent_buffer *left = path->nodes[0];
3542
	struct extent_buffer *upper = path->nodes[1];
3543
	struct btrfs_map_token token;
3544
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3545
	int slot;
3546
	u32 i;
C
Chris Mason 已提交
3547 3548
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3549
	struct btrfs_item *item;
3550
	u32 nr;
3551
	u32 right_nritems;
3552
	u32 data_end;
3553
	u32 this_item_size;
C
Chris Mason 已提交
3554

3555 3556 3557
	if (empty)
		nr = 0;
	else
3558
		nr = max_t(u32, 1, min_slot);
3559

Z
Zheng Yan 已提交
3560
	if (path->slots[0] >= left_nritems)
3561
		push_space += data_size;
Z
Zheng Yan 已提交
3562

3563
	slot = path->slots[1];
3564 3565
	i = left_nritems - 1;
	while (i >= nr) {
3566
		item = btrfs_item_nr(i);
3567

Z
Zheng Yan 已提交
3568 3569 3570 3571
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3572 3573
				int space = btrfs_leaf_free_space(left);

Z
Zheng Yan 已提交
3574 3575 3576 3577 3578
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3579
		if (path->slots[0] == i)
3580
			push_space += data_size;
3581 3582 3583

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3584
			break;
Z
Zheng Yan 已提交
3585

C
Chris Mason 已提交
3586
		push_items++;
3587
		push_space += this_item_size + sizeof(*item);
3588 3589 3590
		if (i == 0)
			break;
		i--;
3591
	}
3592

3593 3594
	if (push_items == 0)
		goto out_unlock;
3595

J
Julia Lawall 已提交
3596
	WARN_ON(!empty && push_items == left_nritems);
3597

C
Chris Mason 已提交
3598
	/* push left to right */
3599
	right_nritems = btrfs_header_nritems(right);
3600

3601
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3602
	push_space -= leaf_data_end(left);
3603

C
Chris Mason 已提交
3604
	/* make room in the right data area */
3605
	data_end = leaf_data_end(right);
3606
	memmove_extent_buffer(right,
3607 3608
			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
			      BTRFS_LEAF_DATA_OFFSET + data_end,
3609
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3610

C
Chris Mason 已提交
3611
	/* copy from the left data area */
3612
	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3613
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3614
		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
C
Chris Mason 已提交
3615
		     push_space);
3616 3617 3618 3619 3620

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3621
	/* copy the items from left to right */
3622 3623 3624
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3625 3626

	/* update the item pointers */
3627
	btrfs_init_map_token(&token, right);
3628
	right_nritems += push_items;
3629
	btrfs_set_header_nritems(right, right_nritems);
3630
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3631
	for (i = 0; i < right_nritems; i++) {
3632
		item = btrfs_item_nr(i);
3633 3634
		push_space -= btrfs_token_item_size(&token, item);
		btrfs_set_token_item_offset(&token, item, push_space);
3635 3636
	}

3637
	left_nritems -= push_items;
3638
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3639

3640 3641
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3642
	else
3643
		btrfs_clean_tree_block(left);
3644

3645
	btrfs_mark_buffer_dirty(right);
3646

3647 3648
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3649
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3650

C
Chris Mason 已提交
3651
	/* then fixup the leaf pointer in the path */
3652 3653
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3654
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3655
			btrfs_clean_tree_block(path->nodes[0]);
3656
		btrfs_tree_unlock(path->nodes[0]);
3657 3658
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3659 3660
		path->slots[1] += 1;
	} else {
3661
		btrfs_tree_unlock(right);
3662
		free_extent_buffer(right);
C
Chris Mason 已提交
3663 3664
	}
	return 0;
3665 3666 3667 3668 3669

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3670
}
3671

3672 3673 3674 3675 3676 3677
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3678 3679 3680
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3681 3682
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3683 3684 3685
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
{
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3705
	right = btrfs_read_node_slot(upper, slot + 1);
3706 3707 3708 3709 3710
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3711 3712
		return 1;

3713
	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3714

3715
	free_space = btrfs_leaf_free_space(right);
3716 3717 3718 3719 3720
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
3721
			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3722 3723 3724
	if (ret)
		goto out_unlock;

3725
	free_space = btrfs_leaf_free_space(right);
3726 3727 3728 3729 3730 3731 3732
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3733 3734 3735 3736 3737 3738
	if (check_sibling_keys(left, right)) {
		ret = -EUCLEAN;
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
		return ret;
	}
3739 3740 3741 3742
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
3743
		 * no need to touch/dirty our left leaf. */
3744 3745 3746 3747 3748 3749 3750 3751
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3752
	return __push_leaf_right(path, min_data_size, empty,
3753
				right, free_space, left_nritems, min_slot);
3754 3755 3756 3757 3758 3759
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3760 3761 3762
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3763 3764 3765 3766
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3767
 */
3768
static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3769
				     int empty, struct extent_buffer *left,
3770 3771
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3772
{
3773
	struct btrfs_fs_info *fs_info = left->fs_info;
3774 3775
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3776 3777 3778
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3779
	struct btrfs_item *item;
3780
	u32 old_left_nritems;
3781
	u32 nr;
C
Chris Mason 已提交
3782
	int ret = 0;
3783 3784
	u32 this_item_size;
	u32 old_left_item_size;
3785 3786
	struct btrfs_map_token token;

3787
	if (empty)
3788
		nr = min(right_nritems, max_slot);
3789
	else
3790
		nr = min(right_nritems - 1, max_slot);
3791 3792

	for (i = 0; i < nr; i++) {
3793
		item = btrfs_item_nr(i);
3794

Z
Zheng Yan 已提交
3795 3796 3797 3798
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3799 3800
				int space = btrfs_leaf_free_space(right);

Z
Zheng Yan 已提交
3801 3802 3803 3804 3805
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3806
		if (path->slots[0] == i)
3807
			push_space += data_size;
3808 3809 3810

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3811
			break;
3812

3813
		push_items++;
3814 3815 3816
		push_space += this_item_size + sizeof(*item);
	}

3817
	if (push_items == 0) {
3818 3819
		ret = 1;
		goto out;
3820
	}
3821
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3822

3823
	/* push data from right to left */
3824 3825 3826 3827 3828
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3829
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3830
		     btrfs_item_offset_nr(right, push_items - 1);
3831

3832
	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3833
		     leaf_data_end(left) - push_space,
3834
		     BTRFS_LEAF_DATA_OFFSET +
3835
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3836
		     push_space);
3837
	old_left_nritems = btrfs_header_nritems(left);
3838
	BUG_ON(old_left_nritems <= 0);
3839

3840
	btrfs_init_map_token(&token, left);
3841
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3842
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3843
		u32 ioff;
3844

3845
		item = btrfs_item_nr(i);
3846

3847 3848 3849
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item,
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3850
	}
3851
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3852 3853

	/* fixup right node */
J
Julia Lawall 已提交
3854 3855
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3856
		       right_nritems);
3857 3858 3859

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3860
						  leaf_data_end(right);
3861
		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3862
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3863
				      BTRFS_LEAF_DATA_OFFSET +
3864
				      leaf_data_end(right), push_space);
3865 3866

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3867 3868 3869
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3870
	}
3871 3872

	btrfs_init_map_token(&token, right);
3873 3874
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3875
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3876
	for (i = 0; i < right_nritems; i++) {
3877
		item = btrfs_item_nr(i);
3878

3879 3880
		push_space = push_space - btrfs_token_item_size(&token, item);
		btrfs_set_token_item_offset(&token, item, push_space);
3881
	}
3882

3883
	btrfs_mark_buffer_dirty(left);
3884 3885
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3886
	else
3887
		btrfs_clean_tree_block(right);
3888

3889
	btrfs_item_key(right, &disk_key, 0);
3890
	fixup_low_keys(path, &disk_key, 1);
3891 3892 3893 3894

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3895
		btrfs_tree_unlock(path->nodes[0]);
3896 3897
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3898 3899
		path->slots[1] -= 1;
	} else {
3900
		btrfs_tree_unlock(left);
3901
		free_extent_buffer(left);
3902 3903
		path->slots[0] -= push_items;
	}
3904
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3905
	return ret;
3906 3907 3908 3909
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3910 3911
}

3912 3913 3914
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3915 3916 3917 3918
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3919 3920
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3921 3922
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
{
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3943
	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3944 3945 3946 3947 3948
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
3949 3950
		return 1;

3951
	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3952

3953
	free_space = btrfs_leaf_free_space(left);
3954 3955 3956 3957 3958 3959 3960
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
3961
			      path->nodes[1], slot - 1, &left,
3962
			      BTRFS_NESTING_LEFT_COW);
3963 3964
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
3965 3966
		if (ret == -ENOSPC)
			ret = 1;
3967 3968 3969
		goto out;
	}

3970
	free_space = btrfs_leaf_free_space(left);
3971 3972 3973 3974 3975
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

3976 3977 3978 3979
	if (check_sibling_keys(left, right)) {
		ret = -EUCLEAN;
		goto out;
	}
3980
	return __push_leaf_left(path, min_data_size,
3981 3982
			       empty, left, free_space, right_nritems,
			       max_slot);
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
3993 3994 3995 3996 3997
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
3998
{
3999
	struct btrfs_fs_info *fs_info = trans->fs_info;
4000 4001 4002 4003
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4004 4005
	struct btrfs_map_token token;

4006 4007
	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
4008
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4009 4010 4011 4012 4013 4014

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4015 4016
		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4017
		     leaf_data_end(l), data_copy_size);
4018

4019
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4020

4021
	btrfs_init_map_token(&token, right);
4022
	for (i = 0; i < nritems; i++) {
4023
		struct btrfs_item *item = btrfs_item_nr(i);
4024 4025
		u32 ioff;

4026 4027
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
4028 4029 4030 4031
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4032
	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4071
	int space_needed = data_size;
4072 4073

	slot = path->slots[0];
4074
	if (slot < btrfs_header_nritems(path->nodes[0]))
4075
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4076 4077 4078 4079 4080

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4081
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4096
	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4097 4098 4099 4100
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4101 4102
	space_needed = data_size;
	if (slot > 0)
4103
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4104
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4116 4117 4118
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4119 4120
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4121
 */
4122 4123
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4124
			       const struct btrfs_key *ins_key,
4125 4126
			       struct btrfs_path *path, int data_size,
			       int extend)
4127
{
4128
	struct btrfs_disk_key disk_key;
4129
	struct extent_buffer *l;
4130
	u32 nritems;
4131 4132
	int mid;
	int slot;
4133
	struct extent_buffer *right;
4134
	struct btrfs_fs_info *fs_info = root->fs_info;
4135
	int ret = 0;
C
Chris Mason 已提交
4136
	int wret;
4137
	int split;
4138
	int num_doubles = 0;
4139
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4140

4141 4142 4143
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4144
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4145 4146
		return -EOVERFLOW;

C
Chris Mason 已提交
4147
	/* first try to make some room by pushing left and right */
4148
	if (data_size && path->nodes[1]) {
4149 4150 4151
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4152
			space_needed -= btrfs_leaf_free_space(l);
4153 4154 4155

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4156
		if (wret < 0)
C
Chris Mason 已提交
4157
			return wret;
4158
		if (wret) {
4159 4160
			space_needed = data_size;
			if (slot > 0)
4161
				space_needed -= btrfs_leaf_free_space(l);
4162 4163
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4164 4165 4166 4167
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4168

4169
		/* did the pushes work? */
4170
		if (btrfs_leaf_free_space(l) >= data_size)
4171
			return 0;
4172
	}
C
Chris Mason 已提交
4173

C
Chris Mason 已提交
4174
	if (!path->nodes[1]) {
4175
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4176 4177 4178
		if (ret)
			return ret;
	}
4179
again:
4180
	split = 1;
4181
	l = path->nodes[0];
4182
	slot = path->slots[0];
4183
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4184
	mid = (nritems + 1) / 2;
4185

4186 4187 4188
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4189
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4190 4191 4192 4193 4194 4195
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4196
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4197 4198
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4199 4200 4201 4202 4203 4204
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4205
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4206 4207 4208 4209 4210 4211 4212 4213
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4214
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4215 4216
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4217
					split = 2;
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4228 4229 4230 4231 4232 4233 4234 4235
	/*
	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
	 * subclasses, which is 8 at the time of this patch, and we've maxed it
	 * out.  In the future we could add a
	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
	 * use BTRFS_NESTING_NEW_ROOT.
	 */
4236
	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4237 4238 4239
					     l->start, 0, num_doubles ?
					     BTRFS_NESTING_NEW_ROOT :
					     BTRFS_NESTING_SPLIT);
4240
	if (IS_ERR(right))
4241
		return PTR_ERR(right);
4242

4243
	root_add_used(root, fs_info->nodesize);
4244

4245 4246 4247
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4248
			insert_ptr(trans, path, &disk_key,
4249
				   right->start, path->slots[1] + 1, 1);
4250 4251 4252 4253 4254 4255 4256
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4257
			insert_ptr(trans, path, &disk_key,
4258
				   right->start, path->slots[1], 1);
4259 4260 4261 4262
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4263
			if (path->slots[1] == 0)
4264
				fixup_low_keys(path, &disk_key, 1);
4265
		}
4266 4267 4268 4269 4270
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4271
		return ret;
4272
	}
C
Chris Mason 已提交
4273

4274
	copy_for_split(trans, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4275

4276
	if (split == 2) {
4277 4278 4279
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4280
	}
4281

4282
	return 0;
4283 4284 4285 4286

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4287
	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4288 4289
		return 0;
	goto again;
4290 4291
}

Y
Yan, Zheng 已提交
4292 4293 4294
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4295
{
Y
Yan, Zheng 已提交
4296
	struct btrfs_key key;
4297
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4298 4299 4300 4301
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4302 4303

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4304 4305 4306 4307 4308
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4309
	if (btrfs_leaf_free_space(leaf) >= ins_len)
Y
Yan, Zheng 已提交
4310
		return 0;
4311 4312

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4313 4314 4315 4316 4317
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4318
	btrfs_release_path(path);
4319 4320

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4321 4322
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4323
	path->search_for_split = 0;
4324 4325
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4326 4327
	if (ret < 0)
		goto err;
4328

Y
Yan, Zheng 已提交
4329 4330
	ret = -EAGAIN;
	leaf = path->nodes[0];
4331 4332
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4333 4334
		goto err;

4335
	/* the leaf has  changed, it now has room.  return now */
4336
	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4337 4338
		goto err;

Y
Yan, Zheng 已提交
4339 4340 4341 4342 4343
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4344 4345
	}

Y
Yan, Zheng 已提交
4346
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4347 4348
	if (ret)
		goto err;
4349

Y
Yan, Zheng 已提交
4350
	path->keep_locks = 0;
4351
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4352 4353 4354 4355 4356 4357
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4358
static noinline int split_item(struct btrfs_path *path,
4359
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4372
	leaf = path->nodes[0];
4373
	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4374

4375
	item = btrfs_item_nr(path->slots[0]);
4376 4377 4378 4379
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4380 4381 4382
	if (!buf)
		return -ENOMEM;

4383 4384 4385
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4386
	slot = path->slots[0] + 1;
4387 4388 4389 4390
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4391 4392
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4393 4394 4395 4396 4397
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4398
	new_item = btrfs_item_nr(slot);
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4420
	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4421
	kfree(buf);
Y
Yan, Zheng 已提交
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4443
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4444 4445 4446 4447 4448 4449 4450 4451
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4452
	ret = split_item(path, new_key, split_offset);
4453 4454 4455
	return ret;
}

Y
Yan, Zheng 已提交
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4467
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4481
	setup_items_for_insert(root, path, new_key, &item_size, 1);
Y
Yan, Zheng 已提交
4482 4483 4484 4485 4486 4487 4488 4489
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4490 4491 4492 4493 4494 4495
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4496
void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4497 4498
{
	int slot;
4499 4500
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4501 4502 4503 4504 4505 4506
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4507 4508
	struct btrfs_map_token token;

4509
	leaf = path->nodes[0];
4510 4511 4512 4513
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4514
		return;
C
Chris Mason 已提交
4515

4516
	nritems = btrfs_header_nritems(leaf);
4517
	data_end = leaf_data_end(leaf);
C
Chris Mason 已提交
4518

4519
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4520

C
Chris Mason 已提交
4521 4522 4523 4524 4525 4526 4527 4528 4529
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
4530
	btrfs_init_map_token(&token, leaf);
C
Chris Mason 已提交
4531
	for (i = slot; i < nritems; i++) {
4532
		u32 ioff;
4533
		item = btrfs_item_nr(i);
4534

4535 4536
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item, ioff + size_diff);
C
Chris Mason 已提交
4537
	}
4538

C
Chris Mason 已提交
4539
	/* shift the data */
4540
	if (from_end) {
4541 4542
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4563
				      (unsigned long)fi,
4564
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4565 4566 4567
			}
		}

4568 4569
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4570 4571 4572 4573 4574 4575
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4576
			fixup_low_keys(path, &disk_key, 1);
4577
	}
4578

4579
	item = btrfs_item_nr(slot);
4580 4581
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4582

4583
	if (btrfs_leaf_free_space(leaf) < 0) {
4584
		btrfs_print_leaf(leaf);
C
Chris Mason 已提交
4585
		BUG();
4586
	}
C
Chris Mason 已提交
4587 4588
}

C
Chris Mason 已提交
4589
/*
S
Stefan Behrens 已提交
4590
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4591
 */
4592
void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4593 4594
{
	int slot;
4595 4596
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4597 4598 4599 4600 4601
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4602 4603
	struct btrfs_map_token token;

4604
	leaf = path->nodes[0];
4605

4606
	nritems = btrfs_header_nritems(leaf);
4607
	data_end = leaf_data_end(leaf);
4608

4609
	if (btrfs_leaf_free_space(leaf) < data_size) {
4610
		btrfs_print_leaf(leaf);
4611
		BUG();
4612
	}
4613
	slot = path->slots[0];
4614
	old_data = btrfs_item_end_nr(leaf, slot);
4615 4616

	BUG_ON(slot < 0);
4617
	if (slot >= nritems) {
4618
		btrfs_print_leaf(leaf);
4619
		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4620
			   slot, nritems);
4621
		BUG();
4622
	}
4623 4624 4625 4626 4627

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
4628
	btrfs_init_map_token(&token, leaf);
4629
	for (i = slot; i < nritems; i++) {
4630
		u32 ioff;
4631
		item = btrfs_item_nr(i);
4632

4633 4634
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item, ioff - data_size);
4635
	}
4636

4637
	/* shift the data */
4638 4639
	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4640
		      data_end, old_data - data_end);
4641

4642
	data_end = old_data;
4643
	old_size = btrfs_item_size_nr(leaf, slot);
4644
	item = btrfs_item_nr(slot);
4645 4646
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4647

4648
	if (btrfs_leaf_free_space(leaf) < 0) {
4649
		btrfs_print_leaf(leaf);
4650
		BUG();
4651
	}
4652 4653
}

4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
/**
 * setup_items_for_insert - Helper called before inserting one or more items
 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
 * in a function that doesn't call btrfs_search_slot
 *
 * @root:	root we are inserting items to
 * @path:	points to the leaf/slot where we are going to insert new items
 * @cpu_key:	array of keys for items to be inserted
 * @data_size:	size of the body of each item we are going to insert
 * @nr:		size of @cpu_key/@data_size arrays
C
Chris Mason 已提交
4664
 */
4665
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4666
			    const struct btrfs_key *cpu_key, u32 *data_size,
4667
			    int nr)
4668
{
4669
	struct btrfs_fs_info *fs_info = root->fs_info;
4670
	struct btrfs_item *item;
4671
	int i;
4672
	u32 nritems;
4673
	unsigned int data_end;
C
Chris Mason 已提交
4674
	struct btrfs_disk_key disk_key;
4675 4676
	struct extent_buffer *leaf;
	int slot;
4677
	struct btrfs_map_token token;
4678 4679 4680 4681 4682 4683
	u32 total_size;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];
	total_size = total_data + (nr * sizeof(struct btrfs_item));
4684

4685 4686
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4687
		fixup_low_keys(path, &disk_key, 1);
4688 4689 4690
	}
	btrfs_unlock_up_safe(path, 1);

4691
	leaf = path->nodes[0];
4692
	slot = path->slots[0];
C
Chris Mason 已提交
4693

4694
	nritems = btrfs_header_nritems(leaf);
4695
	data_end = leaf_data_end(leaf);
4696

4697
	if (btrfs_leaf_free_space(leaf) < total_size) {
4698
		btrfs_print_leaf(leaf);
4699
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4700
			   total_size, btrfs_leaf_free_space(leaf));
4701
		BUG();
4702
	}
4703

4704
	btrfs_init_map_token(&token, leaf);
4705
	if (slot != nritems) {
4706
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4707

4708
		if (old_data < data_end) {
4709
			btrfs_print_leaf(leaf);
4710 4711
			btrfs_crit(fs_info,
		"item at slot %d with data offset %u beyond data end of leaf %u",
J
Jeff Mahoney 已提交
4712
				   slot, old_data, data_end);
4713
			BUG();
4714
		}
4715 4716 4717 4718
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4719
		for (i = slot; i < nritems; i++) {
4720
			u32 ioff;
4721

4722
			item = btrfs_item_nr(i);
4723 4724 4725
			ioff = btrfs_token_item_offset(&token, item);
			btrfs_set_token_item_offset(&token, item,
						    ioff - total_data);
C
Chris Mason 已提交
4726
		}
4727
		/* shift the items */
4728
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4729
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4730
			      (nritems - slot) * sizeof(struct btrfs_item));
4731 4732

		/* shift the data */
4733 4734
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4735
			      data_end, old_data - data_end);
4736 4737
		data_end = old_data;
	}
4738

4739
	/* setup the item for the new data */
4740 4741 4742
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4743
		item = btrfs_item_nr(slot + i);
4744
		data_end -= data_size[i];
4745
		btrfs_set_token_item_offset(&token, item, data_end);
4746
		btrfs_set_token_item_size(&token, item, data_size[i]);
4747
	}
4748

4749
	btrfs_set_header_nritems(leaf, nritems + nr);
4750
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4751

4752
	if (btrfs_leaf_free_space(leaf) < 0) {
4753
		btrfs_print_leaf(leaf);
4754
		BUG();
4755
	}
4756 4757 4758 4759 4760 4761 4762 4763 4764
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4765
			    const struct btrfs_key *cpu_key, u32 *data_size,
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4782
		return ret;
4783 4784 4785 4786

	slot = path->slots[0];
	BUG_ON(slot < 0);

4787
	setup_items_for_insert(root, path, cpu_key, data_size, nr);
4788
	return 0;
4789 4790 4791 4792 4793 4794
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4795 4796 4797
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4798 4799
{
	int ret = 0;
C
Chris Mason 已提交
4800
	struct btrfs_path *path;
4801 4802
	struct extent_buffer *leaf;
	unsigned long ptr;
4803

C
Chris Mason 已提交
4804
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4805 4806
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4807
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4808
	if (!ret) {
4809 4810 4811 4812
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4813
	}
C
Chris Mason 已提交
4814
	btrfs_free_path(path);
C
Chris Mason 已提交
4815
	return ret;
4816 4817
}

C
Chris Mason 已提交
4818
/*
C
Chris Mason 已提交
4819
 * delete the pointer from a given node.
C
Chris Mason 已提交
4820
 *
C
Chris Mason 已提交
4821 4822
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4823
 */
4824 4825
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4826
{
4827
	struct extent_buffer *parent = path->nodes[level];
4828
	u32 nritems;
4829
	int ret;
4830

4831
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4832
	if (slot != nritems - 1) {
4833 4834
		if (level) {
			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4835
					nritems - slot - 1);
4836 4837
			BUG_ON(ret < 0);
		}
4838 4839 4840
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4841 4842
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4843
	} else if (level) {
4844 4845
		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
				GFP_NOFS);
4846
		BUG_ON(ret < 0);
4847
	}
4848

4849
	nritems--;
4850
	btrfs_set_header_nritems(parent, nritems);
4851
	if (nritems == 0 && parent == root->node) {
4852
		BUG_ON(btrfs_header_level(root->node) != 1);
4853
		/* just turn the root into a leaf and break */
4854
		btrfs_set_header_level(root->node, 0);
4855
	} else if (slot == 0) {
4856 4857 4858
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4859
		fixup_low_keys(path, &disk_key, level + 1);
4860
	}
C
Chris Mason 已提交
4861
	btrfs_mark_buffer_dirty(parent);
4862 4863
}

4864 4865
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4866
 * path->nodes[1].
4867 4868 4869 4870 4871 4872 4873
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4874 4875 4876 4877
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4878
{
4879
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4880
	del_ptr(root, path, 1, path->slots[1]);
4881

4882 4883 4884 4885 4886 4887
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4888 4889
	root_sub_used(root, leaf->len);

D
David Sterba 已提交
4890
	atomic_inc(&leaf->refs);
4891
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4892
	free_extent_buffer_stale(leaf);
4893
}
C
Chris Mason 已提交
4894 4895 4896 4897
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4898 4899
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4900
{
4901
	struct btrfs_fs_info *fs_info = root->fs_info;
4902 4903
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4904 4905
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4906 4907
	int ret = 0;
	int wret;
4908
	int i;
4909
	u32 nritems;
4910

4911
	leaf = path->nodes[0];
4912 4913 4914 4915 4916
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4917
	nritems = btrfs_header_nritems(leaf);
4918

4919
	if (slot + nr != nritems) {
4920
		int data_end = leaf_data_end(leaf);
4921
		struct btrfs_map_token token;
4922

4923
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4924
			      data_end + dsize,
4925
			      BTRFS_LEAF_DATA_OFFSET + data_end,
4926
			      last_off - data_end);
4927

4928
		btrfs_init_map_token(&token, leaf);
4929
		for (i = slot + nr; i < nritems; i++) {
4930
			u32 ioff;
4931

4932
			item = btrfs_item_nr(i);
4933 4934
			ioff = btrfs_token_item_offset(&token, item);
			btrfs_set_token_item_offset(&token, item, ioff + dsize);
C
Chris Mason 已提交
4935
		}
4936

4937
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4938
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
4939
			      sizeof(struct btrfs_item) *
4940
			      (nritems - slot - nr));
4941
	}
4942 4943
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
4944

C
Chris Mason 已提交
4945
	/* delete the leaf if we've emptied it */
4946
	if (nritems == 0) {
4947 4948
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
4949
		} else {
4950
			btrfs_clean_tree_block(leaf);
4951
			btrfs_del_leaf(trans, root, path, leaf);
4952
		}
4953
	} else {
4954
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
4955
		if (slot == 0) {
4956 4957 4958
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
4959
			fixup_low_keys(path, &disk_key, 1);
C
Chris Mason 已提交
4960 4961
		}

C
Chris Mason 已提交
4962
		/* delete the leaf if it is mostly empty */
4963
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4964 4965 4966 4967
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
4968
			slot = path->slots[1];
D
David Sterba 已提交
4969
			atomic_inc(&leaf->refs);
4970

4971 4972
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
4973
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
4974
				ret = wret;
4975 4976 4977

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
4978 4979
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
4980
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
4981 4982
					ret = wret;
			}
4983 4984

			if (btrfs_header_nritems(leaf) == 0) {
4985
				path->slots[1] = slot;
4986
				btrfs_del_leaf(trans, root, path, leaf);
4987
				free_extent_buffer(leaf);
4988
				ret = 0;
C
Chris Mason 已提交
4989
			} else {
4990 4991 4992 4993 4994 4995 4996
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
4997
				free_extent_buffer(leaf);
4998
			}
4999
		} else {
5000
			btrfs_mark_buffer_dirty(leaf);
5001 5002
		}
	}
C
Chris Mason 已提交
5003
	return ret;
5004 5005
}

5006
/*
5007
 * search the tree again to find a leaf with lesser keys
5008 5009
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5010 5011 5012
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5013
 */
5014
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5015
{
5016 5017 5018
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5019

5020
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5021

5022
	if (key.offset > 0) {
5023
		key.offset--;
5024
	} else if (key.type > 0) {
5025
		key.type--;
5026 5027
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5028
		key.objectid--;
5029 5030 5031
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5032
		return 1;
5033
	}
5034

5035
	btrfs_release_path(path);
5036 5037 5038 5039 5040
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5052 5053
		return 0;
	return 1;
5054 5055
}

5056 5057
/*
 * A helper function to walk down the tree starting at min_key, and looking
5058 5059
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5060 5061 5062 5063 5064 5065 5066 5067
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5068 5069 5070 5071
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5072 5073 5074 5075
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5076
			 struct btrfs_path *path,
5077 5078 5079 5080 5081
			 u64 min_trans)
{
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5082
	int sret;
5083 5084 5085
	u32 nritems;
	int level;
	int ret = 1;
5086
	int keep_locks = path->keep_locks;
5087

5088
	path->keep_locks = 1;
5089
again:
5090
	cur = btrfs_read_lock_root_node(root);
5091
	level = btrfs_header_level(cur);
5092
	WARN_ON(path->nodes[level]);
5093
	path->nodes[level] = cur;
5094
	path->locks[level] = BTRFS_READ_LOCK;
5095 5096 5097 5098 5099

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5100
	while (1) {
5101 5102
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5103
		sret = btrfs_bin_search(cur, min_key, &slot);
5104 5105 5106 5107
		if (sret < 0) {
			ret = sret;
			goto out;
		}
5108

5109 5110
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5111 5112
			if (slot >= nritems)
				goto find_next_key;
5113 5114 5115 5116 5117
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5118 5119
		if (sret && slot > 0)
			slot--;
5120
		/*
5121
		 * check this node pointer against the min_trans parameters.
5122
		 * If it is too old, skip to the next one.
5123
		 */
C
Chris Mason 已提交
5124
		while (slot < nritems) {
5125
			u64 gen;
5126

5127 5128 5129 5130 5131
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5132
			break;
5133
		}
5134
find_next_key:
5135 5136 5137 5138 5139
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5140 5141
			path->slots[level] = slot;
			sret = btrfs_find_next_key(root, path, min_key, level,
5142
						  min_trans);
5143
			if (sret == 0) {
5144
				btrfs_release_path(path);
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5157
		cur = btrfs_read_node_slot(cur, slot);
5158 5159 5160 5161
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5162

5163
		btrfs_tree_read_lock(cur);
5164

5165
		path->locks[level - 1] = BTRFS_READ_LOCK;
5166
		path->nodes[level - 1] = cur;
5167
		unlock_up(path, level, 1, 0, NULL);
5168 5169
	}
out:
5170 5171 5172
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5173
		memcpy(min_key, &found_key, sizeof(found_key));
5174
	}
5175 5176 5177 5178 5179 5180
	return ret;
}

/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5181
 * tree based on the current path and the min_trans parameters.
5182 5183 5184 5185 5186 5187 5188
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5189
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5190
			struct btrfs_key *key, int level, u64 min_trans)
5191 5192 5193 5194
{
	int slot;
	struct extent_buffer *c;

5195
	WARN_ON(!path->keep_locks && !path->skip_locking);
C
Chris Mason 已提交
5196
	while (level < BTRFS_MAX_LEVEL) {
5197 5198 5199 5200 5201
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5202
next:
5203
		if (slot >= btrfs_header_nritems(c)) {
5204 5205 5206 5207 5208
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5209
				return 1;
5210

5211
			if (path->locks[level + 1] || path->skip_locking) {
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5223
			btrfs_release_path(path);
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5236
		}
5237

5238 5239
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5240 5241 5242 5243 5244 5245 5246
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5247
			btrfs_node_key_to_cpu(c, key, slot);
5248
		}
5249 5250 5251 5252 5253
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5254
/*
5255
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5256 5257
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5258
 */
C
Chris Mason 已提交
5259
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5260 5261 5262 5263 5264 5265
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5266 5267
{
	int slot;
5268
	int level;
5269
	struct extent_buffer *c;
5270
	struct extent_buffer *next;
5271 5272 5273
	struct btrfs_key key;
	u32 nritems;
	int ret;
5274
	int i;
5275 5276

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5277
	if (nritems == 0)
5278 5279
		return 1;

5280 5281 5282 5283
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5284
	btrfs_release_path(path);
5285

5286
	path->keep_locks = 1;
5287

J
Jan Schmidt 已提交
5288 5289 5290 5291
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5292 5293 5294 5295 5296
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5297
	nritems = btrfs_header_nritems(path->nodes[0]);
5298 5299 5300 5301 5302 5303
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5304
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5305 5306
		if (ret == 0)
			path->slots[0]++;
5307
		ret = 0;
5308 5309
		goto done;
	}
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5328

C
Chris Mason 已提交
5329
	while (level < BTRFS_MAX_LEVEL) {
5330 5331 5332 5333
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5334

5335 5336
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5337
		if (slot >= btrfs_header_nritems(c)) {
5338
			level++;
5339 5340 5341 5342
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5343 5344
			continue;
		}
5345

5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358

		/*
		 * Our current level is where we're going to start from, and to
		 * make sure lockdep doesn't complain we need to drop our locks
		 * and nodes from 0 to our current level.
		 */
		for (i = 0; i < level; i++) {
			if (path->locks[level]) {
				btrfs_tree_read_unlock(path->nodes[i]);
				path->locks[i] = 0;
			}
			free_extent_buffer(path->nodes[i]);
			path->nodes[i] = NULL;
5359
		}
5360

5361
		next = c;
5362
		ret = read_block_for_search(root, path, &next, level,
5363
					    slot, &key);
5364 5365
		if (ret == -EAGAIN)
			goto again;
5366

5367
		if (ret < 0) {
5368
			btrfs_release_path(path);
5369 5370 5371
			goto done;
		}

5372
		if (!path->skip_locking) {
5373
			ret = btrfs_try_tree_read_lock(next);
5374 5375 5376 5377 5378 5379 5380 5381
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5382
				free_extent_buffer(next);
5383 5384 5385 5386
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5387 5388
			if (!ret)
				btrfs_tree_read_lock(next);
5389
		}
5390 5391 5392
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5393
	while (1) {
5394 5395 5396
		level--;
		path->nodes[level] = next;
		path->slots[level] = 0;
5397
		if (!path->skip_locking)
5398
			path->locks[level] = BTRFS_READ_LOCK;
5399 5400
		if (!level)
			break;
5401

5402
		ret = read_block_for_search(root, path, &next, level,
5403
					    0, &key);
5404 5405 5406
		if (ret == -EAGAIN)
			goto again;

5407
		if (ret < 0) {
5408
			btrfs_release_path(path);
5409 5410 5411
			goto done;
		}

5412
		if (!path->skip_locking)
5413
			btrfs_tree_read_lock(next);
5414
	}
5415
	ret = 0;
5416
done:
5417
	unlock_up(path, 0, 1, 0, NULL);
5418 5419

	return ret;
5420
}
5421

5422 5423 5424 5425 5426 5427
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5428 5429 5430 5431 5432 5433
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5434
	u32 nritems;
5435 5436
	int ret;

C
Chris Mason 已提交
5437
	while (1) {
5438 5439 5440 5441 5442 5443 5444 5445
		if (path->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5446 5447 5448 5449 5450 5451
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5452
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5453 5454
		if (found_key.objectid < min_objectid)
			break;
5455 5456
		if (found_key.type == type)
			return 0;
5457 5458 5459
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5460 5461 5462
	}
	return 1;
}
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}