ctree.c 141.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2
/*
C
Chris Mason 已提交
3
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
4 5
 */

6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/rbtree.h>
9
#include <linux/mm.h>
10 11
#include "ctree.h"
#include "disk-io.h"
12
#include "transaction.h"
13
#include "print-tree.h"
14
#include "locking.h"
15
#include "volumes.h"
16
#include "qgroup.h"
17

18 19
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
20 21 22
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
23
static int push_node_left(struct btrfs_trans_handle *trans,
24
			  struct extent_buffer *dst,
25
			  struct extent_buffer *src, int empty);
26 27 28
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
29 30
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
31

32 33
static const struct btrfs_csums {
	u16		size;
34 35
	const char	name[10];
	const char	driver[12];
36 37
} btrfs_csums[] = {
	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
38
	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
39
	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
40 41
	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
				     .driver = "blake2b-256" },
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
};

int btrfs_super_csum_size(const struct btrfs_super_block *s)
{
	u16 t = btrfs_super_csum_type(s);
	/*
	 * csum type is validated at mount time
	 */
	return btrfs_csums[t].size;
}

const char *btrfs_super_csum_name(u16 csum_type)
{
	/* csum type is validated at mount time */
	return btrfs_csums[csum_type].name;
}

59 60 61 62 63 64 65
/*
 * Return driver name if defined, otherwise the name that's also a valid driver
 * name
 */
const char *btrfs_super_csum_driver(u16 csum_type)
{
	/* csum type is validated at mount time */
66 67
	return btrfs_csums[csum_type].driver[0] ?
		btrfs_csums[csum_type].driver :
68 69 70
		btrfs_csums[csum_type].name;
}

71
size_t __attribute_const__ btrfs_get_num_csums(void)
72 73 74 75
{
	return ARRAY_SIZE(btrfs_csums);
}

C
Chris Mason 已提交
76
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
77
{
78
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
79 80
}

C
Chris Mason 已提交
81
/* this also releases the path */
C
Chris Mason 已提交
82
void btrfs_free_path(struct btrfs_path *p)
83
{
84 85
	if (!p)
		return;
86
	btrfs_release_path(p);
C
Chris Mason 已提交
87
	kmem_cache_free(btrfs_path_cachep, p);
88 89
}

C
Chris Mason 已提交
90 91 92 93 94 95
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
96
noinline void btrfs_release_path(struct btrfs_path *p)
97 98
{
	int i;
99

C
Chris Mason 已提交
100
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
101
		p->slots[i] = 0;
102
		if (!p->nodes[i])
103 104
			continue;
		if (p->locks[i]) {
105
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
106 107
			p->locks[i] = 0;
		}
108
		free_extent_buffer(p->nodes[i]);
109
		p->nodes[i] = NULL;
110 111 112
	}
}

C
Chris Mason 已提交
113 114 115 116 117 118 119 120 121 122
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
123 124 125
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
126

127 128 129 130 131 132
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
133
		 * it was COWed but we may not get the new root node yet so do
134 135 136 137 138 139 140 141 142 143
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
144 145 146
	return eb;
}

147 148 149 150
/*
 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 * just get put onto a simple dirty list.  Transaction walks this list to make
 * sure they get properly updated on disk.
C
Chris Mason 已提交
151
 */
152 153
static void add_root_to_dirty_list(struct btrfs_root *root)
{
154 155
	struct btrfs_fs_info *fs_info = root->fs_info;

156 157 158 159
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

160
	spin_lock(&fs_info->trans_lock);
161 162
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
163
		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
164
			list_move_tail(&root->dirty_list,
165
				       &fs_info->dirty_cowonly_roots);
166 167
		else
			list_move(&root->dirty_list,
168
				  &fs_info->dirty_cowonly_roots);
169
	}
170
	spin_unlock(&fs_info->trans_lock);
171 172
}

C
Chris Mason 已提交
173 174 175 176 177
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
178 179 180 181 182
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
183
	struct btrfs_fs_info *fs_info = root->fs_info;
184 185 186
	struct extent_buffer *cow;
	int ret = 0;
	int level;
187
	struct btrfs_disk_key disk_key;
188

189
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
190
		trans->transid != fs_info->running_transaction->transid);
191
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192
		trans->transid != root->last_trans);
193 194

	level = btrfs_header_level(buf);
195 196 197 198
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
199

200
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
201 202
				     &disk_key, level, buf->start, 0,
				     BTRFS_NESTING_NEW_ROOT);
203
	if (IS_ERR(cow))
204 205
		return PTR_ERR(cow);

206
	copy_extent_buffer_full(cow, buf);
207 208
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
209 210 211 212 213 214 215
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
216

217
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
218

219
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
220
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
221
		ret = btrfs_inc_ref(trans, root, cow, 1);
222
	else
223
		ret = btrfs_inc_ref(trans, root, cow, 0);
224

225 226 227 228 229 230 231 232
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
250
	u64 logical;
251
	u64 seq;
252 253 254 255 256 257 258 259 260 261 262 263 264
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
265 266 267 268
	struct {
		int dst_slot;
		int nr_items;
	} move;
269 270 271 272 273

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

274
/*
J
Josef Bacik 已提交
275
 * Pull a new tree mod seq number for our operation.
276
 */
J
Josef Bacik 已提交
277
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
278 279 280 281
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

282 283 284 285 286 287 288 289 290 291
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
292
{
293
	write_lock(&fs_info->tree_mod_log_lock);
294
	if (!elem->seq) {
J
Josef Bacik 已提交
295
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
296 297
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
298
	write_unlock(&fs_info->tree_mod_log_lock);
299

J
Josef Bacik 已提交
300
	return elem->seq;
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

316
	write_lock(&fs_info->tree_mod_log_lock);
317
	list_del(&elem->list);
318
	elem->seq = 0;
319

320 321 322 323 324 325 326 327 328 329 330 331
	if (!list_empty(&fs_info->tree_mod_seq_list)) {
		struct seq_list *first;

		first = list_first_entry(&fs_info->tree_mod_seq_list,
					 struct seq_list, list);
		if (seq_putting > first->seq) {
			/*
			 * Blocker with lower sequence number exists, we
			 * cannot remove anything from the log.
			 */
			write_unlock(&fs_info->tree_mod_log_lock);
			return;
332
		}
333
		min_seq = first->seq;
334
	}
335

336 337 338 339 340 341 342
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
343
		tm = rb_entry(node, struct tree_mod_elem, node);
344
		if (tm->seq >= min_seq)
345 346 347 348
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
349
	write_unlock(&fs_info->tree_mod_log_lock);
350 351 352 353
}

/*
 * key order of the log:
354
 *       node/leaf start address -> sequence
355
 *
356 357 358
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
359 360 361 362 363 364 365 366
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
367

368 369
	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);

J
Josef Bacik 已提交
370
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
371 372 373 374

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
375
		cur = rb_entry(*new, struct tree_mod_elem, node);
376
		parent = *new;
377
		if (cur->logical < tm->logical)
378
			new = &((*new)->rb_left);
379
		else if (cur->logical > tm->logical)
380
			new = &((*new)->rb_right);
381
		else if (cur->seq < tm->seq)
382
			new = &((*new)->rb_left);
383
		else if (cur->seq > tm->seq)
384
			new = &((*new)->rb_right);
385 386
		else
			return -EEXIST;
387 388 389 390
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
391
	return 0;
392 393
}

394 395 396 397
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
398
 * write unlock fs_info::tree_mod_log_lock.
399
 */
400 401 402 403 404
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
405 406
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
407

408
	write_lock(&fs_info->tree_mod_log_lock);
409
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
410
		write_unlock(&fs_info->tree_mod_log_lock);
411 412 413
		return 1;
	}

414 415 416
	return 0;
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
433
{
434
	struct tree_mod_elem *tm;
435

436 437
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
438
		return NULL;
439

440
	tm->logical = eb->start;
441 442 443 444 445 446 447
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
448
	RB_CLEAR_NODE(&tm->node);
449

450
	return tm;
451 452
}

453 454
static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
		enum mod_log_op op, gfp_t flags)
455
{
456 457 458
	struct tree_mod_elem *tm;
	int ret;

459
	if (!tree_mod_need_log(eb->fs_info, eb))
460 461 462 463 464 465
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

466
	if (tree_mod_dont_log(eb->fs_info, eb)) {
467
		kfree(tm);
468
		return 0;
469 470
	}

471
	ret = __tree_mod_log_insert(eb->fs_info, tm);
472
	write_unlock(&eb->fs_info->tree_mod_log_lock);
473 474
	if (ret)
		kfree(tm);
475

476
	return ret;
477 478
}

479 480
static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
		int dst_slot, int src_slot, int nr_items)
481
{
482 483 484
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
485
	int i;
486
	int locked = 0;
487

488
	if (!tree_mod_need_log(eb->fs_info, eb))
J
Jan Schmidt 已提交
489
		return 0;
490

491
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
492 493 494
	if (!tm_list)
		return -ENOMEM;

495
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
496 497 498 499 500
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

501
	tm->logical = eb->start;
502 503 504 505 506 507 508
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
509
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
510 511 512 513 514 515
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

516
	if (tree_mod_dont_log(eb->fs_info, eb))
517 518 519
		goto free_tms;
	locked = 1;

520 521 522 523 524
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
525
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
526
		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
527 528
		if (ret)
			goto free_tms;
529 530
	}

531
	ret = __tree_mod_log_insert(eb->fs_info, tm);
532 533
	if (ret)
		goto free_tms;
534
	write_unlock(&eb->fs_info->tree_mod_log_lock);
535
	kfree(tm_list);
J
Jan Schmidt 已提交
536

537 538 539 540
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
541
			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
542 543 544
		kfree(tm_list[i]);
	}
	if (locked)
545
		write_unlock(&eb->fs_info->tree_mod_log_lock);
546 547
	kfree(tm_list);
	kfree(tm);
548

549
	return ret;
550 551
}

552 553 554 555
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
556
{
557
	int i, j;
558 559 560
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
561 562 563 564 565 566 567
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
568
	}
569 570

	return 0;
571 572
}

573 574
static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
			 struct extent_buffer *new_root, int log_removal)
575
{
576
	struct btrfs_fs_info *fs_info = old_root->fs_info;
577 578 579 580 581
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
582

583
	if (!tree_mod_need_log(fs_info, NULL))
584 585
		return 0;

586 587
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
588
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
589
				  GFP_NOFS);
590 591 592 593 594 595
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
596
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
597 598 599 600 601 602
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
603

604
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
605 606 607 608
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
609

610
	tm->logical = new_root->start;
611 612 613 614 615
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

616 617 618 619 620 621 622 623
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

624
	write_unlock(&fs_info->tree_mod_log_lock);
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
640 641 642 643 644 645 646 647 648 649 650
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

651
	read_lock(&fs_info->tree_mod_log_lock);
652 653 654
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
655
		cur = rb_entry(node, struct tree_mod_elem, node);
656
		if (cur->logical < start) {
657
			node = node->rb_left;
658
		} else if (cur->logical > start) {
659
			node = node->rb_right;
660
		} else if (cur->seq < min_seq) {
661 662 663 664
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
665
				BUG_ON(found->seq > cur->seq);
666 667
			found = cur;
			node = node->rb_left;
668
		} else if (cur->seq > min_seq) {
669 670
			/* we want the node with the smallest seq */
			if (found)
671
				BUG_ON(found->seq < cur->seq);
672 673 674 675 676 677 678
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
679
	read_unlock(&fs_info->tree_mod_log_lock);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

707
static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
708
		     struct extent_buffer *src, unsigned long dst_offset,
709
		     unsigned long src_offset, int nr_items)
710
{
711
	struct btrfs_fs_info *fs_info = dst->fs_info;
712 713 714
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
715
	int i;
716
	int locked = 0;
717

718 719
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
720

721
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
722 723
		return 0;

724
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
725 726 727
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
728

729 730
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
731
	for (i = 0; i < nr_items; i++) {
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
758
	}
759

760
	write_unlock(&fs_info->tree_mod_log_lock);
761 762 763 764 765 766 767 768 769 770 771
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
772
		write_unlock(&fs_info->tree_mod_log_lock);
773 774 775
	kfree(tm_list);

	return ret;
776 777
}

778
static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
779
{
780 781 782 783 784 785 786 787
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

788
	if (!tree_mod_need_log(eb->fs_info, NULL))
789 790 791
		return 0;

	nritems = btrfs_header_nritems(eb);
792
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
793 794 795 796 797 798 799 800 801 802 803 804
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

805
	if (tree_mod_dont_log(eb->fs_info, eb))
806 807
		goto free_tms;

808
	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
809
	write_unlock(&eb->fs_info->tree_mod_log_lock);
810 811 812 813 814 815 816 817 818 819 820 821
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
822 823
}

824 825 826 827 828 829 830
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
831 832 833
	 * Tree blocks not in shareable trees and tree roots are never shared.
	 * If a block was allocated after the last snapshot and the block was
	 * not allocated by tree relocation, we know the block is not shared.
834
	 */
835
	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
836 837 838 839 840
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
841

842 843 844 845 846 847
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
848 849
				       struct extent_buffer *cow,
				       int *last_ref)
850
{
851
	struct btrfs_fs_info *fs_info = root->fs_info;
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
876
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
877 878
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
879 880
		if (ret)
			return ret;
881 882
		if (refs == 0) {
			ret = -EROFS;
883
			btrfs_handle_fs_error(fs_info, ret, NULL);
884 885
			return ret;
		}
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
903
			ret = btrfs_inc_ref(trans, root, buf, 1);
904 905
			if (ret)
				return ret;
906 907 908

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
909
				ret = btrfs_dec_ref(trans, root, buf, 0);
910 911
				if (ret)
					return ret;
912
				ret = btrfs_inc_ref(trans, root, cow, 1);
913 914
				if (ret)
					return ret;
915 916 917 918 919 920
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
921
				ret = btrfs_inc_ref(trans, root, cow, 1);
922
			else
923
				ret = btrfs_inc_ref(trans, root, cow, 0);
924 925
			if (ret)
				return ret;
926 927
		}
		if (new_flags != 0) {
928 929
			int level = btrfs_header_level(buf);

930
			ret = btrfs_set_disk_extent_flags(trans, buf,
931
							  new_flags, level, 0);
932 933
			if (ret)
				return ret;
934 935 936 937 938
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
939
				ret = btrfs_inc_ref(trans, root, cow, 1);
940
			else
941
				ret = btrfs_inc_ref(trans, root, cow, 0);
942 943
			if (ret)
				return ret;
944
			ret = btrfs_dec_ref(trans, root, buf, 1);
945 946
			if (ret)
				return ret;
947
		}
948
		btrfs_clean_tree_block(buf);
949
		*last_ref = 1;
950 951 952 953
	}
	return 0;
}

954 955 956 957 958 959 960
static struct extent_buffer *alloc_tree_block_no_bg_flush(
					  struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  u64 parent_start,
					  const struct btrfs_disk_key *disk_key,
					  int level,
					  u64 hint,
961 962
					  u64 empty_size,
					  enum btrfs_lock_nesting nest)
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *ret;

	/*
	 * If we are COWing a node/leaf from the extent, chunk, device or free
	 * space trees, make sure that we do not finish block group creation of
	 * pending block groups. We do this to avoid a deadlock.
	 * COWing can result in allocation of a new chunk, and flushing pending
	 * block groups (btrfs_create_pending_block_groups()) can be triggered
	 * when finishing allocation of a new chunk. Creation of a pending block
	 * group modifies the extent, chunk, device and free space trees,
	 * therefore we could deadlock with ourselves since we are holding a
	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
	 * try to COW later.
	 * For similar reasons, we also need to delay flushing pending block
	 * groups when splitting a leaf or node, from one of those trees, since
	 * we are holding a write lock on it and its parent or when inserting a
	 * new root node for one of those trees.
	 */
	if (root == fs_info->extent_root ||
	    root == fs_info->chunk_root ||
	    root == fs_info->dev_root ||
	    root == fs_info->free_space_root)
		trans->can_flush_pending_bgs = false;

	ret = btrfs_alloc_tree_block(trans, root, parent_start,
				     root->root_key.objectid, disk_key, level,
991
				     hint, empty_size, nest);
992 993 994 995 996
	trans->can_flush_pending_bgs = true;

	return ret;
}

C
Chris Mason 已提交
997
/*
C
Chris Mason 已提交
998 999 1000 1001
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1002 1003 1004
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1005 1006 1007
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1008
 */
C
Chris Mason 已提交
1009
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1010 1011 1012 1013
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1014 1015
			     u64 search_start, u64 empty_size,
			     enum btrfs_lock_nesting nest)
C
Chris Mason 已提交
1016
{
1017
	struct btrfs_fs_info *fs_info = root->fs_info;
1018
	struct btrfs_disk_key disk_key;
1019
	struct extent_buffer *cow;
1020
	int level, ret;
1021
	int last_ref = 0;
1022
	int unlock_orig = 0;
1023
	u64 parent_start = 0;
1024

1025 1026 1027
	if (*cow_ret == buf)
		unlock_orig = 1;

1028
	btrfs_assert_tree_locked(buf);
1029

1030
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1031
		trans->transid != fs_info->running_transaction->transid);
1032
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1033
		trans->transid != root->last_trans);
1034

1035
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1036

1037 1038 1039 1040 1041
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1042 1043
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1044

1045
	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1046
					   level, search_start, empty_size, nest);
1047 1048
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1049

1050 1051
	/* cow is set to blocking by btrfs_init_new_buffer */

1052
	copy_extent_buffer_full(cow, buf);
1053
	btrfs_set_header_bytenr(cow, cow->start);
1054
	btrfs_set_header_generation(cow, trans->transid);
1055 1056 1057 1058 1059 1060 1061
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1062

1063
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
1064

1065
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1066
	if (ret) {
J
Josef Bacik 已提交
1067 1068
		btrfs_tree_unlock(cow);
		free_extent_buffer(cow);
1069
		btrfs_abort_transaction(trans, ret);
1070 1071
		return ret;
	}
Z
Zheng Yan 已提交
1072

1073
	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
1074
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1075
		if (ret) {
J
Josef Bacik 已提交
1076 1077
			btrfs_tree_unlock(cow);
			free_extent_buffer(cow);
1078
			btrfs_abort_transaction(trans, ret);
1079
			return ret;
1080
		}
1081
	}
1082

C
Chris Mason 已提交
1083
	if (buf == root->node) {
1084
		WARN_ON(parent && parent != buf);
1085 1086 1087
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1088

D
David Sterba 已提交
1089
		atomic_inc(&cow->refs);
1090 1091
		ret = tree_mod_log_insert_root(root->node, cow, 1);
		BUG_ON(ret < 0);
1092
		rcu_assign_pointer(root->node, cow);
1093

1094
		btrfs_free_tree_block(trans, root, buf, parent_start,
1095
				      last_ref);
1096
		free_extent_buffer(buf);
1097
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1098
	} else {
1099
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1100
		tree_mod_log_insert_key(parent, parent_slot,
1101
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1102
		btrfs_set_node_blockptr(parent, parent_slot,
1103
					cow->start);
1104 1105
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1106
		btrfs_mark_buffer_dirty(parent);
1107
		if (last_ref) {
1108
			ret = tree_mod_log_free_eb(buf);
1109
			if (ret) {
J
Josef Bacik 已提交
1110 1111
				btrfs_tree_unlock(cow);
				free_extent_buffer(cow);
1112
				btrfs_abort_transaction(trans, ret);
1113 1114 1115
				return ret;
			}
		}
1116
		btrfs_free_tree_block(trans, root, buf, parent_start,
1117
				      last_ref);
C
Chris Mason 已提交
1118
	}
1119 1120
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1121
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1122
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1123
	*cow_ret = cow;
C
Chris Mason 已提交
1124 1125 1126
	return 0;
}

J
Jan Schmidt 已提交
1127 1128 1129 1130
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
1131 1132
static struct tree_mod_elem *__tree_mod_log_oldest_root(
		struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1133 1134 1135
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1136
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1137 1138 1139
	int looped = 0;

	if (!time_seq)
1140
		return NULL;
J
Jan Schmidt 已提交
1141 1142

	/*
1143 1144 1145 1146
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1147 1148
	 */
	while (1) {
1149
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
J
Jan Schmidt 已提交
1150 1151
						time_seq);
		if (!looped && !tm)
1152
			return NULL;
J
Jan Schmidt 已提交
1153
		/*
1154 1155 1156
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1157
		 */
1158 1159
		if (!tm)
			break;
J
Jan Schmidt 已提交
1160

1161 1162 1163 1164 1165
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1166 1167 1168 1169 1170 1171 1172 1173
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1174 1175 1176 1177
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1178 1179 1180 1181 1182
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1183
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1184 1185 1186
 * time_seq).
 */
static void
1187 1188
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1198
	read_lock(&fs_info->tree_mod_log_lock);
1199
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1200 1201 1202 1203 1204 1205 1206 1207
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1208
			fallthrough;
1209
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1210
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1211 1212 1213 1214
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1215
			n++;
J
Jan Schmidt 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1225
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1226 1227 1228
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1229 1230 1231
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1249
		tm = rb_entry(next, struct tree_mod_elem, node);
1250
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1251 1252
			break;
	}
1253
	read_unlock(&fs_info->tree_mod_log_lock);
J
Jan Schmidt 已提交
1254 1255 1256
	btrfs_set_header_nritems(eb, n);
}

1257
/*
1258
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1259 1260 1261 1262 1263
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1264
static struct extent_buffer *
1265 1266
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1283
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1284
		if (!eb_rewin) {
1285
			btrfs_tree_read_unlock(eb);
1286 1287 1288
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1289 1290 1291 1292
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1293
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1294 1295
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1296
		if (!eb_rewin) {
1297
			btrfs_tree_read_unlock(eb);
1298 1299 1300
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1301 1302
	}

1303
	btrfs_tree_read_unlock(eb);
J
Jan Schmidt 已提交
1304 1305
	free_extent_buffer(eb);

1306 1307
	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
				       eb_rewin, btrfs_header_level(eb_rewin));
1308
	btrfs_tree_read_lock(eb_rewin);
1309
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1310
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1311
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1312 1313 1314 1315

	return eb_rewin;
}

1316 1317 1318 1319 1320 1321 1322
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1323 1324 1325
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1326
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1327
	struct tree_mod_elem *tm;
1328 1329
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1330
	u64 eb_root_owner = 0;
1331
	struct extent_buffer *old;
1332
	struct tree_mod_root *old_root = NULL;
1333
	u64 old_generation = 0;
1334
	u64 logical;
1335
	int level;
J
Jan Schmidt 已提交
1336

1337
	eb_root = btrfs_read_lock_root_node(root);
1338
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1339
	if (!tm)
1340
		return eb_root;
J
Jan Schmidt 已提交
1341

1342 1343 1344 1345
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
1346
		level = old_root->level;
1347
	} else {
1348
		logical = eb_root->start;
1349
		level = btrfs_header_level(eb_root);
1350
	}
J
Jan Schmidt 已提交
1351

1352
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1353
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1354 1355
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1356
		old = read_tree_block(fs_info, logical, 0, level, NULL);
1357 1358 1359
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1360 1361 1362
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1363
		} else {
1364 1365
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1366 1367
		}
	} else if (old_root) {
1368
		eb_root_owner = btrfs_header_owner(eb_root);
1369 1370
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1371
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1372
	} else {
1373
		eb = btrfs_clone_extent_buffer(eb_root);
1374
		btrfs_tree_read_unlock(eb_root);
1375
		free_extent_buffer(eb_root);
1376 1377
	}

1378 1379
	if (!eb)
		return NULL;
1380
	if (old_root) {
J
Jan Schmidt 已提交
1381 1382
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1383
		btrfs_set_header_owner(eb, eb_root_owner);
1384 1385
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1386
	}
1387 1388 1389
	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
				       btrfs_header_level(eb));
	btrfs_tree_read_lock(eb);
1390
	if (tm)
1391
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1392 1393
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1394
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1395 1396 1397 1398

	return eb;
}

J
Jan Schmidt 已提交
1399 1400 1401 1402
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1403
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1404

1405
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1406 1407 1408
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1409
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1410
	}
1411
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1412 1413 1414 1415

	return level;
}

1416 1417 1418 1419
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1420
	if (btrfs_is_testing(root->fs_info))
1421
		return 0;
1422

1423 1424
	/* Ensure we can see the FORCE_COW bit */
	smp_mb__before_atomic();
1425 1426 1427 1428 1429 1430 1431 1432

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1433
	 *    when we create snapshot during committing the transaction,
1434
	 *    after we've finished copying src root, we must COW the shared
1435 1436
	 *    block to ensure the metadata consistency.
	 */
1437 1438 1439
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1440
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1441
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1442 1443 1444 1445
		return 0;
	return 1;
}

C
Chris Mason 已提交
1446 1447
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1448
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1449 1450
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1451
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1452 1453
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1454 1455
		    struct extent_buffer **cow_ret,
		    enum btrfs_lock_nesting nest)
1456
{
1457
	struct btrfs_fs_info *fs_info = root->fs_info;
1458
	u64 search_start;
1459
	int ret;
C
Chris Mason 已提交
1460

1461 1462 1463 1464
	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
		btrfs_err(fs_info,
			"COW'ing blocks on a fs root that's being dropped");

1465
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1466
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1467
		       trans->transid,
1468
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1469

1470
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1471
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1472
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1473

1474
	if (!should_cow_block(trans, root, buf)) {
1475
		trans->dirty = true;
1476 1477 1478
		*cow_ret = buf;
		return 0;
	}
1479

1480
	search_start = buf->start & ~((u64)SZ_1G - 1);
1481

1482 1483 1484 1485 1486 1487 1488
	/*
	 * Before CoWing this block for later modification, check if it's
	 * the subtree root and do the delayed subtree trace if needed.
	 *
	 * Also We don't care about the error, as it's handled internally.
	 */
	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1489
	ret = __btrfs_cow_block(trans, root, buf, parent,
1490
				 parent_slot, cow_ret, search_start, 0, nest);
1491 1492 1493

	trace_btrfs_cow_block(root, buf, *cow_ret);

1494
	return ret;
1495 1496
}

C
Chris Mason 已提交
1497 1498 1499 1500
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1501
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1502
{
1503
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1504
		return 1;
1505
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1506 1507 1508 1509
		return 1;
	return 0;
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
#ifdef __LITTLE_ENDIAN

/*
 * Compare two keys, on little-endian the disk order is same as CPU order and
 * we can avoid the conversion.
 */
static int comp_keys(const struct btrfs_disk_key *disk_key,
		     const struct btrfs_key *k2)
{
	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;

	return btrfs_comp_cpu_keys(k1, k2);
}

#else

1526 1527 1528
/*
 * compare two keys in a memcmp fashion
 */
1529 1530
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1531 1532 1533 1534 1535
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1536
	return btrfs_comp_cpu_keys(&k1, k2);
1537
}
1538
#endif
1539

1540 1541 1542
/*
 * same as comp_keys only with two btrfs_key's
 */
1543
int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1559

C
Chris Mason 已提交
1560 1561 1562 1563 1564
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1565
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1566
		       struct btrfs_root *root, struct extent_buffer *parent,
1567
		       int start_slot, u64 *last_ret,
1568
		       struct btrfs_key *progress)
1569
{
1570
	struct btrfs_fs_info *fs_info = root->fs_info;
1571
	struct extent_buffer *cur;
1572
	u64 blocknr;
1573 1574
	u64 search_start = *last_ret;
	u64 last_block = 0;
1575 1576 1577 1578 1579
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1580
	u32 blocksize;
1581 1582
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1583

1584 1585
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1586

1587
	parent_nritems = btrfs_header_nritems(parent);
1588
	blocksize = fs_info->nodesize;
1589
	end_slot = parent_nritems - 1;
1590

1591
	if (parent_nritems <= 1)
1592 1593
		return 0;

1594
	for (i = start_slot; i <= end_slot; i++) {
1595
		int close = 1;
1596

1597 1598 1599 1600 1601
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1602
		blocknr = btrfs_node_blockptr(parent, i);
1603 1604
		if (last_block == 0)
			last_block = blocknr;
1605

1606
		if (i > 0) {
1607 1608
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1609
		}
1610
		if (!close && i < end_slot) {
1611 1612
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1613
		}
1614 1615
		if (close) {
			last_block = blocknr;
1616
			continue;
1617
		}
1618

1619 1620 1621
		cur = btrfs_read_node_slot(parent, i);
		if (IS_ERR(cur))
			return PTR_ERR(cur);
1622
		if (search_start == 0)
1623
			search_start = last_block;
1624

1625
		btrfs_tree_lock(cur);
1626
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1627
					&cur, search_start,
1628
					min(16 * blocksize,
1629 1630
					    (end_slot - i) * blocksize),
					BTRFS_NESTING_COW);
Y
Yan 已提交
1631
		if (err) {
1632
			btrfs_tree_unlock(cur);
1633
			free_extent_buffer(cur);
1634
			break;
Y
Yan 已提交
1635
		}
1636 1637
		search_start = cur->start;
		last_block = cur->start;
1638
		*last_ret = search_start;
1639 1640
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1641 1642 1643 1644
	}
	return err;
}

C
Chris Mason 已提交
1645
/*
1646 1647 1648
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1649 1650 1651 1652 1653 1654
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1655
static noinline int generic_bin_search(struct extent_buffer *eb,
1656 1657
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1658
				       int max, int *slot)
1659 1660 1661 1662
{
	int low = 0;
	int high = max;
	int ret;
1663
	const int key_size = sizeof(struct btrfs_disk_key);
1664

1665 1666 1667 1668 1669 1670 1671 1672
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1673
	while (low < high) {
1674 1675 1676 1677 1678 1679
		unsigned long oip;
		unsigned long offset;
		struct btrfs_disk_key *tmp;
		struct btrfs_disk_key unaligned;
		int mid;

1680
		mid = (low + high) / 2;
1681
		offset = p + mid * item_size;
1682
		oip = offset_in_page(offset);
1683

1684 1685 1686
		if (oip + key_size <= PAGE_SIZE) {
			const unsigned long idx = offset >> PAGE_SHIFT;
			char *kaddr = page_address(eb->pages[idx]);
1687

1688
			tmp = (struct btrfs_disk_key *)(kaddr + oip);
1689
		} else {
1690 1691
			read_extent_buffer(eb, &unaligned, offset, key_size);
			tmp = &unaligned;
1692
		}
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1709 1710 1711 1712
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1713
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1714
		     int *slot)
1715
{
1716
	if (btrfs_header_level(eb) == 0)
1717 1718
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1719
					  sizeof(struct btrfs_item),
1720
					  key, btrfs_header_nritems(eb),
1721
					  slot);
1722
	else
1723 1724
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1725
					  sizeof(struct btrfs_key_ptr),
1726
					  key, btrfs_header_nritems(eb),
1727
					  slot);
1728 1729
}

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1746 1747 1748
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1749 1750
struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
					   int slot)
1751
{
1752
	int level = btrfs_header_level(parent);
1753
	struct extent_buffer *eb;
1754
	struct btrfs_key first_key;
1755

1756 1757
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1758 1759 1760

	BUG_ON(level == 0);

1761
	btrfs_node_key_to_cpu(parent, &first_key, slot);
1762
	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1763 1764
			     btrfs_node_ptr_generation(parent, slot),
			     level - 1, &first_key);
1765 1766 1767
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1768 1769 1770
	}

	return eb;
1771 1772
}

C
Chris Mason 已提交
1773 1774 1775 1776 1777
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1778
static noinline int balance_level(struct btrfs_trans_handle *trans,
1779 1780
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1781
{
1782
	struct btrfs_fs_info *fs_info = root->fs_info;
1783 1784 1785 1786
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1787 1788 1789 1790
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1791
	u64 orig_ptr;
1792

1793
	ASSERT(level > 0);
1794

1795
	mid = path->nodes[level];
1796

1797
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1798 1799
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1800
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1801

L
Li Zefan 已提交
1802
	if (level < BTRFS_MAX_LEVEL - 1) {
1803
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1804 1805
		pslot = path->slots[level + 1];
	}
1806

C
Chris Mason 已提交
1807 1808 1809 1810
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1811 1812
	if (!parent) {
		struct extent_buffer *child;
1813

1814
		if (btrfs_header_nritems(mid) != 1)
1815 1816 1817
			return 0;

		/* promote the child to a root */
1818
		child = btrfs_read_node_slot(mid, 0);
1819 1820
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1821
			btrfs_handle_fs_error(fs_info, ret, NULL);
1822 1823 1824
			goto enospc;
		}

1825
		btrfs_tree_lock(child);
1826 1827
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
				      BTRFS_NESTING_COW);
1828 1829 1830 1831 1832
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1833

1834 1835
		ret = tree_mod_log_insert_root(root->node, child, 1);
		BUG_ON(ret < 0);
1836
		rcu_assign_pointer(root->node, child);
1837

1838
		add_root_to_dirty_list(root);
1839
		btrfs_tree_unlock(child);
1840

1841
		path->locks[level] = 0;
1842
		path->nodes[level] = NULL;
1843
		btrfs_clean_tree_block(mid);
1844
		btrfs_tree_unlock(mid);
1845
		/* once for the path */
1846
		free_extent_buffer(mid);
1847 1848

		root_sub_used(root, mid->len);
1849
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1850
		/* once for the root ptr */
1851
		free_extent_buffer_stale(mid);
1852
		return 0;
1853
	}
1854
	if (btrfs_header_nritems(mid) >
1855
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1856 1857
		return 0;

1858
	left = btrfs_read_node_slot(parent, pslot - 1);
1859 1860 1861
	if (IS_ERR(left))
		left = NULL;

1862
	if (left) {
1863
		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1864
		wret = btrfs_cow_block(trans, root, left,
1865
				       parent, pslot - 1, &left,
1866
				       BTRFS_NESTING_LEFT_COW);
1867 1868 1869 1870
		if (wret) {
			ret = wret;
			goto enospc;
		}
1871
	}
1872

1873
	right = btrfs_read_node_slot(parent, pslot + 1);
1874 1875 1876
	if (IS_ERR(right))
		right = NULL;

1877
	if (right) {
1878
		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1879
		wret = btrfs_cow_block(trans, root, right,
1880
				       parent, pslot + 1, &right,
1881
				       BTRFS_NESTING_RIGHT_COW);
1882 1883 1884 1885 1886 1887 1888
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1889 1890
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1891
		wret = push_node_left(trans, left, mid, 1);
1892 1893
		if (wret < 0)
			ret = wret;
1894
	}
1895 1896 1897 1898

	/*
	 * then try to empty the right most buffer into the middle
	 */
1899
	if (right) {
1900
		wret = push_node_left(trans, mid, right, 1);
1901
		if (wret < 0 && wret != -ENOSPC)
1902
			ret = wret;
1903
		if (btrfs_header_nritems(right) == 0) {
1904
			btrfs_clean_tree_block(right);
1905
			btrfs_tree_unlock(right);
1906
			del_ptr(root, path, level + 1, pslot + 1);
1907
			root_sub_used(root, right->len);
1908
			btrfs_free_tree_block(trans, root, right, 0, 1);
1909
			free_extent_buffer_stale(right);
1910
			right = NULL;
1911
		} else {
1912 1913
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1914 1915 1916
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
1917 1918
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1919 1920
		}
	}
1921
	if (btrfs_header_nritems(mid) == 1) {
1922 1923 1924 1925 1926 1927 1928 1929 1930
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
1931 1932
		if (!left) {
			ret = -EROFS;
1933
			btrfs_handle_fs_error(fs_info, ret, NULL);
1934 1935
			goto enospc;
		}
1936
		wret = balance_node_right(trans, mid, left);
1937
		if (wret < 0) {
1938
			ret = wret;
1939 1940
			goto enospc;
		}
1941
		if (wret == 1) {
1942
			wret = push_node_left(trans, left, mid, 1);
1943 1944 1945
			if (wret < 0)
				ret = wret;
		}
1946 1947
		BUG_ON(wret == 1);
	}
1948
	if (btrfs_header_nritems(mid) == 0) {
1949
		btrfs_clean_tree_block(mid);
1950
		btrfs_tree_unlock(mid);
1951
		del_ptr(root, path, level + 1, pslot);
1952
		root_sub_used(root, mid->len);
1953
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1954
		free_extent_buffer_stale(mid);
1955
		mid = NULL;
1956 1957
	} else {
		/* update the parent key to reflect our changes */
1958 1959
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
1960 1961 1962
		ret = tree_mod_log_insert_key(parent, pslot,
				MOD_LOG_KEY_REPLACE, GFP_NOFS);
		BUG_ON(ret < 0);
1963 1964
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
1965
	}
1966

1967
	/* update the path */
1968 1969
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
D
David Sterba 已提交
1970
			atomic_inc(&left->refs);
1971
			/* left was locked after cow */
1972
			path->nodes[level] = left;
1973 1974
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
1975 1976
			if (mid) {
				btrfs_tree_unlock(mid);
1977
				free_extent_buffer(mid);
1978
			}
1979
		} else {
1980
			orig_slot -= btrfs_header_nritems(left);
1981 1982 1983
			path->slots[level] = orig_slot;
		}
	}
1984
	/* double check we haven't messed things up */
C
Chris Mason 已提交
1985
	if (orig_ptr !=
1986
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1987
		BUG();
1988
enospc:
1989 1990
	if (right) {
		btrfs_tree_unlock(right);
1991
		free_extent_buffer(right);
1992 1993 1994 1995
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
1996
		free_extent_buffer(left);
1997
	}
1998 1999 2000
	return ret;
}

C
Chris Mason 已提交
2001 2002 2003 2004
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2005
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2006 2007
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2008
{
2009
	struct btrfs_fs_info *fs_info = root->fs_info;
2010 2011 2012 2013
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2014 2015 2016 2017 2018 2019 2020 2021
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2022
	mid = path->nodes[level];
2023
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2024

L
Li Zefan 已提交
2025
	if (level < BTRFS_MAX_LEVEL - 1) {
2026
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2027 2028
		pslot = path->slots[level + 1];
	}
2029

2030
	if (!parent)
2031 2032
		return 1;

2033
	left = btrfs_read_node_slot(parent, pslot - 1);
2034 2035
	if (IS_ERR(left))
		left = NULL;
2036 2037

	/* first, try to make some room in the middle buffer */
2038
	if (left) {
2039
		u32 left_nr;
2040

2041
		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
2042

2043
		left_nr = btrfs_header_nritems(left);
2044
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2045 2046
			wret = 1;
		} else {
2047
			ret = btrfs_cow_block(trans, root, left, parent,
2048
					      pslot - 1, &left,
2049
					      BTRFS_NESTING_LEFT_COW);
2050 2051 2052
			if (ret)
				wret = 1;
			else {
2053
				wret = push_node_left(trans, left, mid, 0);
2054
			}
C
Chris Mason 已提交
2055
		}
2056 2057 2058
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2059
			struct btrfs_disk_key disk_key;
2060
			orig_slot += left_nr;
2061
			btrfs_node_key(mid, &disk_key, 0);
2062 2063 2064
			ret = tree_mod_log_insert_key(parent, pslot,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2065 2066 2067 2068
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2069 2070
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2071
				btrfs_tree_unlock(mid);
2072
				free_extent_buffer(mid);
2073 2074
			} else {
				orig_slot -=
2075
					btrfs_header_nritems(left);
2076
				path->slots[level] = orig_slot;
2077
				btrfs_tree_unlock(left);
2078
				free_extent_buffer(left);
2079 2080 2081
			}
			return 0;
		}
2082
		btrfs_tree_unlock(left);
2083
		free_extent_buffer(left);
2084
	}
2085
	right = btrfs_read_node_slot(parent, pslot + 1);
2086 2087
	if (IS_ERR(right))
		right = NULL;
2088 2089 2090 2091

	/*
	 * then try to empty the right most buffer into the middle
	 */
2092
	if (right) {
C
Chris Mason 已提交
2093
		u32 right_nr;
2094

2095
		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2096

2097
		right_nr = btrfs_header_nritems(right);
2098
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2099 2100
			wret = 1;
		} else {
2101 2102
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2103
					      &right, BTRFS_NESTING_RIGHT_COW);
2104 2105 2106
			if (ret)
				wret = 1;
			else {
2107
				wret = balance_node_right(trans, right, mid);
2108
			}
C
Chris Mason 已提交
2109
		}
2110 2111 2112
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2113 2114 2115
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2116 2117 2118
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2119 2120 2121 2122 2123
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2124 2125
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2126
					btrfs_header_nritems(mid);
2127
				btrfs_tree_unlock(mid);
2128
				free_extent_buffer(mid);
2129
			} else {
2130
				btrfs_tree_unlock(right);
2131
				free_extent_buffer(right);
2132 2133 2134
			}
			return 0;
		}
2135
		btrfs_tree_unlock(right);
2136
		free_extent_buffer(right);
2137 2138 2139 2140
	}
	return 1;
}

2141
/*
C
Chris Mason 已提交
2142 2143
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2144
 */
2145
static void reada_for_search(struct btrfs_fs_info *fs_info,
2146 2147
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2148
{
2149
	struct extent_buffer *node;
2150
	struct btrfs_disk_key disk_key;
2151 2152
	u32 nritems;
	u64 search;
2153
	u64 target;
2154
	u64 nread = 0;
2155
	struct extent_buffer *eb;
2156 2157 2158
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2159

2160
	if (level != 1)
2161 2162 2163
		return;

	if (!path->nodes[level])
2164 2165
		return;

2166
	node = path->nodes[level];
2167

2168
	search = btrfs_node_blockptr(node, slot);
2169 2170
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2171 2172
	if (eb) {
		free_extent_buffer(eb);
2173 2174 2175
		return;
	}

2176
	target = search;
2177

2178
	nritems = btrfs_header_nritems(node);
2179
	nr = slot;
2180

C
Chris Mason 已提交
2181
	while (1) {
2182
		if (path->reada == READA_BACK) {
2183 2184 2185
			if (nr == 0)
				break;
			nr--;
2186
		} else if (path->reada == READA_FORWARD) {
2187 2188 2189
			nr++;
			if (nr >= nritems)
				break;
2190
		}
2191
		if (path->reada == READA_BACK && objectid) {
2192 2193 2194 2195
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2196
		search = btrfs_node_blockptr(node, nr);
2197 2198
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2199
			btrfs_readahead_node_child(node, nr);
2200 2201 2202
			nread += blocksize;
		}
		nscan++;
2203
		if ((nread > 65536 || nscan > 32))
2204
			break;
2205 2206
	}
}
2207

2208
static noinline void reada_for_balance(struct btrfs_path *path, int level)
2209
{
2210
	struct extent_buffer *parent;
2211 2212 2213
	int slot;
	int nritems;

2214
	parent = path->nodes[level + 1];
2215
	if (!parent)
J
Josef Bacik 已提交
2216
		return;
2217 2218

	nritems = btrfs_header_nritems(parent);
2219
	slot = path->slots[level + 1];
2220

2221 2222 2223 2224
	if (slot > 0)
		btrfs_readahead_node_child(parent, slot - 1);
	if (slot + 1 < nritems)
		btrfs_readahead_node_child(parent, slot + 1);
2225 2226 2227
}


C
Chris Mason 已提交
2228
/*
C
Chris Mason 已提交
2229 2230 2231 2232
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2233
 *
C
Chris Mason 已提交
2234 2235 2236
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2237
 *
C
Chris Mason 已提交
2238 2239
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2240
 */
2241
static noinline void unlock_up(struct btrfs_path *path, int level,
2242 2243
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2244 2245 2246
{
	int i;
	int skip_level = level;
2247
	int no_skips = 0;
2248 2249 2250 2251 2252 2253 2254
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2255
		if (!no_skips && path->slots[i] == 0) {
2256 2257 2258
			skip_level = i + 1;
			continue;
		}
2259
		if (!no_skips && path->keep_locks) {
2260 2261 2262
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2263
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2264 2265 2266 2267
				skip_level = i + 1;
				continue;
			}
		}
2268 2269 2270
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2271
		t = path->nodes[i];
2272
		if (i >= lowest_unlock && i > skip_level) {
2273
			btrfs_tree_unlock_rw(t, path->locks[i]);
2274
			path->locks[i] = 0;
2275 2276 2277 2278 2279
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2280 2281 2282 2283
		}
	}
}

2284 2285 2286 2287 2288 2289 2290 2291 2292
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2293 2294
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2295
		      const struct btrfs_key *key)
2296
{
2297
	struct btrfs_fs_info *fs_info = root->fs_info;
2298 2299 2300
	u64 blocknr;
	u64 gen;
	struct extent_buffer *tmp;
2301
	struct btrfs_key first_key;
2302
	int ret;
2303
	int parent_level;
2304

2305 2306 2307 2308
	blocknr = btrfs_node_blockptr(*eb_ret, slot);
	gen = btrfs_node_ptr_generation(*eb_ret, slot);
	parent_level = btrfs_header_level(*eb_ret);
	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
2309

2310
	tmp = find_extent_buffer(fs_info, blocknr);
2311
	if (tmp) {
2312
		/* first we do an atomic uptodate check */
2313
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2314 2315 2316 2317 2318
			/*
			 * Do extra check for first_key, eb can be stale due to
			 * being cached, read from scrub, or have multiple
			 * parents (shared tree blocks).
			 */
2319
			if (btrfs_verify_level_key(tmp,
2320 2321 2322 2323
					parent_level - 1, &first_key, gen)) {
				free_extent_buffer(tmp);
				return -EUCLEAN;
			}
2324 2325 2326 2327 2328
			*eb_ret = tmp;
			return 0;
		}

		/* now we're allowed to do a blocking uptodate check */
2329
		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2330 2331 2332
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2333
		}
2334 2335 2336
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2337 2338 2339 2340 2341
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2342 2343 2344
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2345
	 */
2346 2347
	btrfs_unlock_up_safe(p, level + 1);

2348
	if (p->reada != READA_NONE)
2349
		reada_for_search(fs_info, p, level, slot, key->objectid);
2350

2351
	ret = -EAGAIN;
2352
	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2353
			      &first_key);
2354
	if (!IS_ERR(tmp)) {
2355 2356 2357 2358 2359 2360
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2361
		if (!extent_buffer_uptodate(tmp))
2362
			ret = -EIO;
2363
		free_extent_buffer(tmp);
2364 2365
	} else {
		ret = PTR_ERR(tmp);
2366
	}
2367 2368

	btrfs_release_path(p);
2369
	return ret;
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2384 2385
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2386
{
2387
	struct btrfs_fs_info *fs_info = root->fs_info;
2388
	int ret;
2389

2390
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2391
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2392 2393
		int sret;

2394 2395 2396 2397 2398 2399
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2400
		reada_for_balance(p, level);
2401 2402 2403 2404 2405 2406 2407 2408 2409
		sret = split_node(trans, root, p, level);

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2410
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2411 2412
		int sret;

2413 2414 2415 2416 2417 2418
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2419
		reada_for_balance(p, level);
2420 2421 2422 2423 2424 2425 2426 2427
		sret = balance_level(trans, root, p, level);

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2428
			btrfs_release_path(p);
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2441
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2442 2443 2444 2445 2446 2447
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2448 2449

	ASSERT(path);
2450
	ASSERT(found_key);
2451 2452 2453 2454 2455 2456

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2457
	if (ret < 0)
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
							struct btrfs_path *p,
							int write_lock_level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *b;
	int root_lock;
	int level = 0;

	/* We try very hard to do read locks on the root */
	root_lock = BTRFS_READ_LOCK;

	if (p->search_commit_root) {
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
		/*
		 * The commit roots are read only so we always do read locks,
		 * and we always must hold the commit_root_sem when doing
		 * searches on them, the only exception is send where we don't
		 * want to block transaction commits for a long time, so
		 * we need to clone the commit root in order to avoid races
		 * with transaction commits that create a snapshot of one of
		 * the roots used by a send operation.
		 */
		if (p->need_commit_sem) {
2499
			down_read(&fs_info->commit_root_sem);
2500
			b = btrfs_clone_extent_buffer(root->commit_root);
2501
			up_read(&fs_info->commit_root_sem);
2502 2503 2504 2505 2506
			if (!b)
				return ERR_PTR(-ENOMEM);

		} else {
			b = root->commit_root;
D
David Sterba 已提交
2507
			atomic_inc(&b->refs);
2508 2509
		}
		level = btrfs_header_level(b);
2510 2511 2512 2513 2514
		/*
		 * Ensure that all callers have set skip_locking when
		 * p->search_commit_root = 1.
		 */
		ASSERT(p->skip_locking == 1);
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525

		goto out;
	}

	if (p->skip_locking) {
		b = btrfs_root_node(root);
		level = btrfs_header_level(b);
		goto out;
	}

	/*
2526 2527
	 * If the level is set to maximum, we can skip trying to get the read
	 * lock.
2528
	 */
2529 2530 2531 2532 2533
	if (write_lock_level < BTRFS_MAX_LEVEL) {
		/*
		 * We don't know the level of the root node until we actually
		 * have it read locked
		 */
J
Josef Bacik 已提交
2534
		b = __btrfs_read_lock_root_node(root, p->recurse);
2535 2536 2537 2538 2539 2540 2541 2542
		level = btrfs_header_level(b);
		if (level > write_lock_level)
			goto out;

		/* Whoops, must trade for write lock */
		btrfs_tree_read_unlock(b);
		free_extent_buffer(b);
	}
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560

	b = btrfs_lock_root_node(root);
	root_lock = BTRFS_WRITE_LOCK;

	/* The level might have changed, check again */
	level = btrfs_header_level(b);

out:
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
	/*
	 * Callers are responsible for dropping b's references.
	 */
	return b;
}


C
Chris Mason 已提交
2561
/*
2562 2563
 * btrfs_search_slot - look for a key in a tree and perform necessary
 * modifications to preserve tree invariants.
C
Chris Mason 已提交
2564
 *
2565 2566 2567 2568 2569 2570 2571 2572
 * @trans:	Handle of transaction, used when modifying the tree
 * @p:		Holds all btree nodes along the search path
 * @root:	The root node of the tree
 * @key:	The key we are looking for
 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
 *		deletions it's -1. 0 for plain searches
 * @cow:	boolean should CoW operations be performed. Must always be 1
 *		when modifying the tree.
C
Chris Mason 已提交
2573
 *
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 *
 * If @key is found, 0 is returned and you can find the item in the leaf level
 * of the path (level 0)
 *
 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 * points to the slot where it should be inserted
 *
 * If an error is encountered while searching the tree a negative error number
 * is returned
C
Chris Mason 已提交
2585
 */
2586 2587 2588
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2589
{
2590
	struct extent_buffer *b;
2591 2592
	int slot;
	int ret;
2593
	int err;
2594
	int level;
2595
	int lowest_unlock = 1;
2596 2597
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2598
	u8 lowest_level = 0;
2599
	int min_write_lock_level;
2600
	int prev_cmp;
2601

2602
	lowest_level = p->lowest_level;
2603
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2604
	WARN_ON(p->nodes[0] != NULL);
2605
	BUG_ON(!cow && ins_len);
2606

2607
	if (ins_len < 0) {
2608
		lowest_unlock = 2;
2609

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2626
	if (cow && (p->keep_locks || p->lowest_level))
2627 2628
		write_lock_level = BTRFS_MAX_LEVEL;

2629 2630
	min_write_lock_level = write_lock_level;

2631
again:
2632
	prev_cmp = -1;
2633
	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2634 2635 2636 2637
	if (IS_ERR(b)) {
		ret = PTR_ERR(b);
		goto done;
	}
2638

2639
	while (b) {
2640 2641
		int dec = 0;

2642
		level = btrfs_header_level(b);
2643

C
Chris Mason 已提交
2644
		if (cow) {
2645 2646
			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));

2647 2648 2649 2650 2651
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2652 2653
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2654
				goto cow_done;
2655
			}
2656

2657 2658 2659 2660
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2661 2662 2663 2664
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2665 2666 2667 2668 2669
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2670 2671
			if (last_level)
				err = btrfs_cow_block(trans, root, b, NULL, 0,
2672 2673
						      &b,
						      BTRFS_NESTING_COW);
2674 2675 2676
			else
				err = btrfs_cow_block(trans, root, b,
						      p->nodes[level + 1],
2677 2678
						      p->slots[level + 1], &b,
						      BTRFS_NESTING_COW);
2679 2680
			if (err) {
				ret = err;
2681
				goto done;
2682
			}
C
Chris Mason 已提交
2683
		}
2684
cow_done:
2685
		p->nodes[level] = b;
L
Liu Bo 已提交
2686 2687 2688 2689
		/*
		 * Leave path with blocking locks to avoid massive
		 * lock context switch, this is made on purpose.
		 */
2690 2691 2692 2693 2694 2695 2696

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2697 2698 2699 2700
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2701
		 */
2702 2703 2704 2705 2706 2707 2708 2709
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2710

N
Nikolay Borisov 已提交
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
		/*
		 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
		 * we can safely assume the target key will always be in slot 0
		 * on lower levels due to the invariants BTRFS' btree provides,
		 * namely that a btrfs_key_ptr entry always points to the
		 * lowest key in the child node, thus we can skip searching
		 * lower levels
		 */
		if (prev_cmp == 0) {
			slot = 0;
			ret = 0;
		} else {
			ret = btrfs_bin_search(b, key, &slot);
			prev_cmp = ret;
			if (ret < 0)
				goto done;
		}
2728

2729
		if (level == 0) {
2730
			p->slots[level] = slot;
2731
			if (ins_len > 0 &&
2732
			    btrfs_leaf_free_space(b) < ins_len) {
2733 2734 2735 2736 2737 2738
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2739 2740
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2741

2742 2743 2744
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2745 2746
					goto done;
				}
C
Chris Mason 已提交
2747
			}
2748
			if (!p->search_for_split)
2749
				unlock_up(p, level, lowest_unlock,
2750
					  min_write_lock_level, NULL);
2751
			goto done;
2752
		}
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
		if (ret && slot > 0) {
			dec = 1;
			slot--;
		}
		p->slots[level] = slot;
		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
					     &write_lock_level);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
			goto done;
		}
		b = p->nodes[level];
		slot = p->slots[level];

		/*
		 * Slot 0 is special, if we change the key we have to update
		 * the parent pointer which means we must have a write lock on
		 * the parent
		 */
		if (slot == 0 && ins_len && write_lock_level < level + 1) {
			write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

		unlock_up(p, level, lowest_unlock, min_write_lock_level,
			  &write_lock_level);

		if (level == lowest_level) {
			if (dec)
				p->slots[level]++;
			goto done;
		}

		err = read_block_for_search(root, p, &b, level, slot, key);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
			goto done;
		}

		if (!p->skip_locking) {
			level = btrfs_header_level(b);
			if (level <= write_lock_level) {
2800
				btrfs_tree_lock(b);
2801 2802
				p->locks[level] = BTRFS_WRITE_LOCK;
			} else {
2803 2804
				__btrfs_tree_read_lock(b, BTRFS_NESTING_NORMAL,
						       p->recurse);
2805 2806 2807 2808
				p->locks[level] = BTRFS_READ_LOCK;
			}
			p->nodes[level] = b;
		}
2809
	}
2810 2811
	ret = 1;
done:
2812
	if (ret < 0 && !p->skip_release_on_error)
2813
		btrfs_release_path(p);
2814
	return ret;
2815 2816
}

J
Jan Schmidt 已提交
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2828
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2829 2830
			  struct btrfs_path *p, u64 time_seq)
{
2831
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
2850 2851 2852 2853
	if (!b) {
		ret = -EIO;
		goto done;
	}
J
Jan Schmidt 已提交
2854 2855 2856 2857
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
2858 2859
		int dec = 0;

J
Jan Schmidt 已提交
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
		level = btrfs_header_level(b);
		p->nodes[level] = b;

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

N
Nikolay Borisov 已提交
2871
		ret = btrfs_bin_search(b, key, &slot);
2872 2873
		if (ret < 0)
			goto done;
J
Jan Schmidt 已提交
2874

2875
		if (level == 0) {
J
Jan Schmidt 已提交
2876 2877
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
2878 2879
			goto done;
		}
J
Jan Schmidt 已提交
2880

2881 2882 2883 2884 2885 2886
		if (ret && slot > 0) {
			dec = 1;
			slot--;
		}
		p->slots[level] = slot;
		unlock_up(p, level, lowest_unlock, 0, NULL);
J
Jan Schmidt 已提交
2887

2888 2889 2890 2891 2892
		if (level == lowest_level) {
			if (dec)
				p->slots[level]++;
			goto done;
		}
J
Jan Schmidt 已提交
2893

2894 2895 2896 2897 2898
		err = read_block_for_search(root, p, &b, level, slot, key);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
J
Jan Schmidt 已提交
2899 2900
			goto done;
		}
2901 2902

		level = btrfs_header_level(b);
2903
		btrfs_tree_read_lock(b);
2904 2905 2906 2907 2908 2909 2910
		b = tree_mod_log_rewind(fs_info, p, b, time_seq);
		if (!b) {
			ret = -ENOMEM;
			goto done;
		}
		p->locks[level] = BTRFS_READ_LOCK;
		p->nodes[level] = b;
J
Jan Schmidt 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919
	}
	ret = 1;
done:
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
2933 2934 2935
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
2970 2971 2972 2973 2974
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
2975 2976 2977
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
2978
				return 0;
2979
			}
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
2991 2992 2993 2994 2995 2996
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
2997 2998 2999 3000 3001 3002
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3003
 *
C
Chris Mason 已提交
3004
 */
3005
static void fixup_low_keys(struct btrfs_path *path,
3006
			   struct btrfs_disk_key *key, int level)
3007 3008
{
	int i;
3009
	struct extent_buffer *t;
3010
	int ret;
3011

C
Chris Mason 已提交
3012
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3013
		int tslot = path->slots[i];
3014

3015
		if (!path->nodes[i])
3016
			break;
3017
		t = path->nodes[i];
3018 3019 3020
		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
				GFP_ATOMIC);
		BUG_ON(ret < 0);
3021
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3022
		btrfs_mark_buffer_dirty(path->nodes[i]);
3023 3024 3025 3026 3027
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3028 3029 3030 3031 3032 3033
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3034 3035
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3036
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
			btrfs_crit(fs_info,
		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
				   slot, btrfs_disk_key_objectid(&disk_key),
				   btrfs_disk_key_type(&disk_key),
				   btrfs_disk_key_offset(&disk_key),
				   new_key->objectid, new_key->type,
				   new_key->offset);
			btrfs_print_leaf(eb);
			BUG();
		}
Z
Zheng Yan 已提交
3057 3058 3059
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
			btrfs_crit(fs_info,
		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
				   slot, btrfs_disk_key_objectid(&disk_key),
				   btrfs_disk_key_type(&disk_key),
				   btrfs_disk_key_offset(&disk_key),
				   new_key->objectid, new_key->type,
				   new_key->offset);
			btrfs_print_leaf(eb);
			BUG();
		}
Z
Zheng Yan 已提交
3071 3072 3073 3074 3075 3076
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3077
		fixup_low_keys(path, &disk_key, 1);
Z
Zheng Yan 已提交
3078 3079
}

3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
/*
 * Check key order of two sibling extent buffers.
 *
 * Return true if something is wrong.
 * Return false if everything is fine.
 *
 * Tree-checker only works inside one tree block, thus the following
 * corruption can not be detected by tree-checker:
 *
 * Leaf @left			| Leaf @right
 * --------------------------------------------------------------
 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
 *
 * Key f6 in leaf @left itself is valid, but not valid when the next
 * key in leaf @right is 7.
 * This can only be checked at tree block merge time.
 * And since tree checker has ensured all key order in each tree block
 * is correct, we only need to bother the last key of @left and the first
 * key of @right.
 */
static bool check_sibling_keys(struct extent_buffer *left,
			       struct extent_buffer *right)
{
	struct btrfs_key left_last;
	struct btrfs_key right_first;
	int level = btrfs_header_level(left);
	int nr_left = btrfs_header_nritems(left);
	int nr_right = btrfs_header_nritems(right);

	/* No key to check in one of the tree blocks */
	if (!nr_left || !nr_right)
		return false;

	if (level) {
		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
		btrfs_node_key_to_cpu(right, &right_first, 0);
	} else {
		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
		btrfs_item_key_to_cpu(right, &right_first, 0);
	}

	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
		btrfs_crit(left->fs_info,
"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
			   left_last.objectid, left_last.type,
			   left_last.offset, right_first.objectid,
			   right_first.type, right_first.offset);
		return true;
	}
	return false;
}

C
Chris Mason 已提交
3132 3133
/*
 * try to push data from one node into the next node left in the
3134
 * tree.
C
Chris Mason 已提交
3135 3136 3137
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3138
 */
3139
static int push_node_left(struct btrfs_trans_handle *trans,
3140
			  struct extent_buffer *dst,
3141
			  struct extent_buffer *src, int empty)
3142
{
3143
	struct btrfs_fs_info *fs_info = trans->fs_info;
3144
	int push_items = 0;
3145 3146
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3147
	int ret = 0;
3148

3149 3150
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3151
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3152 3153
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3154

3155
	if (!empty && src_nritems <= 8)
3156 3157
		return 1;

C
Chris Mason 已提交
3158
	if (push_items <= 0)
3159 3160
		return 1;

3161
	if (empty) {
3162
		push_items = min(src_nritems, push_items);
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3175

3176 3177 3178 3179 3180 3181
	/* dst is the left eb, src is the middle eb */
	if (check_sibling_keys(dst, src)) {
		ret = -EUCLEAN;
		btrfs_abort_transaction(trans, ret);
		return ret;
	}
3182
	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3183
	if (ret) {
3184
		btrfs_abort_transaction(trans, ret);
3185 3186
		return ret;
	}
3187 3188 3189
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3190
			   push_items * sizeof(struct btrfs_key_ptr));
3191

3192
	if (push_items < src_nritems) {
3193
		/*
3194 3195
		 * Don't call tree_mod_log_insert_move here, key removal was
		 * already fully logged by tree_mod_log_eb_copy above.
3196
		 */
3197 3198 3199 3200 3201 3202 3203 3204 3205
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3206

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3219 3220 3221
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3222
{
3223
	struct btrfs_fs_info *fs_info = trans->fs_info;
3224 3225 3226 3227 3228 3229
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3230 3231 3232
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3233 3234
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3235
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3236
	if (push_items <= 0)
3237
		return 1;
3238

C
Chris Mason 已提交
3239
	if (src_nritems < 4)
3240
		return 1;
3241 3242 3243

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3244
	if (max_push >= src_nritems)
3245
		return 1;
Y
Yan 已提交
3246

3247 3248 3249
	if (max_push < push_items)
		push_items = max_push;

3250 3251 3252 3253 3254 3255
	/* dst is the right eb, src is the middle eb */
	if (check_sibling_keys(src, dst)) {
		ret = -EUCLEAN;
		btrfs_abort_transaction(trans, ret);
		return ret;
	}
3256 3257
	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
	BUG_ON(ret < 0);
3258 3259 3260 3261
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3262

3263 3264
	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
				   push_items);
3265
	if (ret) {
3266
		btrfs_abort_transaction(trans, ret);
3267 3268
		return ret;
	}
3269 3270 3271
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3272
			   push_items * sizeof(struct btrfs_key_ptr));
3273

3274 3275
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3276

3277 3278
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3279

C
Chris Mason 已提交
3280
	return ret;
3281 3282
}

C
Chris Mason 已提交
3283 3284 3285 3286
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3287 3288
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3289
 */
C
Chris Mason 已提交
3290
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3291
			   struct btrfs_root *root,
3292
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3293
{
3294
	struct btrfs_fs_info *fs_info = root->fs_info;
3295
	u64 lower_gen;
3296 3297
	struct extent_buffer *lower;
	struct extent_buffer *c;
3298
	struct extent_buffer *old;
3299
	struct btrfs_disk_key lower_key;
3300
	int ret;
C
Chris Mason 已提交
3301 3302 3303 3304

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3305 3306 3307 3308 3309 3310
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3311
	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3312
					 root->node->start, 0,
3313
					 BTRFS_NESTING_NEW_ROOT);
3314 3315
	if (IS_ERR(c))
		return PTR_ERR(c);
3316

3317
	root_add_used(root, fs_info->nodesize);
3318

3319 3320
	btrfs_set_header_nritems(c, 1);
	btrfs_set_node_key(c, &lower_key, 0);
3321
	btrfs_set_node_blockptr(c, 0, lower->start);
3322
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3323
	WARN_ON(lower_gen != trans->transid);
3324 3325

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3326

3327
	btrfs_mark_buffer_dirty(c);
3328

3329
	old = root->node;
3330 3331
	ret = tree_mod_log_insert_root(root->node, c, 0);
	BUG_ON(ret < 0);
3332
	rcu_assign_pointer(root->node, c);
3333 3334 3335 3336

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3337
	add_root_to_dirty_list(root);
D
David Sterba 已提交
3338
	atomic_inc(&c->refs);
3339
	path->nodes[level] = c;
3340
	path->locks[level] = BTRFS_WRITE_LOCK;
C
Chris Mason 已提交
3341 3342 3343 3344
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3345 3346 3347
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3348
 *
C
Chris Mason 已提交
3349 3350 3351
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3352
static void insert_ptr(struct btrfs_trans_handle *trans,
3353
		       struct btrfs_path *path,
3354
		       struct btrfs_disk_key *key, u64 bytenr,
3355
		       int slot, int level)
C
Chris Mason 已提交
3356
{
3357
	struct extent_buffer *lower;
C
Chris Mason 已提交
3358
	int nritems;
3359
	int ret;
C
Chris Mason 已提交
3360 3361

	BUG_ON(!path->nodes[level]);
3362
	btrfs_assert_tree_locked(path->nodes[level]);
3363 3364
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3365
	BUG_ON(slot > nritems);
3366
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
C
Chris Mason 已提交
3367
	if (slot != nritems) {
3368 3369
		if (level) {
			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3370
					nritems - slot);
3371 3372
			BUG_ON(ret < 0);
		}
3373 3374 3375
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3376
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3377
	}
3378
	if (level) {
3379 3380
		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
				GFP_NOFS);
3381 3382
		BUG_ON(ret < 0);
	}
3383
	btrfs_set_node_key(lower, key, slot);
3384
	btrfs_set_node_blockptr(lower, slot, bytenr);
3385 3386
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3387 3388
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3389 3390
}

C
Chris Mason 已提交
3391 3392 3393 3394 3395 3396
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3397 3398
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3399
 */
3400 3401 3402
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3403
{
3404
	struct btrfs_fs_info *fs_info = root->fs_info;
3405 3406 3407
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3408
	int mid;
C
Chris Mason 已提交
3409
	int ret;
3410
	u32 c_nritems;
3411

3412
	c = path->nodes[level];
3413
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3414
	if (c == root->node) {
3415
		/*
3416 3417
		 * trying to split the root, lets make a new one
		 *
3418
		 * tree mod log: We don't log_removal old root in
3419 3420 3421 3422 3423
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3424
		 */
3425
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3426 3427
		if (ret)
			return ret;
3428
	} else {
3429
		ret = push_nodes_for_insert(trans, root, path, level);
3430 3431
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3432
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3433
			return 0;
3434 3435
		if (ret < 0)
			return ret;
3436
	}
3437

3438
	c_nritems = btrfs_header_nritems(c);
3439 3440
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3441

3442
	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3443
					     c->start, 0, BTRFS_NESTING_SPLIT);
3444 3445 3446
	if (IS_ERR(split))
		return PTR_ERR(split);

3447
	root_add_used(root, fs_info->nodesize);
3448
	ASSERT(btrfs_header_level(c) == level);
3449

3450
	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3451
	if (ret) {
3452
		btrfs_abort_transaction(trans, ret);
3453 3454
		return ret;
	}
3455 3456 3457 3458 3459 3460
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3461 3462
	ret = 0;

3463 3464 3465
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3466
	insert_ptr(trans, path, &disk_key, split->start,
3467
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3468

C
Chris Mason 已提交
3469
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3470
		path->slots[level] -= mid;
3471
		btrfs_tree_unlock(c);
3472 3473
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3474 3475
		path->slots[level + 1] += 1;
	} else {
3476
		btrfs_tree_unlock(split);
3477
		free_extent_buffer(split);
3478
	}
C
Chris Mason 已提交
3479
	return ret;
3480 3481
}

C
Chris Mason 已提交
3482 3483 3484 3485 3486
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3487
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3488
{
J
Josef Bacik 已提交
3489 3490
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
3491
	int data_len;
3492
	int nritems = btrfs_header_nritems(l);
3493
	int end = min(nritems, start + nr) - 1;
3494 3495 3496

	if (!nr)
		return 0;
3497 3498
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
3499 3500 3501
	data_len = btrfs_item_offset(l, start_item) +
		   btrfs_item_size(l, start_item);
	data_len = data_len - btrfs_item_offset(l, end_item);
C
Chris Mason 已提交
3502
	data_len += sizeof(struct btrfs_item) * nr;
3503
	WARN_ON(data_len < 0);
3504 3505 3506
	return data_len;
}

3507 3508 3509 3510 3511
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3512
noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3513
{
3514
	struct btrfs_fs_info *fs_info = leaf->fs_info;
3515 3516
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3517 3518

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3519
	if (ret < 0) {
3520 3521 3522 3523 3524
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3525 3526
	}
	return ret;
3527 3528
}

3529 3530 3531 3532
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3533
static noinline int __push_leaf_right(struct btrfs_path *path,
3534 3535
				      int data_size, int empty,
				      struct extent_buffer *right,
3536 3537
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3538
{
3539
	struct btrfs_fs_info *fs_info = right->fs_info;
3540
	struct extent_buffer *left = path->nodes[0];
3541
	struct extent_buffer *upper = path->nodes[1];
3542
	struct btrfs_map_token token;
3543
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3544
	int slot;
3545
	u32 i;
C
Chris Mason 已提交
3546 3547
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3548
	struct btrfs_item *item;
3549
	u32 nr;
3550
	u32 right_nritems;
3551
	u32 data_end;
3552
	u32 this_item_size;
C
Chris Mason 已提交
3553

3554 3555 3556
	if (empty)
		nr = 0;
	else
3557
		nr = max_t(u32, 1, min_slot);
3558

Z
Zheng Yan 已提交
3559
	if (path->slots[0] >= left_nritems)
3560
		push_space += data_size;
Z
Zheng Yan 已提交
3561

3562
	slot = path->slots[1];
3563 3564
	i = left_nritems - 1;
	while (i >= nr) {
3565
		item = btrfs_item_nr(i);
3566

Z
Zheng Yan 已提交
3567 3568 3569 3570
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3571 3572
				int space = btrfs_leaf_free_space(left);

Z
Zheng Yan 已提交
3573 3574 3575 3576 3577
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3578
		if (path->slots[0] == i)
3579
			push_space += data_size;
3580 3581 3582

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3583
			break;
Z
Zheng Yan 已提交
3584

C
Chris Mason 已提交
3585
		push_items++;
3586
		push_space += this_item_size + sizeof(*item);
3587 3588 3589
		if (i == 0)
			break;
		i--;
3590
	}
3591

3592 3593
	if (push_items == 0)
		goto out_unlock;
3594

J
Julia Lawall 已提交
3595
	WARN_ON(!empty && push_items == left_nritems);
3596

C
Chris Mason 已提交
3597
	/* push left to right */
3598
	right_nritems = btrfs_header_nritems(right);
3599

3600
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3601
	push_space -= leaf_data_end(left);
3602

C
Chris Mason 已提交
3603
	/* make room in the right data area */
3604
	data_end = leaf_data_end(right);
3605
	memmove_extent_buffer(right,
3606 3607
			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
			      BTRFS_LEAF_DATA_OFFSET + data_end,
3608
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3609

C
Chris Mason 已提交
3610
	/* copy from the left data area */
3611
	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3612
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3613
		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
C
Chris Mason 已提交
3614
		     push_space);
3615 3616 3617 3618 3619

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3620
	/* copy the items from left to right */
3621 3622 3623
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3624 3625

	/* update the item pointers */
3626
	btrfs_init_map_token(&token, right);
3627
	right_nritems += push_items;
3628
	btrfs_set_header_nritems(right, right_nritems);
3629
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3630
	for (i = 0; i < right_nritems; i++) {
3631
		item = btrfs_item_nr(i);
3632 3633
		push_space -= btrfs_token_item_size(&token, item);
		btrfs_set_token_item_offset(&token, item, push_space);
3634 3635
	}

3636
	left_nritems -= push_items;
3637
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3638

3639 3640
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3641
	else
3642
		btrfs_clean_tree_block(left);
3643

3644
	btrfs_mark_buffer_dirty(right);
3645

3646 3647
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3648
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3649

C
Chris Mason 已提交
3650
	/* then fixup the leaf pointer in the path */
3651 3652
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3653
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3654
			btrfs_clean_tree_block(path->nodes[0]);
3655
		btrfs_tree_unlock(path->nodes[0]);
3656 3657
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3658 3659
		path->slots[1] += 1;
	} else {
3660
		btrfs_tree_unlock(right);
3661
		free_extent_buffer(right);
C
Chris Mason 已提交
3662 3663
	}
	return 0;
3664 3665 3666 3667 3668

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3669
}
3670

3671 3672 3673 3674 3675 3676
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3677 3678 3679
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3680 3681
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3682 3683 3684
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
{
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3704
	right = btrfs_read_node_slot(upper, slot + 1);
3705 3706 3707 3708 3709
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3710 3711
		return 1;

3712
	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3713

3714
	free_space = btrfs_leaf_free_space(right);
3715 3716 3717 3718 3719
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
3720
			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3721 3722 3723
	if (ret)
		goto out_unlock;

3724
	free_space = btrfs_leaf_free_space(right);
3725 3726 3727 3728 3729 3730 3731
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3732 3733 3734 3735 3736 3737
	if (check_sibling_keys(left, right)) {
		ret = -EUCLEAN;
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
		return ret;
	}
3738 3739 3740 3741
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
3742
		 * no need to touch/dirty our left leaf. */
3743 3744 3745 3746 3747 3748 3749 3750
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3751
	return __push_leaf_right(path, min_data_size, empty,
3752
				right, free_space, left_nritems, min_slot);
3753 3754 3755 3756 3757 3758
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3759 3760 3761
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3762 3763 3764 3765
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3766
 */
3767
static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3768
				     int empty, struct extent_buffer *left,
3769 3770
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3771
{
3772
	struct btrfs_fs_info *fs_info = left->fs_info;
3773 3774
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3775 3776 3777
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3778
	struct btrfs_item *item;
3779
	u32 old_left_nritems;
3780
	u32 nr;
C
Chris Mason 已提交
3781
	int ret = 0;
3782 3783
	u32 this_item_size;
	u32 old_left_item_size;
3784 3785
	struct btrfs_map_token token;

3786
	if (empty)
3787
		nr = min(right_nritems, max_slot);
3788
	else
3789
		nr = min(right_nritems - 1, max_slot);
3790 3791

	for (i = 0; i < nr; i++) {
3792
		item = btrfs_item_nr(i);
3793

Z
Zheng Yan 已提交
3794 3795 3796 3797
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3798 3799
				int space = btrfs_leaf_free_space(right);

Z
Zheng Yan 已提交
3800 3801 3802 3803 3804
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3805
		if (path->slots[0] == i)
3806
			push_space += data_size;
3807 3808 3809

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3810
			break;
3811

3812
		push_items++;
3813 3814 3815
		push_space += this_item_size + sizeof(*item);
	}

3816
	if (push_items == 0) {
3817 3818
		ret = 1;
		goto out;
3819
	}
3820
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3821

3822
	/* push data from right to left */
3823 3824 3825 3826 3827
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3828
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3829
		     btrfs_item_offset_nr(right, push_items - 1);
3830

3831
	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3832
		     leaf_data_end(left) - push_space,
3833
		     BTRFS_LEAF_DATA_OFFSET +
3834
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3835
		     push_space);
3836
	old_left_nritems = btrfs_header_nritems(left);
3837
	BUG_ON(old_left_nritems <= 0);
3838

3839
	btrfs_init_map_token(&token, left);
3840
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3841
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3842
		u32 ioff;
3843

3844
		item = btrfs_item_nr(i);
3845

3846 3847 3848
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item,
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3849
	}
3850
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3851 3852

	/* fixup right node */
J
Julia Lawall 已提交
3853 3854
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3855
		       right_nritems);
3856 3857 3858

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3859
						  leaf_data_end(right);
3860
		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3861
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3862
				      BTRFS_LEAF_DATA_OFFSET +
3863
				      leaf_data_end(right), push_space);
3864 3865

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3866 3867 3868
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3869
	}
3870 3871

	btrfs_init_map_token(&token, right);
3872 3873
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3874
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3875
	for (i = 0; i < right_nritems; i++) {
3876
		item = btrfs_item_nr(i);
3877

3878 3879
		push_space = push_space - btrfs_token_item_size(&token, item);
		btrfs_set_token_item_offset(&token, item, push_space);
3880
	}
3881

3882
	btrfs_mark_buffer_dirty(left);
3883 3884
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3885
	else
3886
		btrfs_clean_tree_block(right);
3887

3888
	btrfs_item_key(right, &disk_key, 0);
3889
	fixup_low_keys(path, &disk_key, 1);
3890 3891 3892 3893

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3894
		btrfs_tree_unlock(path->nodes[0]);
3895 3896
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3897 3898
		path->slots[1] -= 1;
	} else {
3899
		btrfs_tree_unlock(left);
3900
		free_extent_buffer(left);
3901 3902
		path->slots[0] -= push_items;
	}
3903
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3904
	return ret;
3905 3906 3907 3908
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3909 3910
}

3911 3912 3913
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3914 3915 3916 3917
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3918 3919
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3920 3921
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
{
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3942
	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3943 3944 3945 3946 3947
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
3948 3949
		return 1;

3950
	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3951

3952
	free_space = btrfs_leaf_free_space(left);
3953 3954 3955 3956 3957 3958 3959
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
3960
			      path->nodes[1], slot - 1, &left,
3961
			      BTRFS_NESTING_LEFT_COW);
3962 3963
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
3964 3965
		if (ret == -ENOSPC)
			ret = 1;
3966 3967 3968
		goto out;
	}

3969
	free_space = btrfs_leaf_free_space(left);
3970 3971 3972 3973 3974
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

3975 3976 3977 3978
	if (check_sibling_keys(left, right)) {
		ret = -EUCLEAN;
		goto out;
	}
3979
	return __push_leaf_left(path, min_data_size,
3980 3981
			       empty, left, free_space, right_nritems,
			       max_slot);
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
3992 3993 3994 3995 3996
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
3997
{
3998
	struct btrfs_fs_info *fs_info = trans->fs_info;
3999 4000 4001 4002
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4003 4004
	struct btrfs_map_token token;

4005 4006
	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
4007
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4008 4009 4010 4011 4012 4013

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4014 4015
		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4016
		     leaf_data_end(l), data_copy_size);
4017

4018
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4019

4020
	btrfs_init_map_token(&token, right);
4021
	for (i = 0; i < nritems; i++) {
4022
		struct btrfs_item *item = btrfs_item_nr(i);
4023 4024
		u32 ioff;

4025 4026
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
4027 4028 4029 4030
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4031
	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4070
	int space_needed = data_size;
4071 4072

	slot = path->slots[0];
4073
	if (slot < btrfs_header_nritems(path->nodes[0]))
4074
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4075 4076 4077 4078 4079

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4080
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4095
	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4096 4097 4098 4099
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4100 4101
	space_needed = data_size;
	if (slot > 0)
4102
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4103
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4115 4116 4117
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4118 4119
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4120
 */
4121 4122
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4123
			       const struct btrfs_key *ins_key,
4124 4125
			       struct btrfs_path *path, int data_size,
			       int extend)
4126
{
4127
	struct btrfs_disk_key disk_key;
4128
	struct extent_buffer *l;
4129
	u32 nritems;
4130 4131
	int mid;
	int slot;
4132
	struct extent_buffer *right;
4133
	struct btrfs_fs_info *fs_info = root->fs_info;
4134
	int ret = 0;
C
Chris Mason 已提交
4135
	int wret;
4136
	int split;
4137
	int num_doubles = 0;
4138
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4139

4140 4141 4142
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4143
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4144 4145
		return -EOVERFLOW;

C
Chris Mason 已提交
4146
	/* first try to make some room by pushing left and right */
4147
	if (data_size && path->nodes[1]) {
4148 4149 4150
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4151
			space_needed -= btrfs_leaf_free_space(l);
4152 4153 4154

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4155
		if (wret < 0)
C
Chris Mason 已提交
4156
			return wret;
4157
		if (wret) {
4158 4159
			space_needed = data_size;
			if (slot > 0)
4160
				space_needed -= btrfs_leaf_free_space(l);
4161 4162
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4163 4164 4165 4166
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4167

4168
		/* did the pushes work? */
4169
		if (btrfs_leaf_free_space(l) >= data_size)
4170
			return 0;
4171
	}
C
Chris Mason 已提交
4172

C
Chris Mason 已提交
4173
	if (!path->nodes[1]) {
4174
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4175 4176 4177
		if (ret)
			return ret;
	}
4178
again:
4179
	split = 1;
4180
	l = path->nodes[0];
4181
	slot = path->slots[0];
4182
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4183
	mid = (nritems + 1) / 2;
4184

4185 4186 4187
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4188
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4189 4190 4191 4192 4193 4194
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4195
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4196 4197
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4198 4199 4200 4201 4202 4203
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4204
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4205 4206 4207 4208 4209 4210 4211 4212
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4213
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4214 4215
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4216
					split = 2;
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4227 4228 4229 4230 4231 4232 4233 4234
	/*
	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
	 * subclasses, which is 8 at the time of this patch, and we've maxed it
	 * out.  In the future we could add a
	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
	 * use BTRFS_NESTING_NEW_ROOT.
	 */
4235
	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4236 4237 4238
					     l->start, 0, num_doubles ?
					     BTRFS_NESTING_NEW_ROOT :
					     BTRFS_NESTING_SPLIT);
4239
	if (IS_ERR(right))
4240
		return PTR_ERR(right);
4241

4242
	root_add_used(root, fs_info->nodesize);
4243

4244 4245 4246
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4247
			insert_ptr(trans, path, &disk_key,
4248
				   right->start, path->slots[1] + 1, 1);
4249 4250 4251 4252 4253 4254 4255
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4256
			insert_ptr(trans, path, &disk_key,
4257
				   right->start, path->slots[1], 1);
4258 4259 4260 4261
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4262
			if (path->slots[1] == 0)
4263
				fixup_low_keys(path, &disk_key, 1);
4264
		}
4265 4266 4267 4268 4269
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4270
		return ret;
4271
	}
C
Chris Mason 已提交
4272

4273
	copy_for_split(trans, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4274

4275
	if (split == 2) {
4276 4277 4278
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4279
	}
4280

4281
	return 0;
4282 4283 4284 4285

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4286
	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4287 4288
		return 0;
	goto again;
4289 4290
}

Y
Yan, Zheng 已提交
4291 4292 4293
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4294
{
Y
Yan, Zheng 已提交
4295
	struct btrfs_key key;
4296
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4297 4298 4299 4300
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4301 4302

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4303 4304 4305 4306 4307
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4308
	if (btrfs_leaf_free_space(leaf) >= ins_len)
Y
Yan, Zheng 已提交
4309
		return 0;
4310 4311

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4312 4313 4314 4315 4316
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4317
	btrfs_release_path(path);
4318 4319

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4320 4321
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4322
	path->search_for_split = 0;
4323 4324
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4325 4326
	if (ret < 0)
		goto err;
4327

Y
Yan, Zheng 已提交
4328 4329
	ret = -EAGAIN;
	leaf = path->nodes[0];
4330 4331
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4332 4333
		goto err;

4334
	/* the leaf has  changed, it now has room.  return now */
4335
	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4336 4337
		goto err;

Y
Yan, Zheng 已提交
4338 4339 4340 4341 4342
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4343 4344
	}

Y
Yan, Zheng 已提交
4345
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4346 4347
	if (ret)
		goto err;
4348

Y
Yan, Zheng 已提交
4349
	path->keep_locks = 0;
4350
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4351 4352 4353 4354 4355 4356
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4357
static noinline int split_item(struct btrfs_path *path,
4358
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4371
	leaf = path->nodes[0];
4372
	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4373

4374
	item = btrfs_item_nr(path->slots[0]);
4375 4376 4377 4378
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4379 4380 4381
	if (!buf)
		return -ENOMEM;

4382 4383 4384
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4385
	slot = path->slots[0] + 1;
4386 4387 4388 4389
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4390 4391
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4392 4393 4394 4395 4396
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4397
	new_item = btrfs_item_nr(slot);
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4419
	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4420
	kfree(buf);
Y
Yan, Zheng 已提交
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4442
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4443 4444 4445 4446 4447 4448 4449 4450
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4451
	ret = split_item(path, new_key, split_offset);
4452 4453 4454
	return ret;
}

Y
Yan, Zheng 已提交
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4466
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4480
	setup_items_for_insert(root, path, new_key, &item_size, 1);
Y
Yan, Zheng 已提交
4481 4482 4483 4484 4485 4486 4487 4488
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4489 4490 4491 4492 4493 4494
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4495
void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4496 4497
{
	int slot;
4498 4499
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4500 4501 4502 4503 4504 4505
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4506 4507
	struct btrfs_map_token token;

4508
	leaf = path->nodes[0];
4509 4510 4511 4512
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4513
		return;
C
Chris Mason 已提交
4514

4515
	nritems = btrfs_header_nritems(leaf);
4516
	data_end = leaf_data_end(leaf);
C
Chris Mason 已提交
4517

4518
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4519

C
Chris Mason 已提交
4520 4521 4522 4523 4524 4525 4526 4527 4528
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
4529
	btrfs_init_map_token(&token, leaf);
C
Chris Mason 已提交
4530
	for (i = slot; i < nritems; i++) {
4531
		u32 ioff;
4532
		item = btrfs_item_nr(i);
4533

4534 4535
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item, ioff + size_diff);
C
Chris Mason 已提交
4536
	}
4537

C
Chris Mason 已提交
4538
	/* shift the data */
4539
	if (from_end) {
4540 4541
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4562
				      (unsigned long)fi,
4563
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4564 4565 4566
			}
		}

4567 4568
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4569 4570 4571 4572 4573 4574
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4575
			fixup_low_keys(path, &disk_key, 1);
4576
	}
4577

4578
	item = btrfs_item_nr(slot);
4579 4580
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4581

4582
	if (btrfs_leaf_free_space(leaf) < 0) {
4583
		btrfs_print_leaf(leaf);
C
Chris Mason 已提交
4584
		BUG();
4585
	}
C
Chris Mason 已提交
4586 4587
}

C
Chris Mason 已提交
4588
/*
S
Stefan Behrens 已提交
4589
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4590
 */
4591
void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4592 4593
{
	int slot;
4594 4595
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4596 4597 4598 4599 4600
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4601 4602
	struct btrfs_map_token token;

4603
	leaf = path->nodes[0];
4604

4605
	nritems = btrfs_header_nritems(leaf);
4606
	data_end = leaf_data_end(leaf);
4607

4608
	if (btrfs_leaf_free_space(leaf) < data_size) {
4609
		btrfs_print_leaf(leaf);
4610
		BUG();
4611
	}
4612
	slot = path->slots[0];
4613
	old_data = btrfs_item_end_nr(leaf, slot);
4614 4615

	BUG_ON(slot < 0);
4616
	if (slot >= nritems) {
4617
		btrfs_print_leaf(leaf);
4618
		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4619
			   slot, nritems);
4620
		BUG();
4621
	}
4622 4623 4624 4625 4626

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
4627
	btrfs_init_map_token(&token, leaf);
4628
	for (i = slot; i < nritems; i++) {
4629
		u32 ioff;
4630
		item = btrfs_item_nr(i);
4631

4632 4633
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item, ioff - data_size);
4634
	}
4635

4636
	/* shift the data */
4637 4638
	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4639
		      data_end, old_data - data_end);
4640

4641
	data_end = old_data;
4642
	old_size = btrfs_item_size_nr(leaf, slot);
4643
	item = btrfs_item_nr(slot);
4644 4645
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4646

4647
	if (btrfs_leaf_free_space(leaf) < 0) {
4648
		btrfs_print_leaf(leaf);
4649
		BUG();
4650
	}
4651 4652
}

4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
/**
 * setup_items_for_insert - Helper called before inserting one or more items
 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
 * in a function that doesn't call btrfs_search_slot
 *
 * @root:	root we are inserting items to
 * @path:	points to the leaf/slot where we are going to insert new items
 * @cpu_key:	array of keys for items to be inserted
 * @data_size:	size of the body of each item we are going to insert
 * @nr:		size of @cpu_key/@data_size arrays
C
Chris Mason 已提交
4663
 */
4664
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4665
			    const struct btrfs_key *cpu_key, u32 *data_size,
4666
			    int nr)
4667
{
4668
	struct btrfs_fs_info *fs_info = root->fs_info;
4669
	struct btrfs_item *item;
4670
	int i;
4671
	u32 nritems;
4672
	unsigned int data_end;
C
Chris Mason 已提交
4673
	struct btrfs_disk_key disk_key;
4674 4675
	struct extent_buffer *leaf;
	int slot;
4676
	struct btrfs_map_token token;
4677 4678 4679 4680 4681 4682
	u32 total_size;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];
	total_size = total_data + (nr * sizeof(struct btrfs_item));
4683

4684 4685
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4686
		fixup_low_keys(path, &disk_key, 1);
4687 4688 4689
	}
	btrfs_unlock_up_safe(path, 1);

4690
	leaf = path->nodes[0];
4691
	slot = path->slots[0];
C
Chris Mason 已提交
4692

4693
	nritems = btrfs_header_nritems(leaf);
4694
	data_end = leaf_data_end(leaf);
4695

4696
	if (btrfs_leaf_free_space(leaf) < total_size) {
4697
		btrfs_print_leaf(leaf);
4698
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4699
			   total_size, btrfs_leaf_free_space(leaf));
4700
		BUG();
4701
	}
4702

4703
	btrfs_init_map_token(&token, leaf);
4704
	if (slot != nritems) {
4705
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4706

4707
		if (old_data < data_end) {
4708
			btrfs_print_leaf(leaf);
4709 4710
			btrfs_crit(fs_info,
		"item at slot %d with data offset %u beyond data end of leaf %u",
J
Jeff Mahoney 已提交
4711
				   slot, old_data, data_end);
4712
			BUG();
4713
		}
4714 4715 4716 4717
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4718
		for (i = slot; i < nritems; i++) {
4719
			u32 ioff;
4720

4721
			item = btrfs_item_nr(i);
4722 4723 4724
			ioff = btrfs_token_item_offset(&token, item);
			btrfs_set_token_item_offset(&token, item,
						    ioff - total_data);
C
Chris Mason 已提交
4725
		}
4726
		/* shift the items */
4727
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4728
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4729
			      (nritems - slot) * sizeof(struct btrfs_item));
4730 4731

		/* shift the data */
4732 4733
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4734
			      data_end, old_data - data_end);
4735 4736
		data_end = old_data;
	}
4737

4738
	/* setup the item for the new data */
4739 4740 4741
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4742
		item = btrfs_item_nr(slot + i);
4743
		data_end -= data_size[i];
4744
		btrfs_set_token_item_offset(&token, item, data_end);
4745
		btrfs_set_token_item_size(&token, item, data_size[i]);
4746
	}
4747

4748
	btrfs_set_header_nritems(leaf, nritems + nr);
4749
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4750

4751
	if (btrfs_leaf_free_space(leaf) < 0) {
4752
		btrfs_print_leaf(leaf);
4753
		BUG();
4754
	}
4755 4756 4757 4758 4759 4760 4761 4762 4763
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4764
			    const struct btrfs_key *cpu_key, u32 *data_size,
4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4781
		return ret;
4782 4783 4784 4785

	slot = path->slots[0];
	BUG_ON(slot < 0);

4786
	setup_items_for_insert(root, path, cpu_key, data_size, nr);
4787
	return 0;
4788 4789 4790 4791 4792 4793
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4794 4795 4796
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4797 4798
{
	int ret = 0;
C
Chris Mason 已提交
4799
	struct btrfs_path *path;
4800 4801
	struct extent_buffer *leaf;
	unsigned long ptr;
4802

C
Chris Mason 已提交
4803
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4804 4805
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4806
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4807
	if (!ret) {
4808 4809 4810 4811
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4812
	}
C
Chris Mason 已提交
4813
	btrfs_free_path(path);
C
Chris Mason 已提交
4814
	return ret;
4815 4816
}

C
Chris Mason 已提交
4817
/*
C
Chris Mason 已提交
4818
 * delete the pointer from a given node.
C
Chris Mason 已提交
4819
 *
C
Chris Mason 已提交
4820 4821
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4822
 */
4823 4824
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4825
{
4826
	struct extent_buffer *parent = path->nodes[level];
4827
	u32 nritems;
4828
	int ret;
4829

4830
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4831
	if (slot != nritems - 1) {
4832 4833
		if (level) {
			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4834
					nritems - slot - 1);
4835 4836
			BUG_ON(ret < 0);
		}
4837 4838 4839
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4840 4841
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4842
	} else if (level) {
4843 4844
		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
				GFP_NOFS);
4845
		BUG_ON(ret < 0);
4846
	}
4847

4848
	nritems--;
4849
	btrfs_set_header_nritems(parent, nritems);
4850
	if (nritems == 0 && parent == root->node) {
4851
		BUG_ON(btrfs_header_level(root->node) != 1);
4852
		/* just turn the root into a leaf and break */
4853
		btrfs_set_header_level(root->node, 0);
4854
	} else if (slot == 0) {
4855 4856 4857
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4858
		fixup_low_keys(path, &disk_key, level + 1);
4859
	}
C
Chris Mason 已提交
4860
	btrfs_mark_buffer_dirty(parent);
4861 4862
}

4863 4864
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4865
 * path->nodes[1].
4866 4867 4868 4869 4870 4871 4872
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4873 4874 4875 4876
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4877
{
4878
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4879
	del_ptr(root, path, 1, path->slots[1]);
4880

4881 4882 4883 4884 4885 4886
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4887 4888
	root_sub_used(root, leaf->len);

D
David Sterba 已提交
4889
	atomic_inc(&leaf->refs);
4890
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4891
	free_extent_buffer_stale(leaf);
4892
}
C
Chris Mason 已提交
4893 4894 4895 4896
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4897 4898
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4899
{
4900
	struct btrfs_fs_info *fs_info = root->fs_info;
4901 4902
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4903 4904
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4905 4906
	int ret = 0;
	int wret;
4907
	int i;
4908
	u32 nritems;
4909

4910
	leaf = path->nodes[0];
4911 4912 4913 4914 4915
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4916
	nritems = btrfs_header_nritems(leaf);
4917

4918
	if (slot + nr != nritems) {
4919
		int data_end = leaf_data_end(leaf);
4920
		struct btrfs_map_token token;
4921

4922
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4923
			      data_end + dsize,
4924
			      BTRFS_LEAF_DATA_OFFSET + data_end,
4925
			      last_off - data_end);
4926

4927
		btrfs_init_map_token(&token, leaf);
4928
		for (i = slot + nr; i < nritems; i++) {
4929
			u32 ioff;
4930

4931
			item = btrfs_item_nr(i);
4932 4933
			ioff = btrfs_token_item_offset(&token, item);
			btrfs_set_token_item_offset(&token, item, ioff + dsize);
C
Chris Mason 已提交
4934
		}
4935

4936
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4937
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
4938
			      sizeof(struct btrfs_item) *
4939
			      (nritems - slot - nr));
4940
	}
4941 4942
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
4943

C
Chris Mason 已提交
4944
	/* delete the leaf if we've emptied it */
4945
	if (nritems == 0) {
4946 4947
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
4948
		} else {
4949
			btrfs_clean_tree_block(leaf);
4950
			btrfs_del_leaf(trans, root, path, leaf);
4951
		}
4952
	} else {
4953
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
4954
		if (slot == 0) {
4955 4956 4957
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
4958
			fixup_low_keys(path, &disk_key, 1);
C
Chris Mason 已提交
4959 4960
		}

C
Chris Mason 已提交
4961
		/* delete the leaf if it is mostly empty */
4962
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4963 4964 4965 4966
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
4967
			slot = path->slots[1];
D
David Sterba 已提交
4968
			atomic_inc(&leaf->refs);
4969

4970 4971
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
4972
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
4973
				ret = wret;
4974 4975 4976

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
4977 4978
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
4979
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
4980 4981
					ret = wret;
			}
4982 4983

			if (btrfs_header_nritems(leaf) == 0) {
4984
				path->slots[1] = slot;
4985
				btrfs_del_leaf(trans, root, path, leaf);
4986
				free_extent_buffer(leaf);
4987
				ret = 0;
C
Chris Mason 已提交
4988
			} else {
4989 4990 4991 4992 4993 4994 4995
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
4996
				free_extent_buffer(leaf);
4997
			}
4998
		} else {
4999
			btrfs_mark_buffer_dirty(leaf);
5000 5001
		}
	}
C
Chris Mason 已提交
5002
	return ret;
5003 5004
}

5005
/*
5006
 * search the tree again to find a leaf with lesser keys
5007 5008
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5009 5010 5011
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5012
 */
5013
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5014
{
5015 5016 5017
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5018

5019
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5020

5021
	if (key.offset > 0) {
5022
		key.offset--;
5023
	} else if (key.type > 0) {
5024
		key.type--;
5025 5026
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5027
		key.objectid--;
5028 5029 5030
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5031
		return 1;
5032
	}
5033

5034
	btrfs_release_path(path);
5035 5036 5037 5038 5039
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5051 5052
		return 0;
	return 1;
5053 5054
}

5055 5056
/*
 * A helper function to walk down the tree starting at min_key, and looking
5057 5058
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5059 5060 5061 5062 5063 5064 5065 5066
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5067 5068 5069 5070
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5071 5072 5073 5074
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5075
			 struct btrfs_path *path,
5076 5077 5078 5079 5080
			 u64 min_trans)
{
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5081
	int sret;
5082 5083 5084
	u32 nritems;
	int level;
	int ret = 1;
5085
	int keep_locks = path->keep_locks;
5086

5087
	path->keep_locks = 1;
5088
again:
5089
	cur = btrfs_read_lock_root_node(root);
5090
	level = btrfs_header_level(cur);
5091
	WARN_ON(path->nodes[level]);
5092
	path->nodes[level] = cur;
5093
	path->locks[level] = BTRFS_READ_LOCK;
5094 5095 5096 5097 5098

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5099
	while (1) {
5100 5101
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5102
		sret = btrfs_bin_search(cur, min_key, &slot);
5103 5104 5105 5106
		if (sret < 0) {
			ret = sret;
			goto out;
		}
5107

5108 5109
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5110 5111
			if (slot >= nritems)
				goto find_next_key;
5112 5113 5114 5115 5116
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5117 5118
		if (sret && slot > 0)
			slot--;
5119
		/*
5120
		 * check this node pointer against the min_trans parameters.
5121
		 * If it is too old, skip to the next one.
5122
		 */
C
Chris Mason 已提交
5123
		while (slot < nritems) {
5124
			u64 gen;
5125

5126 5127 5128 5129 5130
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5131
			break;
5132
		}
5133
find_next_key:
5134 5135 5136 5137 5138
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5139 5140
			path->slots[level] = slot;
			sret = btrfs_find_next_key(root, path, min_key, level,
5141
						  min_trans);
5142
			if (sret == 0) {
5143
				btrfs_release_path(path);
5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5156
		cur = btrfs_read_node_slot(cur, slot);
5157 5158 5159 5160
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5161

5162
		btrfs_tree_read_lock(cur);
5163

5164
		path->locks[level - 1] = BTRFS_READ_LOCK;
5165
		path->nodes[level - 1] = cur;
5166
		unlock_up(path, level, 1, 0, NULL);
5167 5168
	}
out:
5169 5170 5171
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5172
		memcpy(min_key, &found_key, sizeof(found_key));
5173
	}
5174 5175 5176 5177 5178 5179
	return ret;
}

/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5180
 * tree based on the current path and the min_trans parameters.
5181 5182 5183 5184 5185 5186 5187
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5188
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5189
			struct btrfs_key *key, int level, u64 min_trans)
5190 5191 5192 5193
{
	int slot;
	struct extent_buffer *c;

5194
	WARN_ON(!path->keep_locks && !path->skip_locking);
C
Chris Mason 已提交
5195
	while (level < BTRFS_MAX_LEVEL) {
5196 5197 5198 5199 5200
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5201
next:
5202
		if (slot >= btrfs_header_nritems(c)) {
5203 5204 5205 5206 5207
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5208
				return 1;
5209

5210
			if (path->locks[level + 1] || path->skip_locking) {
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5222
			btrfs_release_path(path);
5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5235
		}
5236

5237 5238
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5239 5240 5241 5242 5243 5244 5245
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5246
			btrfs_node_key_to_cpu(c, key, slot);
5247
		}
5248 5249 5250 5251 5252
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5253
/*
5254
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5255 5256
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5257
 */
C
Chris Mason 已提交
5258
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5259 5260 5261 5262 5263 5264
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5265 5266
{
	int slot;
5267
	int level;
5268
	struct extent_buffer *c;
5269
	struct extent_buffer *next;
5270 5271 5272
	struct btrfs_key key;
	u32 nritems;
	int ret;
5273
	int next_rw_lock = 0;
5274 5275

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5276
	if (nritems == 0)
5277 5278
		return 1;

5279 5280 5281 5282
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5283
	next_rw_lock = 0;
5284
	btrfs_release_path(path);
5285

5286
	path->keep_locks = 1;
5287

J
Jan Schmidt 已提交
5288 5289 5290 5291
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5292 5293 5294 5295 5296
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5297
	nritems = btrfs_header_nritems(path->nodes[0]);
5298 5299 5300 5301 5302 5303
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5304
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5305 5306
		if (ret == 0)
			path->slots[0]++;
5307
		ret = 0;
5308 5309
		goto done;
	}
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5328

C
Chris Mason 已提交
5329
	while (level < BTRFS_MAX_LEVEL) {
5330 5331 5332 5333
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5334

5335 5336
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5337
		if (slot >= btrfs_header_nritems(c)) {
5338
			level++;
5339 5340 5341 5342
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5343 5344
			continue;
		}
5345

5346
		if (next) {
5347
			btrfs_tree_unlock_rw(next, next_rw_lock);
5348
			free_extent_buffer(next);
5349
		}
5350

5351
		next = c;
5352
		next_rw_lock = path->locks[level];
5353
		ret = read_block_for_search(root, path, &next, level,
5354
					    slot, &key);
5355 5356
		if (ret == -EAGAIN)
			goto again;
5357

5358
		if (ret < 0) {
5359
			btrfs_release_path(path);
5360 5361 5362
			goto done;
		}

5363
		if (!path->skip_locking) {
5364
			ret = btrfs_try_tree_read_lock(next);
5365 5366 5367 5368 5369 5370 5371 5372
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5373
				free_extent_buffer(next);
5374 5375 5376 5377
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5378
			if (!ret) {
5379
				__btrfs_tree_read_lock(next,
5380
						       BTRFS_NESTING_RIGHT,
5381
						       path->recurse);
5382
			}
5383
			next_rw_lock = BTRFS_READ_LOCK;
5384
		}
5385 5386 5387
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5388
	while (1) {
5389 5390
		level--;
		c = path->nodes[level];
5391
		if (path->locks[level])
5392
			btrfs_tree_unlock_rw(c, path->locks[level]);
5393

5394
		free_extent_buffer(c);
5395 5396
		path->nodes[level] = next;
		path->slots[level] = 0;
5397
		if (!path->skip_locking)
5398
			path->locks[level] = next_rw_lock;
5399 5400
		if (!level)
			break;
5401

5402
		ret = read_block_for_search(root, path, &next, level,
5403
					    0, &key);
5404 5405 5406
		if (ret == -EAGAIN)
			goto again;

5407
		if (ret < 0) {
5408
			btrfs_release_path(path);
5409 5410 5411
			goto done;
		}

5412
		if (!path->skip_locking) {
5413 5414
			__btrfs_tree_read_lock(next, BTRFS_NESTING_RIGHT,
					       path->recurse);
5415
			next_rw_lock = BTRFS_READ_LOCK;
5416
		}
5417
	}
5418
	ret = 0;
5419
done:
5420
	unlock_up(path, 0, 1, 0, NULL);
5421 5422

	return ret;
5423
}
5424

5425 5426 5427 5428 5429 5430
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5431 5432 5433 5434 5435 5436
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5437
	u32 nritems;
5438 5439
	int ret;

C
Chris Mason 已提交
5440
	while (1) {
5441 5442 5443 5444 5445 5446 5447 5448
		if (path->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5449 5450 5451 5452 5453 5454
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5455
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5456 5457
		if (found_key.objectid < min_objectid)
			break;
5458 5459
		if (found_key.type == type)
			return 0;
5460 5461 5462
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5463 5464 5465
	}
	return 1;
}
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}