vmscan.c 121.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/pagevec.h>
50
#include <linux/prefetch.h>
51
#include <linux/printk.h>
52
#include <linux/dax.h>
53
#include <linux/psi.h>
L
Linus Torvalds 已提交
54 55 56 57 58

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
59
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
60

61 62
#include "internal.h"

63 64 65
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
66
struct scan_control {
67 68 69
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

70 71 72 73 74
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
75

76 77 78 79 80
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
81

82
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
83 84 85 86 87 88 89 90
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

91 92 93
	/* e.g. boosted watermark reclaim leaves slabs alone */
	unsigned int may_shrinkslab:1;

94 95 96 97 98 99 100
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
101

102 103 104 105 106
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

G
Greg Thelen 已提交
107 108 109 110 111 112 113 114 115 116 117 118
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

119 120 121 122 123
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
124 125 126 127 128 129 130 131 132 133

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
168 169 170 171 172
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
173 174 175 176

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

177
#ifdef CONFIG_MEMCG_KMEM
178 179 180 181 182 183 184 185 186 187 188 189 190 191

/*
 * We allow subsystems to populate their shrinker-related
 * LRU lists before register_shrinker_prepared() is called
 * for the shrinker, since we don't want to impose
 * restrictions on their internal registration order.
 * In this case shrink_slab_memcg() may find corresponding
 * bit is set in the shrinkers map.
 *
 * This value is used by the function to detect registering
 * shrinkers and to skip do_shrink_slab() calls for them.
 */
#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)

192 193 194 195 196 197 198 199 200
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
201
	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
202 203 204
	if (id < 0)
		goto unlock;

205 206 207 208 209 210
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

211
		shrinker_nr_max = id + 1;
212
	}
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}
#else /* CONFIG_MEMCG_KMEM */
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}
#endif /* CONFIG_MEMCG_KMEM */

A
Andrew Morton 已提交
241
#ifdef CONFIG_MEMCG
242 243
static bool global_reclaim(struct scan_control *sc)
{
244
	return !sc->target_mem_cgroup;
245
}
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
267
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 269 270 271
		return true;
#endif
	return false;
}
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

static void set_memcg_congestion(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool congested)
{
	struct mem_cgroup_per_node *mn;

	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->congested, congested);
}

static bool memcg_congested(pg_data_t *pgdat,
			struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->congested);

}
295
#else
296 297 298 299
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
300 301 302 303 304

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
305 306 307 308 309 310 311 312 313 314 315 316

static inline void set_memcg_congestion(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool congested)
{
}

static inline bool memcg_congested(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;

}
317 318
#endif

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

337 338 339 340 341 342 343
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
344
{
345 346 347
	unsigned long lru_size;
	int zid;

348
	if (!mem_cgroup_disabled())
349 350 351
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
352

353 354 355
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
356

357 358 359 360 361 362 363 364 365 366 367 368
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
369 370 371

}

L
Linus Torvalds 已提交
372
/*
G
Glauber Costa 已提交
373
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
374
 */
375
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
376
{
377
	unsigned int size = sizeof(*shrinker->nr_deferred);
G
Glauber Costa 已提交
378 379 380 381 382 383 384

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
385 386 387 388 389 390

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

391
	return 0;
392 393 394 395 396

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
397 398 399 400
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
401 402 403 404 405 406
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

407 408 409
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
410

411 412
void register_shrinker_prepared(struct shrinker *shrinker)
{
413 414
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
415
#ifdef CONFIG_MEMCG_KMEM
416 417
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		idr_replace(&shrinker_idr, shrinker, shrinker->id);
418
#endif
419
	up_write(&shrinker_rwsem);
420 421 422 423 424 425 426 427 428
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
429
	return 0;
L
Linus Torvalds 已提交
430
}
431
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
432 433 434 435

/*
 * Remove one
 */
436
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
437
{
438 439
	if (!shrinker->nr_deferred)
		return;
440 441
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
442 443 444
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
445
	kfree(shrinker->nr_deferred);
446
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
447
}
448
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
449 450

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
451

452
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
453
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
454 455 456 457
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
458
	long freeable;
G
Glauber Costa 已提交
459 460 461 462 463
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
464
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
465

466 467 468
	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
		nid = 0;

469
	freeable = shrinker->count_objects(shrinker, shrinkctl);
470 471
	if (freeable == 0 || freeable == SHRINK_EMPTY)
		return freeable;
G
Glauber Costa 已提交
472 473 474 475 476 477 478 479 480

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
J
Johannes Weiner 已提交
481 482 483 484 485 486 487 488 489 490 491 492
	if (shrinker->seeks) {
		delta = freeable >> priority;
		delta *= 4;
		do_div(delta, shrinker->seeks);
	} else {
		/*
		 * These objects don't require any IO to create. Trim
		 * them aggressively under memory pressure to keep
		 * them from causing refetches in the IO caches.
		 */
		delta = freeable / 2;
	}
493

G
Glauber Costa 已提交
494 495
	total_scan += delta;
	if (total_scan < 0) {
496
		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
497
		       shrinker->scan_objects, total_scan);
498
		total_scan = freeable;
499 500 501
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
502 503 504 505 506 507 508

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
509
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
510 511 512 513 514
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
515 516
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
517 518 519 520 521 522

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
523 524
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
525 526

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
527
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
528

529 530 531 532 533 534 535 536 537 538 539
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
540
	 * than the total number of objects on slab (freeable), we must be
541 542 543 544
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
545
	       total_scan >= freeable) {
D
Dave Chinner 已提交
546
		unsigned long ret;
547
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
548

549
		shrinkctl->nr_to_scan = nr_to_scan;
550
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
551 552 553 554
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
555

556 557 558
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
559 560 561 562

		cond_resched();
	}

563 564 565 566
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
567 568 569 570 571
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
572 573
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
574 575 576 577
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

578
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
579
	return freed;
580 581
}

582 583 584 585 586
#ifdef CONFIG_MEMCG_KMEM
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	struct memcg_shrinker_map *map;
587 588
	unsigned long ret, freed = 0;
	int i;
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609

	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
		return 0;

	if (!down_read_trylock(&shrinker_rwsem))
		return 0;

	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
					true);
	if (unlikely(!map))
		goto unlock;

	for_each_set_bit(i, map->map, shrinker_nr_max) {
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
			.memcg = memcg,
		};
		struct shrinker *shrinker;

		shrinker = idr_find(&shrinker_idr, i);
610 611 612
		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
			if (!shrinker)
				clear_bit(i, map->map);
613 614 615 616
			continue;
		}

		ret = do_shrink_slab(&sc, shrinker, priority);
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
		if (ret == SHRINK_EMPTY) {
			clear_bit(i, map->map);
			/*
			 * After the shrinker reported that it had no objects to
			 * free, but before we cleared the corresponding bit in
			 * the memcg shrinker map, a new object might have been
			 * added. To make sure, we have the bit set in this
			 * case, we invoke the shrinker one more time and reset
			 * the bit if it reports that it is not empty anymore.
			 * The memory barrier here pairs with the barrier in
			 * memcg_set_shrinker_bit():
			 *
			 * list_lru_add()     shrink_slab_memcg()
			 *   list_add_tail()    clear_bit()
			 *   <MB>               <MB>
			 *   set_bit()          do_shrink_slab()
			 */
			smp_mb__after_atomic();
			ret = do_shrink_slab(&sc, shrinker, priority);
			if (ret == SHRINK_EMPTY)
				ret = 0;
			else
				memcg_set_shrinker_bit(memcg, nid, i);
		}
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
		freed += ret;

		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
	}
unlock:
	up_read(&shrinker_rwsem);
	return freed;
}
#else /* CONFIG_MEMCG_KMEM */
static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
			struct mem_cgroup *memcg, int priority)
{
	return 0;
}
#endif /* CONFIG_MEMCG_KMEM */

660
/**
661
 * shrink_slab - shrink slab caches
662 663
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
664
 * @memcg: memory cgroup whose slab caches to target
665
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
666
 *
667
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
668
 *
669 670
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
671
 *
672 673
 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 * are called only if it is the root cgroup.
674
 *
675 676
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
677
 *
678
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
679
 */
680 681
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
682
				 int priority)
L
Linus Torvalds 已提交
683
{
684
	unsigned long ret, freed = 0;
L
Linus Torvalds 已提交
685 686
	struct shrinker *shrinker;

687
	if (!mem_cgroup_is_root(memcg))
688
		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
689

690
	if (!down_read_trylock(&shrinker_rwsem))
691
		goto out;
L
Linus Torvalds 已提交
692 693

	list_for_each_entry(shrinker, &shrinker_list, list) {
694 695 696
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
697
			.memcg = memcg,
698
		};
699

700 701 702 703
		ret = do_shrink_slab(&sc, shrinker, priority);
		if (ret == SHRINK_EMPTY)
			ret = 0;
		freed += ret;
704 705 706 707 708 709 710 711 712
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
713
	}
714

L
Linus Torvalds 已提交
715
	up_read(&shrinker_rwsem);
716 717
out:
	cond_resched();
D
Dave Chinner 已提交
718
	return freed;
L
Linus Torvalds 已提交
719 720
}

721 722 723 724 725 726 727 728
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
729
		memcg = mem_cgroup_iter(NULL, NULL, NULL);
730
		do {
731
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
732 733 734 735 736 737 738 739 740 741 742 743
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
744 745
static inline int is_page_cache_freeable(struct page *page)
{
746 747
	/*
	 * A freeable page cache page is referenced only by the caller
748 749
	 * that isolated the page, the page cache and optional buffer
	 * heads at page->private.
750
	 */
751
	int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
752
		HPAGE_PMD_NR : 1;
753
	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
L
Linus Torvalds 已提交
754 755
}

756
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
757
{
758
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
759
		return 1;
760
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
761
		return 1;
762
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
782
	lock_page(page);
783 784
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
785 786 787
	unlock_page(page);
}

788 789 790 791 792 793 794 795 796 797 798 799
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
800
/*
A
Andrew Morton 已提交
801 802
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
803
 */
804
static pageout_t pageout(struct page *page, struct address_space *mapping,
805
			 struct scan_control *sc)
L
Linus Torvalds 已提交
806 807 808 809 810 811 812 813
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
814
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
830
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
831 832
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
833
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
834 835 836 837 838 839 840
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
841
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
842 843 844 845 846 847 848
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
849 850
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
851 852 853 854 855 856 857
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
858
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
859 860 861
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
862

L
Linus Torvalds 已提交
863 864 865 866
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
867
		trace_mm_vmscan_writepage(page);
868
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
869 870 871 872 873 874
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

875
/*
N
Nick Piggin 已提交
876 877
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
878
 */
879 880
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
881
{
882
	unsigned long flags;
883
	int refcount;
884

885 886
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
887

M
Matthew Wilcox 已提交
888
	xa_lock_irqsave(&mapping->i_pages, flags);
889
	/*
N
Nick Piggin 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
909
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
910 911
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
912
	 * and thus under the i_pages lock, then this ordering is not required.
913
	 */
914 915 916 917 918
	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
		refcount = 1 + HPAGE_PMD_NR;
	else
		refcount = 2;
	if (!page_ref_freeze(page, refcount))
919
		goto cannot_free;
920
	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
N
Nick Piggin 已提交
921
	if (unlikely(PageDirty(page))) {
922
		page_ref_unfreeze(page, refcount);
923
		goto cannot_free;
N
Nick Piggin 已提交
924
	}
925 926 927

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
928
		mem_cgroup_swapout(page, swap);
929
		__delete_from_swap_cache(page, swap);
M
Matthew Wilcox 已提交
930
		xa_unlock_irqrestore(&mapping->i_pages, flags);
931
		put_swap_page(page, swap);
N
Nick Piggin 已提交
932
	} else {
933
		void (*freepage)(struct page *);
934
		void *shadow = NULL;
935 936

		freepage = mapping->a_ops->freepage;
937 938 939 940 941 942 943 944 945
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
946 947 948 949 950
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
951
		 * same address_space.
952 953
		 */
		if (reclaimed && page_is_file_cache(page) &&
954
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
955
			shadow = workingset_eviction(page);
J
Johannes Weiner 已提交
956
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
957
		xa_unlock_irqrestore(&mapping->i_pages, flags);
958 959 960

		if (freepage != NULL)
			freepage(page);
961 962 963 964 965
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
966
	xa_unlock_irqrestore(&mapping->i_pages, flags);
967 968 969
	return 0;
}

N
Nick Piggin 已提交
970 971 972 973 974 975 976 977
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
978
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
979 980 981 982 983
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
984
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
985 986 987 988 989
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
990 991 992 993 994 995 996 997 998 999 1000
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
1001
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
1002 1003 1004
	put_page(page);		/* drop ref from isolate */
}

1005 1006 1007
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
1008
	PAGEREF_KEEP,
1009 1010 1011 1012 1013 1014
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
1015
	int referenced_ptes, referenced_page;
1016 1017
	unsigned long vm_flags;

1018 1019
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
1020
	referenced_page = TestClearPageReferenced(page);
1021 1022 1023 1024 1025 1026 1027 1028

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

1029
	if (referenced_ptes) {
1030
		if (PageSwapBacked(page))
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

1048
		if (referenced_page || referenced_ptes > 1)
1049 1050
			return PAGEREF_ACTIVATE;

1051 1052 1053 1054 1055 1056
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

1057 1058
		return PAGEREF_KEEP;
	}
1059 1060

	/* Reclaim if clean, defer dirty pages to writeback */
1061
	if (referenced_page && !PageSwapBacked(page))
1062 1063 1064
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
1065 1066
}

1067 1068 1069 1070
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
1071 1072
	struct address_space *mapping;

1073 1074 1075 1076
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
1077 1078
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
1079 1080 1081 1082 1083 1084 1085 1086
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
1087 1088 1089 1090 1091 1092 1093 1094

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1095 1096
}

L
Linus Torvalds 已提交
1097
/*
A
Andrew Morton 已提交
1098
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
1099
 */
A
Andrew Morton 已提交
1100
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
1101
				      struct pglist_data *pgdat,
1102
				      struct scan_control *sc,
1103
				      enum ttu_flags ttu_flags,
1104
				      struct reclaim_stat *stat,
1105
				      bool force_reclaim)
L
Linus Torvalds 已提交
1106 1107
{
	LIST_HEAD(ret_pages);
1108
	LIST_HEAD(free_pages);
1109
	unsigned nr_reclaimed = 0;
1110
	unsigned pgactivate = 0;
L
Linus Torvalds 已提交
1111

1112
	memset(stat, 0, sizeof(*stat));
L
Linus Torvalds 已提交
1113 1114 1115 1116 1117 1118
	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
1119
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1120
		bool dirty, writeback;
L
Linus Torvalds 已提交
1121 1122 1123 1124 1125 1126

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1127
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1128 1129
			goto keep;

1130
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1131 1132

		sc->nr_scanned++;
1133

1134
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1135
			goto activate_locked;
L
Lee Schermerhorn 已提交
1136

1137
		if (!sc->may_unmap && page_mapped(page))
1138 1139
			goto keep_locked;

L
Linus Torvalds 已提交
1140
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
1141 1142
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
1143 1144
			sc->nr_scanned++;

1145 1146 1147
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1148
		/*
1149
		 * The number of dirty pages determines if a node is marked
1150 1151 1152 1153 1154 1155
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
1156
			stat->nr_dirty++;
1157 1158

		if (dirty && !writeback)
1159
			stat->nr_unqueued_dirty++;
1160

1161 1162 1163 1164 1165 1166
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1167
		mapping = page_mapping(page);
1168
		if (((dirty || writeback) && mapping &&
1169
		     inode_write_congested(mapping->host)) ||
1170
		    (writeback && PageReclaim(page)))
1171
			stat->nr_congested++;
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1184 1185
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1186
		 *
1187
		 * 2) Global or new memcg reclaim encounters a page that is
1188 1189 1190
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1191
		 *    reclaim and continue scanning.
1192
		 *
1193 1194
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1195 1196 1197 1198 1199
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1200
		 * 3) Legacy memcg encounters a page that is already marked
1201 1202 1203 1204
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1205 1206 1207 1208 1209 1210 1211 1212 1213
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1214
		 */
1215
		if (PageWriteback(page)) {
1216 1217 1218
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1219
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1220
				stat->nr_immediate++;
1221
				goto activate_locked;
1222 1223

			/* Case 2 above */
1224
			} else if (sane_reclaim(sc) ||
1225
			    !PageReclaim(page) || !may_enter_fs) {
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1238
				stat->nr_writeback++;
1239
				goto activate_locked;
1240 1241 1242

			/* Case 3 above */
			} else {
1243
				unlock_page(page);
1244
				wait_on_page_writeback(page);
1245 1246 1247
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1248
			}
1249
		}
L
Linus Torvalds 已提交
1250

1251 1252 1253
		if (!force_reclaim)
			references = page_check_references(page, sc);

1254 1255
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1256
			goto activate_locked;
1257
		case PAGEREF_KEEP:
1258
			stat->nr_ref_keep++;
1259
			goto keep_locked;
1260 1261 1262 1263
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1264 1265 1266 1267

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1268
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1269
		 */
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
						goto activate_locked;
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1295 1296 1297
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1298 1299 1300
					if (!add_to_swap(page))
						goto activate_locked;
				}
1301

1302
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1303

1304 1305 1306
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1307 1308 1309 1310
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1311
		}
L
Linus Torvalds 已提交
1312 1313 1314 1315 1316

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1317
		if (page_mapped(page)) {
1318 1319 1320 1321 1322
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1323
				stat->nr_unmap_fail++;
L
Linus Torvalds 已提交
1324 1325 1326 1327 1328
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1329
			/*
1330 1331 1332 1333 1334 1335 1336 1337
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1338
			 */
1339
			if (page_is_file_cache(page) &&
1340 1341
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1342 1343 1344 1345 1346 1347
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1348
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1349 1350
				SetPageReclaim(page);

1351
				goto activate_locked;
1352 1353
			}

1354
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1355
				goto keep_locked;
1356
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1357
				goto keep_locked;
1358
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1359 1360
				goto keep_locked;

1361 1362 1363 1364 1365 1366
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1367
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1368 1369 1370 1371 1372
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1373
				if (PageWriteback(page))
1374
					goto keep;
1375
				if (PageDirty(page))
L
Linus Torvalds 已提交
1376
					goto keep;
1377

L
Linus Torvalds 已提交
1378 1379 1380 1381
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1382
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1402
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1413
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1414 1415
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1432 1433
		}

S
Shaohua Li 已提交
1434 1435 1436 1437 1438 1439 1440 1441
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1442

S
Shaohua Li 已提交
1443
			count_vm_event(PGLAZYFREED);
1444
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1445 1446
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
1447 1448

		unlock_page(page);
N
Nick Piggin 已提交
1449
free_it:
1450
		nr_reclaimed++;
1451 1452 1453 1454 1455

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1456 1457 1458 1459 1460
		if (unlikely(PageTransHuge(page))) {
			mem_cgroup_uncharge(page);
			(*get_compound_page_dtor(page))(page);
		} else
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1461 1462 1463
		continue;

activate_locked:
1464
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1465 1466
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1467
			try_to_free_swap(page);
1468
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1469
		if (!PageMlocked(page)) {
1470
			int type = page_is_file_cache(page);
M
Minchan Kim 已提交
1471
			SetPageActive(page);
1472 1473
			pgactivate++;
			stat->nr_activate[type] += hpage_nr_pages(page);
1474
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1475
		}
L
Linus Torvalds 已提交
1476 1477 1478 1479
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1480
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1481
	}
1482

1483
	mem_cgroup_uncharge_list(&free_pages);
1484
	try_to_unmap_flush();
1485
	free_unref_page_list(&free_pages);
1486

L
Linus Torvalds 已提交
1487
	list_splice(&ret_pages, page_list);
1488
	count_vm_events(PGACTIVATE, pgactivate);
1489

1490
	return nr_reclaimed;
L
Linus Torvalds 已提交
1491 1492
}

1493 1494 1495 1496 1497 1498 1499 1500
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1501
	struct reclaim_stat dummy_stat;
1502
	unsigned long ret;
1503 1504 1505 1506
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1507
		if (page_is_file_cache(page) && !PageDirty(page) &&
1508
		    !__PageMovable(page)) {
1509 1510 1511 1512 1513
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1514
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1515
			TTU_IGNORE_ACCESS, &dummy_stat, true);
1516
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1517
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1518 1519 1520
	return ret;
}

A
Andy Whitcroft 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1531
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1532 1533 1534 1535 1536 1537 1538
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1539 1540
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1541 1542
		return ret;

A
Andy Whitcroft 已提交
1543
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1544

1545 1546 1547 1548 1549 1550 1551 1552
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1553
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1554 1555 1556 1557 1558 1559
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1560
			bool migrate_dirty;
1561 1562 1563 1564

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1565 1566 1567 1568 1569
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1570
			 */
1571 1572 1573
			if (!trylock_page(page))
				return ret;

1574
			mapping = page_mapping(page);
1575
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1576 1577
			unlock_page(page);
			if (!migrate_dirty)
1578 1579 1580
				return ret;
		}
	}
1581

1582 1583 1584
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1598 1599 1600 1601 1602 1603

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1604
			enum lru_list lru, unsigned long *nr_zone_taken)
1605 1606 1607 1608 1609 1610 1611 1612 1613
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1614
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1615
#endif
1616 1617
	}

1618 1619
}

1620 1621
/**
 * pgdat->lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1622 1623 1624 1625 1626 1627 1628 1629
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1630
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1631
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1632
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1633
 * @nr_scanned:	The number of pages that were scanned.
1634
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1635
 * @mode:	One of the LRU isolation modes
1636
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1637 1638 1639
 *
 * returns how many pages were moved onto *@dst.
 */
1640
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1641
		struct lruvec *lruvec, struct list_head *dst,
1642
		unsigned long *nr_scanned, struct scan_control *sc,
1643
		enum lru_list lru)
L
Linus Torvalds 已提交
1644
{
H
Hugh Dickins 已提交
1645
	struct list_head *src = &lruvec->lists[lru];
1646
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1647
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1648
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1649
	unsigned long skipped = 0;
1650
	unsigned long scan, total_scan, nr_pages;
1651
	LIST_HEAD(pages_skipped);
1652
	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
L
Linus Torvalds 已提交
1653

1654 1655 1656 1657
	scan = 0;
	for (total_scan = 0;
	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
	     total_scan++) {
A
Andy Whitcroft 已提交
1658 1659
		struct page *page;

L
Linus Torvalds 已提交
1660 1661 1662
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1663
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1664

1665 1666
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1667
			nr_skipped[page_zonenum(page)]++;
1668 1669 1670
			continue;
		}

1671 1672 1673 1674 1675 1676 1677
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
		 */
		scan++;
1678
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1679
		case 0:
M
Mel Gorman 已提交
1680 1681 1682
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1683 1684 1685 1686 1687 1688 1689
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1690

A
Andy Whitcroft 已提交
1691 1692 1693
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1694 1695
	}

1696 1697 1698 1699 1700 1701 1702
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1703 1704 1705
	if (!list_empty(&pages_skipped)) {
		int zid;

1706
		list_splice(&pages_skipped, src);
1707 1708 1709 1710 1711
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1712
			skipped += nr_skipped[zid];
1713 1714
		}
	}
1715
	*nr_scanned = total_scan;
1716
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1717
				    total_scan, skipped, nr_taken, mode, lru);
1718
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1719 1720 1721
	return nr_taken;
}

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1733 1734 1735
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1736 1737 1738 1739 1740
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1741
 *
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1752
	VM_BUG_ON_PAGE(!page_count(page), page);
1753
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1754

1755
	if (PageLRU(page)) {
1756
		pg_data_t *pgdat = page_pgdat(page);
1757
		struct lruvec *lruvec;
1758

1759 1760
		spin_lock_irq(&pgdat->lru_lock);
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1761
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1762
			int lru = page_lru(page);
1763
			get_page(page);
1764
			ClearPageLRU(page);
1765 1766
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1767
		}
1768
		spin_unlock_irq(&pgdat->lru_lock);
1769 1770 1771 1772
	}
	return ret;
}

1773
/*
F
Fengguang Wu 已提交
1774 1775 1776 1777 1778
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1779
 */
M
Mel Gorman 已提交
1780
static int too_many_isolated(struct pglist_data *pgdat, int file,
1781 1782 1783 1784 1785 1786 1787
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1788
	if (!sane_reclaim(sc))
1789 1790 1791
		return 0;

	if (file) {
M
Mel Gorman 已提交
1792 1793
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1794
	} else {
M
Mel Gorman 已提交
1795 1796
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1797 1798
	}

1799 1800 1801 1802 1803
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1804
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1805 1806
		inactive >>= 3;

1807 1808 1809
	return isolated > inactive;
}

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
/*
 * This moves pages from @list to corresponding LRU list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone_lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone_lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_refcount against each page.
 * But we had to alter page->flags anyway.
 *
 * Returns the number of pages moved to the given lruvec.
 */

static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
						     struct list_head *list)
1832
{
M
Mel Gorman 已提交
1833
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1834
	int nr_pages, nr_moved = 0;
1835
	LIST_HEAD(pages_to_free);
1836 1837
	struct page *page;
	enum lru_list lru;
1838

1839 1840
	while (!list_empty(list)) {
		page = lru_to_page(list);
1841
		VM_BUG_ON_PAGE(PageLRU(page), page);
1842
		if (unlikely(!page_evictable(page))) {
1843
			list_del(&page->lru);
M
Mel Gorman 已提交
1844
			spin_unlock_irq(&pgdat->lru_lock);
1845
			putback_lru_page(page);
M
Mel Gorman 已提交
1846
			spin_lock_irq(&pgdat->lru_lock);
1847 1848
			continue;
		}
M
Mel Gorman 已提交
1849
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1850

1851
		SetPageLRU(page);
1852
		lru = page_lru(page);
1853 1854 1855 1856

		nr_pages = hpage_nr_pages(page);
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
		list_move(&page->lru, &lruvec->lists[lru]);
1857

1858 1859 1860
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1861
			del_page_from_lru_list(page, lruvec, lru);
1862 1863

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1864
				spin_unlock_irq(&pgdat->lru_lock);
1865
				mem_cgroup_uncharge(page);
1866
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1867
				spin_lock_irq(&pgdat->lru_lock);
1868 1869
			} else
				list_add(&page->lru, &pages_to_free);
1870 1871
		} else {
			nr_moved += nr_pages;
1872 1873 1874
		}
	}

1875 1876 1877
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
1878 1879 1880
	list_splice(&pages_to_free, list);

	return nr_moved;
1881 1882
}

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1896
/*
1897
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1898
 * of reclaimed pages
L
Linus Torvalds 已提交
1899
 */
1900
static noinline_for_stack unsigned long
1901
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1902
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1903 1904
{
	LIST_HEAD(page_list);
1905
	unsigned long nr_scanned;
1906
	unsigned long nr_reclaimed = 0;
1907
	unsigned long nr_taken;
1908
	struct reclaim_stat stat;
1909
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1910
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1911
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1912
	bool stalled = false;
1913

M
Mel Gorman 已提交
1914
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1915 1916 1917 1918 1919 1920
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1921 1922 1923 1924 1925 1926

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1927
	lru_add_drain();
1928

M
Mel Gorman 已提交
1929
	spin_lock_irq(&pgdat->lru_lock);
1930

1931
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1932
				     &nr_scanned, sc, lru);
1933

M
Mel Gorman 已提交
1934
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1935
	reclaim_stat->recent_scanned[file] += nr_taken;
1936

1937 1938
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1939
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1940 1941 1942 1943
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
				   nr_scanned);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1944
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1945 1946
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
				   nr_scanned);
1947
	}
M
Mel Gorman 已提交
1948
	spin_unlock_irq(&pgdat->lru_lock);
1949

1950
	if (nr_taken == 0)
1951
		return 0;
A
Andy Whitcroft 已提交
1952

S
Shaohua Li 已提交
1953
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1954
				&stat, false);
1955

M
Mel Gorman 已提交
1956
	spin_lock_irq(&pgdat->lru_lock);
1957

1958 1959
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1960
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1961 1962 1963 1964
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
				   nr_reclaimed);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1965
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1966 1967
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
				   nr_reclaimed);
Y
Ying Han 已提交
1968
	}
1969 1970
	reclaim_stat->recent_rotated[0] = stat.nr_activate[0];
	reclaim_stat->recent_rotated[1] = stat.nr_activate[1];
N
Nick Piggin 已提交
1971

1972
	move_pages_to_lru(lruvec, &page_list);
1973

M
Mel Gorman 已提交
1974
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1975

M
Mel Gorman 已提交
1976
	spin_unlock_irq(&pgdat->lru_lock);
1977

1978
	mem_cgroup_uncharge_list(&page_list);
1979
	free_unref_page_list(&page_list);
1980

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

1995 1996 1997 1998 1999 2000 2001 2002
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
2003

M
Mel Gorman 已提交
2004
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2005
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2006
	return nr_reclaimed;
L
Linus Torvalds 已提交
2007 2008
}

H
Hugh Dickins 已提交
2009
static void shrink_active_list(unsigned long nr_to_scan,
2010
			       struct lruvec *lruvec,
2011
			       struct scan_control *sc,
2012
			       enum lru_list lru)
L
Linus Torvalds 已提交
2013
{
2014
	unsigned long nr_taken;
H
Hugh Dickins 已提交
2015
	unsigned long nr_scanned;
2016
	unsigned long vm_flags;
L
Linus Torvalds 已提交
2017
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2018
	LIST_HEAD(l_active);
2019
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
2020
	struct page *page;
2021
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2022 2023
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
2024
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
2025
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
2026 2027

	lru_add_drain();
2028

M
Mel Gorman 已提交
2029
	spin_lock_irq(&pgdat->lru_lock);
2030

2031
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2032
				     &nr_scanned, sc, lru);
2033

M
Mel Gorman 已提交
2034
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2035
	reclaim_stat->recent_scanned[file] += nr_taken;
2036

M
Mel Gorman 已提交
2037
	__count_vm_events(PGREFILL, nr_scanned);
2038
	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2039

M
Mel Gorman 已提交
2040
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2041 2042 2043 2044 2045

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2046

2047
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2048 2049 2050 2051
			putback_lru_page(page);
			continue;
		}

2052 2053 2054 2055 2056 2057 2058 2059
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2060 2061
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2062
			nr_rotated += hpage_nr_pages(page);
2063 2064 2065 2066 2067 2068 2069 2070 2071
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2072
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2073 2074 2075 2076
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2077

2078
		ClearPageActive(page);	/* we are de-activating */
2079
		SetPageWorkingset(page);
L
Linus Torvalds 已提交
2080 2081 2082
		list_add(&page->lru, &l_inactive);
	}

2083
	/*
2084
	 * Move pages back to the lru list.
2085
	 */
M
Mel Gorman 已提交
2086
	spin_lock_irq(&pgdat->lru_lock);
2087
	/*
2088 2089 2090
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2091
	 * get_scan_count.
2092
	 */
2093
	reclaim_stat->recent_rotated[file] += nr_rotated;
2094

2095 2096
	nr_activate = move_pages_to_lru(lruvec, &l_active);
	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2097 2098
	/* Keep all free pages in l_active list */
	list_splice(&l_inactive, &l_active);
2099 2100 2101 2102

	__count_vm_events(PGDEACTIVATE, nr_deactivate);
	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);

M
Mel Gorman 已提交
2103 2104
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2105

2106 2107
	mem_cgroup_uncharge_list(&l_active);
	free_unref_page_list(&l_active);
2108 2109
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2110 2111
}

2112 2113 2114
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2115
 *
2116 2117 2118
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2119
 *
2120 2121
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2122
 *
2123 2124
 * If that fails and refaulting is observed, the inactive list grows.
 *
2125
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2126
 * on this LRU, maintained by the pageout code. An inactive_ratio
2127
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2128
 *
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2139
 */
2140
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2141
				 struct scan_control *sc, bool actual_reclaim)
2142
{
2143
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2144 2145 2146 2147 2148
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2149
	unsigned long gb;
2150

2151 2152 2153 2154 2155 2156
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2157

2158 2159
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2160

2161 2162 2163 2164 2165
	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
2166
	refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2167 2168 2169 2170 2171 2172 2173 2174 2175
	if (file && actual_reclaim && lruvec->refaults != refaults) {
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2176

2177 2178 2179 2180 2181
	if (actual_reclaim)
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2182

2183
	return inactive * inactive_ratio < active;
2184 2185
}

2186
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2187
				 struct lruvec *lruvec, struct scan_control *sc)
2188
{
2189
	if (is_active_lru(lru)) {
2190
		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2191
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2192 2193 2194
		return 0;
	}

2195
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2196 2197
}

2198 2199 2200 2201 2202 2203 2204
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2205 2206 2207 2208 2209 2210
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2211 2212
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2213
 */
2214
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2215 2216
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2217
{
2218
	int swappiness = mem_cgroup_swappiness(memcg);
2219 2220 2221
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2222
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2223
	unsigned long anon_prio, file_prio;
2224
	enum scan_balance scan_balance;
2225
	unsigned long anon, file;
2226
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2227
	enum lru_list lru;
2228 2229

	/* If we have no swap space, do not bother scanning anon pages. */
2230
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2231
		scan_balance = SCAN_FILE;
2232 2233
		goto out;
	}
2234

2235 2236 2237 2238 2239 2240 2241
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2242
	if (!global_reclaim(sc) && !swappiness) {
2243
		scan_balance = SCAN_FILE;
2244 2245 2246 2247 2248 2249 2250 2251
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2252
	if (!sc->priority && swappiness) {
2253
		scan_balance = SCAN_EQUAL;
2254 2255 2256
		goto out;
	}

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2267 2268 2269 2270
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2271

M
Mel Gorman 已提交
2272 2273 2274 2275 2276 2277
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2278
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2279 2280 2281 2282
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2283

M
Mel Gorman 已提交
2284
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2285 2286 2287 2288 2289
			/*
			 * Force SCAN_ANON if there are enough inactive
			 * anonymous pages on the LRU in eligible zones.
			 * Otherwise, the small LRU gets thrashed.
			 */
2290
			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2291 2292 2293 2294 2295
			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
					>> sc->priority) {
				scan_balance = SCAN_ANON;
				goto out;
			}
2296 2297 2298
		}
	}

2299
	/*
2300 2301 2302 2303 2304 2305 2306
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2307
	 */
2308
	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2309
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2310
		scan_balance = SCAN_FILE;
2311 2312 2313
		goto out;
	}

2314 2315
	scan_balance = SCAN_FRACT;

2316 2317 2318 2319
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2320
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2321
	file_prio = 200 - anon_prio;
2322

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2334

2335 2336 2337 2338
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2339

M
Mel Gorman 已提交
2340
	spin_lock_irq(&pgdat->lru_lock);
2341 2342 2343
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2344 2345
	}

2346 2347 2348
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2349 2350 2351
	}

	/*
2352 2353 2354
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2355
	 */
2356
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2357
	ap /= reclaim_stat->recent_rotated[0] + 1;
2358

2359
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2360
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2361
	spin_unlock_irq(&pgdat->lru_lock);
2362

2363 2364 2365 2366
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2367 2368 2369 2370 2371
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2372

2373 2374 2375 2376 2377 2378 2379 2380
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2381

2382 2383 2384 2385 2386
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2387
			/*
2388 2389
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2390 2391
			 * Make sure we don't miss the last page
			 * because of a round-off error.
2392
			 */
2393 2394
			scan = DIV64_U64_ROUND_UP(scan * fraction[file],
						  denominator);
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2407
		}
2408 2409 2410

		*lru_pages += size;
		nr[lru] = scan;
2411
	}
2412
}
2413

2414
/*
2415
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2416
 */
2417
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2418
			      struct scan_control *sc, unsigned long *lru_pages)
2419
{
2420
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2421
	unsigned long nr[NR_LRU_LISTS];
2422
	unsigned long targets[NR_LRU_LISTS];
2423 2424 2425 2426 2427
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2428
	bool scan_adjusted;
2429

2430
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2431

2432 2433 2434
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2449 2450 2451
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2452 2453 2454
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2455 2456 2457 2458 2459 2460
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2461
							    lruvec, sc);
2462 2463
			}
		}
2464

2465 2466
		cond_resched();

2467 2468 2469 2470 2471
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2472
		 * requested. Ensure that the anon and file LRUs are scanned
2473 2474 2475 2476 2477 2478 2479
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2480 2481 2482 2483 2484 2485 2486 2487 2488
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2520 2521 2522 2523 2524 2525 2526 2527
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2528
	if (inactive_list_is_low(lruvec, false, sc, true))
2529 2530 2531 2532
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2533
/* Use reclaim/compaction for costly allocs or under memory pressure */
2534
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2535
{
2536
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2537
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2538
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2539 2540 2541 2542 2543
		return true;

	return false;
}

2544
/*
M
Mel Gorman 已提交
2545 2546 2547 2548 2549
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2550
 */
2551
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2552 2553 2554 2555 2556 2557
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2558
	int z;
2559 2560

	/* If not in reclaim/compaction mode, stop */
2561
	if (!in_reclaim_compaction(sc))
2562 2563
		return false;

2564
	/* Consider stopping depending on scan and reclaim activity */
2565
	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2566
		/*
2567
		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2568 2569
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
2570
		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2571 2572 2573 2574 2575
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
2576
		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2577 2578 2579 2580 2581 2582 2583 2584 2585
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2586 2587 2588 2589 2590

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2591
	pages_for_compaction = compact_gap(sc->order);
2592
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2593
	if (get_nr_swap_pages() > 0)
2594
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2595 2596 2597 2598 2599
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2600 2601
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2602
		if (!managed_zone(zone))
2603 2604 2605
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2606
		case COMPACT_SUCCESS:
2607 2608 2609 2610 2611 2612
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2613
	}
2614
	return true;
2615 2616
}

2617 2618 2619 2620 2621 2622
static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
		(memcg && memcg_congested(pgdat, memcg));
}

2623
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2624
{
2625
	struct reclaim_state *reclaim_state = current->reclaim_state;
2626
	unsigned long nr_reclaimed, nr_scanned;
2627
	bool reclaimable = false;
L
Linus Torvalds 已提交
2628

2629 2630 2631
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2632
			.pgdat = pgdat,
2633 2634
			.priority = sc->priority,
		};
2635
		unsigned long node_lru_pages = 0;
2636
		struct mem_cgroup *memcg;
2637

2638 2639
		memset(&sc->nr, 0, sizeof(sc->nr));

2640 2641
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2642

2643 2644
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2645
			unsigned long lru_pages;
2646
			unsigned long reclaimed;
2647
			unsigned long scanned;
2648

R
Roman Gushchin 已提交
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
			switch (mem_cgroup_protected(root, memcg)) {
			case MEMCG_PROT_MIN:
				/*
				 * Hard protection.
				 * If there is no reclaimable memory, OOM.
				 */
				continue;
			case MEMCG_PROT_LOW:
				/*
				 * Soft protection.
				 * Respect the protection only as long as
				 * there is an unprotected supply
				 * of reclaimable memory from other cgroups.
				 */
2663 2664
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2665
					continue;
2666
				}
2667
				memcg_memory_event(memcg, MEMCG_LOW);
R
Roman Gushchin 已提交
2668 2669 2670
				break;
			case MEMCG_PROT_NONE:
				break;
2671 2672
			}

2673
			reclaimed = sc->nr_reclaimed;
2674
			scanned = sc->nr_scanned;
2675 2676
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2677

2678 2679
			if (sc->may_shrinkslab) {
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2680
				    memcg, sc->priority);
2681
			}
2682

2683 2684 2685 2686 2687
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2688
			/*
2689 2690
			 * Kswapd have to scan all memory cgroups to fulfill
			 * the overall scan target for the node.
2691 2692 2693 2694 2695
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2696
			 */
2697
			if (!current_is_kswapd() &&
2698
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2699 2700 2701
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2702
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2703

2704 2705 2706
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2707 2708
		}

2709 2710
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2711 2712 2713
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2714 2715 2716
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
		if (current_is_kswapd()) {
			/*
			 * If reclaim is isolating dirty pages under writeback,
			 * it implies that the long-lived page allocation rate
			 * is exceeding the page laundering rate. Either the
			 * global limits are not being effective at throttling
			 * processes due to the page distribution throughout
			 * zones or there is heavy usage of a slow backing
			 * device. The only option is to throttle from reclaim
			 * context which is not ideal as there is no guarantee
			 * the dirtying process is throttled in the same way
			 * balance_dirty_pages() manages.
			 *
			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
			 * count the number of pages under pages flagged for
			 * immediate reclaim and stall if any are encountered
			 * in the nr_immediate check below.
			 */
			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759

			/*
			 * Tag a node as congested if all the dirty pages
			 * scanned were backed by a congested BDI and
			 * wait_iff_congested will stall.
			 */
			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
				set_bit(PGDAT_CONGESTED, &pgdat->flags);

			/* Allow kswapd to start writing pages during reclaim.*/
			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
				set_bit(PGDAT_DIRTY, &pgdat->flags);

			/*
			 * If kswapd scans pages marked marked for immediate
			 * reclaim and under writeback (nr_immediate), it
			 * implies that pages are cycling through the LRU
			 * faster than they are written so also forcibly stall.
			 */
			if (sc->nr.immediate)
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}

2760 2761 2762 2763 2764 2765 2766 2767
		/*
		 * Legacy memcg will stall in page writeback so avoid forcibly
		 * stalling in wait_iff_congested().
		 */
		if (!global_reclaim(sc) && sane_reclaim(sc) &&
		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
			set_memcg_congestion(pgdat, root, true);

2768 2769 2770 2771 2772 2773 2774
		/*
		 * Stall direct reclaim for IO completions if underlying BDIs
		 * and node is congested. Allow kswapd to continue until it
		 * starts encountering unqueued dirty pages or cycling through
		 * the LRU too quickly.
		 */
		if (!sc->hibernation_mode && !current_is_kswapd() &&
2775 2776
		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2777

2778
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2779
					 sc->nr_scanned - nr_scanned, sc));
2780

2781 2782 2783 2784 2785 2786 2787 2788 2789
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2790
	return reclaimable;
2791 2792
}

2793
/*
2794 2795 2796
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2797
 */
2798
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2799
{
M
Mel Gorman 已提交
2800
	unsigned long watermark;
2801
	enum compact_result suitable;
2802

2803 2804 2805 2806 2807 2808 2809
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2810

2811
	/*
2812 2813 2814 2815 2816 2817 2818
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2819
	 */
2820
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2821

2822
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2823 2824
}

L
Linus Torvalds 已提交
2825 2826 2827 2828 2829 2830 2831 2832
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2833
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2834
{
2835
	struct zoneref *z;
2836
	struct zone *zone;
2837 2838
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2839
	gfp_t orig_mask;
2840
	pg_data_t *last_pgdat = NULL;
2841

2842 2843 2844 2845 2846
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2847
	orig_mask = sc->gfp_mask;
2848
	if (buffer_heads_over_limit) {
2849
		sc->gfp_mask |= __GFP_HIGHMEM;
2850
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2851
	}
2852

2853
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2854
					sc->reclaim_idx, sc->nodemask) {
2855 2856 2857 2858
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2859
		if (global_reclaim(sc)) {
2860 2861
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2862
				continue;
2863

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2875
			    compaction_ready(zone, sc)) {
2876 2877
				sc->compaction_ready = true;
				continue;
2878
			}
2879

2880 2881 2882 2883 2884 2885 2886 2887 2888
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2889 2890 2891 2892 2893 2894 2895
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2896
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2897 2898 2899 2900
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2901
			/* need some check for avoid more shrink_zone() */
2902
		}
2903

2904 2905 2906 2907
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2908
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2909
	}
2910

2911 2912 2913 2914 2915
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2916
}
2917

2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2928
		refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2929 2930 2931 2932
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
2933 2934 2935 2936 2937 2938 2939 2940
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2941 2942 2943 2944
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2945 2946 2947
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2948
 */
2949
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2950
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2951
{
2952
	int initial_priority = sc->priority;
2953 2954 2955
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
2956
retry:
2957 2958
	delayacct_freepages_start();

2959
	if (global_reclaim(sc))
2960
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2961

2962
	do {
2963 2964
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2965
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2966
		shrink_zones(zonelist, sc);
2967

2968
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2969 2970 2971 2972
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2973

2974 2975 2976 2977 2978 2979
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
2980
	} while (--sc->priority >= 0);
2981

2982 2983 2984 2985 2986 2987 2988
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2989
		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2990 2991
	}

2992 2993
	delayacct_freepages_end();

2994 2995 2996
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2997
	/* Aborted reclaim to try compaction? don't OOM, then */
2998
	if (sc->compaction_ready)
2999 3000
		return 1;

3001
	/* Untapped cgroup reserves?  Don't OOM, retry. */
3002
	if (sc->memcg_low_skipped) {
3003
		sc->priority = initial_priority;
3004 3005
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
3006 3007 3008
		goto retry;
	}

3009
	return 0;
L
Linus Torvalds 已提交
3010 3011
}

3012
static bool allow_direct_reclaim(pg_data_t *pgdat)
3013 3014 3015 3016 3017 3018 3019
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

3020 3021 3022
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3023 3024
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3025 3026 3027 3028
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3029 3030
			continue;

3031 3032 3033 3034
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3035 3036 3037 3038
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3039 3040 3041 3042
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3043
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3055 3056 3057 3058
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3059
 */
3060
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3061 3062
					nodemask_t *nodemask)
{
3063
	struct zoneref *z;
3064
	struct zone *zone;
3065
	pg_data_t *pgdat = NULL;
3066 3067 3068 3069 3070 3071 3072 3073 3074

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3075 3076 3077 3078 3079 3080 3081 3082
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3083

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3099
					gfp_zone(gfp_mask), nodemask) {
3100 3101 3102 3103 3104
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3105
		if (allow_direct_reclaim(pgdat))
3106 3107 3108 3109 3110 3111
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3112
		goto out;
3113

3114 3115 3116
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3127
			allow_direct_reclaim(pgdat), HZ);
3128 3129

		goto check_pending;
3130 3131 3132 3133
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3134
		allow_direct_reclaim(pgdat));
3135 3136 3137 3138 3139 3140 3141

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3142 3143
}

3144
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3145
				gfp_t gfp_mask, nodemask_t *nodemask)
3146
{
3147
	unsigned long nr_reclaimed;
3148
	struct scan_control sc = {
3149
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3150
		.gfp_mask = current_gfp_context(gfp_mask),
3151
		.reclaim_idx = gfp_zone(gfp_mask),
3152 3153 3154
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3155
		.may_writepage = !laptop_mode,
3156
		.may_unmap = 1,
3157
		.may_swap = 1,
3158
		.may_shrinkslab = 1,
3159 3160
	};

G
Greg Thelen 已提交
3161 3162 3163 3164 3165 3166 3167 3168
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3169
	/*
3170 3171 3172
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3173
	 */
3174
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3175 3176
		return 1;

3177 3178
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
3179
				sc.gfp_mask,
3180
				sc.reclaim_idx);
3181

3182
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3183 3184 3185 3186

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3187 3188
}

A
Andrew Morton 已提交
3189
#ifdef CONFIG_MEMCG
3190

3191
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3192
						gfp_t gfp_mask, bool noswap,
3193
						pg_data_t *pgdat,
3194
						unsigned long *nr_scanned)
3195 3196
{
	struct scan_control sc = {
3197
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3198
		.target_mem_cgroup = memcg,
3199 3200
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3201
		.reclaim_idx = MAX_NR_ZONES - 1,
3202
		.may_swap = !noswap,
3203
		.may_shrinkslab = 1,
3204
	};
3205
	unsigned long lru_pages;
3206

3207 3208
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3209

3210
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3211
						      sc.may_writepage,
3212 3213
						      sc.gfp_mask,
						      sc.reclaim_idx);
3214

3215 3216 3217
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3218
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3219 3220 3221
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3222
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3223 3224 3225

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3226
	*nr_scanned = sc.nr_scanned;
3227 3228 3229
	return sc.nr_reclaimed;
}

3230
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3231
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3232
					   gfp_t gfp_mask,
3233
					   bool may_swap)
3234
{
3235
	struct zonelist *zonelist;
3236
	unsigned long nr_reclaimed;
3237
	unsigned long pflags;
3238
	int nid;
3239
	unsigned int noreclaim_flag;
3240
	struct scan_control sc = {
3241
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3242
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3243
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3244
		.reclaim_idx = MAX_NR_ZONES - 1,
3245 3246 3247 3248
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3249
		.may_swap = may_swap,
3250
		.may_shrinkslab = 1,
3251
	};
3252

3253 3254 3255 3256 3257
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3258
	nid = mem_cgroup_select_victim_node(memcg);
3259

3260
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3261 3262 3263

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3264 3265
					    sc.gfp_mask,
					    sc.reclaim_idx);
3266

3267
	psi_memstall_enter(&pflags);
3268
	noreclaim_flag = memalloc_noreclaim_save();
3269

3270
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3271

3272
	memalloc_noreclaim_restore(noreclaim_flag);
3273
	psi_memstall_leave(&pflags);
3274 3275 3276 3277

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3278 3279 3280
}
#endif

3281
static void age_active_anon(struct pglist_data *pgdat,
3282
				struct scan_control *sc)
3283
{
3284
	struct mem_cgroup *memcg;
3285

3286 3287 3288 3289 3290
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3291
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3292

3293
		if (inactive_list_is_low(lruvec, false, sc, true))
3294
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3295
					   sc, LRU_ACTIVE_ANON);
3296 3297 3298

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3299 3300
}

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
{
	int i;
	struct zone *zone;

	/*
	 * Check for watermark boosts top-down as the higher zones
	 * are more likely to be boosted. Both watermarks and boosts
	 * should not be checked at the time time as reclaim would
	 * start prematurely when there is no boosting and a lower
	 * zone is balanced.
	 */
	for (i = classzone_idx; i >= 0; i--) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		if (zone->watermark_boost)
			return true;
	}

	return false;
}

3325 3326 3327 3328 3329
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3330
{
3331 3332 3333
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3334

3335 3336 3337 3338
	/*
	 * Check watermarks bottom-up as lower zones are more likely to
	 * meet watermarks.
	 */
3339 3340
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3341

3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3359 3360
}

3361 3362 3363 3364 3365 3366 3367 3368
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3369 3370 3371 3372 3373 3374
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3375
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3376
{
3377
	/*
3378
	 * The throttled processes are normally woken up in balance_pgdat() as
3379
	 * soon as allow_direct_reclaim() is true. But there is a potential
3380 3381 3382 3383 3384 3385 3386 3387 3388
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3389
	 */
3390 3391
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3392

3393 3394 3395 3396
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3397 3398 3399
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3400 3401
	}

3402
	return false;
3403 3404
}

3405
/*
3406 3407
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3408 3409
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3410 3411
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3412
 */
3413
static bool kswapd_shrink_node(pg_data_t *pgdat,
3414
			       struct scan_control *sc)
3415
{
3416 3417
	struct zone *zone;
	int z;
3418

3419 3420
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3421
	for (z = 0; z <= sc->reclaim_idx; z++) {
3422
		zone = pgdat->node_zones + z;
3423
		if (!managed_zone(zone))
3424
			continue;
3425

3426 3427
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3428 3429

	/*
3430 3431
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3432
	 */
3433
	shrink_node(pgdat, sc);
3434

3435
	/*
3436 3437 3438 3439 3440
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3441
	 */
3442
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3443
		sc->order = 0;
3444

3445
	return sc->nr_scanned >= sc->nr_to_reclaim;
3446 3447
}

L
Linus Torvalds 已提交
3448
/*
3449 3450 3451
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3452
 *
3453
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3454 3455
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3456
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
W
Wei Yang 已提交
3457
 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3458 3459
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3460
 */
3461
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3462 3463
{
	int i;
3464 3465
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3466
	unsigned long pflags;
3467 3468 3469
	unsigned long nr_boost_reclaim;
	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
	bool boosted;
3470
	struct zone *zone;
3471 3472
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3473
		.order = order,
3474
		.may_unmap = 1,
3475
	};
3476

3477
	psi_memstall_enter(&pflags);
3478 3479
	__fs_reclaim_acquire();

3480
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3481

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
	/*
	 * Account for the reclaim boost. Note that the zone boost is left in
	 * place so that parallel allocations that are near the watermark will
	 * stall or direct reclaim until kswapd is finished.
	 */
	nr_boost_reclaim = 0;
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
		if (!managed_zone(zone))
			continue;

		nr_boost_reclaim += zone->watermark_boost;
		zone_boosts[i] = zone->watermark_boost;
	}
	boosted = nr_boost_reclaim;

restart:
	sc.priority = DEF_PRIORITY;
3500
	do {
3501
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3502
		bool raise_priority = true;
3503
		bool balanced;
3504
		bool ret;
3505

3506
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3507

3508
		/*
3509 3510 3511 3512 3513 3514 3515 3516
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3517 3518 3519 3520
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3521
				if (!managed_zone(zone))
3522
					continue;
3523

3524
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3525
				break;
L
Linus Torvalds 已提交
3526 3527
			}
		}
3528

3529
		/*
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
		 * If the pgdat is imbalanced then ignore boosting and preserve
		 * the watermarks for a later time and restart. Note that the
		 * zone watermarks will be still reset at the end of balancing
		 * on the grounds that the normal reclaim should be enough to
		 * re-evaluate if boosting is required when kswapd next wakes.
		 */
		balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
		if (!balanced && nr_boost_reclaim) {
			nr_boost_reclaim = 0;
			goto restart;
		}

		/*
		 * If boosting is not active then only reclaim if there are no
		 * eligible zones. Note that sc.reclaim_idx is not used as
		 * buffer_heads_over_limit may have adjusted it.
3546
		 */
3547
		if (!nr_boost_reclaim && balanced)
3548
			goto out;
A
Andrew Morton 已提交
3549

3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
		/* Limit the priority of boosting to avoid reclaim writeback */
		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
			raise_priority = false;

		/*
		 * Do not writeback or swap pages for boosted reclaim. The
		 * intent is to relieve pressure not issue sub-optimal IO
		 * from reclaim context. If no pages are reclaimed, the
		 * reclaim will be aborted.
		 */
		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
		sc.may_swap = !nr_boost_reclaim;
		sc.may_shrinkslab = !nr_boost_reclaim;

3564 3565 3566 3567 3568 3569
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3570
		age_active_anon(pgdat, &sc);
3571

3572 3573 3574 3575
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3576
		if (sc.priority < DEF_PRIORITY - 2)
3577 3578
			sc.may_writepage = 1;

3579 3580 3581
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3582
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3583 3584 3585
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3586
		/*
3587 3588 3589
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3590
		 */
3591
		if (kswapd_shrink_node(pgdat, &sc))
3592
			raise_priority = false;
3593 3594 3595 3596 3597 3598 3599

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3600
				allow_direct_reclaim(pgdat))
3601
			wake_up_all(&pgdat->pfmemalloc_wait);
3602

3603
		/* Check if kswapd should be suspending */
3604 3605 3606 3607
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3608
			break;
3609

3610
		/*
3611 3612
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3613
		 */
3614
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);

		/*
		 * If reclaim made no progress for a boost, stop reclaim as
		 * IO cannot be queued and it could be an infinite loop in
		 * extreme circumstances.
		 */
		if (nr_boost_reclaim && !nr_reclaimed)
			break;

3625
		if (raise_priority || !nr_reclaimed)
3626
			sc.priority--;
3627
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3628

3629 3630 3631
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3632
out:
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
	/* If reclaim was boosted, account for the reclaim done in this pass */
	if (boosted) {
		unsigned long flags;

		for (i = 0; i <= classzone_idx; i++) {
			if (!zone_boosts[i])
				continue;

			/* Increments are under the zone lock */
			zone = pgdat->node_zones + i;
			spin_lock_irqsave(&zone->lock, flags);
			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
			spin_unlock_irqrestore(&zone->lock, flags);
		}

		/*
		 * As there is now likely space, wakeup kcompact to defragment
		 * pageblocks.
		 */
		wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
	}

3655
	snapshot_refaults(NULL, pgdat);
3656
	__fs_reclaim_release();
3657
	psi_memstall_leave(&pflags);
3658
	/*
3659 3660 3661 3662
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3663
	 */
3664
	return sc.order;
L
Linus Torvalds 已提交
3665 3666
}

3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
/*
 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
 * allocation request woke kswapd for. When kswapd has not woken recently,
 * the value is MAX_NR_ZONES which is not a valid index. This compares a
 * given classzone and returns it or the highest classzone index kswapd
 * was recently woke for.
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
					   enum zone_type classzone_idx)
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		return classzone_idx;

	return max(pgdat->kswapd_classzone_idx, classzone_idx);
}

3683 3684
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3685 3686 3687 3688 3689 3690 3691 3692 3693
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3694 3695 3696 3697 3698 3699 3700
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3701
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3714
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3715

3716
		remaining = schedule_timeout(HZ/10);
3717 3718 3719 3720 3721 3722 3723

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3724
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3725 3726 3727
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3728 3729 3730 3731 3732 3733 3734 3735
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3736 3737
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3749 3750 3751 3752

		if (!kthread_should_stop())
			schedule();

3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3763 3764
/*
 * The background pageout daemon, started as a kernel thread
3765
 * from the init process.
L
Linus Torvalds 已提交
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3778 3779
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3780 3781
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3782

L
Linus Torvalds 已提交
3783 3784 3785
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3786
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3787

R
Rusty Russell 已提交
3788
	if (!cpumask_empty(cpumask))
3789
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3804
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3805
	set_freezable();
L
Linus Torvalds 已提交
3806

3807 3808
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3809
	for ( ; ; ) {
3810
		bool ret;
3811

3812 3813 3814
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3815 3816 3817
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3818

3819 3820
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3821
		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3822
		pgdat->kswapd_order = 0;
3823
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3824

3825 3826 3827 3828 3829 3830 3831 3832
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3844 3845
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3846 3847 3848
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3849
	}
3850

3851
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3852
	current->reclaim_state = NULL;
3853

L
Linus Torvalds 已提交
3854 3855 3856 3857
	return 0;
}

/*
3858 3859 3860 3861 3862
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3863
 */
3864 3865
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3866 3867 3868
{
	pg_data_t *pgdat;

3869
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3870 3871
		return;

3872
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3873
		return;
3874
	pgdat = zone->zone_pgdat;
3875 3876
	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
							   classzone_idx);
3877
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3878
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3879
		return;
3880

3881 3882
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3883 3884
	    (pgdat_balanced(pgdat, order, classzone_idx) &&
	     !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3885 3886 3887 3888 3889 3890 3891 3892 3893
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
			wakeup_kcompactd(pgdat, order, classzone_idx);
3894
		return;
3895
	}
3896

3897 3898
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
				      gfp_flags);
3899
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3900 3901
}

3902
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3903
/*
3904
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3905 3906 3907 3908 3909
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3910
 */
3911
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3912
{
3913 3914
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3915
		.nr_to_reclaim = nr_to_reclaim,
3916
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3917
		.reclaim_idx = MAX_NR_ZONES - 1,
3918
		.priority = DEF_PRIORITY,
3919
		.may_writepage = 1,
3920 3921
		.may_unmap = 1,
		.may_swap = 1,
3922
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3923
	};
3924
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3925 3926
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
3927
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
3928

3929
	fs_reclaim_acquire(sc.gfp_mask);
3930
	noreclaim_flag = memalloc_noreclaim_save();
3931 3932
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3933

3934
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3935

3936
	p->reclaim_state = NULL;
3937
	memalloc_noreclaim_restore(noreclaim_flag);
3938
	fs_reclaim_release(sc.gfp_mask);
3939

3940
	return nr_reclaimed;
L
Linus Torvalds 已提交
3941
}
3942
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3943 3944 3945 3946 3947

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3948
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3949
{
3950
	int nid;
L
Linus Torvalds 已提交
3951

3952 3953 3954
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3955

3956
		mask = cpumask_of_node(pgdat->node_id);
3957

3958 3959 3960
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3961
	}
3962
	return 0;
L
Linus Torvalds 已提交
3963 3964
}

3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
3980
		BUG_ON(system_state < SYSTEM_RUNNING);
3981 3982
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3983
		pgdat->kswapd = NULL;
3984 3985 3986 3987
	}
	return ret;
}

3988
/*
3989
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3990
 * hold mem_hotplug_begin/end().
3991 3992 3993 3994 3995
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3996
	if (kswapd) {
3997
		kthread_stop(kswapd);
3998 3999
		NODE_DATA(nid)->kswapd = NULL;
	}
4000 4001
}

L
Linus Torvalds 已提交
4002 4003
static int __init kswapd_init(void)
{
4004
	int nid, ret;
4005

L
Linus Torvalds 已提交
4006
	swap_setup();
4007
	for_each_node_state(nid, N_MEMORY)
4008
 		kswapd_run(nid);
4009 4010 4011 4012
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
4013 4014 4015 4016
	return 0;
}

module_init(kswapd_init)
4017 4018 4019

#ifdef CONFIG_NUMA
/*
4020
 * Node reclaim mode
4021
 *
4022
 * If non-zero call node_reclaim when the number of free pages falls below
4023 4024
 * the watermarks.
 */
4025
int node_reclaim_mode __read_mostly;
4026

4027
#define RECLAIM_OFF 0
4028
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
4029
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
4030
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
4031

4032
/*
4033
 * Priority for NODE_RECLAIM. This determines the fraction of pages
4034 4035 4036
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
4037
#define NODE_RECLAIM_PRIORITY 4
4038

4039
/*
4040
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4041 4042 4043 4044
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

4045 4046 4047 4048 4049 4050
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

4051
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4052
{
4053 4054 4055
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4066
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4067
{
4068 4069
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
4070 4071

	/*
4072
	 * If RECLAIM_UNMAP is set, then all file pages are considered
4073
	 * potentially reclaimable. Otherwise, we have to worry about
4074
	 * pages like swapcache and node_unmapped_file_pages() provides
4075 4076
	 * a better estimate
	 */
4077 4078
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4079
	else
4080
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4081 4082

	/* If we can't clean pages, remove dirty pages from consideration */
4083 4084
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4085 4086 4087 4088 4089 4090 4091 4092

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

4093
/*
4094
 * Try to free up some pages from this node through reclaim.
4095
 */
4096
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4097
{
4098
	/* Minimum pages needed in order to stay on node */
4099
	const unsigned long nr_pages = 1 << order;
4100 4101
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
4102
	unsigned int noreclaim_flag;
4103
	struct scan_control sc = {
4104
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4105
		.gfp_mask = current_gfp_context(gfp_mask),
4106
		.order = order,
4107 4108 4109
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4110
		.may_swap = 1,
4111
		.reclaim_idx = gfp_zone(gfp_mask),
4112
	};
4113

4114 4115 4116
	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
					   sc.gfp_mask);

4117
	cond_resched();
4118
	fs_reclaim_acquire(sc.gfp_mask);
4119
	/*
4120
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4121
	 * and we also need to be able to write out pages for RECLAIM_WRITE
4122
	 * and RECLAIM_UNMAP.
4123
	 */
4124 4125
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
4126 4127
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
4128

4129
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4130
		/*
4131
		 * Free memory by calling shrink node with increasing
4132 4133 4134
		 * priorities until we have enough memory freed.
		 */
		do {
4135
			shrink_node(pgdat, &sc);
4136
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4137
	}
4138

4139
	p->reclaim_state = NULL;
4140 4141
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
4142
	fs_reclaim_release(sc.gfp_mask);
4143 4144 4145

	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);

4146
	return sc.nr_reclaimed >= nr_pages;
4147
}
4148

4149
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4150
{
4151
	int ret;
4152 4153

	/*
4154
	 * Node reclaim reclaims unmapped file backed pages and
4155
	 * slab pages if we are over the defined limits.
4156
	 *
4157 4158
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4159 4160
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4161
	 * unmapped file backed pages.
4162
	 */
4163
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4164
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4165
		return NODE_RECLAIM_FULL;
4166 4167

	/*
4168
	 * Do not scan if the allocation should not be delayed.
4169
	 */
4170
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4171
		return NODE_RECLAIM_NOSCAN;
4172 4173

	/*
4174
	 * Only run node reclaim on the local node or on nodes that do not
4175 4176 4177 4178
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4179 4180
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4181

4182 4183
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4184

4185 4186
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4187

4188 4189 4190
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4191
	return ret;
4192
}
4193
#endif
L
Lee Schermerhorn 已提交
4194 4195 4196 4197 4198 4199

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
4200
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
4201 4202
 *
 * Reasons page might not be evictable:
4203
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
4204
 * (2) page is part of an mlocked VMA
4205
 *
L
Lee Schermerhorn 已提交
4206
 */
4207
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
4208
{
4209 4210 4211 4212 4213 4214 4215
	int ret;

	/* Prevent address_space of inode and swap cache from being freed */
	rcu_read_lock();
	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
	rcu_read_unlock();
	return ret;
L
Lee Schermerhorn 已提交
4216
}
4217 4218

/**
4219 4220 4221
 * check_move_unevictable_pages - check pages for evictability and move to
 * appropriate zone lru list
 * @pvec: pagevec with lru pages to check
4222
 *
4223 4224 4225
 * Checks pages for evictability, if an evictable page is in the unevictable
 * lru list, moves it to the appropriate evictable lru list. This function
 * should be only used for lru pages.
4226
 */
4227
void check_move_unevictable_pages(struct pagevec *pvec)
4228
{
4229
	struct lruvec *lruvec;
4230
	struct pglist_data *pgdat = NULL;
4231 4232 4233
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4234

4235 4236
	for (i = 0; i < pvec->nr; i++) {
		struct page *page = pvec->pages[i];
4237
		struct pglist_data *pagepgdat = page_pgdat(page);
4238

4239
		pgscanned++;
4240 4241 4242 4243 4244
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4245
		}
4246
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4247

4248 4249
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4250

4251
		if (page_evictable(page)) {
4252 4253
			enum lru_list lru = page_lru_base_type(page);

4254
			VM_BUG_ON_PAGE(PageActive(page), page);
4255
			ClearPageUnevictable(page);
4256 4257
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4258
			pgrescued++;
4259
		}
4260
	}
4261

4262
	if (pgdat) {
4263 4264
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4265
		spin_unlock_irq(&pgdat->lru_lock);
4266 4267
	}
}
4268
EXPORT_SYMBOL_GPL(check_move_unevictable_pages);