scrub.c 122.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
A
Arne Jansen 已提交
9 10 11 12
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
13
#include "transaction.h"
14
#include "backref.h"
15
#include "extent_io.h"
16
#include "dev-replace.h"
17
#include "check-integrity.h"
18
#include "rcu-string.h"
D
David Woodhouse 已提交
19
#include "raid56.h"
A
Arne Jansen 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

34
struct scrub_block;
35
struct scrub_ctx;
A
Arne Jansen 已提交
36

37 38 39 40 41 42 43 44 45
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
46 47 48 49 50 51

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
52
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
53

54
struct scrub_recover {
55
	refcount_t		refs;
56 57 58 59
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
60
struct scrub_page {
61 62
	struct scrub_block	*sblock;
	struct page		*page;
63
	struct btrfs_device	*dev;
64
	struct list_head	list;
A
Arne Jansen 已提交
65 66
	u64			flags;  /* extent flags */
	u64			generation;
67 68
	u64			logical;
	u64			physical;
69
	u64			physical_for_dev_replace;
70
	atomic_t		refs;
71 72 73 74 75
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
76
	u8			csum[BTRFS_CSUM_SIZE];
77 78

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
79 80 81 82
};

struct scrub_bio {
	int			index;
83
	struct scrub_ctx	*sctx;
84
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
85
	struct bio		*bio;
86
	blk_status_t		status;
A
Arne Jansen 已提交
87 88
	u64			logical;
	u64			physical;
89 90 91 92 93
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
94
	int			page_count;
A
Arne Jansen 已提交
95 96 97 98
	int			next_free;
	struct btrfs_work	work;
};

99
struct scrub_block {
100
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
101 102
	int			page_count;
	atomic_t		outstanding_pages;
103
	refcount_t		refs; /* free mem on transition to zero */
104
	struct scrub_ctx	*sctx;
105
	struct scrub_parity	*sparity;
106 107 108 109
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
110
		unsigned int	generation_error:1; /* also sets header_error */
111 112 113 114

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
115
	};
116
	struct btrfs_work	work;
117 118
};

119 120 121 122 123 124 125 126 127 128 129 130
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

131
	u64			stripe_len;
132

133
	refcount_t		refs;
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

152
struct scrub_ctx {
153
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
154
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
155 156
	int			first_free;
	int			curr;
157 158
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
159 160 161 162 163
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
164
	int			readonly;
165
	int			pages_per_rd_bio;
166 167

	int			is_dev_replace;
168 169 170 171 172

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	struct btrfs_device     *wr_tgtdev;
173
	bool                    flush_all_writes;
174

A
Arne Jansen 已提交
175 176 177 178 179
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
180 181 182 183 184 185 186 187

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
188
	refcount_t              refs;
A
Arne Jansen 已提交
189 190
};

191
struct scrub_fixup_nodatasum {
192
	struct scrub_ctx	*sctx;
193
	struct btrfs_device	*dev;
194 195 196 197 198 199
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

200 201 202 203 204 205 206
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

207 208 209 210 211 212
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
213
	struct list_head	inodes;
214 215 216
	struct btrfs_work	work;
};

217 218 219 220
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
221
	u64			physical;
222 223 224 225
	u64			logical;
	struct btrfs_device	*dev;
};

226 227 228 229 230 231 232
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

233 234 235 236
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
237
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
238
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
239
				     struct scrub_block *sblocks_for_recheck);
240
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
241 242
				struct scrub_block *sblock,
				int retry_failed_mirror);
243
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
244
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
245
					     struct scrub_block *sblock_good);
246 247 248
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
249 250 251
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
252 253 254 255 256
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
257 258
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
259 260
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
261 262
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
263
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
264
		       u64 physical, struct btrfs_device *dev, u64 flags,
265 266
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
267
static void scrub_bio_end_io(struct bio *bio);
268 269
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
270 271 272 273 274 275 276 277
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
278
static void scrub_wr_bio_end_io(struct bio *bio);
279 280 281 282
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
283
				      struct scrub_copy_nocow_ctx *ctx);
284 285 286
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
287
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
288
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
289
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
290

291 292 293 294 295
static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
	return page->recover &&
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
}
S
Stefan Behrens 已提交
296

297 298
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
299
	refcount_inc(&sctx->refs);
300 301 302 303 304 305 306
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
307
	scrub_put_ctx(sctx);
308 309
}

310
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
311 312 313 314 315 316 317 318 319
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

320
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
321 322 323
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
324
}
325

326 327
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
328 329 330 331 332 333 334 335
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

336 337 338 339 340 341
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

361
	lockdep_assert_held(&locks_root->lock);
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

	/* Insert new lock */
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

403
	lockdep_assert_held(&locks_root->lock);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
				   u64 bytenr)
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
		cache->full_stripe_len + cache->key.objectid;
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
	struct btrfs_block_group_cache *bg_cache;
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
	struct btrfs_block_group_cache *bg_cache;
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

558 559 560 561 562 563
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
564
	struct btrfs_fs_info *fs_info = sctx->fs_info;
565

566
	refcount_inc(&sctx->refs);
567 568 569 570 571 572 573 574 575 576 577 578 579
	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
580 581 582 583 584 585 586 587 588 589

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

590 591 592 593 594 595
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
596
	struct btrfs_fs_info *fs_info = sctx->fs_info;
597 598 599 600 601 602 603 604 605 606 607 608

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
609
	scrub_put_ctx(sctx);
610 611
}

612
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
613
{
614
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
615
		struct btrfs_ordered_sum *sum;
616
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
617 618 619 620 621 622
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

623
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
624 625 626
{
	int i;

627
	if (!sctx)
A
Arne Jansen 已提交
628 629
		return;

630
	/* this can happen when scrub is cancelled */
631 632
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
633 634

		for (i = 0; i < sbio->page_count; i++) {
635
			WARN_ON(!sbio->pagev[i]->page);
636 637 638 639 640
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

641
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
642
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
643 644 645 646 647 648

		if (!sbio)
			break;
		kfree(sbio);
	}

649
	kfree(sctx->wr_curr_bio);
650 651
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
652 653
}

654 655
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
656
	if (refcount_dec_and_test(&sctx->refs))
657 658 659
		scrub_free_ctx(sctx);
}

A
Arne Jansen 已提交
660
static noinline_for_stack
661
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
662
{
663
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
664
	int		i;
665
	struct btrfs_fs_info *fs_info = dev->fs_info;
A
Arne Jansen 已提交
666

667
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
668
	if (!sctx)
A
Arne Jansen 已提交
669
		goto nomem;
670
	refcount_set(&sctx->refs, 1);
671
	sctx->is_dev_replace = is_dev_replace;
672
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
673
	sctx->curr = -1;
674
	sctx->fs_info = dev->fs_info;
675
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
676 677
		struct scrub_bio *sbio;

678
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
679 680
		if (!sbio)
			goto nomem;
681
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
682 683

		sbio->index = i;
684
		sbio->sctx = sctx;
685
		sbio->page_count = 0;
686 687
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
688

689
		if (i != SCRUB_BIOS_PER_SCTX - 1)
690
			sctx->bios[i]->next_free = i + 1;
691
		else
692 693 694
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
695 696
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
697 698 699 700 701 702 703
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
704

705 706 707
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
708
	if (is_dev_replace) {
709
		WARN_ON(!fs_info->dev_replace.tgtdev);
710
		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
711
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
712
		sctx->flush_all_writes = false;
713
	}
714

715
	return sctx;
A
Arne Jansen 已提交
716 717

nomem:
718
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
719 720 721
	return ERR_PTR(-ENOMEM);
}

722 723
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
724 725 726 727 728
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
729
	unsigned nofs_flag;
730 731
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
732
	struct scrub_warning *swarn = warn_ctx;
733
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
734 735 736
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
737
	struct btrfs_key key;
738 739 740 741 742 743 744 745 746 747

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

748 749 750
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
751 752 753 754 755
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
756 757 758 759 760 761 762 763 764 765 766 767
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

768 769 770 771 772 773
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
774
	ipath = init_ipath(4096, local_root, swarn->path);
775
	memalloc_nofs_restore(nofs_flag);
776 777 778 779 780
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
781 782 783 784 785 786 787 788 789 790
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
791
		btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
792
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
J
Jeff Mahoney 已提交
793 794
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
795
				  swarn->physical,
J
Jeff Mahoney 已提交
796 797 798
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
799 800 801 802 803

	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
804
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
805
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
806 807
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
808
			  swarn->physical,
J
Jeff Mahoney 已提交
809
			  root, inum, offset, ret);
810 811 812 813 814

	free_ipath(ipath);
	return 0;
}

815
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
816
{
817 818
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
819 820 821 822 823
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
824 825 826
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
827
	u64 ref_root;
828
	u32 item_size;
829
	u8 ref_level = 0;
830
	int ret;
831

832
	WARN_ON(sblock->page_count < 1);
833
	dev = sblock->pagev[0]->dev;
834
	fs_info = sblock->sctx->fs_info;
835

836
	path = btrfs_alloc_path();
837 838
	if (!path)
		return;
839

D
David Sterba 已提交
840
	swarn.physical = sblock->pagev[0]->physical;
841
	swarn.logical = sblock->pagev[0]->logical;
842
	swarn.errstr = errstr;
843
	swarn.dev = NULL;
844

845 846
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
847 848 849
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
850
	extent_item_pos = swarn.logical - found_key.objectid;
851 852 853 854 855 856
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

857
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
858
		do {
859 860 861
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
862
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
863
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
864
				errstr, swarn.logical,
865
				rcu_str_deref(dev->name),
D
David Sterba 已提交
866
				swarn.physical,
867 868 869 870
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
871
		btrfs_release_path(path);
872
	} else {
873
		btrfs_release_path(path);
874
		swarn.path = path;
875
		swarn.dev = dev;
876 877
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
878
					scrub_print_warning_inode, &swarn, false);
879 880 881 882 883 884
	}

out:
	btrfs_free_path(path);
}

885
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
886
{
887
	struct page *page = NULL;
888
	unsigned long index;
889
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
890
	int ret;
891
	int corrected = 0;
892
	struct btrfs_key key;
893
	struct inode *inode = NULL;
894
	struct btrfs_fs_info *fs_info;
895 896
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
897
	int srcu_index;
898 899 900 901

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
902 903 904 905 906 907 908

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
909
		return PTR_ERR(local_root);
910
	}
911 912 913 914

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
915 916
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
917 918 919
	if (IS_ERR(inode))
		return PTR_ERR(inode);

920
	index = offset >> PAGE_SHIFT;
921 922

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
949
		ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE,
950
					fixup->logical, page,
951
					offset - page_offset(page),
952 953 954 955 956 957 958 959 960 961
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
962
					EXTENT_DAMAGED);
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
980
						EXTENT_DAMAGED);
981 982 983 984 985
	}

out:
	if (page)
		put_page(page);
986 987

	iput(inode);
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
1005
	struct btrfs_fs_info *fs_info;
1006 1007
	int ret;
	struct scrub_fixup_nodatasum *fixup;
1008
	struct scrub_ctx *sctx;
1009 1010 1011 1012 1013
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1014
	sctx = fixup->sctx;
1015
	fs_info = fixup->root->fs_info;
1016 1017 1018

	path = btrfs_alloc_path();
	if (!path) {
1019 1020 1021
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
1041
	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
1042
					  scrub_fixup_readpage, fixup, false);
1043 1044 1045 1046 1047 1048
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

1049 1050 1051
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
1052 1053 1054

out:
	if (trans && !IS_ERR(trans))
1055
		btrfs_end_transaction(trans);
1056
	if (uncorrectable) {
1057 1058 1059
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
1060
		btrfs_dev_replace_stats_inc(
1061 1062
			&fs_info->dev_replace.num_uncorrectable_read_errors);
		btrfs_err_rl_in_rcu(fs_info,
1063
		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
1064
			fixup->logical, rcu_str_deref(fixup->dev->name));
1065 1066 1067 1068 1069
	}

	btrfs_free_path(path);
	kfree(fixup);

1070
	scrub_pending_trans_workers_dec(sctx);
1071 1072
}

1073 1074
static inline void scrub_get_recover(struct scrub_recover *recover)
{
1075
	refcount_inc(&recover->refs);
1076 1077
}

1078 1079
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
1080
{
1081
	if (refcount_dec_and_test(&recover->refs)) {
1082
		btrfs_bio_counter_dec(fs_info);
1083
		btrfs_put_bbio(recover->bbio);
1084 1085 1086 1087
		kfree(recover);
	}
}

A
Arne Jansen 已提交
1088
/*
1089 1090 1091 1092 1093 1094
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
1095
 */
1096
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
1097
{
1098
	struct scrub_ctx *sctx = sblock_to_check->sctx;
1099
	struct btrfs_device *dev;
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
1111
	bool full_stripe_locked;
1112
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1113 1114 1115
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
1116
	fs_info = sctx->fs_info;
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
1128 1129 1130 1131
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
1132
			BTRFS_EXTENT_FLAG_DATA);
1133 1134
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
1135

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

1183 1184
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
				      sizeof(*sblocks_for_recheck), GFP_NOFS);
1185
	if (!sblocks_for_recheck) {
1186 1187 1188 1189 1190
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1191
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1192
		goto out;
A
Arne Jansen 已提交
1193 1194
	}

1195
	/* setup the context, map the logical blocks and alloc the pages */
1196
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1197
	if (ret) {
1198 1199 1200 1201
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1202
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1203 1204 1205 1206
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
1207

1208
	/* build and submit the bios for the failed mirror, check checksums */
1209
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
1210

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
1221 1222
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
1223
		sblock_to_check->data_corrected = 1;
1224
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
1225

1226 1227
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1228
		goto out;
A
Arne Jansen 已提交
1229 1230
	}

1231
	if (!sblock_bad->no_io_error_seen) {
1232 1233 1234
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1235 1236
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1237
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1238
	} else if (sblock_bad->checksum_error) {
1239 1240 1241
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1242 1243
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1244
		btrfs_dev_stat_inc_and_print(dev,
1245
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1246
	} else if (sblock_bad->header_error) {
1247 1248 1249
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1250 1251 1252
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1253
		if (sblock_bad->generation_error)
1254
			btrfs_dev_stat_inc_and_print(dev,
1255 1256
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1257
			btrfs_dev_stat_inc_and_print(dev,
1258
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1259
	}
A
Arne Jansen 已提交
1260

1261 1262 1263 1264
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1265

1266 1267 1268 1269 1270 1271 1272 1273 1274
	/*
	 * NOTE: Even for nodatasum case, it's still possible that it's a
	 * compressed data extent, thus scrub_fixup_nodatasum(), which write
	 * inode page cache onto disk, could cause serious data corruption.
	 *
	 * So here we could only read from disk, and hope our recovery could
	 * reach disk before the newer write.
	 */
	if (0 && !is_metadata && !have_csum) {
1275
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1276

1277 1278
		WARN_ON(sctx->is_dev_replace);

1279 1280
		/*
		 * !is_metadata and !have_csum, this means that the data
1281
		 * might not be COWed, that it might be modified
1282 1283 1284 1285 1286 1287 1288
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1289
		fixup_nodatasum->sctx = sctx;
1290
		fixup_nodatasum->dev = dev;
1291 1292 1293
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1294
		scrub_pending_trans_workers_inc(sctx);
1295 1296
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1297 1298
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1299
		goto out;
A
Arne Jansen 已提交
1300 1301
	}

1302 1303
	/*
	 * now build and submit the bios for the other mirrors, check
1304 1305
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
1317
	for (mirror_index = 0; ;mirror_index++) {
1318
		struct scrub_block *sblock_other;
1319

1320 1321
		if (mirror_index == failed_mirror_index)
			continue;
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
			if (!sblocks_for_recheck[mirror_index].page_count)
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
			int max_allowed = r->bbio->num_stripes -
						r->bbio->num_tgtdevs;

			if (mirror_index >= max_allowed)
				break;
			if (!sblocks_for_recheck[1].page_count)
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
		}
1345 1346

		/* build and submit the bios, check checksums */
1347
		scrub_recheck_block(fs_info, sblock_other, 0);
1348 1349

		if (!sblock_other->header_error &&
1350 1351
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1352 1353
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1354
				goto corrected_error;
1355 1356
			} else {
				ret = scrub_repair_block_from_good_copy(
1357 1358 1359
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1360
			}
1361 1362
		}
	}
A
Arne Jansen 已提交
1363

1364 1365
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1366 1367 1368

	/*
	 * In case of I/O errors in the area that is supposed to be
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1381
	 * the final checksum succeeds. But this would be a rare
1382 1383 1384 1385 1386 1387 1388 1389
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1390
	 */
1391
	success = 1;
1392 1393
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1394
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1395
		struct scrub_block *sblock_other = NULL;
1396

1397 1398
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1399
			continue;
1400

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
		} else if (page_bad->io_error) {
			/* try to find no-io-error page in mirrors */
1412 1413 1414 1415 1416 1417 1418 1419 1420
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1421 1422
				}
			}
1423 1424
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1425
		}
A
Arne Jansen 已提交
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
1441
					&fs_info->dev_replace.num_write_errors);
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1452
		}
A
Arne Jansen 已提交
1453 1454
	}

1455
	if (success && !sctx->is_dev_replace) {
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1466
			scrub_recheck_block(fs_info, sblock_bad, 1);
1467
			if (!sblock_bad->header_error &&
1468 1469 1470 1471 1472 1473 1474
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1475 1476
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1477
			sblock_to_check->data_corrected = 1;
1478
			spin_unlock(&sctx->stat_lock);
1479 1480
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1481
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1482
		}
1483 1484
	} else {
did_not_correct_error:
1485 1486 1487
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1488 1489
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1490
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1491
	}
A
Arne Jansen 已提交
1492

1493 1494 1495 1496 1497 1498
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1499
			struct scrub_recover *recover;
1500 1501
			int page_index;

1502 1503 1504
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1505 1506
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1507
					scrub_put_recover(fs_info, recover);
1508 1509 1510
					sblock->pagev[page_index]->recover =
									NULL;
				}
1511 1512
				scrub_page_put(sblock->pagev[page_index]);
			}
1513 1514 1515
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1516

1517 1518 1519
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
	if (ret < 0)
		return ret;
1520 1521
	return 0;
}
A
Arne Jansen 已提交
1522

1523
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1524
{
Z
Zhao Lei 已提交
1525 1526 1527 1528 1529
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1530 1531 1532
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1533 1534
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1535 1536 1537 1538 1539 1540 1541
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1542
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1563
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1564 1565
				     struct scrub_block *sblocks_for_recheck)
{
1566
	struct scrub_ctx *sctx = original_sblock->sctx;
1567
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1568 1569
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1570 1571 1572
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1573 1574 1575 1576 1577 1578
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1579
	int page_index = 0;
1580
	int mirror_index;
1581
	int nmirrors;
1582 1583 1584
	int ret;

	/*
1585
	 * note: the two members refs and outstanding_pages
1586 1587 1588 1589 1590
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1591 1592 1593
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1594

1595 1596 1597 1598
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1599
		btrfs_bio_counter_inc_blocked(fs_info);
1600
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1601
				logical, &mapped_length, &bbio);
1602
		if (ret || !bbio || mapped_length < sublen) {
1603
			btrfs_put_bbio(bbio);
1604
			btrfs_bio_counter_dec(fs_info);
1605 1606
			return -EIO;
		}
A
Arne Jansen 已提交
1607

1608 1609
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1610
			btrfs_put_bbio(bbio);
1611
			btrfs_bio_counter_dec(fs_info);
1612 1613 1614
			return -ENOMEM;
		}

1615
		refcount_set(&recover->refs, 1);
1616 1617 1618
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1619
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1620

1621
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1622

1623
		for (mirror_index = 0; mirror_index < nmirrors;
1624 1625 1626 1627 1628
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1629
			sblock->sctx = sctx;
1630

1631 1632 1633
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1634 1635 1636
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1637
				scrub_put_recover(fs_info, recover);
1638 1639
				return -ENOMEM;
			}
1640 1641
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
1642 1643 1644
			page->sblock = sblock;
			page->flags = flags;
			page->generation = generation;
1645
			page->logical = logical;
1646 1647 1648 1649 1650
			page->have_csum = have_csum;
			if (have_csum)
				memcpy(page->csum,
				       original_sblock->pagev[0]->csum,
				       sctx->csum_size);
1651

Z
Zhao Lei 已提交
1652 1653 1654
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1655
						      mapped_length,
1656 1657
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1658 1659 1660 1661 1662 1663 1664
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1665 1666 1667 1668
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1669 1670
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1671
			sblock->page_count++;
1672 1673 1674
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1675 1676 1677

			scrub_get_recover(recover);
			page->recover = recover;
1678
		}
1679
		scrub_put_recover(fs_info, recover);
1680 1681 1682 1683 1684 1685
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1686 1687
}

1688
static void scrub_bio_wait_endio(struct bio *bio)
1689
{
1690
	complete(bio->bi_private);
1691 1692 1693 1694 1695 1696
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
1697
	DECLARE_COMPLETION_ONSTACK(done);
1698
	int ret;
1699
	int mirror_num;
1700 1701 1702 1703 1704

	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1705
	mirror_num = page->sblock->pagev[0]->mirror_num;
1706
	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1707
				    page->recover->map_length,
1708
				    mirror_num, 0);
1709 1710 1711
	if (ret)
		return ret;

1712 1713
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1714 1715
}

L
Liu Bo 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
	struct scrub_page *first_page = sblock->pagev[0];
	struct bio *bio;
	int page_num;

	/* All pages in sblock belong to the same stripe on the same device. */
	ASSERT(first_page->dev);
	if (!first_page->dev->bdev)
		goto out;

	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
	bio_set_dev(bio, first_page->dev->bdev);

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct scrub_page *page = sblock->pagev[page_num];

		WARN_ON(!page->page);
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
	}

	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
	for (page_num = 0; page_num < sblock->page_count; page_num++)
		sblock->pagev[page_num]->io_error = 1;

	sblock->no_io_error_seen = 0;
}

1755 1756 1757 1758 1759 1760 1761
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1762
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1763 1764
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1765
{
1766
	int page_num;
I
Ilya Dryomov 已提交
1767

1768
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1769

L
Liu Bo 已提交
1770 1771 1772 1773
	/* short cut for raid56 */
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1774 1775
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1776
		struct scrub_page *page = sblock->pagev[page_num];
1777

1778
		if (page->dev->bdev == NULL) {
1779 1780 1781 1782 1783
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1784
		WARN_ON(!page->page);
1785
		bio = btrfs_io_bio_alloc(1);
1786
		bio_set_dev(bio, page->dev->bdev);
1787

1788
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1789 1790
		bio->bi_iter.bi_sector = page->physical >> 9;
		bio->bi_opf = REQ_OP_READ;
1791

L
Liu Bo 已提交
1792 1793 1794
		if (btrfsic_submit_bio_wait(bio)) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
1795
		}
1796

1797 1798
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1799

1800
	if (sblock->no_io_error_seen)
1801
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1802 1803
}

M
Miao Xie 已提交
1804 1805 1806 1807 1808 1809
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1810
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1811 1812 1813
	return !ret;
}

1814
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1815
{
1816 1817 1818
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1819

1820 1821 1822 1823
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1824 1825
}

1826
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1827
					     struct scrub_block *sblock_good)
1828 1829 1830
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1831

1832 1833
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1834

1835 1836
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1837
							   page_num, 1);
1838 1839
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1840
	}
1841 1842 1843 1844 1845 1846 1847 1848

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1849 1850
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1851
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1852

1853 1854
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1855 1856 1857 1858 1859
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1860
		if (!page_bad->dev->bdev) {
1861
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1862
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1863 1864 1865
			return -EIO;
		}

1866
		bio = btrfs_io_bio_alloc(1);
1867
		bio_set_dev(bio, page_bad->dev->bdev);
1868
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
M
Mike Christie 已提交
1869
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1870 1871 1872 1873 1874

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1875
		}
1876

1877
		if (btrfsic_submit_bio_wait(bio)) {
1878 1879
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1880
			btrfs_dev_replace_stats_inc(
1881
				&fs_info->dev_replace.num_write_errors);
1882 1883 1884
			bio_put(bio);
			return -EIO;
		}
1885
		bio_put(bio);
A
Arne Jansen 已提交
1886 1887
	}

1888 1889 1890
	return 0;
}

1891 1892
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1893
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1894 1895
	int page_num;

1896 1897 1898 1899 1900 1901 1902
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1903 1904 1905 1906 1907 1908
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
1909
				&fs_info->dev_replace.num_write_errors);
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

1922
		clear_page(mapped_buffer);
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;

1935
	mutex_lock(&sctx->wr_lock);
1936
again:
1937 1938
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1939
					      GFP_KERNEL);
1940 1941
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1942 1943
			return -ENOMEM;
		}
1944 1945
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1946
	}
1947
	sbio = sctx->wr_curr_bio;
1948 1949 1950 1951 1952
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1953
		sbio->dev = sctx->wr_tgtdev;
1954 1955
		bio = sbio->bio;
		if (!bio) {
1956
			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1957 1958 1959 1960 1961
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1962
		bio_set_dev(bio, sbio->dev->bdev);
1963
		bio->bi_iter.bi_sector = sbio->physical >> 9;
M
Mike Christie 已提交
1964
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1965
		sbio->status = 0;
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1979
			mutex_unlock(&sctx->wr_lock);
1980 1981 1982 1983 1984 1985 1986 1987 1988
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1989
	if (sbio->page_count == sctx->pages_per_wr_bio)
1990
		scrub_wr_submit(sctx);
1991
	mutex_unlock(&sctx->wr_lock);
1992 1993 1994 1995 1996 1997 1998 1999

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

2000
	if (!sctx->wr_curr_bio)
2001 2002
		return;

2003 2004
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
2005
	WARN_ON(!sbio->bio->bi_disk);
2006 2007 2008 2009 2010
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
2011
	btrfsic_submit_bio(sbio->bio);
2012 2013
}

2014
static void scrub_wr_bio_end_io(struct bio *bio)
2015 2016
{
	struct scrub_bio *sbio = bio->bi_private;
2017
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2018

2019
	sbio->status = bio->bi_status;
2020 2021
	sbio->bio = bio;

2022 2023
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
2024
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
2025 2026 2027 2028 2029 2030 2031 2032 2033
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
2034
	if (sbio->status) {
2035
		struct btrfs_dev_replace *dev_replace =
2036
			&sbio->sctx->fs_info->dev_replace;
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
2056 2057 2058 2059
{
	u64 flags;
	int ret;

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

2072 2073
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
2085 2086

	return ret;
A
Arne Jansen 已提交
2087 2088
}

2089
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
2090
{
2091
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
2092
	u8 csum[BTRFS_CSUM_SIZE];
2093 2094 2095
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
2096
	u32 crc = ~(u32)0;
2097 2098
	u64 len;
	int index;
A
Arne Jansen 已提交
2099

2100
	BUG_ON(sblock->page_count < 1);
2101
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
2102 2103
		return 0;

2104 2105
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
2106
	buffer = kmap_atomic(page);
2107

2108
	len = sctx->fs_info->sectorsize;
2109 2110 2111 2112
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

2113
		crc = btrfs_csum_data(buffer, crc, l);
2114
		kunmap_atomic(buffer);
2115 2116 2117 2118 2119
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2120 2121
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2122
		buffer = kmap_atomic(page);
2123 2124
	}

A
Arne Jansen 已提交
2125
	btrfs_csum_final(crc, csum);
2126
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
2127
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
2128

2129
	return sblock->checksum_error;
A
Arne Jansen 已提交
2130 2131
}

2132
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
2133
{
2134
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
2135
	struct btrfs_header *h;
2136
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2137 2138 2139 2140 2141 2142
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
2143
	u32 crc = ~(u32)0;
2144 2145 2146 2147
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
2148
	page = sblock->pagev[0]->page;
2149
	mapped_buffer = kmap_atomic(page);
2150
	h = (struct btrfs_header *)mapped_buffer;
2151
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
2152 2153 2154 2155 2156 2157

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
2158
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2159
		sblock->header_error = 1;
A
Arne Jansen 已提交
2160

2161 2162 2163 2164
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
2165

M
Miao Xie 已提交
2166
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2167
		sblock->header_error = 1;
A
Arne Jansen 已提交
2168 2169 2170

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
2171
		sblock->header_error = 1;
A
Arne Jansen 已提交
2172

2173
	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
2174 2175 2176 2177 2178 2179
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2180
		crc = btrfs_csum_data(p, crc, l);
2181
		kunmap_atomic(mapped_buffer);
2182 2183 2184 2185 2186
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2187 2188
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2189
		mapped_buffer = kmap_atomic(page);
2190 2191 2192 2193 2194
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2195
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2196
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
2197

2198
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
2199 2200
}

2201
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
2202 2203
{
	struct btrfs_super_block *s;
2204
	struct scrub_ctx *sctx = sblock->sctx;
2205 2206 2207 2208 2209 2210
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
2211
	u32 crc = ~(u32)0;
2212 2213
	int fail_gen = 0;
	int fail_cor = 0;
2214 2215
	u64 len;
	int index;
A
Arne Jansen 已提交
2216

2217
	BUG_ON(sblock->page_count < 1);
2218
	page = sblock->pagev[0]->page;
2219
	mapped_buffer = kmap_atomic(page);
2220
	s = (struct btrfs_super_block *)mapped_buffer;
2221
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
2222

2223
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2224
		++fail_cor;
A
Arne Jansen 已提交
2225

2226
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2227
		++fail_gen;
A
Arne Jansen 已提交
2228

M
Miao Xie 已提交
2229
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2230
		++fail_cor;
A
Arne Jansen 已提交
2231

2232 2233 2234 2235 2236 2237 2238
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2239
		crc = btrfs_csum_data(p, crc, l);
2240
		kunmap_atomic(mapped_buffer);
2241 2242 2243 2244 2245
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2246 2247
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2248
		mapped_buffer = kmap_atomic(page);
2249 2250 2251 2252 2253
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2254
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2255
		++fail_cor;
A
Arne Jansen 已提交
2256

2257
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
2258 2259 2260 2261 2262
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
2263 2264 2265
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
2266
		if (fail_cor)
2267
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2268 2269
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
2270
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2271
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
2272 2273
	}

2274
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2275 2276
}

2277 2278
static void scrub_block_get(struct scrub_block *sblock)
{
2279
	refcount_inc(&sblock->refs);
2280 2281 2282 2283
}

static void scrub_block_put(struct scrub_block *sblock)
{
2284
	if (refcount_dec_and_test(&sblock->refs)) {
2285 2286
		int i;

2287 2288 2289
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2290
		for (i = 0; i < sblock->page_count; i++)
2291
			scrub_page_put(sblock->pagev[i]);
2292 2293 2294 2295
		kfree(sblock);
	}
}

2296 2297
static void scrub_page_get(struct scrub_page *spage)
{
2298
	atomic_inc(&spage->refs);
2299 2300 2301 2302
}

static void scrub_page_put(struct scrub_page *spage)
{
2303
	if (atomic_dec_and_test(&spage->refs)) {
2304 2305 2306 2307 2308 2309
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2310
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2311 2312 2313
{
	struct scrub_bio *sbio;

2314
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2315
		return;
A
Arne Jansen 已提交
2316

2317 2318
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2319
	scrub_pending_bio_inc(sctx);
2320
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2321 2322
}

2323 2324
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2325
{
2326
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2327
	struct scrub_bio *sbio;
2328
	int ret;
A
Arne Jansen 已提交
2329 2330 2331 2332 2333

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2334 2335 2336 2337 2338 2339 2340 2341
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2342
		} else {
2343 2344
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2345 2346
		}
	}
2347
	sbio = sctx->bios[sctx->curr];
2348
	if (sbio->page_count == 0) {
2349 2350
		struct bio *bio;

2351 2352
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2353
		sbio->dev = spage->dev;
2354 2355
		bio = sbio->bio;
		if (!bio) {
2356
			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2357 2358
			sbio->bio = bio;
		}
2359 2360 2361

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2362
		bio_set_dev(bio, sbio->dev->bdev);
2363
		bio->bi_iter.bi_sector = sbio->physical >> 9;
M
Mike Christie 已提交
2364
		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2365
		sbio->status = 0;
2366 2367 2368
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2369 2370
		   spage->logical ||
		   sbio->dev != spage->dev) {
2371
		scrub_submit(sctx);
A
Arne Jansen 已提交
2372 2373
		goto again;
	}
2374

2375 2376 2377 2378 2379 2380 2381 2382
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2383
		scrub_submit(sctx);
2384 2385 2386
		goto again;
	}

2387
	scrub_block_get(sblock); /* one for the page added to the bio */
2388 2389
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2390
	if (sbio->page_count == sctx->pages_per_rd_bio)
2391
		scrub_submit(sctx);
2392 2393 2394 2395

	return 0;
}

2396
static void scrub_missing_raid56_end_io(struct bio *bio)
2397 2398
{
	struct scrub_block *sblock = bio->bi_private;
2399
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2400

2401
	if (bio->bi_status)
2402 2403
		sblock->no_io_error_seen = 0;

2404 2405
	bio_put(bio);

2406 2407 2408 2409 2410 2411 2412
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2413
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2414 2415 2416 2417 2418 2419
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2420
	if (sblock->no_io_error_seen)
2421
		scrub_recheck_block_checksum(sblock);
2422 2423 2424 2425 2426

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2427
		btrfs_err_rl_in_rcu(fs_info,
2428
			"IO error rebuilding logical %llu for dev %s",
2429 2430 2431 2432 2433
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2434
		btrfs_err_rl_in_rcu(fs_info,
2435
			"failed to rebuild valid logical %llu for dev %s",
2436 2437 2438 2439 2440 2441 2442
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

	scrub_block_put(sblock);

2443
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2444
		mutex_lock(&sctx->wr_lock);
2445
		scrub_wr_submit(sctx);
2446
		mutex_unlock(&sctx->wr_lock);
2447 2448 2449 2450 2451 2452 2453 2454
	}

	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2455
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2456 2457
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2458
	struct btrfs_bio *bbio = NULL;
2459 2460 2461 2462 2463
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2464
	btrfs_bio_counter_inc_blocked(fs_info);
2465
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2466
			&length, &bbio);
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

2481
	bio = btrfs_io_bio_alloc(0);
2482 2483 2484 2485
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2486
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
			scrub_missing_raid56_worker, NULL, NULL);
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2506
	btrfs_bio_counter_dec(fs_info);
2507 2508 2509 2510 2511 2512
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2513
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2514
		       u64 physical, struct btrfs_device *dev, u64 flags,
2515 2516
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2517 2518 2519 2520
{
	struct scrub_block *sblock;
	int index;

2521
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2522
	if (!sblock) {
2523 2524 2525
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2526
		return -ENOMEM;
A
Arne Jansen 已提交
2527
	}
2528

2529 2530
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2531
	refcount_set(&sblock->refs, 1);
2532
	sblock->sctx = sctx;
2533 2534 2535
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2536
		struct scrub_page *spage;
2537 2538
		u64 l = min_t(u64, len, PAGE_SIZE);

2539
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2540 2541
		if (!spage) {
leave_nomem:
2542 2543 2544
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2545
			scrub_block_put(sblock);
2546 2547
			return -ENOMEM;
		}
2548 2549 2550
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2551
		spage->sblock = sblock;
2552
		spage->dev = dev;
2553 2554 2555 2556
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2557
		spage->physical_for_dev_replace = physical_for_dev_replace;
2558 2559 2560
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2561
			memcpy(spage->csum, csum, sctx->csum_size);
2562 2563 2564 2565
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2566
		spage->page = alloc_page(GFP_KERNEL);
2567 2568
		if (!spage->page)
			goto leave_nomem;
2569 2570 2571
		len -= l;
		logical += l;
		physical += l;
2572
		physical_for_dev_replace += l;
2573 2574
	}

2575
	WARN_ON(sblock->page_count == 0);
2576
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2577 2578 2579 2580 2581 2582 2583 2584 2585
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2586

2587 2588 2589 2590 2591
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2592
		}
A
Arne Jansen 已提交
2593

2594 2595 2596
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2597

2598 2599
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2600 2601 2602
	return 0;
}

2603
static void scrub_bio_end_io(struct bio *bio)
2604 2605
{
	struct scrub_bio *sbio = bio->bi_private;
2606
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2607

2608
	sbio->status = bio->bi_status;
2609 2610
	sbio->bio = bio;

2611
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2612 2613 2614 2615 2616
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2617
	struct scrub_ctx *sctx = sbio->sctx;
2618 2619
	int i;

2620
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2621
	if (sbio->status) {
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2642 2643 2644 2645
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2646

2647
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2648
		mutex_lock(&sctx->wr_lock);
2649
		scrub_wr_submit(sctx);
2650
		mutex_unlock(&sctx->wr_lock);
2651 2652
	}

2653
	scrub_pending_bio_dec(sctx);
2654 2655
}

2656 2657 2658 2659
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2660
	u64 offset;
2661 2662
	u64 nsectors64;
	u32 nsectors;
2663
	int sectorsize = sparity->sctx->fs_info->sectorsize;
2664 2665 2666 2667 2668 2669 2670

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2671 2672
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
	offset = div_u64(offset, sectorsize);
2673 2674 2675 2676
	nsectors64 = div_u64(len, sectorsize);

	ASSERT(nsectors64 < UINT_MAX);
	nsectors = (u32)nsectors64;
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2699 2700
static void scrub_block_complete(struct scrub_block *sblock)
{
2701 2702
	int corrupted = 0;

2703
	if (!sblock->no_io_error_seen) {
2704
		corrupted = 1;
2705
		scrub_handle_errored_block(sblock);
2706 2707 2708 2709 2710 2711
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2712 2713
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2714 2715
			scrub_write_block_to_dev_replace(sblock);
	}
2716 2717 2718 2719 2720 2721 2722 2723 2724

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2725 2726
}

2727
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2728 2729
{
	struct btrfs_ordered_sum *sum = NULL;
2730
	unsigned long index;
A
Arne Jansen 已提交
2731 2732
	unsigned long num_sectors;

2733 2734
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2735 2736 2737 2738 2739 2740
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2741
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2742 2743 2744 2745 2746 2747 2748
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2749 2750 2751
	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
	ASSERT(index < UINT_MAX);

2752
	num_sectors = sum->len / sctx->fs_info->sectorsize;
2753 2754
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2755 2756 2757
		list_del(&sum->list);
		kfree(sum);
	}
2758
	return 1;
A
Arne Jansen 已提交
2759 2760 2761
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2762 2763
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
			u64 logical, u64 len,
2764
			u64 physical, struct btrfs_device *dev, u64 flags,
2765
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2766 2767 2768
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2769 2770 2771
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2772 2773 2774 2775
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2776 2777 2778 2779
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2780
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2781 2782 2783 2784
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2785 2786 2787 2788
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2789
	} else {
2790
		blocksize = sctx->fs_info->sectorsize;
2791
		WARN_ON(1);
2792
	}
A
Arne Jansen 已提交
2793 2794

	while (len) {
2795
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2796 2797 2798 2799
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2800
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2801
			if (have_csum == 0)
2802
				++sctx->stat.no_csum;
2803
			if (0 && sctx->is_dev_replace && !have_csum) {
2804 2805 2806 2807 2808
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2809
		}
2810
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2811 2812 2813
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2814 2815 2816 2817 2818
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2819
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2820 2821 2822 2823
	}
	return 0;
}

2824 2825 2826 2827 2828 2829 2830 2831 2832
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

2833
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2834 2835 2836 2837 2838 2839 2840 2841 2842
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2843
	refcount_set(&sblock->refs, 1);
2844 2845 2846 2847 2848 2849 2850 2851 2852
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

2853
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2883
		spage->page = alloc_page(GFP_KERNEL);
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2918
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2919 2920 2921 2922
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2923
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2924
		blocksize = sparity->stripe_len;
2925
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2926
		blocksize = sparity->stripe_len;
2927
	} else {
2928
		blocksize = sctx->fs_info->sectorsize;
2929 2930 2931 2932 2933 2934 2935 2936 2937
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2938
			have_csum = scrub_find_csum(sctx, logical, csum);
2939 2940 2941 2942 2943 2944 2945 2946
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2947
skip:
2948 2949 2950 2951 2952 2953 2954
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2955 2956 2957 2958 2959 2960 2961 2962
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2963 2964
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2965 2966 2967 2968 2969
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2970 2971
	u32 stripe_index;
	u32 rot;
2972 2973 2974

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2975 2976 2977
	if (stripe_start)
		*stripe_start = last_offset;

2978 2979 2980 2981
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

2982
		stripe_nr = div64_u64(*offset, map->stripe_len);
2983
		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2984 2985

		/* Work out the disk rotation on this stripe-set */
2986
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2987 2988
		/* calculate which stripe this data locates */
		rot += i;
2989
		stripe_index = rot % map->num_stripes;
2990 2991 2992 2993 2994 2995 2996 2997 2998
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

3031
static void scrub_parity_bio_endio(struct bio *bio)
3032 3033
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
3034
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
3035

3036
	if (bio->bi_status)
3037 3038 3039 3040
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
3041 3042 3043

	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
			scrub_parity_bio_endio_worker, NULL, NULL);
3044
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3045 3046 3047 3048 3049
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
3050
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

3061
	length = sparity->logic_end - sparity->logic_start;
3062 3063

	btrfs_bio_counter_inc_blocked(fs_info);
3064
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3065
			       &length, &bbio);
3066
	if (ret || !bbio || !bbio->raid_map)
3067 3068
		goto bbio_out;

3069
	bio = btrfs_io_bio_alloc(0);
3070 3071 3072 3073
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

3074
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3075
					      length, sparity->scrub_dev,
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
3088
	btrfs_bio_counter_dec(fs_info);
3089
	btrfs_put_bbio(bbio);
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
3101
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3102 3103 3104 3105
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
3106
	refcount_inc(&sparity->refs);
3107 3108 3109 3110
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
3111
	if (!refcount_dec_and_test(&sparity->refs))
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
3124
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3125 3126 3127
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3128
	struct btrfs_bio *bbio = NULL;
3129 3130 3131 3132 3133 3134 3135 3136 3137
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3138
	u64 mapped_length;
3139 3140 3141 3142 3143 3144 3145
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

3146
	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
3163
	refcount_set(&sparity->refs, 1);
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3212 3213 3214 3215
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3216
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3217
				bytes = fs_info->nodesize;
3218 3219 3220 3221 3222 3223
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

3224
			if (key.objectid >= logic_end) {
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3237 3238 3239 3240
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
3241 3242
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3243
					  key.objectid, logic_start);
3244 3245 3246
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

3266
			mapped_length = extent_len;
3267
			bbio = NULL;
3268 3269 3270
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3297 3298 3299

			scrub_free_csums(sctx);

3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3331
						logic_end - logic_start);
3332 3333
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3334
	mutex_lock(&sctx->wr_lock);
3335
	scrub_wr_submit(sctx);
3336
	mutex_unlock(&sctx->wr_lock);
3337 3338 3339 3340 3341

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3342
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3343 3344
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3345 3346
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
3347
{
3348
	struct btrfs_path *path, *ppath;
3349
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3350 3351 3352
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3353
	struct blk_plug plug;
A
Arne Jansen 已提交
3354 3355 3356 3357 3358 3359 3360
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3361
	u64 logic_end;
3362
	u64 physical_end;
A
Arne Jansen 已提交
3363
	u64 generation;
3364
	int mirror_num;
A
Arne Jansen 已提交
3365 3366
	struct reada_control *reada1;
	struct reada_control *reada2;
3367
	struct btrfs_key key;
A
Arne Jansen 已提交
3368
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3369 3370
	u64 increment = map->stripe_len;
	u64 offset;
3371 3372 3373
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3374 3375
	u64 stripe_logical;
	u64 stripe_end;
3376 3377
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3378
	int stop_loop = 0;
D
David Woodhouse 已提交
3379

3380
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3381
	offset = 0;
3382
	nstripes = div64_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3383 3384 3385
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3386
		mirror_num = 1;
A
Arne Jansen 已提交
3387 3388 3389 3390
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3391
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3392 3393
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3394
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3395 3396
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3397
		mirror_num = num % map->num_stripes + 1;
3398
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3399
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3400 3401
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3402 3403
	} else {
		increment = map->stripe_len;
3404
		mirror_num = 1;
A
Arne Jansen 已提交
3405 3406 3407 3408 3409 3410
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3411 3412
	ppath = btrfs_alloc_path();
	if (!ppath) {
3413
		btrfs_free_path(path);
3414 3415 3416
		return -ENOMEM;
	}

3417 3418 3419 3420 3421
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3422 3423 3424
	path->search_commit_root = 1;
	path->skip_locking = 1;

3425 3426
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3427
	/*
A
Arne Jansen 已提交
3428 3429 3430
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3431 3432
	 */
	logical = base + offset;
3433
	physical_end = physical + nstripes * map->stripe_len;
3434
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3435
		get_raid56_logic_offset(physical_end, num,
3436
					map, &logic_end, NULL);
3437 3438 3439 3440
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3441
	wait_event(sctx->list_wait,
3442
		   atomic_read(&sctx->bios_in_flight) == 0);
3443
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3444 3445

	/* FIXME it might be better to start readahead at commit root */
3446 3447 3448
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3449
	key_end.objectid = logic_end;
3450 3451
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3452
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3453

3454 3455 3456
	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key.type = BTRFS_EXTENT_CSUM_KEY;
	key.offset = logical;
A
Arne Jansen 已提交
3457 3458
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3459
	key_end.offset = logic_end;
3460
	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
A
Arne Jansen 已提交
3461 3462 3463 3464 3465 3466

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3467 3468 3469 3470 3471

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3472
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3473 3474 3475 3476 3477

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3478
	while (physical < physical_end) {
A
Arne Jansen 已提交
3479 3480 3481 3482
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3483
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3484 3485 3486 3487 3488 3489 3490 3491
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3492
			sctx->flush_all_writes = true;
3493
			scrub_submit(sctx);
3494
			mutex_lock(&sctx->wr_lock);
3495
			scrub_wr_submit(sctx);
3496
			mutex_unlock(&sctx->wr_lock);
3497
			wait_event(sctx->list_wait,
3498
				   atomic_read(&sctx->bios_in_flight) == 0);
3499
			sctx->flush_all_writes = false;
3500
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3501 3502
		}

3503 3504 3505 3506 3507 3508
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3509
				/* it is parity strip */
3510
				stripe_logical += base;
3511
				stripe_end = stripe_logical + increment;
3512 3513 3514 3515 3516 3517 3518 3519 3520
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3521 3522 3523 3524
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3525
		key.objectid = logical;
L
Liu Bo 已提交
3526
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3527 3528 3529 3530

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3531

3532
		if (ret > 0) {
3533
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3534 3535
			if (ret < 0)
				goto out;
3536 3537 3538 3539 3540 3541 3542 3543 3544
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3545 3546
		}

L
Liu Bo 已提交
3547
		stop_loop = 0;
A
Arne Jansen 已提交
3548
		while (1) {
3549 3550
			u64 bytes;

A
Arne Jansen 已提交
3551 3552 3553 3554 3555 3556 3557 3558 3559
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3560
				stop_loop = 1;
A
Arne Jansen 已提交
3561 3562 3563 3564
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3565 3566 3567 3568
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3569
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3570
				bytes = fs_info->nodesize;
3571 3572 3573 3574
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3575 3576
				goto next;

L
Liu Bo 已提交
3577 3578 3579 3580 3581 3582
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3583 3584 3585 3586 3587 3588

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3589 3590 3591 3592
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3593
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3594
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3595
				       key.objectid, logical);
3596 3597 3598
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3599 3600 3601
				goto next;
			}

L
Liu Bo 已提交
3602 3603 3604 3605
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3606 3607 3608
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3609 3610 3611
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3612
			}
L
Liu Bo 已提交
3613
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3614
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3615 3616
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3617 3618
			}

L
Liu Bo 已提交
3619
			extent_physical = extent_logical - logical + physical;
3620 3621 3622 3623 3624 3625 3626
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3627

3628 3629 3630 3631 3632
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3633 3634 3635
			if (ret)
				goto out;

L
Liu Bo 已提交
3636
			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3637 3638
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3639
					   extent_logical - logical + physical);
3640 3641 3642

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3643 3644 3645
			if (ret)
				goto out;

L
Liu Bo 已提交
3646 3647
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3648
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3649 3650 3651 3652
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3663
								increment;
3664 3665 3666 3667 3668 3669 3670 3671
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3672 3673 3674 3675
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3676 3677 3678 3679 3680
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3681
				if (physical >= physical_end) {
L
Liu Bo 已提交
3682 3683 3684 3685
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3686 3687 3688
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3689
		btrfs_release_path(path);
3690
skip:
A
Arne Jansen 已提交
3691 3692
		logical += increment;
		physical += map->stripe_len;
3693
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3694 3695 3696 3697 3698
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3699
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3700 3701
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3702
	}
3703
out:
A
Arne Jansen 已提交
3704
	/* push queued extents */
3705
	scrub_submit(sctx);
3706
	mutex_lock(&sctx->wr_lock);
3707
	scrub_wr_submit(sctx);
3708
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3709

3710
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3711
	btrfs_free_path(path);
3712
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3713 3714 3715
	return ret < 0 ? ret : 0;
}

3716
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3717 3718
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3719 3720 3721
					  u64 dev_offset,
					  struct btrfs_block_group_cache *cache,
					  int is_dev_replace)
A
Arne Jansen 已提交
3722
{
3723 3724
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3725 3726 3727
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3728
	int ret = 0;
A
Arne Jansen 已提交
3729 3730 3731 3732 3733

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3746

3747
	map = em->map_lookup;
A
Arne Jansen 已提交
3748 3749 3750 3751 3752 3753 3754
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3755
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3756
		    map->stripes[i].physical == dev_offset) {
3757
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3758 3759
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3771
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3772 3773
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3774 3775 3776
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3777 3778
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3779 3780
	u64 length;
	u64 chunk_offset;
3781
	int ret = 0;
3782
	int ro_set;
A
Arne Jansen 已提交
3783 3784 3785 3786 3787
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3788
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3789 3790 3791 3792 3793

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3794
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3795 3796 3797
	path->search_commit_root = 1;
	path->skip_locking = 1;

3798
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3799 3800 3801 3802 3803 3804
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3805 3806 3807 3808 3809
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3810 3811 3812 3813
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3814
					break;
3815 3816 3817
				}
			} else {
				ret = 0;
3818 3819
			}
		}
A
Arne Jansen 已提交
3820 3821 3822 3823 3824 3825

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3826
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3827 3828
			break;

3829
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3841 3842
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3843 3844 3845 3846 3847 3848 3849 3850

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3851 3852 3853 3854 3855 3856

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3857 3858 3859 3860 3861 3862 3863 3864 3865
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3866
		ret = btrfs_inc_block_group_ro(fs_info, cache);
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
		if (!ret && is_dev_replace) {
			/*
			 * If we are doing a device replace wait for any tasks
			 * that started dellaloc right before we set the block
			 * group to RO mode, as they might have just allocated
			 * an extent from it or decided they could do a nocow
			 * write. And if any such tasks did that, wait for their
			 * ordered extents to complete and then commit the
			 * current transaction, so that we can later see the new
			 * extent items in the extent tree - the ordered extents
			 * create delayed data references (for cow writes) when
			 * they complete, which will be run and insert the
			 * corresponding extent items into the extent tree when
			 * we commit the transaction they used when running
			 * inode.c:btrfs_finish_ordered_io(). We later use
			 * the commit root of the extent tree to find extents
			 * to copy from the srcdev into the tgtdev, and we don't
			 * want to miss any new extents.
			 */
			btrfs_wait_block_group_reservations(cache);
			btrfs_wait_nocow_writers(cache);
3888
			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3889 3890 3891 3892 3893 3894 3895 3896 3897
						       cache->key.objectid,
						       cache->key.offset);
			if (ret > 0) {
				struct btrfs_trans_handle *trans;

				trans = btrfs_join_transaction(root);
				if (IS_ERR(trans))
					ret = PTR_ERR(trans);
				else
3898
					ret = btrfs_commit_transaction(trans);
3899 3900 3901 3902 3903 3904 3905
				if (ret) {
					scrub_pause_off(fs_info);
					btrfs_put_block_group(cache);
					break;
				}
			}
		}
3906
		scrub_pause_off(fs_info);
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919

		if (ret == 0) {
			ro_set = 1;
		} else if (ret == -ENOSPC) {
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
			 * It is not a problem for scrub/replace, because
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
J
Jeff Mahoney 已提交
3920
			btrfs_warn(fs_info,
3921
				   "failed setting block group ro: %d", ret);
3922 3923 3924 3925
			btrfs_put_block_group(cache);
			break;
		}

3926
		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3927 3928 3929
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3930
		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3931
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3932
				  found_key.offset, cache, is_dev_replace);
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3944
		sctx->flush_all_writes = true;
3945
		scrub_submit(sctx);
3946
		mutex_lock(&sctx->wr_lock);
3947
		scrub_wr_submit(sctx);
3948
		mutex_unlock(&sctx->wr_lock);
3949 3950 3951

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3952 3953

		scrub_pause_on(fs_info);
3954 3955 3956 3957 3958 3959

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3960 3961
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3962
		sctx->flush_all_writes = false;
3963

3964
		scrub_pause_off(fs_info);
3965

3966
		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3967 3968
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3969
		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3970

3971
		if (ro_set)
3972
			btrfs_dec_block_group_ro(cache);
3973

3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
		    btrfs_block_group_used(&cache->item) == 0) {
			spin_unlock(&cache->lock);
			spin_lock(&fs_info->unused_bgs_lock);
			if (list_empty(&cache->bg_list)) {
				btrfs_get_block_group(cache);
3988
				trace_btrfs_add_unused_block_group(cache);
3989 3990 3991 3992 3993 3994 3995 3996
				list_add_tail(&cache->bg_list,
					      &fs_info->unused_bgs);
			}
			spin_unlock(&fs_info->unused_bgs_lock);
		} else {
			spin_unlock(&cache->lock);
		}

A
Arne Jansen 已提交
3997 3998 3999
		btrfs_put_block_group(cache);
		if (ret)
			break;
4000 4001
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4002 4003 4004 4005 4006 4007 4008
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
4009
skip:
A
Arne Jansen 已提交
4010
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
4011
		btrfs_release_path(path);
A
Arne Jansen 已提交
4012 4013 4014
	}

	btrfs_free_path(path);
4015

4016
	return ret;
A
Arne Jansen 已提交
4017 4018
}

4019 4020
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
4021 4022 4023 4024 4025
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
4026
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
4027

4028
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4029 4030
		return -EIO;

4031
	/* Seed devices of a new filesystem has their own generation. */
4032
	if (scrub_dev->fs_devices != fs_info->fs_devices)
4033 4034
		gen = scrub_dev->generation;
	else
4035
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
4036 4037 4038

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
4039 4040
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
4041 4042
			break;

4043
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4044
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4045
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
4046 4047 4048
		if (ret)
			return ret;
	}
4049
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4050 4051 4052 4053 4054 4055 4056

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4057 4058
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4059
{
4060
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4061
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
4062

A
Arne Jansen 已提交
4063
	if (fs_info->scrub_workers_refcnt == 0) {
4064 4065
		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
				flags, is_dev_replace ? 1 : max_active, 4);
4066 4067 4068
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

4069
		fs_info->scrub_wr_completion_workers =
4070
			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4071
					      max_active, 2);
4072 4073 4074
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

4075
		fs_info->scrub_nocow_workers =
4076
			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4077 4078
		if (!fs_info->scrub_nocow_workers)
			goto fail_scrub_nocow_workers;
4079
		fs_info->scrub_parity_workers =
4080
			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4081
					      max_active, 2);
4082 4083
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
A
Arne Jansen 已提交
4084
	}
A
Arne Jansen 已提交
4085
	++fs_info->scrub_workers_refcnt;
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
fail_scrub_nocow_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
4096 4097
}

4098
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4099
{
4100
	if (--fs_info->scrub_workers_refcnt == 0) {
4101 4102 4103
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4104
		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4105
	}
A
Arne Jansen 已提交
4106 4107 4108
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

4109 4110
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4111
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4112
{
4113
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4114 4115
	int ret;
	struct btrfs_device *dev;
4116
	struct rcu_string *name;
A
Arne Jansen 已提交
4117

4118
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
4119 4120
		return -EINVAL;

4121
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4122 4123 4124 4125 4126
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
4127 4128
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4129 4130
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
4131 4132 4133
		return -EINVAL;
	}

4134
	if (fs_info->sectorsize != PAGE_SIZE) {
4135
		/* not supported for data w/o checksums */
4136
		btrfs_err_rl(fs_info,
J
Jeff Mahoney 已提交
4137
			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4138
		       fs_info->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
4139 4140 4141
		return -EINVAL;
	}

4142
	if (fs_info->nodesize >
4143
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4144
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4145 4146 4147 4148
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
4149 4150
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4151
		       fs_info->nodesize,
4152
		       SCRUB_MAX_PAGES_PER_BLOCK,
4153
		       fs_info->sectorsize,
4154 4155 4156 4157
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
4158

4159 4160
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4161 4162
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4163
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4164 4165 4166
		return -ENODEV;
	}

4167 4168
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4169 4170 4171 4172 4173 4174 4175 4176 4177
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

4178
	mutex_lock(&fs_info->scrub_lock);
4179
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4180
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4181
		mutex_unlock(&fs_info->scrub_lock);
4182 4183
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
4184 4185
	}

4186
	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
4187
	if (dev->scrub_ctx ||
4188 4189
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4190
		btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
4191
		mutex_unlock(&fs_info->scrub_lock);
4192
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4193 4194
		return -EINPROGRESS;
	}
4195
	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4196 4197 4198 4199 4200 4201 4202 4203

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

4204
	sctx = scrub_setup_ctx(dev, is_dev_replace);
4205
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
4206
		mutex_unlock(&fs_info->scrub_lock);
4207 4208
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
4209
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4210
	}
4211
	sctx->readonly = readonly;
4212
	dev->scrub_ctx = sctx;
4213
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4214

4215 4216 4217 4218
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4219
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4220 4221 4222
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4223
	if (!is_dev_replace) {
4224 4225 4226 4227
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4228
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4229
		ret = scrub_supers(sctx, dev);
4230
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4231
	}
A
Arne Jansen 已提交
4232 4233

	if (!ret)
4234 4235
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
4236

4237
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4238 4239 4240
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4241
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4242

A
Arne Jansen 已提交
4243
	if (progress)
4244
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4245 4246

	mutex_lock(&fs_info->scrub_lock);
4247
	dev->scrub_ctx = NULL;
4248
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
4249 4250
	mutex_unlock(&fs_info->scrub_lock);

4251
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4252 4253 4254 4255

	return ret;
}

4256
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4271
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4272 4273 4274 4275 4276
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4277
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4298 4299
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
4300
{
4301
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4302 4303

	mutex_lock(&fs_info->scrub_lock);
4304
	sctx = dev->scrub_ctx;
4305
	if (!sctx) {
A
Arne Jansen 已提交
4306 4307 4308
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4309
	atomic_inc(&sctx->cancel_req);
4310
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4311 4312
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4313
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4314 4315 4316 4317 4318 4319
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4320

4321
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4322 4323 4324
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4325
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4326

4327 4328
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
4329
	if (dev)
4330
		sctx = dev->scrub_ctx;
4331 4332
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4333
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4334

4335
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4336
}
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4349
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4350 4351 4352
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4353
		btrfs_put_bbio(bbio);
4354 4355 4356 4357 4358 4359
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4360
	btrfs_put_bbio(bbio);
4361 4362 4363 4364 4365 4366
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
4367
	struct btrfs_fs_info *fs_info = sctx->fs_info;
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4384 4385
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
4386
	INIT_LIST_HEAD(&nocow_ctx->inodes);
4387 4388
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
4389 4390 4391 4392

	return 0;
}

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

4410 4411 4412 4413 4414
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
4415 4416
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int not_written = 0;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
4442
			record_inode_for_nocow, nocow_ctx, false);
4443
	if (ret != 0 && ret != -ENOENT) {
J
Jeff Mahoney 已提交
4444 4445 4446 4447
		btrfs_warn(fs_info,
			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
			   logical, physical_for_dev_replace, len, mirror_num,
			   ret);
4448 4449 4450 4451
		not_written = 1;
		goto out;
	}

4452
	btrfs_end_transaction(trans);
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4470
out:
4471 4472 4473 4474 4475 4476 4477 4478
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4479
	if (trans && !IS_ERR(trans))
4480
		btrfs_end_transaction(trans);
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4491
static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4492 4493 4494 4495 4496 4497 4498 4499 4500
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

4501
	io_tree = &inode->io_tree;
4502

4503
	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4504
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
4522 4523
	    em->block_start + em->block_len < logical + len ||
	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4524 4525 4526 4527 4528 4529 4530
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
4531
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state);
4532 4533 4534
	return ret;
}

4535 4536
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4537
{
4538
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4539
	struct btrfs_key key;
4540 4541
	struct inode *inode;
	struct page *page;
4542
	struct btrfs_root *local_root;
4543
	struct extent_io_tree *io_tree;
4544
	u64 physical_for_dev_replace;
4545
	u64 nocow_ctx_logical;
4546
	u64 len = nocow_ctx->len;
4547
	unsigned long index;
4548
	int srcu_index;
4549 4550
	int ret = 0;
	int err = 0;
4551 4552 4553 4554

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4555 4556 4557

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4558
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4559 4560
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4561
		return PTR_ERR(local_root);
4562
	}
4563 4564 4565 4566 4567

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4568
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4569 4570 4571
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4572
	/* Avoid truncate/dio/punch hole.. */
A
Al Viro 已提交
4573
	inode_lock(inode);
4574 4575
	inode_dio_wait(inode);

4576
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4577
	io_tree = &BTRFS_I(inode)->io_tree;
4578
	nocow_ctx_logical = nocow_ctx->logical;
4579

4580 4581
	ret = check_extent_to_block(BTRFS_I(inode), offset, len,
			nocow_ctx_logical);
4582 4583 4584
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4585 4586
	}

4587 4588
	while (len >= PAGE_SIZE) {
		index = offset >> PAGE_SHIFT;
4589
again:
4590 4591
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4592
			btrfs_err(fs_info, "find_or_create_page() failed");
4593
			ret = -ENOMEM;
4594
			goto out;
4595 4596 4597 4598 4599 4600 4601
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4602
			err = extent_read_full_page(io_tree, page,
4603 4604
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4605 4606
			if (err) {
				ret = err;
4607 4608
				goto next_page;
			}
4609

4610
			lock_page(page);
4611 4612 4613 4614 4615 4616 4617
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4618
				unlock_page(page);
4619
				put_page(page);
4620 4621
				goto again;
			}
4622 4623 4624 4625 4626
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4627

4628
		ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4629 4630 4631 4632 4633 4634
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4635 4636 4637 4638
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4639
next_page:
4640
		unlock_page(page);
4641
		put_page(page);
4642 4643 4644 4645

		if (ret)
			break;

4646 4647 4648 4649
		offset += PAGE_SIZE;
		physical_for_dev_replace += PAGE_SIZE;
		nocow_ctx_logical += PAGE_SIZE;
		len -= PAGE_SIZE;
4650
	}
4651
	ret = COPY_COMPLETE;
4652
out:
A
Al Viro 已提交
4653
	inode_unlock(inode);
4654
	iput(inode);
4655 4656 4657 4658 4659 4660 4661 4662 4663
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;

4664
	dev = sctx->wr_tgtdev;
4665 4666 4667
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
4668
		btrfs_warn_rl(dev->fs_info,
4669
			"scrub write_page_nocow(bdev == NULL) is unexpected");
4670 4671
		return -EIO;
	}
4672
	bio = btrfs_io_bio_alloc(1);
4673 4674
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4675
	bio_set_dev(bio, dev->bdev);
4676
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4677 4678 4679 4680
	/* bio_add_page won't fail on a freshly allocated bio */
	bio_add_page(bio, page, PAGE_SIZE, 0);

	if (btrfsic_submit_bio_wait(bio)) {
4681 4682 4683 4684 4685 4686 4687 4688
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

	bio_put(bio);
	return 0;
}