memory-failure.c 60.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * High level machine check handler. Handles pages reported by the
7
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8
 * failure.
9 10 11
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
12 13
 *
 * Handles page cache pages in various states.	The tricky part
14 15 16 17 18 19
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
20 21 22 23 24 25 26 27
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
28 29 30 31 32 33 34
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
35 36 37 38
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
39
#include <linux/kernel-page-flags.h>
40
#include <linux/sched/signal.h>
41
#include <linux/sched/task.h>
42
#include <linux/dax.h>
H
Hugh Dickins 已提交
43
#include <linux/ksm.h>
44
#include <linux/rmap.h>
45
#include <linux/export.h>
46 47 48
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
49 50
#include <linux/migrate.h>
#include <linux/suspend.h>
51
#include <linux/slab.h>
52
#include <linux/swapops.h>
53
#include <linux/hugetlb.h>
54
#include <linux/memory_hotplug.h>
55
#include <linux/mm_inline.h>
56
#include <linux/memremap.h>
57
#include <linux/kfifo.h>
58
#include <linux/ratelimit.h>
59
#include <linux/page-isolation.h>
60
#include <linux/pagewalk.h>
61
#include <linux/shmem_fs.h>
62
#include "internal.h"
63
#include "ras/ras_event.h"
64 65 66 67 68

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

69
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
70

71 72
static bool __page_handle_poison(struct page *page)
{
73
	int ret;
74 75 76 77 78 79 80

	zone_pcp_disable(page_zone(page));
	ret = dissolve_free_huge_page(page);
	if (!ret)
		ret = take_page_off_buddy(page);
	zone_pcp_enable(page_zone(page));

81
	return ret > 0;
82 83
}

84
static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
85
{
86 87 88 89 90
	if (hugepage_or_freepage) {
		/*
		 * Doing this check for free pages is also fine since dissolve_free_huge_page
		 * returns 0 for non-hugetlb pages as well.
		 */
91
		if (!__page_handle_poison(page))
92 93
			/*
			 * We could fail to take off the target page from buddy
I
Ingo Molnar 已提交
94
			 * for example due to racy page allocation, but that's
95 96 97 98 99 100 101
			 * acceptable because soft-offlined page is not broken
			 * and if someone really want to use it, they should
			 * take it.
			 */
			return false;
	}

102
	SetPageHWPoison(page);
103 104
	if (release)
		put_page(page);
105 106
	page_ref_inc(page);
	num_poisoned_pages_inc();
107 108

	return true;
109 110
}

111 112
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

113
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
114 115
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
116 117
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
118
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
119 120
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
121 122
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
123 124 125 126 127 128 129 130 131 132 133

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
134
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
154 155 156 157 158 159 160 161 162 163 164 165
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
166 167 168 169 170 171 172 173 174 175
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
176
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
177 178 179 180 181 182 183
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

184
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
185 186 187 188 189 190 191 192
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
193 194
int hwpoison_filter(struct page *p)
{
195 196 197
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
198 199 200
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
201 202 203
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
204 205 206
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
207 208
	return 0;
}
209 210 211 212 213 214 215
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
216 217
EXPORT_SYMBOL_GPL(hwpoison_filter);

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
	short size_shift;
};

247
/*
248 249 250
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
251
 */
252
static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
253
{
254 255
	struct task_struct *t = tk->tsk;
	short addr_lsb = tk->size_shift;
256
	int ret = 0;
257

258
	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
259
			pfn, t->comm, t->pid);
260

261
	if (flags & MF_ACTION_REQUIRED) {
262 263
		if (t == current)
			ret = force_sig_mceerr(BUS_MCEERR_AR,
264
					 (void __user *)tk->addr, addr_lsb);
265 266 267 268
		else
			/* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
			ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
				addr_lsb, t);
269 270 271 272 273 274 275
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
276
		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
277
				      addr_lsb, t);  /* synchronous? */
278
	}
279
	if (ret < 0)
280
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
281
			t->comm, t->pid, ret);
282 283 284
	return ret;
}

285
/*
286
 * Unknown page type encountered. Try to check whether it can turn PageLRU by
287
 * lru_add_drain_all.
288
 */
289
void shake_page(struct page *p)
290
{
291 292 293
	if (PageHuge(p))
		return;

294 295 296 297 298
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
299

300
	/*
301 302
	 * TODO: Could shrink slab caches here if a lightweight range-based
	 * shrinker will be available.
303 304 305 306
	 */
}
EXPORT_SYMBOL_GPL(shake_page);

307 308 309 310
static unsigned long dev_pagemap_mapping_shift(struct page *page,
		struct vm_area_struct *vma)
{
	unsigned long address = vma_address(page, vma);
311
	unsigned long ret = 0;
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = pgd_offset(vma->vm_mm, address);
	if (!pgd_present(*pgd))
		return 0;
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;
	pud = pud_offset(p4d, address);
	if (!pud_present(*pud))
		return 0;
	if (pud_devmap(*pud))
		return PUD_SHIFT;
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;
	if (pmd_devmap(*pmd))
		return PMD_SHIFT;
	pte = pte_offset_map(pmd, address);
335 336 337 338
	if (pte_present(*pte) && pte_devmap(*pte))
		ret = PAGE_SHIFT;
	pte_unmap(pte);
	return ret;
339
}
340 341 342 343 344 345 346 347 348 349 350 351

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
352
		       struct list_head *to_kill)
353 354 355
{
	struct to_kill *tk;

356 357 358 359
	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
	if (!tk) {
		pr_err("Memory failure: Out of memory while machine check handling\n");
		return;
360
	}
361

362
	tk->addr = page_address_in_vma(p, vma);
363 364 365
	if (is_zone_device_page(p))
		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
	else
366
		tk->size_shift = page_shift(compound_head(p));
367 368

	/*
369 370 371 372 373 374 375 376
	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
	 * so "tk->size_shift == 0" effectively checks no mapping on
	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
	 * to a process' address space, it's possible not all N VMAs
	 * contain mappings for the page, but at least one VMA does.
	 * Only deliver SIGBUS with payload derived from the VMA that
	 * has a mapping for the page.
377
	 */
378
	if (tk->addr == -EFAULT) {
379
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
380
			page_to_pfn(p), tsk->comm);
381 382 383
	} else if (tk->size_shift == 0) {
		kfree(tk);
		return;
384
	}
385

386 387 388 389 390 391 392 393
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
394 395
 * Only do anything when FORCEKILL is set, otherwise just free the
 * list (this is used for clean pages which do not need killing)
396 397 398
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
399 400
static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
		unsigned long pfn, int flags)
401 402 403 404
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
405
		if (forcekill) {
406
			/*
407
			 * In case something went wrong with munmapping
408 409 410
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
411
			if (fail || tk->addr == -EFAULT) {
412
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
413
				       pfn, tk->tsk->comm, tk->tsk->pid);
414 415
				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
						 tk->tsk, PIDTYPE_PID);
416 417 418 419 420 421 422 423
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
424
			else if (kill_proc(tk, pfn, flags) < 0)
425
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
426
				       pfn, tk->tsk->comm, tk->tsk->pid);
427 428 429 430 431 432
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

433 434 435 436 437 438 439 440 441
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
442
{
443 444
	struct task_struct *t;

445 446 447 448 449 450 451 452 453
	for_each_thread(tsk, t) {
		if (t->flags & PF_MCE_PROCESS) {
			if (t->flags & PF_MCE_EARLY)
				return t;
		} else {
			if (sysctl_memory_failure_early_kill)
				return t;
		}
	}
454 455 456 457 458 459 460
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
461
 * specified) if the process is "early kill" and otherwise returns NULL.
462
 *
463 464 465 466 467
 * Note that the above is true for Action Optional case. For Action Required
 * case, it's only meaningful to the current thread which need to be signaled
 * with SIGBUS, this error is Action Optional for other non current
 * processes sharing the same error page,if the process is "early kill", the
 * task_struct of the dedicated thread will also be returned.
468 469 470 471
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
472
	if (!tsk->mm)
473
		return NULL;
474 475 476 477 478 479 480
	/*
	 * Comparing ->mm here because current task might represent
	 * a subthread, while tsk always points to the main thread.
	 */
	if (force_early && tsk->mm == current->mm)
		return current;

481
	return find_early_kill_thread(tsk);
482 483 484 485 486 487
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
488
				int force_early)
489 490 491 492
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
493
	pgoff_t pgoff;
494

495
	av = page_lock_anon_vma_read(page);
496
	if (av == NULL)	/* Not actually mapped anymore */
497 498
		return;

499
	pgoff = page_to_pgoff(page);
500
	read_lock(&tasklist_lock);
501
	for_each_process (tsk) {
502
		struct anon_vma_chain *vmac;
503
		struct task_struct *t = task_early_kill(tsk, force_early);
504

505
		if (!t)
506
			continue;
507 508
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
509
			vma = vmac->vma;
510 511
			if (!page_mapped_in_vma(page, vma))
				continue;
512
			if (vma->vm_mm == t->mm)
513
				add_to_kill(t, page, vma, to_kill);
514 515 516
		}
	}
	read_unlock(&tasklist_lock);
517
	page_unlock_anon_vma_read(av);
518 519 520 521 522 523
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
524
				int force_early)
525 526 527 528
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;
529
	pgoff_t pgoff;
530

531
	i_mmap_lock_read(mapping);
532
	read_lock(&tasklist_lock);
533
	pgoff = page_to_pgoff(page);
534
	for_each_process(tsk) {
535
		struct task_struct *t = task_early_kill(tsk, force_early);
536

537
		if (!t)
538
			continue;
539
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
540 541 542 543 544 545 546 547
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
548
			if (vma->vm_mm == t->mm)
549
				add_to_kill(t, page, vma, to_kill);
550 551 552
		}
	}
	read_unlock(&tasklist_lock);
553
	i_mmap_unlock_read(mapping);
554 555 556 557 558
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 */
559 560
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
561 562 563 564 565
{
	if (!page->mapping)
		return;

	if (PageAnon(page))
566
		collect_procs_anon(page, tokill, force_early);
567
	else
568
		collect_procs_file(page, tokill, force_early);
569 570
}

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
struct hwp_walk {
	struct to_kill tk;
	unsigned long pfn;
	int flags;
};

static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
{
	tk->addr = addr;
	tk->size_shift = shift;
}

static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
				unsigned long poisoned_pfn, struct to_kill *tk)
{
	unsigned long pfn = 0;

	if (pte_present(pte)) {
		pfn = pte_pfn(pte);
	} else {
		swp_entry_t swp = pte_to_swp_entry(pte);

		if (is_hwpoison_entry(swp))
			pfn = hwpoison_entry_to_pfn(swp);
	}

	if (!pfn || pfn != poisoned_pfn)
		return 0;

	set_to_kill(tk, addr, shift);
	return 1;
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
				      struct hwp_walk *hwp)
{
	pmd_t pmd = *pmdp;
	unsigned long pfn;
	unsigned long hwpoison_vaddr;

	if (!pmd_present(pmd))
		return 0;
	pfn = pmd_pfn(pmd);
	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
		return 1;
	}
	return 0;
}
#else
static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
				      struct hwp_walk *hwp)
{
	return 0;
}
#endif

static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
			      unsigned long end, struct mm_walk *walk)
{
	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
	int ret = 0;
635
	pte_t *ptep, *mapped_pte;
636 637 638 639 640 641 642 643 644 645 646 647
	spinlock_t *ptl;

	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
	if (ptl) {
		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
		spin_unlock(ptl);
		goto out;
	}

	if (pmd_trans_unstable(pmdp))
		goto out;

648 649
	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
						addr, &ptl);
650 651 652 653 654 655
	for (; addr != end; ptep++, addr += PAGE_SIZE) {
		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
					     hwp->pfn, &hwp->tk);
		if (ret == 1)
			break;
	}
656
	pte_unmap_unlock(mapped_pte, ptl);
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
out:
	cond_resched();
	return ret;
}

#ifdef CONFIG_HUGETLB_PAGE
static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
			    unsigned long addr, unsigned long end,
			    struct mm_walk *walk)
{
	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
	pte_t pte = huge_ptep_get(ptep);
	struct hstate *h = hstate_vma(walk->vma);

	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
				      hwp->pfn, &hwp->tk);
}
#else
#define hwpoison_hugetlb_range	NULL
#endif

678
static const struct mm_walk_ops hwp_walk_ops = {
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	.pmd_entry = hwpoison_pte_range,
	.hugetlb_entry = hwpoison_hugetlb_range,
};

/*
 * Sends SIGBUS to the current process with error info.
 *
 * This function is intended to handle "Action Required" MCEs on already
 * hardware poisoned pages. They could happen, for example, when
 * memory_failure() failed to unmap the error page at the first call, or
 * when multiple local machine checks happened on different CPUs.
 *
 * MCE handler currently has no easy access to the error virtual address,
 * so this function walks page table to find it. The returned virtual address
 * is proper in most cases, but it could be wrong when the application
 * process has multiple entries mapping the error page.
 */
static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
				  int flags)
{
	int ret;
	struct hwp_walk priv = {
		.pfn = pfn,
	};
	priv.tk.tsk = p;

	mmap_read_lock(p->mm);
	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
			      (void *)&priv);
	if (ret == 1 && priv.tk.addr)
		kill_proc(&priv.tk, pfn, flags);
710 711
	else
		ret = 0;
712
	mmap_read_unlock(p->mm);
713
	return ret > 0 ? -EHWPOISON : -EFAULT;
714 715
}

716
static const char *action_name[] = {
717 718 719 720
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
721 722 723
};

static const char * const action_page_types[] = {
724 725 726 727 728 729
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
730
	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
731 732 733 734 735 736 737 738 739 740 741
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
742
	[MF_MSG_DAX]			= "dax page",
743
	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
744
	[MF_MSG_UNKNOWN]		= "unknown page",
745 746
};

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
762 763 764 765 766

		/*
		 * Poisoned page might never drop its ref count to 0 so we have
		 * to uncharge it manually from its memcg.
		 */
767
		mem_cgroup_uncharge(page_folio(p));
768

769 770 771
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
772
		put_page(p);
773 774 775 776 777
		return 0;
	}
	return -EIO;
}

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
static int truncate_error_page(struct page *p, unsigned long pfn,
				struct address_space *mapping)
{
	int ret = MF_FAILED;

	if (mapping->a_ops->error_remove_page) {
		int err = mapping->a_ops->error_remove_page(mapping, p);

		if (err != 0) {
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
				pfn, err);
		} else if (page_has_private(p) &&
			   !try_to_release_page(p, GFP_NOIO)) {
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
		} else {
			ret = MF_RECOVERED;
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
			ret = MF_RECOVERED;
		else
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
	}

	return ret;
}

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
struct page_state {
	unsigned long mask;
	unsigned long res;
	enum mf_action_page_type type;

	/* Callback ->action() has to unlock the relevant page inside it. */
	int (*action)(struct page_state *ps, struct page *p);
};

/*
 * Return true if page is still referenced by others, otherwise return
 * false.
 *
 * The extra_pins is true when one extra refcount is expected.
 */
static bool has_extra_refcount(struct page_state *ps, struct page *p,
			       bool extra_pins)
{
	int count = page_count(p) - 1;

	if (extra_pins)
		count -= 1;

	if (count > 0) {
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
		       page_to_pfn(p), action_page_types[ps->type], count);
		return true;
	}

	return false;
}

843 844 845 846 847
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
848
static int me_kernel(struct page_state *ps, struct page *p)
849
{
850
	unlock_page(p);
851
	return MF_IGNORED;
852 853 854 855 856
}

/*
 * Page in unknown state. Do nothing.
 */
857
static int me_unknown(struct page_state *ps, struct page *p)
858
{
859
	pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
860
	unlock_page(p);
861
	return MF_FAILED;
862 863 864 865 866
}

/*
 * Clean (or cleaned) page cache page.
 */
867
static int me_pagecache_clean(struct page_state *ps, struct page *p)
868
{
869
	int ret;
870
	struct address_space *mapping;
871
	bool extra_pins;
872

873 874
	delete_from_lru_cache(p);

875 876 877 878
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
879 880 881 882
	if (PageAnon(p)) {
		ret = MF_RECOVERED;
		goto out;
	}
883 884 885 886 887 888 889 890 891 892 893 894 895

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
896 897
		ret = MF_FAILED;
		goto out;
898 899
	}

900 901 902 903 904 905
	/*
	 * The shmem page is kept in page cache instead of truncating
	 * so is expected to have an extra refcount after error-handling.
	 */
	extra_pins = shmem_mapping(mapping);

906 907 908
	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
J
Jan Kara 已提交
909
	 * Open: to take i_rwsem or not for this? Right now we don't.
910
	 */
911
	ret = truncate_error_page(p, page_to_pfn(p), mapping);
912 913 914
	if (has_extra_refcount(ps, p, extra_pins))
		ret = MF_FAILED;

915 916
out:
	unlock_page(p);
917

918
	return ret;
919 920 921
}

/*
922
 * Dirty pagecache page
923 924 925
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
926
static int me_pagecache_dirty(struct page_state *ps, struct page *p)
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
955
		 * and the page is dropped between then the error
956 957 958 959 960 961 962 963 964 965 966
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
967
		mapping_set_error(mapping, -EIO);
968 969
	}

970
	return me_pagecache_clean(ps, p);
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
992
static int me_swapcache_dirty(struct page_state *ps, struct page *p)
993
{
994
	int ret;
995
	bool extra_pins = false;
996

997 998 999 1000
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

1001 1002
	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
	unlock_page(p);
1003 1004 1005 1006 1007 1008 1009

	if (ret == MF_DELAYED)
		extra_pins = true;

	if (has_extra_refcount(ps, p, extra_pins))
		ret = MF_FAILED;

1010
	return ret;
1011 1012
}

1013
static int me_swapcache_clean(struct page_state *ps, struct page *p)
1014
{
1015 1016
	int ret;

1017
	delete_from_swap_cache(p);
1018

1019 1020
	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
	unlock_page(p);
1021 1022 1023 1024

	if (has_extra_refcount(ps, p, false))
		ret = MF_FAILED;

1025
	return ret;
1026 1027 1028 1029 1030
}

/*
 * Huge pages. Needs work.
 * Issues:
1031 1032
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
1033
 */
1034
static int me_huge_page(struct page_state *ps, struct page *p)
1035
{
1036
	int res;
1037
	struct page *hpage = compound_head(p);
1038
	struct address_space *mapping;
1039 1040 1041 1042

	if (!PageHuge(hpage))
		return MF_DELAYED;

1043 1044
	mapping = page_mapping(hpage);
	if (mapping) {
1045
		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1046
		unlock_page(hpage);
1047
	} else {
1048
		res = MF_FAILED;
1049 1050 1051 1052 1053 1054 1055 1056
		unlock_page(hpage);
		/*
		 * migration entry prevents later access on error anonymous
		 * hugepage, so we can free and dissolve it into buddy to
		 * save healthy subpages.
		 */
		if (PageAnon(hpage))
			put_page(hpage);
1057
		if (__page_handle_poison(p)) {
1058 1059 1060
			page_ref_inc(p);
			res = MF_RECOVERED;
		}
1061
	}
1062

1063 1064 1065
	if (has_extra_refcount(ps, p, false))
		res = MF_FAILED;

1066
	return res;
1067 1068 1069 1070 1071 1072 1073 1074 1075
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
1076
 * in its live cycle, so all accesses have to be extremely careful.
1077 1078 1079 1080 1081 1082
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
1083
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1084 1085 1086 1087 1088 1089 1090
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

1091
static struct page_state error_states[] = {
1092
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1093 1094 1095 1096
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
1097 1098 1099 1100 1101 1102

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
1103
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1104

1105
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1106

1107 1108
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1109

1110 1111
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1112

1113 1114
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1115

1116 1117
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1118 1119 1120 1121

	/*
	 * Catchall entry: must be at end.
	 */
1122
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1123 1124
};

1125 1126 1127 1128 1129 1130 1131 1132 1133
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef lru
#undef head
#undef slab
#undef reserved

1134 1135 1136 1137
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
1138 1139
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
1140
{
1141 1142
	trace_memory_failure_event(pfn, type, result);

1143
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1144
		pfn, action_page_types[type], action_name[result]);
1145 1146 1147
}

static int page_action(struct page_state *ps, struct page *p,
1148
			unsigned long pfn)
1149 1150 1151
{
	int result;

1152
	/* page p should be unlocked after returning from ps->action().  */
1153
	result = ps->action(ps, p);
1154

1155
	action_result(pfn, ps->type, result);
1156 1157 1158 1159 1160 1161

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

1162
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1163 1164
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
static inline bool PageHWPoisonTakenOff(struct page *page)
{
	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
}

void SetPageHWPoisonTakenOff(struct page *page)
{
	set_page_private(page, MAGIC_HWPOISON);
}

void ClearPageHWPoisonTakenOff(struct page *page)
{
	if (PageHWPoison(page))
		set_page_private(page, 0);
}

1181 1182 1183 1184 1185 1186 1187 1188
/*
 * Return true if a page type of a given page is supported by hwpoison
 * mechanism (while handling could fail), otherwise false.  This function
 * does not return true for hugetlb or device memory pages, so it's assumed
 * to be called only in the context where we never have such pages.
 */
static inline bool HWPoisonHandlable(struct page *page)
{
1189
	return PageLRU(page) || __PageMovable(page) || is_free_buddy_page(page);
1190 1191
}

1192
static int __get_hwpoison_page(struct page *page)
1193 1194
{
	struct page *head = compound_head(page);
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	int ret = 0;
	bool hugetlb = false;

	ret = get_hwpoison_huge_page(head, &hugetlb);
	if (hugetlb)
		return ret;

	/*
	 * This check prevents from calling get_hwpoison_unless_zero()
	 * for any unsupported type of page in order to reduce the risk of
	 * unexpected races caused by taking a page refcount.
	 */
	if (!HWPoisonHandlable(head))
1208
		return -EBUSY;
1209

1210 1211 1212 1213
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

1214 1215
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
1216 1217 1218 1219
		put_page(head);
	}

	return 0;
1220 1221
}

1222
static int get_any_page(struct page *p, unsigned long flags)
1223
{
1224 1225
	int ret = 0, pass = 0;
	bool count_increased = false;
1226

1227 1228 1229 1230
	if (flags & MF_COUNT_INCREASED)
		count_increased = true;

try_again:
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	if (!count_increased) {
		ret = __get_hwpoison_page(p);
		if (!ret) {
			if (page_count(p)) {
				/* We raced with an allocation, retry. */
				if (pass++ < 3)
					goto try_again;
				ret = -EBUSY;
			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
				/* We raced with put_page, retry. */
				if (pass++ < 3)
					goto try_again;
				ret = -EIO;
			}
			goto out;
		} else if (ret == -EBUSY) {
1247 1248 1249 1250 1251
			/*
			 * We raced with (possibly temporary) unhandlable
			 * page, retry.
			 */
			if (pass++ < 3) {
1252
				shake_page(p);
1253
				goto try_again;
1254 1255
			}
			ret = -EIO;
1256
			goto out;
1257
		}
1258 1259 1260 1261
	}

	if (PageHuge(p) || HWPoisonHandlable(p)) {
		ret = 1;
1262
	} else {
1263 1264 1265 1266 1267
		/*
		 * A page we cannot handle. Check whether we can turn
		 * it into something we can handle.
		 */
		if (pass++ < 3) {
1268
			put_page(p);
1269
			shake_page(p);
1270 1271
			count_increased = false;
			goto try_again;
1272
		}
1273 1274
		put_page(p);
		ret = -EIO;
1275
	}
1276
out:
1277 1278 1279
	if (ret == -EIO)
		dump_page(p, "hwpoison: unhandlable page");

1280 1281 1282
	return ret;
}

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
static int __get_unpoison_page(struct page *page)
{
	struct page *head = compound_head(page);
	int ret = 0;
	bool hugetlb = false;

	ret = get_hwpoison_huge_page(head, &hugetlb);
	if (hugetlb)
		return ret;

	/*
	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
	 * but also isolated from buddy freelist, so need to identify the
	 * state and have to cancel both operations to unpoison.
	 */
	if (PageHWPoisonTakenOff(page))
		return -EHWPOISON;

	return get_page_unless_zero(page) ? 1 : 0;
}

1304 1305 1306 1307 1308 1309 1310
/**
 * get_hwpoison_page() - Get refcount for memory error handling
 * @p:		Raw error page (hit by memory error)
 * @flags:	Flags controlling behavior of error handling
 *
 * get_hwpoison_page() takes a page refcount of an error page to handle memory
 * error on it, after checking that the error page is in a well-defined state
Q
Quanfa Fu 已提交
1311
 * (defined as a page-type we can successfully handle the memory error on it,
1312 1313 1314 1315 1316 1317 1318 1319
 * such as LRU page and hugetlb page).
 *
 * Memory error handling could be triggered at any time on any type of page,
 * so it's prone to race with typical memory management lifecycle (like
 * allocation and free).  So to avoid such races, get_hwpoison_page() takes
 * extra care for the error page's state (as done in __get_hwpoison_page()),
 * and has some retry logic in get_any_page().
 *
1320 1321 1322 1323
 * When called from unpoison_memory(), the caller should already ensure that
 * the given page has PG_hwpoison. So it's never reused for other page
 * allocations, and __get_unpoison_page() never races with them.
 *
1324 1325 1326 1327
 * Return: 0 on failure,
 *         1 on success for in-use pages in a well-defined state,
 *         -EIO for pages on which we can not handle memory errors,
 *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1328 1329
 *         operations like allocation and free,
 *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1330 1331
 */
static int get_hwpoison_page(struct page *p, unsigned long flags)
1332 1333 1334 1335
{
	int ret;

	zone_pcp_disable(page_zone(p));
1336 1337 1338 1339
	if (flags & MF_UNPOISON)
		ret = __get_unpoison_page(p);
	else
		ret = get_any_page(p, flags);
1340 1341 1342 1343 1344
	zone_pcp_enable(page_zone(p));

	return ret;
}

1345 1346 1347 1348
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
1349
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1350
				  int flags, struct page *hpage)
1351
{
1352
	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1353 1354
	struct address_space *mapping;
	LIST_HEAD(tokill);
1355
	bool unmap_success;
1356
	int kill = 1, forcekill;
1357
	bool mlocked = PageMlocked(hpage);
1358

1359 1360 1361 1362 1363
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
1364
		return true;
1365
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
1366
		return true;
1367 1368 1369 1370 1371

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
1372
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
1373
		return true;
W
Wu Fengguang 已提交
1374

1375
	if (PageKsm(p)) {
1376
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
1377
		return false;
1378
	}
1379 1380

	if (PageSwapCache(p)) {
1381 1382
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
1383 1384 1385 1386 1387 1388
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
1389 1390
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
1391
	 */
1392
	mapping = page_mapping(hpage);
1393
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1394
	    mapping_can_writeback(mapping)) {
1395 1396
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
1397 1398 1399
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
1400
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
1414
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1415

1416
	if (!PageHuge(hpage)) {
1417
		try_to_unmap(hpage, ttu);
1418
	} else {
1419 1420 1421 1422 1423 1424
		if (!PageAnon(hpage)) {
			/*
			 * For hugetlb pages in shared mappings, try_to_unmap
			 * could potentially call huge_pmd_unshare.  Because of
			 * this, take semaphore in write mode here and set
			 * TTU_RMAP_LOCKED to indicate we have taken the lock
Z
Zhen Lei 已提交
1425
			 * at this higher level.
1426 1427 1428
			 */
			mapping = hugetlb_page_mapping_lock_write(hpage);
			if (mapping) {
1429
				try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1430
				i_mmap_unlock_write(mapping);
1431
			} else
1432
				pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1433
		} else {
1434
			try_to_unmap(hpage, ttu);
1435 1436
		}
	}
1437 1438

	unmap_success = !page_mapped(hpage);
M
Minchan Kim 已提交
1439
	if (!unmap_success)
1440
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1441
		       pfn, page_mapcount(hpage));
1442

1443 1444 1445 1446 1447
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
1448
		shake_page(hpage);
1449

1450 1451 1452 1453
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1454 1455
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1456 1457 1458 1459
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1460
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1461
	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
W
Wu Fengguang 已提交
1462

M
Minchan Kim 已提交
1463
	return unmap_success;
1464 1465
}

1466 1467
static int identify_page_state(unsigned long pfn, struct page *p,
				unsigned long page_flags)
1468 1469
{
	struct page_state *ps;
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flags is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
			break;

	page_flags |= (p->flags & (1UL << PG_dirty));

	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	return page_action(ps, p, pfn);
}

1489 1490 1491
static int try_to_split_thp_page(struct page *page, const char *msg)
{
	lock_page(page);
1492
	if (unlikely(split_huge_page(page))) {
1493 1494 1495
		unsigned long pfn = page_to_pfn(page);

		unlock_page(page);
1496
		pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1497 1498 1499 1500 1501 1502 1503 1504
		put_page(page);
		return -EBUSY;
	}
	unlock_page(page);

	return 0;
}

1505
static int memory_failure_hugetlb(unsigned long pfn, int flags)
1506
{
1507 1508 1509 1510 1511 1512 1513 1514
	struct page *p = pfn_to_page(pfn);
	struct page *head = compound_head(p);
	int res;
	unsigned long page_flags;

	if (TestSetPageHWPoison(head)) {
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
		       pfn);
1515 1516 1517 1518
		res = -EHWPOISON;
		if (flags & MF_ACTION_REQUIRED)
			res = kill_accessing_process(current, page_to_pfn(head), flags);
		return res;
1519 1520 1521 1522
	}

	num_poisoned_pages_inc();

1523 1524 1525 1526
	if (!(flags & MF_COUNT_INCREASED)) {
		res = get_hwpoison_page(p, flags);
		if (!res) {
			lock_page(head);
1527 1528
			if (hwpoison_filter(p)) {
				if (TestClearPageHWPoison(head))
1529
					num_poisoned_pages_dec();
1530 1531
				unlock_page(head);
				return 0;
1532
			}
1533 1534
			unlock_page(head);
			res = MF_FAILED;
1535
			if (__page_handle_poison(p)) {
1536 1537 1538 1539 1540 1541 1542 1543
				page_ref_inc(p);
				res = MF_RECOVERED;
			}
			action_result(pfn, MF_MSG_FREE_HUGE, res);
			return res == MF_RECOVERED ? 0 : -EBUSY;
		} else if (res < 0) {
			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
			return -EBUSY;
1544 1545 1546 1547 1548 1549
		}
	}

	lock_page(head);
	page_flags = head->flags;

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	/*
	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
	 * simply disable it. In order to make it work properly, we need
	 * make sure that:
	 *  - conversion of a pud that maps an error hugetlb into hwpoison
	 *    entry properly works, and
	 *  - other mm code walking over page table is aware of pud-aligned
	 *    hwpoison entries.
	 */
	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1565
	if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1566 1567 1568 1569 1570
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1571
	return identify_page_state(pfn, p, page_flags);
1572 1573 1574 1575 1576
out:
	unlock_page(head);
	return res;
}

1577 1578 1579 1580 1581 1582 1583 1584 1585
static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
		struct dev_pagemap *pgmap)
{
	struct page *page = pfn_to_page(pfn);
	unsigned long size = 0;
	struct to_kill *tk;
	LIST_HEAD(tokill);
	int rc = -EBUSY;
	loff_t start;
1586
	dax_entry_t cookie;
1587

1588 1589 1590 1591 1592 1593
	if (flags & MF_COUNT_INCREASED)
		/*
		 * Drop the extra refcount in case we come from madvise().
		 */
		put_page(page);

1594 1595 1596 1597 1598 1599
	/* device metadata space is not recoverable */
	if (!pgmap_pfn_valid(pgmap, pfn)) {
		rc = -ENXIO;
		goto out;
	}

1600 1601 1602 1603 1604 1605
	/*
	 * Pages instantiated by device-dax (not filesystem-dax)
	 * may be compound pages.
	 */
	page = compound_head(page);

1606 1607 1608 1609 1610 1611 1612
	/*
	 * Prevent the inode from being freed while we are interrogating
	 * the address_space, typically this would be handled by
	 * lock_page(), but dax pages do not use the page lock. This
	 * also prevents changes to the mapping of this pfn until
	 * poison signaling is complete.
	 */
1613 1614
	cookie = dax_lock_page(page);
	if (!cookie)
1615 1616 1617 1618 1619 1620 1621
		goto out;

	if (hwpoison_filter(page)) {
		rc = 0;
		goto unlock;
	}

1622
	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
		/*
		 * TODO: Handle HMM pages which may need coordination
		 * with device-side memory.
		 */
		goto unlock;
	}

	/*
	 * Use this flag as an indication that the dax page has been
	 * remapped UC to prevent speculative consumption of poison.
	 */
	SetPageHWPoison(page);

	/*
	 * Unlike System-RAM there is no possibility to swap in a
	 * different physical page at a given virtual address, so all
	 * userspace consumption of ZONE_DEVICE memory necessitates
	 * SIGBUS (i.e. MF_MUST_KILL)
	 */
	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);

	list_for_each_entry(tk, &tokill, nd)
		if (tk->size_shift)
			size = max(size, 1UL << tk->size_shift);
	if (size) {
		/*
		 * Unmap the largest mapping to avoid breaking up
		 * device-dax mappings which are constant size. The
		 * actual size of the mapping being torn down is
		 * communicated in siginfo, see kill_proc()
		 */
		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1656
		unmap_mapping_range(page->mapping, start, size, 0);
1657
	}
1658
	kill_procs(&tokill, flags & MF_MUST_KILL, false, pfn, flags);
1659 1660
	rc = 0;
unlock:
1661
	dax_unlock_page(page, cookie);
1662 1663 1664 1665 1666 1667 1668
out:
	/* drop pgmap ref acquired in caller */
	put_dev_pagemap(pgmap);
	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
	return rc;
}

1669 1670
static DEFINE_MUTEX(mf_mutex);

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
1688
int memory_failure(unsigned long pfn, int flags)
1689 1690
{
	struct page *p;
1691
	struct page *hpage;
1692
	struct page *orig_head;
1693
	struct dev_pagemap *pgmap;
1694
	int res = 0;
1695
	unsigned long page_flags;
1696
	bool retry = true;
1697 1698

	if (!sysctl_memory_failure_recovery)
1699
		panic("Memory failure on page %lx", pfn);
1700

1701 1702
	mutex_lock(&mf_mutex);

1703 1704
	p = pfn_to_online_page(pfn);
	if (!p) {
1705 1706 1707 1708
		res = arch_memory_failure(pfn, flags);
		if (res == 0)
			goto unlock_mutex;

1709 1710
		if (pfn_valid(pfn)) {
			pgmap = get_dev_pagemap(pfn, NULL);
1711 1712 1713 1714 1715
			if (pgmap) {
				res = memory_failure_dev_pagemap(pfn, flags,
								 pgmap);
				goto unlock_mutex;
			}
1716
		}
1717 1718
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1719 1720
		res = -ENXIO;
		goto unlock_mutex;
1721 1722
	}

1723
try_again:
1724 1725 1726 1727 1728
	if (PageHuge(p)) {
		res = memory_failure_hugetlb(pfn, flags);
		goto unlock_mutex;
	}

1729
	if (TestSetPageHWPoison(p)) {
1730 1731
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1732
		res = -EHWPOISON;
1733 1734
		if (flags & MF_ACTION_REQUIRED)
			res = kill_accessing_process(current, pfn, flags);
1735
		goto unlock_mutex;
1736 1737
	}

1738
	orig_head = hpage = compound_head(p);
1739
	num_poisoned_pages_inc();
1740 1741 1742 1743 1744

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1745
	 * 2) it's part of a non-compound high order page.
1746 1747 1748 1749
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
1750
	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1751
	 */
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	if (!(flags & MF_COUNT_INCREASED)) {
		res = get_hwpoison_page(p, flags);
		if (!res) {
			if (is_free_buddy_page(p)) {
				if (take_page_off_buddy(p)) {
					page_ref_inc(p);
					res = MF_RECOVERED;
				} else {
					/* We lost the race, try again */
					if (retry) {
						ClearPageHWPoison(p);
						num_poisoned_pages_dec();
						retry = false;
						goto try_again;
					}
					res = MF_FAILED;
1768
				}
1769 1770 1771 1772 1773
				action_result(pfn, MF_MSG_BUDDY, res);
				res = res == MF_RECOVERED ? 0 : -EBUSY;
			} else {
				action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
				res = -EBUSY;
1774
			}
1775 1776 1777
			goto unlock_mutex;
		} else if (res < 0) {
			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1778
			res = -EBUSY;
1779
			goto unlock_mutex;
1780
		}
1781 1782
	}

1783
	if (PageTransHuge(hpage)) {
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
		/*
		 * The flag must be set after the refcount is bumped
		 * otherwise it may race with THP split.
		 * And the flag can't be set in get_hwpoison_page() since
		 * it is called by soft offline too and it is just called
		 * for !MF_COUNT_INCREASE.  So here seems to be the best
		 * place.
		 *
		 * Don't need care about the above error handling paths for
		 * get_hwpoison_page() since they handle either free page
		 * or unhandlable page.  The refcount is bumped iff the
		 * page is a valid handlable page.
		 */
		SetPageHasHWPoisoned(hpage);
1798 1799
		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1800 1801
			res = -EBUSY;
			goto unlock_mutex;
1802
		}
1803 1804 1805
		VM_BUG_ON_PAGE(!page_count(p), p);
	}

1806 1807 1808
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1809
	 * - to avoid races with __SetPageLocked()
1810 1811 1812 1813
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1814
	shake_page(p);
1815

1816
	lock_page(p);
W
Wu Fengguang 已提交
1817

1818 1819 1820 1821
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1822
	if (PageCompound(p) && compound_head(p) != orig_head) {
1823
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1824
		res = -EBUSY;
1825
		goto unlock_page;
1826 1827
	}

1828 1829 1830 1831 1832 1833 1834
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
1835
	page_flags = p->flags;
1836

W
Wu Fengguang 已提交
1837 1838
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1839
			num_poisoned_pages_dec();
1840
		unlock_page(p);
1841
		put_page(p);
1842
		goto unlock_mutex;
W
Wu Fengguang 已提交
1843
	}
W
Wu Fengguang 已提交
1844

1845 1846 1847 1848 1849 1850
	/*
	 * __munlock_pagevec may clear a writeback page's LRU flag without
	 * page_lock. We need wait writeback completion for this page or it
	 * may trigger vfs BUG while evict inode.
	 */
	if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1851 1852
		goto identify_page_state;

1853 1854 1855 1856
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1857 1858 1859 1860
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1861
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1862
	 */
1863
	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1864
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1865
		res = -EBUSY;
1866
		goto unlock_page;
W
Wu Fengguang 已提交
1867
	}
1868 1869 1870 1871

	/*
	 * Torn down by someone else?
	 */
1872
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1873
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1874
		res = -EBUSY;
1875
		goto unlock_page;
1876 1877
	}

1878
identify_page_state:
1879
	res = identify_page_state(pfn, p, page_flags);
1880 1881
	mutex_unlock(&mf_mutex);
	return res;
1882
unlock_page:
1883
	unlock_page(p);
1884 1885
unlock_mutex:
	mutex_unlock(&mf_mutex);
1886 1887
	return res;
}
1888
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1889

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
1923
void memory_failure_queue(unsigned long pfn, int flags)
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1934
	if (kfifo_put(&mf_cpu->fifo, entry))
1935 1936
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1937
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1951
	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1952 1953 1954 1955 1956 1957
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1958
		if (entry.flags & MF_SOFT_OFFLINE)
1959
			soft_offline_page(entry.pfn, entry.flags);
1960
		else
1961
			memory_failure(entry.pfn, entry.flags);
1962 1963 1964
	}
}

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
/*
 * Process memory_failure work queued on the specified CPU.
 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
 */
void memory_failure_queue_kick(int cpu)
{
	struct memory_failure_cpu *mf_cpu;

	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
	cancel_work_sync(&mf_cpu->work);
	memory_failure_work_func(&mf_cpu->work);
}

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1994 1995 1996 1997 1998 1999
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
static inline int clear_page_hwpoison(struct ratelimit_state *rs, struct page *p)
{
	if (TestClearPageHWPoison(p)) {
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
				 page_to_pfn(p), rs);
		num_poisoned_pages_dec();
		return 1;
	}
	return 0;
}

static inline int unpoison_taken_off_page(struct ratelimit_state *rs,
					  struct page *p)
{
	if (put_page_back_buddy(p)) {
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
				 page_to_pfn(p), rs);
		return 0;
	}
	return -EBUSY;
}

W
Wu Fengguang 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
2038
	int ret = -EBUSY;
2039 2040
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
2041 2042 2043 2044 2045 2046 2047

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

2048 2049
	mutex_lock(&mf_mutex);

W
Wu Fengguang 已提交
2050
	if (!PageHWPoison(p)) {
2051
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2052
				 pfn, &unpoison_rs);
2053
		goto unlock_mutex;
W
Wu Fengguang 已提交
2054 2055
	}

2056
	if (page_count(page) > 1) {
2057
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2058
				 pfn, &unpoison_rs);
2059
		goto unlock_mutex;
2060 2061 2062
	}

	if (page_mapped(page)) {
2063
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2064
				 pfn, &unpoison_rs);
2065
		goto unlock_mutex;
2066 2067 2068
	}

	if (page_mapping(page)) {
2069
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2070
				 pfn, &unpoison_rs);
2071
		goto unlock_mutex;
2072 2073
	}

2074
	if (PageSlab(page) || PageTable(page))
2075
		goto unlock_mutex;
W
Wu Fengguang 已提交
2076

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	ret = get_hwpoison_page(p, MF_UNPOISON);
	if (!ret) {
		if (clear_page_hwpoison(&unpoison_rs, page))
			ret = 0;
		else
			ret = -EBUSY;
	} else if (ret < 0) {
		if (ret == -EHWPOISON) {
			ret = unpoison_taken_off_page(&unpoison_rs, p);
		} else
			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
					 pfn, &unpoison_rs);
	} else {
		int freeit = clear_page_hwpoison(&unpoison_rs, p);
W
Wu Fengguang 已提交
2091

2092
		put_page(page);
2093 2094 2095 2096 2097
		if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
			put_page(page);
			ret = 0;
		}
	}
W
Wu Fengguang 已提交
2098

2099 2100 2101
unlock_mutex:
	mutex_unlock(&mf_mutex);
	return ret;
W
Wu Fengguang 已提交
2102 2103
}
EXPORT_SYMBOL(unpoison_memory);
2104

2105
static bool isolate_page(struct page *page, struct list_head *pagelist)
2106
{
2107 2108
	bool isolated = false;
	bool lru = PageLRU(page);
2109

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	if (PageHuge(page)) {
		isolated = isolate_huge_page(page, pagelist);
	} else {
		if (lru)
			isolated = !isolate_lru_page(page);
		else
			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);

		if (isolated)
			list_add(&page->lru, pagelist);
2120
	}
2121

2122 2123 2124 2125
	if (isolated && lru)
		inc_node_page_state(page, NR_ISOLATED_ANON +
				    page_is_file_lru(page));

2126
	/*
2127 2128 2129 2130 2131
	 * If we succeed to isolate the page, we grabbed another refcount on
	 * the page, so we can safely drop the one we got from get_any_pages().
	 * If we failed to isolate the page, it means that we cannot go further
	 * and we will return an error, so drop the reference we got from
	 * get_any_pages() as well.
2132
	 */
2133 2134
	put_page(page);
	return isolated;
2135 2136
}

2137 2138 2139 2140 2141 2142
/*
 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
 * If the page is mapped, it migrates the contents over.
 */
static int __soft_offline_page(struct page *page)
2143
{
2144
	int ret = 0;
2145
	unsigned long pfn = page_to_pfn(page);
2146 2147 2148 2149
	struct page *hpage = compound_head(page);
	char const *msg_page[] = {"page", "hugepage"};
	bool huge = PageHuge(page);
	LIST_HEAD(pagelist);
2150 2151 2152 2153
	struct migration_target_control mtc = {
		.nid = NUMA_NO_NODE,
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
	};
2154

2155
	lock_page(page);
2156 2157
	if (!PageHuge(page))
		wait_on_page_writeback(page);
2158 2159
	if (PageHWPoison(page)) {
		unlock_page(page);
2160
		put_page(page);
2161
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2162
		return 0;
2163
	}
2164 2165 2166 2167 2168 2169 2170

	if (!PageHuge(page))
		/*
		 * Try to invalidate first. This should work for
		 * non dirty unmapped page cache pages.
		 */
		ret = invalidate_inode_page(page);
2171
	unlock_page(page);
2172

2173 2174 2175 2176
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
2177
	if (ret) {
2178
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2179
		page_handle_poison(page, false, true);
2180
		return 0;
2181 2182
	}

2183
	if (isolate_page(hpage, &pagelist)) {
2184
		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2185
			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2186
		if (!ret) {
2187 2188 2189 2190
			bool release = !huge;

			if (!page_handle_poison(page, huge, release))
				ret = -EBUSY;
2191
		} else {
2192 2193
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
2194

2195 2196
			pr_info("soft offline: %#lx: %s migration failed %d, type %pGp\n",
				pfn, msg_page[huge], ret, &page->flags);
2197
			if (ret > 0)
2198
				ret = -EBUSY;
2199 2200
		}
	} else {
2201 2202
		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
			pfn, msg_page[huge], page_count(page), &page->flags);
2203
		ret = -EBUSY;
2204 2205 2206
	}
	return ret;
}
2207

2208
static int soft_offline_in_use_page(struct page *page)
2209 2210 2211
{
	struct page *hpage = compound_head(page);

2212 2213
	if (!PageHuge(page) && PageTransHuge(hpage))
		if (try_to_split_thp_page(page, "soft offline") < 0)
2214
			return -EBUSY;
2215
	return __soft_offline_page(page);
2216 2217
}

2218
static int soft_offline_free_page(struct page *page)
2219
{
2220
	int rc = 0;
2221

2222 2223
	if (!page_handle_poison(page, true, false))
		rc = -EBUSY;
2224

2225
	return rc;
2226 2227
}

2228 2229 2230 2231 2232 2233
static void put_ref_page(struct page *page)
{
	if (page)
		put_page(page);
}

2234 2235
/**
 * soft_offline_page - Soft offline a page.
2236
 * @pfn: pfn to soft-offline
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
2256
int soft_offline_page(unsigned long pfn, int flags)
2257 2258
{
	int ret;
2259
	bool try_again = true;
2260 2261 2262
	struct page *page, *ref_page = NULL;

	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2263

2264 2265
	if (!pfn_valid(pfn))
		return -ENXIO;
2266 2267 2268
	if (flags & MF_COUNT_INCREASED)
		ref_page = pfn_to_page(pfn);

2269 2270
	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
	page = pfn_to_online_page(pfn);
2271 2272
	if (!page) {
		put_ref_page(ref_page);
2273
		return -EIO;
2274
	}
2275

2276 2277
	mutex_lock(&mf_mutex);

2278
	if (PageHWPoison(page)) {
2279
		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2280
		put_ref_page(ref_page);
2281
		mutex_unlock(&mf_mutex);
2282
		return 0;
2283 2284
	}

2285
retry:
2286
	get_online_mems();
2287
	ret = get_hwpoison_page(page, flags);
2288
	put_online_mems();
2289

2290
	if (ret > 0) {
2291
		ret = soft_offline_in_use_page(page);
2292
	} else if (ret == 0) {
2293 2294
		if (soft_offline_free_page(page) && try_again) {
			try_again = false;
2295
			flags &= ~MF_COUNT_INCREASED;
2296 2297
			goto retry;
		}
2298
	}
2299

2300 2301
	mutex_unlock(&mf_mutex);

2302 2303
	return ret;
}