memory-failure.c 58.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * High level machine check handler. Handles pages reported by the
7
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8
 * failure.
9 10 11
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
12 13
 *
 * Handles page cache pages in various states.	The tricky part
14 15 16 17 18 19
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
20 21 22 23 24 25 26 27
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
28 29 30 31 32 33 34
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
35 36 37 38
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
39
#include <linux/kernel-page-flags.h>
40
#include <linux/sched/signal.h>
41
#include <linux/sched/task.h>
H
Hugh Dickins 已提交
42
#include <linux/ksm.h>
43
#include <linux/rmap.h>
44
#include <linux/export.h>
45 46 47
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
48 49
#include <linux/migrate.h>
#include <linux/suspend.h>
50
#include <linux/slab.h>
51
#include <linux/swapops.h>
52
#include <linux/hugetlb.h>
53
#include <linux/memory_hotplug.h>
54
#include <linux/mm_inline.h>
55
#include <linux/memremap.h>
56
#include <linux/kfifo.h>
57
#include <linux/ratelimit.h>
58
#include <linux/page-isolation.h>
59
#include <linux/pagewalk.h>
60
#include "internal.h"
61
#include "ras/ras_event.h"
62 63 64 65 66

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

67
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68

69
static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
70
{
71 72 73 74 75 76 77 78
	if (hugepage_or_freepage) {
		/*
		 * Doing this check for free pages is also fine since dissolve_free_huge_page
		 * returns 0 for non-hugetlb pages as well.
		 */
		if (dissolve_free_huge_page(page) || !take_page_off_buddy(page))
			/*
			 * We could fail to take off the target page from buddy
I
Ingo Molnar 已提交
79
			 * for example due to racy page allocation, but that's
80 81 82 83 84 85 86
			 * acceptable because soft-offlined page is not broken
			 * and if someone really want to use it, they should
			 * take it.
			 */
			return false;
	}

87
	SetPageHWPoison(page);
88 89
	if (release)
		put_page(page);
90 91
	page_ref_inc(page);
	num_poisoned_pages_inc();
92 93

	return true;
94 95
}

96 97
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

98
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
99 100
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
101 102
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
103
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
104 105
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
106 107
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
108 109 110 111 112 113 114 115 116 117 118

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
119
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
139 140 141 142 143 144 145 146 147 148 149 150
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
151 152 153 154 155 156 157 158 159 160
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
161
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
162 163 164 165 166 167 168
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

169
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
170 171 172 173 174 175 176 177
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
178 179
int hwpoison_filter(struct page *p)
{
180 181 182
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
183 184 185
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
186 187 188
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
189 190 191
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
192 193
	return 0;
}
194 195 196 197 198 199 200
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
201 202
EXPORT_SYMBOL_GPL(hwpoison_filter);

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
	short size_shift;
};

232
/*
233 234 235
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
236
 */
237
static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
238
{
239 240
	struct task_struct *t = tk->tsk;
	short addr_lsb = tk->size_shift;
241
	int ret = 0;
242

243
	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
244
			pfn, t->comm, t->pid);
245

246
	if (flags & MF_ACTION_REQUIRED) {
247 248
		if (t == current)
			ret = force_sig_mceerr(BUS_MCEERR_AR,
249
					 (void __user *)tk->addr, addr_lsb);
250 251 252 253
		else
			/* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
			ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
				addr_lsb, t);
254 255 256 257 258 259 260
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
261
		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
262
				      addr_lsb, t);  /* synchronous? */
263
	}
264
	if (ret < 0)
265
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
266
			t->comm, t->pid, ret);
267 268 269
	return ret;
}

270
/*
271 272
 * Unknown page type encountered. Try to check whether it can turn PageLRU by
 * lru_add_drain_all, or a free page by reclaiming slabs when possible.
273
 */
274
void shake_page(struct page *p, int access)
275
{
276 277 278
	if (PageHuge(p))
		return;

279 280 281 282 283
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
284

285
	/*
286 287
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
288
	 */
289 290
	if (access)
		drop_slab_node(page_to_nid(p));
291 292 293
}
EXPORT_SYMBOL_GPL(shake_page);

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
static unsigned long dev_pagemap_mapping_shift(struct page *page,
		struct vm_area_struct *vma)
{
	unsigned long address = vma_address(page, vma);
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = pgd_offset(vma->vm_mm, address);
	if (!pgd_present(*pgd))
		return 0;
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;
	pud = pud_offset(p4d, address);
	if (!pud_present(*pud))
		return 0;
	if (pud_devmap(*pud))
		return PUD_SHIFT;
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;
	if (pmd_devmap(*pmd))
		return PMD_SHIFT;
	pte = pte_offset_map(pmd, address);
	if (!pte_present(*pte))
		return 0;
	if (pte_devmap(*pte))
		return PAGE_SHIFT;
	return 0;
}
327 328 329 330 331 332 333 334 335 336 337 338

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
339
		       struct list_head *to_kill)
340 341 342
{
	struct to_kill *tk;

343 344 345 346
	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
	if (!tk) {
		pr_err("Memory failure: Out of memory while machine check handling\n");
		return;
347
	}
348

349
	tk->addr = page_address_in_vma(p, vma);
350 351 352
	if (is_zone_device_page(p))
		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
	else
353
		tk->size_shift = page_shift(compound_head(p));
354 355

	/*
356 357 358 359 360 361 362 363
	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
	 * so "tk->size_shift == 0" effectively checks no mapping on
	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
	 * to a process' address space, it's possible not all N VMAs
	 * contain mappings for the page, but at least one VMA does.
	 * Only deliver SIGBUS with payload derived from the VMA that
	 * has a mapping for the page.
364
	 */
365
	if (tk->addr == -EFAULT) {
366
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
367
			page_to_pfn(p), tsk->comm);
368 369 370
	} else if (tk->size_shift == 0) {
		kfree(tk);
		return;
371
	}
372

373 374 375 376 377 378 379 380 381 382 383 384 385
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
386 387
static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
		unsigned long pfn, int flags)
388 389 390 391
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
392
		if (forcekill) {
393
			/*
394
			 * In case something went wrong with munmapping
395 396 397
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
398
			if (fail || tk->addr == -EFAULT) {
399
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
400
				       pfn, tk->tsk->comm, tk->tsk->pid);
401 402
				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
						 tk->tsk, PIDTYPE_PID);
403 404 405 406 407 408 409 410
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
411
			else if (kill_proc(tk, pfn, flags) < 0)
412
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
413
				       pfn, tk->tsk->comm, tk->tsk->pid);
414 415 416 417 418 419
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

420 421 422 423 424 425 426 427 428
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
429
{
430 431
	struct task_struct *t;

432 433 434 435 436 437 438 439 440
	for_each_thread(tsk, t) {
		if (t->flags & PF_MCE_PROCESS) {
			if (t->flags & PF_MCE_EARLY)
				return t;
		} else {
			if (sysctl_memory_failure_early_kill)
				return t;
		}
	}
441 442 443 444 445 446 447
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
448
 * specified) if the process is "early kill" and otherwise returns NULL.
449
 *
450 451 452 453 454
 * Note that the above is true for Action Optional case. For Action Required
 * case, it's only meaningful to the current thread which need to be signaled
 * with SIGBUS, this error is Action Optional for other non current
 * processes sharing the same error page,if the process is "early kill", the
 * task_struct of the dedicated thread will also be returned.
455 456 457 458
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
459
	if (!tsk->mm)
460
		return NULL;
461 462 463 464 465 466 467
	/*
	 * Comparing ->mm here because current task might represent
	 * a subthread, while tsk always points to the main thread.
	 */
	if (force_early && tsk->mm == current->mm)
		return current;

468
	return find_early_kill_thread(tsk);
469 470 471 472 473 474
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
475
				int force_early)
476 477 478 479
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
480
	pgoff_t pgoff;
481

482
	av = page_lock_anon_vma_read(page);
483
	if (av == NULL)	/* Not actually mapped anymore */
484 485
		return;

486
	pgoff = page_to_pgoff(page);
487
	read_lock(&tasklist_lock);
488
	for_each_process (tsk) {
489
		struct anon_vma_chain *vmac;
490
		struct task_struct *t = task_early_kill(tsk, force_early);
491

492
		if (!t)
493
			continue;
494 495
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
496
			vma = vmac->vma;
497 498
			if (!page_mapped_in_vma(page, vma))
				continue;
499
			if (vma->vm_mm == t->mm)
500
				add_to_kill(t, page, vma, to_kill);
501 502 503
		}
	}
	read_unlock(&tasklist_lock);
504
	page_unlock_anon_vma_read(av);
505 506 507 508 509 510
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
511
				int force_early)
512 513 514 515
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;
516
	pgoff_t pgoff;
517

518
	i_mmap_lock_read(mapping);
519
	read_lock(&tasklist_lock);
520
	pgoff = page_to_pgoff(page);
521
	for_each_process(tsk) {
522
		struct task_struct *t = task_early_kill(tsk, force_early);
523

524
		if (!t)
525
			continue;
526
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
527 528 529 530 531 532 533 534
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
535
			if (vma->vm_mm == t->mm)
536
				add_to_kill(t, page, vma, to_kill);
537 538 539
		}
	}
	read_unlock(&tasklist_lock);
540
	i_mmap_unlock_read(mapping);
541 542 543 544 545
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 */
546 547
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
548 549 550 551 552
{
	if (!page->mapping)
		return;

	if (PageAnon(page))
553
		collect_procs_anon(page, tokill, force_early);
554
	else
555
		collect_procs_file(page, tokill, force_early);
556 557
}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
struct hwp_walk {
	struct to_kill tk;
	unsigned long pfn;
	int flags;
};

static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
{
	tk->addr = addr;
	tk->size_shift = shift;
}

static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
				unsigned long poisoned_pfn, struct to_kill *tk)
{
	unsigned long pfn = 0;

	if (pte_present(pte)) {
		pfn = pte_pfn(pte);
	} else {
		swp_entry_t swp = pte_to_swp_entry(pte);

		if (is_hwpoison_entry(swp))
			pfn = hwpoison_entry_to_pfn(swp);
	}

	if (!pfn || pfn != poisoned_pfn)
		return 0;

	set_to_kill(tk, addr, shift);
	return 1;
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
				      struct hwp_walk *hwp)
{
	pmd_t pmd = *pmdp;
	unsigned long pfn;
	unsigned long hwpoison_vaddr;

	if (!pmd_present(pmd))
		return 0;
	pfn = pmd_pfn(pmd);
	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
		return 1;
	}
	return 0;
}
#else
static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
				      struct hwp_walk *hwp)
{
	return 0;
}
#endif

static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
			      unsigned long end, struct mm_walk *walk)
{
	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
	int ret = 0;
	pte_t *ptep;
	spinlock_t *ptl;

	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
	if (ptl) {
		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
		spin_unlock(ptl);
		goto out;
	}

	if (pmd_trans_unstable(pmdp))
		goto out;

	ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, addr, &ptl);
	for (; addr != end; ptep++, addr += PAGE_SIZE) {
		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
					     hwp->pfn, &hwp->tk);
		if (ret == 1)
			break;
	}
	pte_unmap_unlock(ptep - 1, ptl);
out:
	cond_resched();
	return ret;
}

#ifdef CONFIG_HUGETLB_PAGE
static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
			    unsigned long addr, unsigned long end,
			    struct mm_walk *walk)
{
	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
	pte_t pte = huge_ptep_get(ptep);
	struct hstate *h = hstate_vma(walk->vma);

	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
				      hwp->pfn, &hwp->tk);
}
#else
#define hwpoison_hugetlb_range	NULL
#endif

static struct mm_walk_ops hwp_walk_ops = {
	.pmd_entry = hwpoison_pte_range,
	.hugetlb_entry = hwpoison_hugetlb_range,
};

/*
 * Sends SIGBUS to the current process with error info.
 *
 * This function is intended to handle "Action Required" MCEs on already
 * hardware poisoned pages. They could happen, for example, when
 * memory_failure() failed to unmap the error page at the first call, or
 * when multiple local machine checks happened on different CPUs.
 *
 * MCE handler currently has no easy access to the error virtual address,
 * so this function walks page table to find it. The returned virtual address
 * is proper in most cases, but it could be wrong when the application
 * process has multiple entries mapping the error page.
 */
static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
				  int flags)
{
	int ret;
	struct hwp_walk priv = {
		.pfn = pfn,
	};
	priv.tk.tsk = p;

	mmap_read_lock(p->mm);
	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
			      (void *)&priv);
	if (ret == 1 && priv.tk.addr)
		kill_proc(&priv.tk, pfn, flags);
	mmap_read_unlock(p->mm);
	return ret ? -EFAULT : -EHWPOISON;
}

700
static const char *action_name[] = {
701 702 703 704
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
705 706 707
};

static const char * const action_page_types[] = {
708 709 710 711 712 713 714
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
715
	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
716 717 718 719 720 721 722 723 724 725 726 727
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
728
	[MF_MSG_DAX]			= "dax page",
729
	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
730
	[MF_MSG_UNKNOWN]		= "unknown page",
731 732
};

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
748 749 750 751 752 753 754

		/*
		 * Poisoned page might never drop its ref count to 0 so we have
		 * to uncharge it manually from its memcg.
		 */
		mem_cgroup_uncharge(p);

755 756 757
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
758
		put_page(p);
759 760 761 762 763
		return 0;
	}
	return -EIO;
}

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
static int truncate_error_page(struct page *p, unsigned long pfn,
				struct address_space *mapping)
{
	int ret = MF_FAILED;

	if (mapping->a_ops->error_remove_page) {
		int err = mapping->a_ops->error_remove_page(mapping, p);

		if (err != 0) {
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
				pfn, err);
		} else if (page_has_private(p) &&
			   !try_to_release_page(p, GFP_NOIO)) {
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
		} else {
			ret = MF_RECOVERED;
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
			ret = MF_RECOVERED;
		else
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
	}

	return ret;
}

797 798 799 800 801 802 803
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
804
	unlock_page(p);
805
	return MF_IGNORED;
806 807 808 809 810 811 812
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
813
	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
814
	unlock_page(p);
815
	return MF_FAILED;
816 817 818 819 820 821 822
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
823
	int ret;
824 825
	struct address_space *mapping;

826 827
	delete_from_lru_cache(p);

828 829 830 831
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
832 833 834 835
	if (PageAnon(p)) {
		ret = MF_RECOVERED;
		goto out;
	}
836 837 838 839 840 841 842 843 844 845 846 847 848

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
849 850
		ret = MF_FAILED;
		goto out;
851 852 853 854 855 856 857
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
858 859 860 861
	ret = truncate_error_page(p, pfn, mapping);
out:
	unlock_page(p);
	return ret;
862 863 864
}

/*
865
 * Dirty pagecache page
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
898
		 * and the page is dropped between then the error
899 900 901 902 903 904 905 906 907 908 909
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
910
		mapping_set_error(mapping, -EIO);
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
937 938
	int ret;

939 940 941 942
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

943 944 945
	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
	unlock_page(p);
	return ret;
946 947 948 949
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
950 951
	int ret;

952
	delete_from_swap_cache(p);
953

954 955 956
	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
	unlock_page(p);
	return ret;
957 958 959 960 961
}

/*
 * Huge pages. Needs work.
 * Issues:
962 963
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
964 965 966
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
967
	int res;
968
	struct page *hpage = compound_head(p);
969
	struct address_space *mapping;
970 971 972 973

	if (!PageHuge(hpage))
		return MF_DELAYED;

974 975 976
	mapping = page_mapping(hpage);
	if (mapping) {
		res = truncate_error_page(hpage, pfn, mapping);
977
		unlock_page(hpage);
978
	} else {
979
		res = MF_FAILED;
980 981 982 983 984 985 986 987
		unlock_page(hpage);
		/*
		 * migration entry prevents later access on error anonymous
		 * hugepage, so we can free and dissolve it into buddy to
		 * save healthy subpages.
		 */
		if (PageAnon(hpage))
			put_page(hpage);
988 989 990 991
		if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
			page_ref_inc(p);
			res = MF_RECOVERED;
		}
992
	}
993 994

	return res;
995 996 997 998 999 1000 1001 1002 1003
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
1004
 * in its live cycle, so all accesses have to be extremely careful.
1005 1006 1007 1008 1009 1010
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
1011
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
1022
	enum mf_action_page_type type;
1023 1024

	/* Callback ->action() has to unlock the relevant page inside it. */
1025 1026
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
1027
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1028 1029 1030 1031
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
1032 1033 1034 1035 1036 1037

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
1038
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1039

1040
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1041

1042 1043
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1044

1045 1046
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1047

1048 1049
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1050

1051 1052
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1053 1054 1055 1056

	/*
	 * Catchall entry: must be at end.
	 */
1057
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1058 1059
};

1060 1061 1062 1063 1064 1065 1066 1067 1068
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef lru
#undef head
#undef slab
#undef reserved

1069 1070 1071 1072
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
1073 1074
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
1075
{
1076 1077
	trace_memory_failure_event(pfn, type, result);

1078
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1079
		pfn, action_page_types[type], action_name[result]);
1080 1081 1082
}

static int page_action(struct page_state *ps, struct page *p,
1083
			unsigned long pfn)
1084 1085
{
	int result;
1086
	int count;
1087

1088
	/* page p should be unlocked after returning from ps->action().  */
1089
	result = ps->action(p, pfn);
1090

1091
	count = page_count(p) - 1;
1092
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
1093
		count--;
1094
	if (count > 0) {
1095
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
1096
		       pfn, action_page_types[ps->type], count);
1097
		result = MF_FAILED;
1098
	}
1099
	action_result(pfn, ps->type, result);
1100 1101 1102 1103 1104 1105

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

1106
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1107 1108
}

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
/*
 * Return true if a page type of a given page is supported by hwpoison
 * mechanism (while handling could fail), otherwise false.  This function
 * does not return true for hugetlb or device memory pages, so it's assumed
 * to be called only in the context where we never have such pages.
 */
static inline bool HWPoisonHandlable(struct page *page)
{
	return PageLRU(page) || __PageMovable(page);
}

1120
static int __get_hwpoison_page(struct page *page)
1121 1122
{
	struct page *head = compound_head(page);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	int ret = 0;
	bool hugetlb = false;

	ret = get_hwpoison_huge_page(head, &hugetlb);
	if (hugetlb)
		return ret;

	/*
	 * This check prevents from calling get_hwpoison_unless_zero()
	 * for any unsupported type of page in order to reduce the risk of
	 * unexpected races caused by taking a page refcount.
	 */
	if (!HWPoisonHandlable(head))
		return 0;
1137

1138
	if (PageTransHuge(head)) {
1139 1140 1141 1142 1143 1144 1145
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
1146
			pr_err("Memory failure: %#lx: non anonymous thp\n",
1147 1148 1149
				page_to_pfn(page));
			return 0;
		}
1150 1151
	}

1152 1153 1154 1155
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

1156 1157
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
1158 1159 1160 1161
		put_page(head);
	}

	return 0;
1162 1163
}

1164
static int get_any_page(struct page *p, unsigned long flags)
1165
{
1166 1167
	int ret = 0, pass = 0;
	bool count_increased = false;
1168

1169 1170 1171 1172
	if (flags & MF_COUNT_INCREASED)
		count_increased = true;

try_again:
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	if (!count_increased) {
		ret = __get_hwpoison_page(p);
		if (!ret) {
			if (page_count(p)) {
				/* We raced with an allocation, retry. */
				if (pass++ < 3)
					goto try_again;
				ret = -EBUSY;
			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
				/* We raced with put_page, retry. */
				if (pass++ < 3)
					goto try_again;
				ret = -EIO;
			}
			goto out;
		} else if (ret == -EBUSY) {
			/* We raced with freeing huge page to buddy, retry. */
1190 1191
			if (pass++ < 3)
				goto try_again;
1192
			goto out;
1193
		}
1194 1195 1196 1197
	}

	if (PageHuge(p) || HWPoisonHandlable(p)) {
		ret = 1;
1198
	} else {
1199 1200 1201 1202 1203
		/*
		 * A page we cannot handle. Check whether we can turn
		 * it into something we can handle.
		 */
		if (pass++ < 3) {
1204
			put_page(p);
1205 1206 1207
			shake_page(p, 1);
			count_increased = false;
			goto try_again;
1208
		}
1209 1210
		put_page(p);
		ret = -EIO;
1211
	}
1212
out:
1213 1214 1215
	return ret;
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
/**
 * get_hwpoison_page() - Get refcount for memory error handling
 * @p:		Raw error page (hit by memory error)
 * @flags:	Flags controlling behavior of error handling
 *
 * get_hwpoison_page() takes a page refcount of an error page to handle memory
 * error on it, after checking that the error page is in a well-defined state
 * (defined as a page-type we can successfully handle the memor error on it,
 * such as LRU page and hugetlb page).
 *
 * Memory error handling could be triggered at any time on any type of page,
 * so it's prone to race with typical memory management lifecycle (like
 * allocation and free).  So to avoid such races, get_hwpoison_page() takes
 * extra care for the error page's state (as done in __get_hwpoison_page()),
 * and has some retry logic in get_any_page().
 *
 * Return: 0 on failure,
 *         1 on success for in-use pages in a well-defined state,
 *         -EIO for pages on which we can not handle memory errors,
 *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
 *         operations like allocation and free.
 */
static int get_hwpoison_page(struct page *p, unsigned long flags)
1239 1240 1241 1242
{
	int ret;

	zone_pcp_disable(page_zone(p));
1243
	ret = get_any_page(p, flags);
1244 1245 1246 1247 1248
	zone_pcp_enable(page_zone(p));

	return ret;
}

1249 1250 1251 1252
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
1253
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1254
				  int flags, struct page **hpagep)
1255
{
1256
	enum ttu_flags ttu = TTU_IGNORE_MLOCK;
1257 1258
	struct address_space *mapping;
	LIST_HEAD(tokill);
1259
	bool unmap_success = true;
1260
	int kill = 1, forcekill;
1261
	struct page *hpage = *hpagep;
1262
	bool mlocked = PageMlocked(hpage);
1263

1264 1265 1266 1267 1268
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
1269
		return true;
1270
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
1271
		return true;
1272 1273 1274 1275 1276

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
1277
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
1278
		return true;
W
Wu Fengguang 已提交
1279

1280
	if (PageKsm(p)) {
1281
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
1282
		return false;
1283
	}
1284 1285

	if (PageSwapCache(p)) {
1286 1287
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
1288 1289 1290 1291 1292 1293
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
1294 1295
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
1296
	 */
1297
	mapping = page_mapping(hpage);
1298
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1299
	    mapping_can_writeback(mapping)) {
1300 1301
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
1302 1303 1304
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
1305
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
1319
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1320

1321 1322 1323
	if (!PageHuge(hpage)) {
		unmap_success = try_to_unmap(hpage, ttu);
	} else {
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
		if (!PageAnon(hpage)) {
			/*
			 * For hugetlb pages in shared mappings, try_to_unmap
			 * could potentially call huge_pmd_unshare.  Because of
			 * this, take semaphore in write mode here and set
			 * TTU_RMAP_LOCKED to indicate we have taken the lock
			 * at this higer level.
			 */
			mapping = hugetlb_page_mapping_lock_write(hpage);
			if (mapping) {
				unmap_success = try_to_unmap(hpage,
1335
						     ttu|TTU_RMAP_LOCKED);
1336 1337 1338 1339 1340
				i_mmap_unlock_write(mapping);
			} else {
				pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
				unmap_success = false;
			}
1341
		} else {
1342
			unmap_success = try_to_unmap(hpage, ttu);
1343 1344
		}
	}
M
Minchan Kim 已提交
1345
	if (!unmap_success)
1346
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1347
		       pfn, page_mapcount(hpage));
1348

1349 1350 1351 1352 1353 1354 1355
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
		shake_page(hpage, 0);

1356 1357 1358 1359
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1360 1361
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1362 1363 1364 1365
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1366
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1367
	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
W
Wu Fengguang 已提交
1368

M
Minchan Kim 已提交
1369
	return unmap_success;
1370 1371
}

1372 1373
static int identify_page_state(unsigned long pfn, struct page *p,
				unsigned long page_flags)
1374 1375
{
	struct page_state *ps;
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flags is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
			break;

	page_flags |= (p->flags & (1UL << PG_dirty));

	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	return page_action(ps, p, pfn);
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
static int try_to_split_thp_page(struct page *page, const char *msg)
{
	lock_page(page);
	if (!PageAnon(page) || unlikely(split_huge_page(page))) {
		unsigned long pfn = page_to_pfn(page);

		unlock_page(page);
		if (!PageAnon(page))
			pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
		else
			pr_info("%s: %#lx: thp split failed\n", msg, pfn);
		put_page(page);
		return -EBUSY;
	}
	unlock_page(page);

	return 0;
}

1414
static int memory_failure_hugetlb(unsigned long pfn, int flags)
1415
{
1416 1417 1418 1419 1420 1421 1422 1423
	struct page *p = pfn_to_page(pfn);
	struct page *head = compound_head(p);
	int res;
	unsigned long page_flags;

	if (TestSetPageHWPoison(head)) {
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
		       pfn);
1424 1425 1426 1427
		res = -EHWPOISON;
		if (flags & MF_ACTION_REQUIRED)
			res = kill_accessing_process(current, page_to_pfn(head), flags);
		return res;
1428 1429 1430 1431
	}

	num_poisoned_pages_inc();

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	if (!(flags & MF_COUNT_INCREASED)) {
		res = get_hwpoison_page(p, flags);
		if (!res) {
			/*
			 * Check "filter hit" and "race with other subpage."
			 */
			lock_page(head);
			if (PageHWPoison(head)) {
				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
				    || (p != head && TestSetPageHWPoison(head))) {
					num_poisoned_pages_dec();
					unlock_page(head);
					return 0;
				}
1446
			}
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
			unlock_page(head);
			res = MF_FAILED;
			if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
				page_ref_inc(p);
				res = MF_RECOVERED;
			}
			action_result(pfn, MF_MSG_FREE_HUGE, res);
			return res == MF_RECOVERED ? 0 : -EBUSY;
		} else if (res < 0) {
			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
			return -EBUSY;
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
		}
	}

	lock_page(head);
	page_flags = head->flags;

	if (!PageHWPoison(head)) {
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
		num_poisoned_pages_dec();
		unlock_page(head);
1468
		put_page(head);
1469 1470 1471
		return 0;
	}

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	/*
	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
	 * simply disable it. In order to make it work properly, we need
	 * make sure that:
	 *  - conversion of a pud that maps an error hugetlb into hwpoison
	 *    entry properly works, and
	 *  - other mm code walking over page table is aware of pud-aligned
	 *    hwpoison entries.
	 */
	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1487
	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1488 1489 1490 1491 1492
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1493
	return identify_page_state(pfn, p, page_flags);
1494 1495 1496 1497 1498
out:
	unlock_page(head);
	return res;
}

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
		struct dev_pagemap *pgmap)
{
	struct page *page = pfn_to_page(pfn);
	const bool unmap_success = true;
	unsigned long size = 0;
	struct to_kill *tk;
	LIST_HEAD(tokill);
	int rc = -EBUSY;
	loff_t start;
1509
	dax_entry_t cookie;
1510

1511 1512 1513 1514 1515 1516
	if (flags & MF_COUNT_INCREASED)
		/*
		 * Drop the extra refcount in case we come from madvise().
		 */
		put_page(page);

1517 1518 1519 1520 1521 1522
	/* device metadata space is not recoverable */
	if (!pgmap_pfn_valid(pgmap, pfn)) {
		rc = -ENXIO;
		goto out;
	}

1523 1524 1525 1526 1527 1528 1529
	/*
	 * Prevent the inode from being freed while we are interrogating
	 * the address_space, typically this would be handled by
	 * lock_page(), but dax pages do not use the page lock. This
	 * also prevents changes to the mapping of this pfn until
	 * poison signaling is complete.
	 */
1530 1531
	cookie = dax_lock_page(page);
	if (!cookie)
1532 1533 1534 1535 1536 1537 1538
		goto out;

	if (hwpoison_filter(page)) {
		rc = 0;
		goto unlock;
	}

1539
	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
		/*
		 * TODO: Handle HMM pages which may need coordination
		 * with device-side memory.
		 */
		goto unlock;
	}

	/*
	 * Use this flag as an indication that the dax page has been
	 * remapped UC to prevent speculative consumption of poison.
	 */
	SetPageHWPoison(page);

	/*
	 * Unlike System-RAM there is no possibility to swap in a
	 * different physical page at a given virtual address, so all
	 * userspace consumption of ZONE_DEVICE memory necessitates
	 * SIGBUS (i.e. MF_MUST_KILL)
	 */
	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);

	list_for_each_entry(tk, &tokill, nd)
		if (tk->size_shift)
			size = max(size, 1UL << tk->size_shift);
	if (size) {
		/*
		 * Unmap the largest mapping to avoid breaking up
		 * device-dax mappings which are constant size. The
		 * actual size of the mapping being torn down is
		 * communicated in siginfo, see kill_proc()
		 */
		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1573
		unmap_mapping_range(page->mapping, start, size, 0);
1574 1575 1576 1577
	}
	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
	rc = 0;
unlock:
1578
	dax_unlock_page(page, cookie);
1579 1580 1581 1582 1583 1584 1585
out:
	/* drop pgmap ref acquired in caller */
	put_dev_pagemap(pgmap);
	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
	return rc;
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
1603
int memory_failure(unsigned long pfn, int flags)
1604 1605
{
	struct page *p;
1606
	struct page *hpage;
1607
	struct page *orig_head;
1608
	struct dev_pagemap *pgmap;
1609
	int res = 0;
1610
	unsigned long page_flags;
1611
	bool retry = true;
1612
	static DEFINE_MUTEX(mf_mutex);
1613 1614

	if (!sysctl_memory_failure_recovery)
1615
		panic("Memory failure on page %lx", pfn);
1616

1617 1618 1619 1620 1621 1622 1623 1624
	p = pfn_to_online_page(pfn);
	if (!p) {
		if (pfn_valid(pfn)) {
			pgmap = get_dev_pagemap(pfn, NULL);
			if (pgmap)
				return memory_failure_dev_pagemap(pfn, flags,
								  pgmap);
		}
1625 1626
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1627
		return -ENXIO;
1628 1629
	}

1630 1631
	mutex_lock(&mf_mutex);

1632
try_again:
1633 1634 1635 1636 1637
	if (PageHuge(p)) {
		res = memory_failure_hugetlb(pfn, flags);
		goto unlock_mutex;
	}

1638
	if (TestSetPageHWPoison(p)) {
1639 1640
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1641
		res = -EHWPOISON;
1642 1643
		if (flags & MF_ACTION_REQUIRED)
			res = kill_accessing_process(current, pfn, flags);
1644
		goto unlock_mutex;
1645 1646
	}

1647
	orig_head = hpage = compound_head(p);
1648
	num_poisoned_pages_inc();
1649 1650 1651 1652 1653

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1654
	 * 2) it's part of a non-compound high order page.
1655 1656 1657 1658
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
1659
	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1660
	 */
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	if (!(flags & MF_COUNT_INCREASED)) {
		res = get_hwpoison_page(p, flags);
		if (!res) {
			if (is_free_buddy_page(p)) {
				if (take_page_off_buddy(p)) {
					page_ref_inc(p);
					res = MF_RECOVERED;
				} else {
					/* We lost the race, try again */
					if (retry) {
						ClearPageHWPoison(p);
						num_poisoned_pages_dec();
						retry = false;
						goto try_again;
					}
					res = MF_FAILED;
1677
				}
1678 1679 1680 1681 1682
				action_result(pfn, MF_MSG_BUDDY, res);
				res = res == MF_RECOVERED ? 0 : -EBUSY;
			} else {
				action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
				res = -EBUSY;
1683
			}
1684 1685 1686
			goto unlock_mutex;
		} else if (res < 0) {
			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1687
			res = -EBUSY;
1688
			goto unlock_mutex;
1689
		}
1690 1691
	}

1692
	if (PageTransHuge(hpage)) {
1693 1694
		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1695 1696
			res = -EBUSY;
			goto unlock_mutex;
1697
		}
1698 1699 1700
		VM_BUG_ON_PAGE(!page_count(p), p);
	}

1701 1702 1703
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1704
	 * - to avoid races with __SetPageLocked()
1705 1706 1707 1708
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1709
	shake_page(p, 0);
1710

1711
	lock_page(p);
W
Wu Fengguang 已提交
1712

1713 1714 1715 1716
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1717
	if (PageCompound(p) && compound_head(p) != orig_head) {
1718
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1719
		res = -EBUSY;
1720
		goto unlock_page;
1721 1722
	}

1723 1724 1725 1726 1727 1728 1729
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
1730
	page_flags = p->flags;
1731

W
Wu Fengguang 已提交
1732 1733 1734 1735
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1736
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1737
		num_poisoned_pages_dec();
1738
		unlock_page(p);
1739
		put_page(p);
1740
		goto unlock_mutex;
W
Wu Fengguang 已提交
1741
	}
W
Wu Fengguang 已提交
1742 1743
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1744
			num_poisoned_pages_dec();
1745
		unlock_page(p);
1746
		put_page(p);
1747
		goto unlock_mutex;
W
Wu Fengguang 已提交
1748
	}
W
Wu Fengguang 已提交
1749

1750 1751 1752 1753 1754 1755
	/*
	 * __munlock_pagevec may clear a writeback page's LRU flag without
	 * page_lock. We need wait writeback completion for this page or it
	 * may trigger vfs BUG while evict inode.
	 */
	if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1756 1757
		goto identify_page_state;

1758 1759 1760 1761
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1762 1763 1764 1765
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1766
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1767
	 */
1768
	if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1769
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1770
		res = -EBUSY;
1771
		goto unlock_page;
W
Wu Fengguang 已提交
1772
	}
1773 1774 1775 1776

	/*
	 * Torn down by someone else?
	 */
1777
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1778
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1779
		res = -EBUSY;
1780
		goto unlock_page;
1781 1782
	}

1783
identify_page_state:
1784
	res = identify_page_state(pfn, p, page_flags);
1785 1786
	mutex_unlock(&mf_mutex);
	return res;
1787
unlock_page:
1788
	unlock_page(p);
1789 1790
unlock_mutex:
	mutex_unlock(&mf_mutex);
1791 1792
	return res;
}
1793
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1794

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
1828
void memory_failure_queue(unsigned long pfn, int flags)
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1839
	if (kfifo_put(&mf_cpu->fifo, entry))
1840 1841
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1842
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1856
	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1857 1858 1859 1860 1861 1862
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1863
		if (entry.flags & MF_SOFT_OFFLINE)
1864
			soft_offline_page(entry.pfn, entry.flags);
1865
		else
1866
			memory_failure(entry.pfn, entry.flags);
1867 1868 1869
	}
}

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
/*
 * Process memory_failure work queued on the specified CPU.
 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
 */
void memory_failure_queue_kick(int cpu)
{
	struct memory_failure_cpu *mf_cpu;

	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
	cancel_work_sync(&mf_cpu->work);
	memory_failure_work_func(&mf_cpu->work);
}

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1899 1900 1901 1902 1903 1904
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1922
	unsigned long flags = 0;
1923 1924
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1925 1926 1927 1928 1929 1930 1931 1932

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1933
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1934
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1935 1936 1937
		return 0;
	}

1938
	if (page_count(page) > 1) {
1939
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1940
				 pfn, &unpoison_rs);
1941 1942 1943 1944
		return 0;
	}

	if (page_mapped(page)) {
1945
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1946
				 pfn, &unpoison_rs);
1947 1948 1949 1950
		return 0;
	}

	if (page_mapping(page)) {
1951
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1952
				 pfn, &unpoison_rs);
1953 1954 1955
		return 0;
	}

1956 1957 1958 1959 1960
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1961
	if (!PageHuge(page) && PageTransHuge(page)) {
1962
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1963
				 pfn, &unpoison_rs);
1964
		return 0;
1965 1966
	}

1967
	if (!get_hwpoison_page(p, flags)) {
W
Wu Fengguang 已提交
1968
		if (TestClearPageHWPoison(p))
1969
			num_poisoned_pages_dec();
1970
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1971
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1972 1973 1974
		return 0;
	}

J
Jens Axboe 已提交
1975
	lock_page(page);
W
Wu Fengguang 已提交
1976 1977 1978 1979 1980 1981
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1982
	if (TestClearPageHWPoison(page)) {
1983
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1984
				 pfn, &unpoison_rs);
1985
		num_poisoned_pages_dec();
W
Wu Fengguang 已提交
1986 1987 1988 1989
		freeit = 1;
	}
	unlock_page(page);

1990
	put_page(page);
1991
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1992
		put_page(page);
W
Wu Fengguang 已提交
1993 1994 1995 1996

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1997

1998
static bool isolate_page(struct page *page, struct list_head *pagelist)
1999
{
2000 2001
	bool isolated = false;
	bool lru = PageLRU(page);
2002

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	if (PageHuge(page)) {
		isolated = isolate_huge_page(page, pagelist);
	} else {
		if (lru)
			isolated = !isolate_lru_page(page);
		else
			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);

		if (isolated)
			list_add(&page->lru, pagelist);
2013
	}
2014

2015 2016 2017 2018
	if (isolated && lru)
		inc_node_page_state(page, NR_ISOLATED_ANON +
				    page_is_file_lru(page));

2019
	/*
2020 2021 2022 2023 2024
	 * If we succeed to isolate the page, we grabbed another refcount on
	 * the page, so we can safely drop the one we got from get_any_pages().
	 * If we failed to isolate the page, it means that we cannot go further
	 * and we will return an error, so drop the reference we got from
	 * get_any_pages() as well.
2025
	 */
2026 2027
	put_page(page);
	return isolated;
2028 2029
}

2030 2031 2032 2033 2034 2035
/*
 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
 * If the page is mapped, it migrates the contents over.
 */
static int __soft_offline_page(struct page *page)
2036
{
2037
	int ret = 0;
2038
	unsigned long pfn = page_to_pfn(page);
2039 2040 2041 2042
	struct page *hpage = compound_head(page);
	char const *msg_page[] = {"page", "hugepage"};
	bool huge = PageHuge(page);
	LIST_HEAD(pagelist);
2043 2044 2045 2046
	struct migration_target_control mtc = {
		.nid = NUMA_NO_NODE,
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
	};
2047 2048

	/*
2049 2050 2051 2052
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
2053
	 */
2054
	lock_page(page);
2055 2056
	if (!PageHuge(page))
		wait_on_page_writeback(page);
2057 2058
	if (PageHWPoison(page)) {
		unlock_page(page);
2059
		put_page(page);
2060
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2061
		return 0;
2062
	}
2063 2064 2065 2066 2067 2068 2069

	if (!PageHuge(page))
		/*
		 * Try to invalidate first. This should work for
		 * non dirty unmapped page cache pages.
		 */
		ret = invalidate_inode_page(page);
2070
	unlock_page(page);
2071

2072 2073 2074 2075
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
2076
	if (ret) {
2077
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2078
		page_handle_poison(page, false, true);
2079
		return 0;
2080 2081
	}

2082
	if (isolate_page(hpage, &pagelist)) {
2083 2084
		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
2085
		if (!ret) {
2086 2087 2088 2089
			bool release = !huge;

			if (!page_handle_poison(page, huge, release))
				ret = -EBUSY;
2090
		} else {
2091 2092
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
2093

2094 2095
			pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
				pfn, msg_page[huge], ret, page->flags, &page->flags);
2096
			if (ret > 0)
2097
				ret = -EBUSY;
2098 2099
		}
	} else {
2100 2101
		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
			pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
2102
		ret = -EBUSY;
2103 2104 2105
	}
	return ret;
}
2106

2107
static int soft_offline_in_use_page(struct page *page)
2108 2109 2110
{
	struct page *hpage = compound_head(page);

2111 2112
	if (!PageHuge(page) && PageTransHuge(hpage))
		if (try_to_split_thp_page(page, "soft offline") < 0)
2113
			return -EBUSY;
2114
	return __soft_offline_page(page);
2115 2116
}

2117
static int soft_offline_free_page(struct page *page)
2118
{
2119
	int rc = 0;
2120

2121 2122
	if (!page_handle_poison(page, true, false))
		rc = -EBUSY;
2123

2124
	return rc;
2125 2126
}

2127 2128 2129 2130 2131 2132
static void put_ref_page(struct page *page)
{
	if (page)
		put_page(page);
}

2133 2134
/**
 * soft_offline_page - Soft offline a page.
2135
 * @pfn: pfn to soft-offline
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
2155
int soft_offline_page(unsigned long pfn, int flags)
2156 2157
{
	int ret;
2158
	bool try_again = true;
2159 2160 2161
	struct page *page, *ref_page = NULL;

	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2162

2163 2164
	if (!pfn_valid(pfn))
		return -ENXIO;
2165 2166 2167
	if (flags & MF_COUNT_INCREASED)
		ref_page = pfn_to_page(pfn);

2168 2169
	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
	page = pfn_to_online_page(pfn);
2170 2171
	if (!page) {
		put_ref_page(ref_page);
2172
		return -EIO;
2173
	}
2174

2175
	if (PageHWPoison(page)) {
2176
		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2177
		put_ref_page(ref_page);
2178
		return 0;
2179 2180
	}

2181
retry:
2182
	get_online_mems();
2183
	ret = get_hwpoison_page(page, flags);
2184
	put_online_mems();
2185

2186
	if (ret > 0) {
2187
		ret = soft_offline_in_use_page(page);
2188
	} else if (ret == 0) {
2189 2190 2191 2192
		if (soft_offline_free_page(page) && try_again) {
			try_again = false;
			goto retry;
		}
2193
	} else if (ret == -EIO) {
2194
		pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
2195 2196
			 __func__, pfn, page->flags, &page->flags);
	}
2197

2198 2199
	return ret;
}