memory-failure.c 52.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * High level machine check handler. Handles pages reported by the
7
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8
 * failure.
9 10 11
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
12 13
 *
 * Handles page cache pages in various states.	The tricky part
14 15 16 17 18 19
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
20 21 22 23 24 25 26 27
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
28 29 30 31 32 33 34
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
35 36 37 38
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
39
#include <linux/kernel-page-flags.h>
40
#include <linux/sched/signal.h>
41
#include <linux/sched/task.h>
H
Hugh Dickins 已提交
42
#include <linux/ksm.h>
43
#include <linux/rmap.h>
44
#include <linux/export.h>
45 46 47
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
48 49
#include <linux/migrate.h>
#include <linux/suspend.h>
50
#include <linux/slab.h>
51
#include <linux/swapops.h>
52
#include <linux/hugetlb.h>
53
#include <linux/memory_hotplug.h>
54
#include <linux/mm_inline.h>
55
#include <linux/memremap.h>
56
#include <linux/kfifo.h>
57
#include <linux/ratelimit.h>
58
#include <linux/page-isolation.h>
59
#include "internal.h"
60
#include "ras/ras_event.h"
61 62 63 64 65

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

66
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67

68 69 70 71 72 73 74
static void page_handle_poison(struct page *page)
{
	SetPageHWPoison(page);
	page_ref_inc(page);
	num_poisoned_pages_inc();
}

75 76
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

77
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
78 79
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
80 81
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
82
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
83 84
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
85 86
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
87 88 89 90 91 92 93 94 95 96 97

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
98
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
118 119 120 121 122 123 124 125 126 127 128 129
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
130 131 132 133 134 135 136 137 138 139
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
140
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
141 142 143 144 145 146 147
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

148
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
149 150 151 152 153 154 155 156
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
157 158
int hwpoison_filter(struct page *p)
{
159 160 161
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
162 163 164
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
165 166 167
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
168 169 170
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
171 172
	return 0;
}
173 174 175 176 177 178 179
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
180 181
EXPORT_SYMBOL_GPL(hwpoison_filter);

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
	short size_shift;
};

211
/*
212 213 214
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
215
 */
216
static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
217
{
218 219
	struct task_struct *t = tk->tsk;
	short addr_lsb = tk->size_shift;
220
	int ret = 0;
221

222
	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
223
			pfn, t->comm, t->pid);
224

225
	if (flags & MF_ACTION_REQUIRED) {
226 227
		WARN_ON_ONCE(t != current);
		ret = force_sig_mceerr(BUS_MCEERR_AR,
228
					 (void __user *)tk->addr, addr_lsb);
229 230 231 232 233 234 235
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
236
		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
237
				      addr_lsb, t);  /* synchronous? */
238
	}
239
	if (ret < 0)
240
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
241
			t->comm, t->pid, ret);
242 243 244
	return ret;
}

245 246 247 248
/*
 * When a unknown page type is encountered drain as many buffers as possible
 * in the hope to turn the page into a LRU or free page, which we can handle.
 */
249
void shake_page(struct page *p, int access)
250
{
251 252 253
	if (PageHuge(p))
		return;

254 255 256 257
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p))
			return;
258
		drain_all_pages(page_zone(p));
259 260 261
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
262

263
	/*
264 265
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
266
	 */
267 268
	if (access)
		drop_slab_node(page_to_nid(p));
269 270 271
}
EXPORT_SYMBOL_GPL(shake_page);

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
static unsigned long dev_pagemap_mapping_shift(struct page *page,
		struct vm_area_struct *vma)
{
	unsigned long address = vma_address(page, vma);
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = pgd_offset(vma->vm_mm, address);
	if (!pgd_present(*pgd))
		return 0;
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;
	pud = pud_offset(p4d, address);
	if (!pud_present(*pud))
		return 0;
	if (pud_devmap(*pud))
		return PUD_SHIFT;
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;
	if (pmd_devmap(*pmd))
		return PMD_SHIFT;
	pte = pte_offset_map(pmd, address);
	if (!pte_present(*pte))
		return 0;
	if (pte_devmap(*pte))
		return PAGE_SHIFT;
	return 0;
}
305 306 307 308 309 310 311 312 313 314 315 316

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
317
		       struct list_head *to_kill)
318 319 320
{
	struct to_kill *tk;

321 322 323 324
	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
	if (!tk) {
		pr_err("Memory failure: Out of memory while machine check handling\n");
		return;
325
	}
326

327
	tk->addr = page_address_in_vma(p, vma);
328 329 330
	if (is_zone_device_page(p))
		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
	else
331
		tk->size_shift = page_shift(compound_head(p));
332 333

	/*
334 335 336 337 338 339 340 341
	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
	 * so "tk->size_shift == 0" effectively checks no mapping on
	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
	 * to a process' address space, it's possible not all N VMAs
	 * contain mappings for the page, but at least one VMA does.
	 * Only deliver SIGBUS with payload derived from the VMA that
	 * has a mapping for the page.
342
	 */
343
	if (tk->addr == -EFAULT) {
344
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
345
			page_to_pfn(p), tsk->comm);
346 347 348
	} else if (tk->size_shift == 0) {
		kfree(tk);
		return;
349
	}
350

351 352 353 354 355 356 357 358 359 360 361 362 363
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
364 365
static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
		unsigned long pfn, int flags)
366 367 368 369
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
370
		if (forcekill) {
371
			/*
372
			 * In case something went wrong with munmapping
373 374 375
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
376
			if (fail || tk->addr == -EFAULT) {
377
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
378
				       pfn, tk->tsk->comm, tk->tsk->pid);
379 380
				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
						 tk->tsk, PIDTYPE_PID);
381 382 383 384 385 386 387 388
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
389
			else if (kill_proc(tk, pfn, flags) < 0)
390
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
391
				       pfn, tk->tsk->comm, tk->tsk->pid);
392 393 394 395 396 397
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

398 399 400 401 402 403 404 405 406
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
407
{
408 409
	struct task_struct *t;

410 411 412 413 414 415 416 417 418
	for_each_thread(tsk, t) {
		if (t->flags & PF_MCE_PROCESS) {
			if (t->flags & PF_MCE_EARLY)
				return t;
		} else {
			if (sysctl_memory_failure_early_kill)
				return t;
		}
	}
419 420 421 422 423 424 425 426
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
 * specified) if the process is "early kill," and otherwise returns NULL.
427 428 429
 *
 * Note that the above is true for Action Optional case, but not for Action
 * Required case where SIGBUS should sent only to the current thread.
430 431 432 433
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
434
	if (!tsk->mm)
435
		return NULL;
436 437 438 439 440 441 442 443 444 445
	if (force_early) {
		/*
		 * Comparing ->mm here because current task might represent
		 * a subthread, while tsk always points to the main thread.
		 */
		if (tsk->mm == current->mm)
			return current;
		else
			return NULL;
	}
446
	return find_early_kill_thread(tsk);
447 448 449 450 451 452
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
453
				int force_early)
454 455 456 457
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
458
	pgoff_t pgoff;
459

460
	av = page_lock_anon_vma_read(page);
461
	if (av == NULL)	/* Not actually mapped anymore */
462 463
		return;

464
	pgoff = page_to_pgoff(page);
465
	read_lock(&tasklist_lock);
466
	for_each_process (tsk) {
467
		struct anon_vma_chain *vmac;
468
		struct task_struct *t = task_early_kill(tsk, force_early);
469

470
		if (!t)
471
			continue;
472 473
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
474
			vma = vmac->vma;
475 476
			if (!page_mapped_in_vma(page, vma))
				continue;
477
			if (vma->vm_mm == t->mm)
478
				add_to_kill(t, page, vma, to_kill);
479 480 481
		}
	}
	read_unlock(&tasklist_lock);
482
	page_unlock_anon_vma_read(av);
483 484 485 486 487 488
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
489
				int force_early)
490 491 492 493
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;
494
	pgoff_t pgoff;
495

496
	i_mmap_lock_read(mapping);
497
	read_lock(&tasklist_lock);
498
	pgoff = page_to_pgoff(page);
499
	for_each_process(tsk) {
500
		struct task_struct *t = task_early_kill(tsk, force_early);
501

502
		if (!t)
503
			continue;
504
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
505 506 507 508 509 510 511 512
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
513
			if (vma->vm_mm == t->mm)
514
				add_to_kill(t, page, vma, to_kill);
515 516 517
		}
	}
	read_unlock(&tasklist_lock);
518
	i_mmap_unlock_read(mapping);
519 520 521 522 523
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 */
524 525
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
526 527 528 529 530
{
	if (!page->mapping)
		return;

	if (PageAnon(page))
531
		collect_procs_anon(page, tokill, force_early);
532
	else
533
		collect_procs_file(page, tokill, force_early);
534 535 536
}

static const char *action_name[] = {
537 538 539 540
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
541 542 543
};

static const char * const action_page_types[] = {
544 545 546 547 548 549 550
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
551
	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
552 553 554 555 556 557 558 559 560 561 562 563
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
564
	[MF_MSG_DAX]			= "dax page",
565
	[MF_MSG_UNKNOWN]		= "unknown page",
566 567
};

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
583 584 585 586 587 588 589

		/*
		 * Poisoned page might never drop its ref count to 0 so we have
		 * to uncharge it manually from its memcg.
		 */
		mem_cgroup_uncharge(p);

590 591 592
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
593
		put_page(p);
594 595 596 597 598
		return 0;
	}
	return -EIO;
}

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
static int truncate_error_page(struct page *p, unsigned long pfn,
				struct address_space *mapping)
{
	int ret = MF_FAILED;

	if (mapping->a_ops->error_remove_page) {
		int err = mapping->a_ops->error_remove_page(mapping, p);

		if (err != 0) {
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
				pfn, err);
		} else if (page_has_private(p) &&
			   !try_to_release_page(p, GFP_NOIO)) {
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
		} else {
			ret = MF_RECOVERED;
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
			ret = MF_RECOVERED;
		else
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
	}

	return ret;
}

632 633 634 635 636 637 638
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
639
	return MF_IGNORED;
640 641 642 643 644 645 646
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
647
	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
648
	return MF_FAILED;
649 650 651 652 653 654 655 656 657
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
	struct address_space *mapping;

658 659
	delete_from_lru_cache(p);

660 661 662 663 664
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
	if (PageAnon(p))
665
		return MF_RECOVERED;
666 667 668 669 670 671 672 673 674 675 676 677 678

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
679
		return MF_FAILED;
680 681 682 683 684 685 686
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
687
	return truncate_error_page(p, pfn, mapping);
688 689 690
}

/*
691
 * Dirty pagecache page
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
724
		 * and the page is dropped between then the error
725 726 727 728 729 730 731 732 733 734 735
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
736
		mapping_set_error(mapping, -EIO);
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

767
	if (!delete_from_lru_cache(p))
768
		return MF_DELAYED;
769
	else
770
		return MF_FAILED;
771 772 773 774 775
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
	delete_from_swap_cache(p);
776

777
	if (!delete_from_lru_cache(p))
778
		return MF_RECOVERED;
779
	else
780
		return MF_FAILED;
781 782 783 784 785
}

/*
 * Huge pages. Needs work.
 * Issues:
786 787
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
788 789 790
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
791
	int res = 0;
792
	struct page *hpage = compound_head(p);
793
	struct address_space *mapping;
794 795 796 797

	if (!PageHuge(hpage))
		return MF_DELAYED;

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
	mapping = page_mapping(hpage);
	if (mapping) {
		res = truncate_error_page(hpage, pfn, mapping);
	} else {
		unlock_page(hpage);
		/*
		 * migration entry prevents later access on error anonymous
		 * hugepage, so we can free and dissolve it into buddy to
		 * save healthy subpages.
		 */
		if (PageAnon(hpage))
			put_page(hpage);
		dissolve_free_huge_page(p);
		res = MF_RECOVERED;
		lock_page(hpage);
813
	}
814 815

	return res;
816 817 818 819 820 821 822 823 824
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
825
 * in its live cycle, so all accesses have to be extremely careful.
826 827 828 829 830 831
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
832
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
833 834 835 836 837 838 839 840 841 842
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
843
	enum mf_action_page_type type;
844 845
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
846
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
847 848 849 850
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
851 852 853 854 855 856

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
857
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
858

859
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
860

861 862
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
863

864 865
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
866

867 868
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
869

870 871
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
872 873 874 875

	/*
	 * Catchall entry: must be at end.
	 */
876
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
877 878
};

879 880 881 882 883 884 885 886 887
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef lru
#undef head
#undef slab
#undef reserved

888 889 890 891
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
892 893
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
894
{
895 896
	trace_memory_failure_event(pfn, type, result);

897
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
898
		pfn, action_page_types[type], action_name[result]);
899 900 901
}

static int page_action(struct page_state *ps, struct page *p,
902
			unsigned long pfn)
903 904
{
	int result;
905
	int count;
906 907

	result = ps->action(p, pfn);
908

909
	count = page_count(p) - 1;
910
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
911
		count--;
912
	if (count > 0) {
913
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
914
		       pfn, action_page_types[ps->type], count);
915
		result = MF_FAILED;
916
	}
917
	action_result(pfn, ps->type, result);
918 919 920 921 922 923

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

924
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
925 926
}

927 928 929 930 931 932 933
/**
 * get_hwpoison_page() - Get refcount for memory error handling:
 * @page:	raw error page (hit by memory error)
 *
 * Return: return 0 if failed to grab the refcount, otherwise true (some
 * non-zero value.)
 */
934
static int get_hwpoison_page(struct page *page)
935 936 937
{
	struct page *head = compound_head(page);

938
	if (!PageHuge(head) && PageTransHuge(head)) {
939 940 941 942 943 944 945
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
946
			pr_err("Memory failure: %#lx: non anonymous thp\n",
947 948 949
				page_to_pfn(page));
			return 0;
		}
950 951
	}

952 953 954 955
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

956 957
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
958 959 960 961
		put_page(head);
	}

	return 0;
962 963
}

964 965 966 967
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
968
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
969
				  int flags, struct page **hpagep)
970
{
S
Shaohua Li 已提交
971
	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
972 973
	struct address_space *mapping;
	LIST_HEAD(tokill);
974
	bool unmap_success = true;
975
	int kill = 1, forcekill;
976
	struct page *hpage = *hpagep;
977
	bool mlocked = PageMlocked(hpage);
978

979 980 981 982 983
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
984
		return true;
985
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
986
		return true;
987 988 989 990 991

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
992
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
993
		return true;
W
Wu Fengguang 已提交
994

995
	if (PageKsm(p)) {
996
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
997
		return false;
998
	}
999 1000

	if (PageSwapCache(p)) {
1001 1002
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
1003 1004 1005 1006 1007 1008
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
1009 1010
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
1011
	 */
1012
	mapping = page_mapping(hpage);
1013
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1014
	    mapping_can_writeback(mapping)) {
1015 1016
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
1017 1018 1019
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
1020
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
1034
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1035

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	if (!PageHuge(hpage)) {
		unmap_success = try_to_unmap(hpage, ttu);
	} else {
		/*
		 * For hugetlb pages, try_to_unmap could potentially call
		 * huge_pmd_unshare.  Because of this, take semaphore in
		 * write mode here and set TTU_RMAP_LOCKED to indicate we
		 * have taken the lock at this higer level.
		 *
		 * Note that the call to hugetlb_page_mapping_lock_write
		 * is necessary even if mapping is already set.  It handles
		 * ugliness of potentially having to drop page lock to obtain
		 * i_mmap_rwsem.
		 */
		mapping = hugetlb_page_mapping_lock_write(hpage);

		if (mapping) {
			unmap_success = try_to_unmap(hpage,
						     ttu|TTU_RMAP_LOCKED);
			i_mmap_unlock_write(mapping);
		} else {
			pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n",
				pfn);
			unmap_success = false;
		}
	}
M
Minchan Kim 已提交
1062
	if (!unmap_success)
1063
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1064
		       pfn, page_mapcount(hpage));
1065

1066 1067 1068 1069 1070 1071 1072
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
		shake_page(hpage, 0);

1073 1074 1075 1076
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1077 1078
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1079 1080 1081 1082
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1083
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1084
	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
W
Wu Fengguang 已提交
1085

M
Minchan Kim 已提交
1086
	return unmap_success;
1087 1088
}

1089 1090
static int identify_page_state(unsigned long pfn, struct page *p,
				unsigned long page_flags)
1091 1092
{
	struct page_state *ps;
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flags is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
			break;

	page_flags |= (p->flags & (1UL << PG_dirty));

	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	return page_action(ps, p, pfn);
}

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
static int try_to_split_thp_page(struct page *page, const char *msg)
{
	lock_page(page);
	if (!PageAnon(page) || unlikely(split_huge_page(page))) {
		unsigned long pfn = page_to_pfn(page);

		unlock_page(page);
		if (!PageAnon(page))
			pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
		else
			pr_info("%s: %#lx: thp split failed\n", msg, pfn);
		put_page(page);
		return -EBUSY;
	}
	unlock_page(page);

	return 0;
}

1131
static int memory_failure_hugetlb(unsigned long pfn, int flags)
1132
{
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	struct page *p = pfn_to_page(pfn);
	struct page *head = compound_head(p);
	int res;
	unsigned long page_flags;

	if (TestSetPageHWPoison(head)) {
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
		       pfn);
		return 0;
	}

	num_poisoned_pages_inc();

	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
		/*
		 * Check "filter hit" and "race with other subpage."
		 */
		lock_page(head);
		if (PageHWPoison(head)) {
			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
			    || (p != head && TestSetPageHWPoison(head))) {
				num_poisoned_pages_dec();
				unlock_page(head);
				return 0;
			}
		}
		unlock_page(head);
		dissolve_free_huge_page(p);
		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
		return 0;
	}

	lock_page(head);
	page_flags = head->flags;

	if (!PageHWPoison(head)) {
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
		num_poisoned_pages_dec();
		unlock_page(head);
1172
		put_page(head);
1173 1174 1175
		return 0;
	}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	/*
	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
	 * simply disable it. In order to make it work properly, we need
	 * make sure that:
	 *  - conversion of a pud that maps an error hugetlb into hwpoison
	 *    entry properly works, and
	 *  - other mm code walking over page table is aware of pud-aligned
	 *    hwpoison entries.
	 */
	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1191
	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1192 1193 1194 1195 1196
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1197
	res = identify_page_state(pfn, p, page_flags);
1198 1199 1200 1201 1202
out:
	unlock_page(head);
	return res;
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
		struct dev_pagemap *pgmap)
{
	struct page *page = pfn_to_page(pfn);
	const bool unmap_success = true;
	unsigned long size = 0;
	struct to_kill *tk;
	LIST_HEAD(tokill);
	int rc = -EBUSY;
	loff_t start;
1213
	dax_entry_t cookie;
1214 1215 1216 1217 1218 1219 1220 1221

	/*
	 * Prevent the inode from being freed while we are interrogating
	 * the address_space, typically this would be handled by
	 * lock_page(), but dax pages do not use the page lock. This
	 * also prevents changes to the mapping of this pfn until
	 * poison signaling is complete.
	 */
1222 1223
	cookie = dax_lock_page(page);
	if (!cookie)
1224 1225 1226 1227 1228 1229 1230
		goto out;

	if (hwpoison_filter(page)) {
		rc = 0;
		goto unlock;
	}

1231
	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
		/*
		 * TODO: Handle HMM pages which may need coordination
		 * with device-side memory.
		 */
		goto unlock;
	}

	/*
	 * Use this flag as an indication that the dax page has been
	 * remapped UC to prevent speculative consumption of poison.
	 */
	SetPageHWPoison(page);

	/*
	 * Unlike System-RAM there is no possibility to swap in a
	 * different physical page at a given virtual address, so all
	 * userspace consumption of ZONE_DEVICE memory necessitates
	 * SIGBUS (i.e. MF_MUST_KILL)
	 */
	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);

	list_for_each_entry(tk, &tokill, nd)
		if (tk->size_shift)
			size = max(size, 1UL << tk->size_shift);
	if (size) {
		/*
		 * Unmap the largest mapping to avoid breaking up
		 * device-dax mappings which are constant size. The
		 * actual size of the mapping being torn down is
		 * communicated in siginfo, see kill_proc()
		 */
		start = (page->index << PAGE_SHIFT) & ~(size - 1);
		unmap_mapping_range(page->mapping, start, start + size, 0);
	}
	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
	rc = 0;
unlock:
1270
	dax_unlock_page(page, cookie);
1271 1272 1273 1274 1275 1276 1277
out:
	/* drop pgmap ref acquired in caller */
	put_dev_pagemap(pgmap);
	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
	return rc;
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
1295
int memory_failure(unsigned long pfn, int flags)
1296 1297
{
	struct page *p;
1298
	struct page *hpage;
1299
	struct page *orig_head;
1300
	struct dev_pagemap *pgmap;
1301
	int res;
1302
	unsigned long page_flags;
1303 1304

	if (!sysctl_memory_failure_recovery)
1305
		panic("Memory failure on page %lx", pfn);
1306

1307 1308 1309 1310 1311 1312 1313 1314
	p = pfn_to_online_page(pfn);
	if (!p) {
		if (pfn_valid(pfn)) {
			pgmap = get_dev_pagemap(pfn, NULL);
			if (pgmap)
				return memory_failure_dev_pagemap(pfn, flags,
								  pgmap);
		}
1315 1316
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1317
		return -ENXIO;
1318 1319
	}

1320
	if (PageHuge(p))
1321
		return memory_failure_hugetlb(pfn, flags);
1322
	if (TestSetPageHWPoison(p)) {
1323 1324
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1325 1326 1327
		return 0;
	}

1328
	orig_head = hpage = compound_head(p);
1329
	num_poisoned_pages_inc();
1330 1331 1332 1333 1334

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1335
	 * 2) it's part of a non-compound high order page.
1336 1337 1338 1339
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
1340
	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1341
	 */
1342
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1343
		if (is_free_buddy_page(p)) {
1344
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1345 1346
			return 0;
		} else {
1347
			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1348 1349
			return -EBUSY;
		}
1350 1351
	}

1352
	if (PageTransHuge(hpage)) {
1353
		if (try_to_split_thp_page(p, "Memory Failure") < 0)
1354 1355 1356 1357
			return -EBUSY;
		VM_BUG_ON_PAGE(!page_count(p), p);
	}

1358 1359 1360
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1361
	 * - to avoid races with __SetPageLocked()
1362 1363 1364 1365
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1366 1367 1368 1369 1370 1371 1372 1373
	shake_page(p, 0);
	/* shake_page could have turned it free. */
	if (!PageLRU(p) && is_free_buddy_page(p)) {
		if (flags & MF_COUNT_INCREASED)
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
		else
			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
		return 0;
1374 1375
	}

1376
	lock_page(p);
W
Wu Fengguang 已提交
1377

1378 1379 1380 1381
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1382
	if (PageCompound(p) && compound_head(p) != orig_head) {
1383
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1384 1385 1386 1387
		res = -EBUSY;
		goto out;
	}

1388 1389 1390 1391 1392 1393 1394
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
1395
	page_flags = p->flags;
1396

W
Wu Fengguang 已提交
1397 1398 1399 1400
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1401
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1402
		num_poisoned_pages_dec();
1403
		unlock_page(p);
1404
		put_page(p);
1405
		return 0;
W
Wu Fengguang 已提交
1406
	}
W
Wu Fengguang 已提交
1407 1408
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1409
			num_poisoned_pages_dec();
1410
		unlock_page(p);
1411
		put_page(p);
W
Wu Fengguang 已提交
1412 1413
		return 0;
	}
W
Wu Fengguang 已提交
1414

1415
	if (!PageTransTail(p) && !PageLRU(p))
1416 1417
		goto identify_page_state;

1418 1419 1420 1421
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1422 1423 1424 1425
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1426
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1427
	 */
1428
	if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1429
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1430 1431 1432
		res = -EBUSY;
		goto out;
	}
1433 1434 1435 1436

	/*
	 * Torn down by someone else?
	 */
1437
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1438
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1439
		res = -EBUSY;
1440 1441 1442
		goto out;
	}

1443
identify_page_state:
1444
	res = identify_page_state(pfn, p, page_flags);
1445
out:
1446
	unlock_page(p);
1447 1448
	return res;
}
1449
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
1484
void memory_failure_queue(unsigned long pfn, int flags)
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1495
	if (kfifo_put(&mf_cpu->fifo, entry))
1496 1497
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1498
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1512
	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1513 1514 1515 1516 1517 1518
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1519
		if (entry.flags & MF_SOFT_OFFLINE)
1520
			soft_offline_page(entry.pfn, entry.flags);
1521
		else
1522
			memory_failure(entry.pfn, entry.flags);
1523 1524 1525
	}
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
/*
 * Process memory_failure work queued on the specified CPU.
 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
 */
void memory_failure_queue_kick(int cpu)
{
	struct memory_failure_cpu *mf_cpu;

	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
	cancel_work_sync(&mf_cpu->work);
	memory_failure_work_func(&mf_cpu->work);
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1555 1556 1557 1558 1559 1560
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1578 1579
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1580 1581 1582 1583 1584 1585 1586 1587

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1588
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1589
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1590 1591 1592
		return 0;
	}

1593
	if (page_count(page) > 1) {
1594
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1595
				 pfn, &unpoison_rs);
1596 1597 1598 1599
		return 0;
	}

	if (page_mapped(page)) {
1600
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1601
				 pfn, &unpoison_rs);
1602 1603 1604 1605
		return 0;
	}

	if (page_mapping(page)) {
1606
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1607
				 pfn, &unpoison_rs);
1608 1609 1610
		return 0;
	}

1611 1612 1613 1614 1615
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1616
	if (!PageHuge(page) && PageTransHuge(page)) {
1617
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1618
				 pfn, &unpoison_rs);
1619
		return 0;
1620 1621
	}

1622
	if (!get_hwpoison_page(p)) {
W
Wu Fengguang 已提交
1623
		if (TestClearPageHWPoison(p))
1624
			num_poisoned_pages_dec();
1625
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1626
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1627 1628 1629
		return 0;
	}

J
Jens Axboe 已提交
1630
	lock_page(page);
W
Wu Fengguang 已提交
1631 1632 1633 1634 1635 1636
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1637
	if (TestClearPageHWPoison(page)) {
1638
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1639
				 pfn, &unpoison_rs);
1640
		num_poisoned_pages_dec();
W
Wu Fengguang 已提交
1641 1642 1643 1644
		freeit = 1;
	}
	unlock_page(page);

1645
	put_page(page);
1646
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1647
		put_page(page);
W
Wu Fengguang 已提交
1648 1649 1650 1651

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1652

1653
static struct page *new_page(struct page *p, unsigned long private)
1654
{
1655 1656 1657 1658
	struct migration_target_control mtc = {
		.nid = page_to_nid(p),
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
	};
1659

1660
	return alloc_migration_target(p, (unsigned long)&mtc);
1661 1662 1663 1664 1665 1666 1667 1668
}

/*
 * Safely get reference count of an arbitrary page.
 * Returns 0 for a free page, -EIO for a zero refcount page
 * that is not free, and 1 for any other page type.
 * For 1 the page is returned with increased page count, otherwise not.
 */
1669
static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1670 1671 1672 1673 1674 1675
{
	int ret;

	if (flags & MF_COUNT_INCREASED)
		return 1;

1676 1677 1678 1679
	/*
	 * When the target page is a free hugepage, just remove it
	 * from free hugepage list.
	 */
1680
	if (!get_hwpoison_page(p)) {
1681
		if (PageHuge(p)) {
1682
			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1683
			ret = 0;
1684
		} else if (is_free_buddy_page(p)) {
1685
			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1686 1687
			ret = 0;
		} else {
1688 1689
			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
				__func__, pfn, p->flags);
1690 1691 1692 1693 1694 1695 1696 1697 1698
			ret = -EIO;
		}
	} else {
		/* Not a free page */
		ret = 1;
	}
	return ret;
}

1699 1700 1701 1702
static int get_any_page(struct page *page, unsigned long pfn, int flags)
{
	int ret = __get_any_page(page, pfn, flags);

1703 1704
	if (ret == 1 && !PageHuge(page) &&
	    !PageLRU(page) && !__PageMovable(page)) {
1705 1706 1707
		/*
		 * Try to free it.
		 */
1708
		put_page(page);
1709 1710 1711 1712 1713 1714
		shake_page(page, 1);

		/*
		 * Did it turn free?
		 */
		ret = __get_any_page(page, pfn, 0);
1715
		if (ret == 1 && !PageLRU(page)) {
1716
			/* Drop page reference which is from __get_any_page() */
1717
			put_page(page);
1718 1719
			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
				pfn, page->flags, &page->flags);
1720 1721 1722 1723 1724 1725
			return -EIO;
		}
	}
	return ret;
}

1726 1727 1728 1729 1730
static int soft_offline_huge_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
	struct page *hpage = compound_head(page);
1731
	LIST_HEAD(pagelist);
1732

1733 1734 1735 1736 1737
	/*
	 * This double-check of PageHWPoison is to avoid the race with
	 * memory_failure(). See also comment in __soft_offline_page().
	 */
	lock_page(hpage);
1738
	if (PageHWPoison(hpage)) {
1739
		unlock_page(hpage);
1740
		put_page(hpage);
1741
		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1742
		return -EBUSY;
1743
	}
1744
	unlock_page(hpage);
1745

1746
	ret = isolate_huge_page(hpage, &pagelist);
1747 1748 1749 1750
	/*
	 * get_any_page() and isolate_huge_page() takes a refcount each,
	 * so need to drop one here.
	 */
1751
	put_page(hpage);
1752
	if (!ret) {
1753 1754 1755 1756
		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
		return -EBUSY;
	}

1757
	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1758
				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1759
	if (ret) {
1760
		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1761
			pfn, ret, page->flags, &page->flags);
1762 1763
		if (!list_empty(&pagelist))
			putback_movable_pages(&pagelist);
1764 1765
		if (ret > 0)
			ret = -EIO;
1766
	} else {
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
		/*
		 * We set PG_hwpoison only when the migration source hugepage
		 * was successfully dissolved, because otherwise hwpoisoned
		 * hugepage remains on free hugepage list, then userspace will
		 * find it as SIGBUS by allocation failure. That's not expected
		 * in soft-offlining.
		 */
		ret = dissolve_free_huge_page(page);
		if (!ret) {
			if (set_hwpoison_free_buddy_page(page))
				num_poisoned_pages_inc();
1778 1779
			else
				ret = -EBUSY;
1780
		}
1781 1782 1783 1784
	}
	return ret;
}

1785 1786 1787 1788
static int __soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
1789 1790

	/*
1791 1792 1793 1794
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
1795
	 */
1796 1797
	lock_page(page);
	wait_on_page_writeback(page);
1798 1799
	if (PageHWPoison(page)) {
		unlock_page(page);
1800
		put_page(page);
1801 1802 1803
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
		return -EBUSY;
	}
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	/*
	 * Try to invalidate first. This should work for
	 * non dirty unmapped page cache pages.
	 */
	ret = invalidate_inode_page(page);
	unlock_page(page);
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
	if (ret == 1) {
1815
		put_page(page);
1816
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1817
		SetPageHWPoison(page);
1818
		num_poisoned_pages_inc();
1819
		return 0;
1820 1821 1822 1823 1824 1825 1826
	}

	/*
	 * Simple invalidation didn't work.
	 * Try to migrate to a new page instead. migrate.c
	 * handles a large number of cases for us.
	 */
1827 1828 1829 1830
	if (PageLRU(page))
		ret = isolate_lru_page(page);
	else
		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1831 1832 1833 1834
	/*
	 * Drop page reference which is came from get_any_page()
	 * successful isolate_lru_page() already took another one.
	 */
1835
	put_page(page);
1836 1837
	if (!ret) {
		LIST_HEAD(pagelist);
1838 1839 1840 1841 1842 1843 1844
		/*
		 * After isolated lru page, the PageLRU will be cleared,
		 * so use !__PageMovable instead for LRU page's mapping
		 * cannot have PAGE_MAPPING_MOVABLE.
		 */
		if (!__PageMovable(page))
			inc_node_page_state(page, NR_ISOLATED_ANON +
H
Huang Ying 已提交
1845
						page_is_file_lru(page));
1846
		list_add(&page->lru, &pagelist);
1847
		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1848
					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1849
		if (ret) {
1850 1851
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
1852

1853 1854
			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
				pfn, ret, page->flags, &page->flags);
1855 1856 1857 1858
			if (ret > 0)
				ret = -EIO;
		}
	} else {
1859 1860
		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
			pfn, ret, page_count(page), page->flags, &page->flags);
1861 1862 1863
	}
	return ret;
}
1864

1865 1866 1867
static int soft_offline_in_use_page(struct page *page, int flags)
{
	int ret;
1868
	int mt;
1869 1870
	struct page *hpage = compound_head(page);

1871 1872
	if (!PageHuge(page) && PageTransHuge(hpage))
		if (try_to_split_thp_page(page, "soft offline") < 0)
1873 1874
			return -EBUSY;

1875 1876 1877 1878 1879 1880 1881 1882 1883
	/*
	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
	 * to free list immediately (not via pcplist) when released after
	 * successful page migration. Otherwise we can't guarantee that the
	 * page is really free after put_page() returns, so
	 * set_hwpoison_free_buddy_page() highly likely fails.
	 */
	mt = get_pageblock_migratetype(page);
	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1884 1885 1886 1887
	if (PageHuge(page))
		ret = soft_offline_huge_page(page, flags);
	else
		ret = __soft_offline_page(page, flags);
1888
	set_pageblock_migratetype(page, mt);
1889 1890 1891
	return ret;
}

1892
static int soft_offline_free_page(struct page *page)
1893
{
1894
	int rc = -EBUSY;
1895

1896 1897 1898
	if (!dissolve_free_huge_page(page) && take_page_off_buddy(page)) {
		page_handle_poison(page);
		rc = 0;
1899
	}
1900

1901
	return rc;
1902 1903
}

1904 1905
/**
 * soft_offline_page - Soft offline a page.
1906
 * @pfn: pfn to soft-offline
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
1926
int soft_offline_page(unsigned long pfn, int flags)
1927 1928
{
	int ret;
1929
	struct page *page;
1930

1931 1932 1933 1934 1935
	if (!pfn_valid(pfn))
		return -ENXIO;
	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
	page = pfn_to_online_page(pfn);
	if (!page)
1936 1937
		return -EIO;

1938 1939
	if (PageHWPoison(page)) {
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1940
		if (flags & MF_COUNT_INCREASED)
1941
			put_page(page);
1942 1943 1944
		return -EBUSY;
	}

1945
	get_online_mems();
1946
	ret = get_any_page(page, pfn, flags);
1947
	put_online_mems();
1948

1949 1950 1951
	if (ret > 0)
		ret = soft_offline_in_use_page(page, flags);
	else if (ret == 0)
1952
		ret = soft_offline_free_page(page);
1953

1954 1955
	return ret;
}