memory-failure.c 59.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * High level machine check handler. Handles pages reported by the
7
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8
 * failure.
9 10 11
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
12 13
 *
 * Handles page cache pages in various states.	The tricky part
14 15 16 17 18 19
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
20 21 22 23 24 25 26 27
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
28 29 30 31 32 33 34
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
35 36 37 38
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
39
#include <linux/kernel-page-flags.h>
40
#include <linux/sched/signal.h>
41
#include <linux/sched/task.h>
42
#include <linux/dax.h>
H
Hugh Dickins 已提交
43
#include <linux/ksm.h>
44
#include <linux/rmap.h>
45
#include <linux/export.h>
46 47 48
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
49 50
#include <linux/migrate.h>
#include <linux/suspend.h>
51
#include <linux/slab.h>
52
#include <linux/swapops.h>
53
#include <linux/hugetlb.h>
54
#include <linux/memory_hotplug.h>
55
#include <linux/mm_inline.h>
56
#include <linux/memremap.h>
57
#include <linux/kfifo.h>
58
#include <linux/ratelimit.h>
59
#include <linux/page-isolation.h>
60
#include <linux/pagewalk.h>
61
#include "internal.h"
62
#include "ras/ras_event.h"
63 64 65 66 67

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

68
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
69

70 71
static bool __page_handle_poison(struct page *page)
{
72
	int ret;
73 74 75 76 77 78 79

	zone_pcp_disable(page_zone(page));
	ret = dissolve_free_huge_page(page);
	if (!ret)
		ret = take_page_off_buddy(page);
	zone_pcp_enable(page_zone(page));

80
	return ret > 0;
81 82
}

83
static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
84
{
85 86 87 88 89
	if (hugepage_or_freepage) {
		/*
		 * Doing this check for free pages is also fine since dissolve_free_huge_page
		 * returns 0 for non-hugetlb pages as well.
		 */
90
		if (!__page_handle_poison(page))
91 92
			/*
			 * We could fail to take off the target page from buddy
I
Ingo Molnar 已提交
93
			 * for example due to racy page allocation, but that's
94 95 96 97 98 99 100
			 * acceptable because soft-offlined page is not broken
			 * and if someone really want to use it, they should
			 * take it.
			 */
			return false;
	}

101
	SetPageHWPoison(page);
102 103
	if (release)
		put_page(page);
104 105
	page_ref_inc(page);
	num_poisoned_pages_inc();
106 107

	return true;
108 109
}

110 111
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

112
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
113 114
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
115 116
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
117
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
118 119
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
120 121
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
122 123 124 125 126 127 128 129 130 131 132

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
133
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
153 154 155 156 157 158 159 160 161 162 163 164
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
165 166 167 168 169 170 171 172 173 174
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
175
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
176 177 178 179 180 181 182
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

183
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
184 185 186 187 188 189 190 191
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
192 193
int hwpoison_filter(struct page *p)
{
194 195 196
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
197 198 199
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
200 201 202
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
203 204 205
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
206 207
	return 0;
}
208 209 210 211 212 213 214
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
215 216
EXPORT_SYMBOL_GPL(hwpoison_filter);

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
	short size_shift;
};

246
/*
247 248 249
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
250
 */
251
static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
252
{
253 254
	struct task_struct *t = tk->tsk;
	short addr_lsb = tk->size_shift;
255
	int ret = 0;
256

257
	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
258
			pfn, t->comm, t->pid);
259

260
	if (flags & MF_ACTION_REQUIRED) {
261 262
		if (t == current)
			ret = force_sig_mceerr(BUS_MCEERR_AR,
263
					 (void __user *)tk->addr, addr_lsb);
264 265 266 267
		else
			/* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
			ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
				addr_lsb, t);
268 269 270 271 272 273 274
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
275
		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
276
				      addr_lsb, t);  /* synchronous? */
277
	}
278
	if (ret < 0)
279
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
280
			t->comm, t->pid, ret);
281 282 283
	return ret;
}

284
/*
285
 * Unknown page type encountered. Try to check whether it can turn PageLRU by
286
 * lru_add_drain_all.
287
 */
288
void shake_page(struct page *p)
289
{
290 291 292
	if (PageHuge(p))
		return;

293 294 295 296 297
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
298

299
	/*
300 301
	 * TODO: Could shrink slab caches here if a lightweight range-based
	 * shrinker will be available.
302 303 304 305
	 */
}
EXPORT_SYMBOL_GPL(shake_page);

306 307 308 309
static unsigned long dev_pagemap_mapping_shift(struct page *page,
		struct vm_area_struct *vma)
{
	unsigned long address = vma_address(page, vma);
310
	unsigned long ret = 0;
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = pgd_offset(vma->vm_mm, address);
	if (!pgd_present(*pgd))
		return 0;
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;
	pud = pud_offset(p4d, address);
	if (!pud_present(*pud))
		return 0;
	if (pud_devmap(*pud))
		return PUD_SHIFT;
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;
	if (pmd_devmap(*pmd))
		return PMD_SHIFT;
	pte = pte_offset_map(pmd, address);
334 335 336 337
	if (pte_present(*pte) && pte_devmap(*pte))
		ret = PAGE_SHIFT;
	pte_unmap(pte);
	return ret;
338
}
339 340 341 342 343 344 345 346 347 348 349 350

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
351
		       struct list_head *to_kill)
352 353 354
{
	struct to_kill *tk;

355 356 357 358
	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
	if (!tk) {
		pr_err("Memory failure: Out of memory while machine check handling\n");
		return;
359
	}
360

361
	tk->addr = page_address_in_vma(p, vma);
362 363 364
	if (is_zone_device_page(p))
		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
	else
365
		tk->size_shift = page_shift(compound_head(p));
366 367

	/*
368 369 370 371 372 373 374 375
	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
	 * so "tk->size_shift == 0" effectively checks no mapping on
	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
	 * to a process' address space, it's possible not all N VMAs
	 * contain mappings for the page, but at least one VMA does.
	 * Only deliver SIGBUS with payload derived from the VMA that
	 * has a mapping for the page.
376
	 */
377
	if (tk->addr == -EFAULT) {
378
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
379
			page_to_pfn(p), tsk->comm);
380 381 382
	} else if (tk->size_shift == 0) {
		kfree(tk);
		return;
383
	}
384

385 386 387 388 389 390 391 392
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
393 394
 * Only do anything when FORCEKILL is set, otherwise just free the
 * list (this is used for clean pages which do not need killing)
395 396 397
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
398 399
static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
		unsigned long pfn, int flags)
400 401 402 403
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
404
		if (forcekill) {
405
			/*
406
			 * In case something went wrong with munmapping
407 408 409
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
410
			if (fail || tk->addr == -EFAULT) {
411
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
412
				       pfn, tk->tsk->comm, tk->tsk->pid);
413 414
				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
						 tk->tsk, PIDTYPE_PID);
415 416 417 418 419 420 421 422
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
423
			else if (kill_proc(tk, pfn, flags) < 0)
424
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
425
				       pfn, tk->tsk->comm, tk->tsk->pid);
426 427 428 429 430 431
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

432 433 434 435 436 437 438 439 440
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
441
{
442 443
	struct task_struct *t;

444 445 446 447 448 449 450 451 452
	for_each_thread(tsk, t) {
		if (t->flags & PF_MCE_PROCESS) {
			if (t->flags & PF_MCE_EARLY)
				return t;
		} else {
			if (sysctl_memory_failure_early_kill)
				return t;
		}
	}
453 454 455 456 457 458 459
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
460
 * specified) if the process is "early kill" and otherwise returns NULL.
461
 *
462 463 464 465 466
 * Note that the above is true for Action Optional case. For Action Required
 * case, it's only meaningful to the current thread which need to be signaled
 * with SIGBUS, this error is Action Optional for other non current
 * processes sharing the same error page,if the process is "early kill", the
 * task_struct of the dedicated thread will also be returned.
467 468 469 470
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
471
	if (!tsk->mm)
472
		return NULL;
473 474 475 476 477 478 479
	/*
	 * Comparing ->mm here because current task might represent
	 * a subthread, while tsk always points to the main thread.
	 */
	if (force_early && tsk->mm == current->mm)
		return current;

480
	return find_early_kill_thread(tsk);
481 482 483 484 485 486
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
487
				int force_early)
488 489 490 491
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
492
	pgoff_t pgoff;
493

494
	av = page_lock_anon_vma_read(page);
495
	if (av == NULL)	/* Not actually mapped anymore */
496 497
		return;

498
	pgoff = page_to_pgoff(page);
499
	read_lock(&tasklist_lock);
500
	for_each_process (tsk) {
501
		struct anon_vma_chain *vmac;
502
		struct task_struct *t = task_early_kill(tsk, force_early);
503

504
		if (!t)
505
			continue;
506 507
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
508
			vma = vmac->vma;
509 510
			if (!page_mapped_in_vma(page, vma))
				continue;
511
			if (vma->vm_mm == t->mm)
512
				add_to_kill(t, page, vma, to_kill);
513 514 515
		}
	}
	read_unlock(&tasklist_lock);
516
	page_unlock_anon_vma_read(av);
517 518 519 520 521 522
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
523
				int force_early)
524 525 526 527
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;
528
	pgoff_t pgoff;
529

530
	i_mmap_lock_read(mapping);
531
	read_lock(&tasklist_lock);
532
	pgoff = page_to_pgoff(page);
533
	for_each_process(tsk) {
534
		struct task_struct *t = task_early_kill(tsk, force_early);
535

536
		if (!t)
537
			continue;
538
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
539 540 541 542 543 544 545 546
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
547
			if (vma->vm_mm == t->mm)
548
				add_to_kill(t, page, vma, to_kill);
549 550 551
		}
	}
	read_unlock(&tasklist_lock);
552
	i_mmap_unlock_read(mapping);
553 554 555 556 557
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 */
558 559
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
560 561 562 563 564
{
	if (!page->mapping)
		return;

	if (PageAnon(page))
565
		collect_procs_anon(page, tokill, force_early);
566
	else
567
		collect_procs_file(page, tokill, force_early);
568 569
}

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
struct hwp_walk {
	struct to_kill tk;
	unsigned long pfn;
	int flags;
};

static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
{
	tk->addr = addr;
	tk->size_shift = shift;
}

static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
				unsigned long poisoned_pfn, struct to_kill *tk)
{
	unsigned long pfn = 0;

	if (pte_present(pte)) {
		pfn = pte_pfn(pte);
	} else {
		swp_entry_t swp = pte_to_swp_entry(pte);

		if (is_hwpoison_entry(swp))
			pfn = hwpoison_entry_to_pfn(swp);
	}

	if (!pfn || pfn != poisoned_pfn)
		return 0;

	set_to_kill(tk, addr, shift);
	return 1;
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
				      struct hwp_walk *hwp)
{
	pmd_t pmd = *pmdp;
	unsigned long pfn;
	unsigned long hwpoison_vaddr;

	if (!pmd_present(pmd))
		return 0;
	pfn = pmd_pfn(pmd);
	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
		return 1;
	}
	return 0;
}
#else
static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
				      struct hwp_walk *hwp)
{
	return 0;
}
#endif

static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
			      unsigned long end, struct mm_walk *walk)
{
	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
	int ret = 0;
634
	pte_t *ptep, *mapped_pte;
635 636 637 638 639 640 641 642 643 644 645 646
	spinlock_t *ptl;

	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
	if (ptl) {
		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
		spin_unlock(ptl);
		goto out;
	}

	if (pmd_trans_unstable(pmdp))
		goto out;

647 648
	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
						addr, &ptl);
649 650 651 652 653 654
	for (; addr != end; ptep++, addr += PAGE_SIZE) {
		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
					     hwp->pfn, &hwp->tk);
		if (ret == 1)
			break;
	}
655
	pte_unmap_unlock(mapped_pte, ptl);
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
out:
	cond_resched();
	return ret;
}

#ifdef CONFIG_HUGETLB_PAGE
static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
			    unsigned long addr, unsigned long end,
			    struct mm_walk *walk)
{
	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
	pte_t pte = huge_ptep_get(ptep);
	struct hstate *h = hstate_vma(walk->vma);

	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
				      hwp->pfn, &hwp->tk);
}
#else
#define hwpoison_hugetlb_range	NULL
#endif

677
static const struct mm_walk_ops hwp_walk_ops = {
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	.pmd_entry = hwpoison_pte_range,
	.hugetlb_entry = hwpoison_hugetlb_range,
};

/*
 * Sends SIGBUS to the current process with error info.
 *
 * This function is intended to handle "Action Required" MCEs on already
 * hardware poisoned pages. They could happen, for example, when
 * memory_failure() failed to unmap the error page at the first call, or
 * when multiple local machine checks happened on different CPUs.
 *
 * MCE handler currently has no easy access to the error virtual address,
 * so this function walks page table to find it. The returned virtual address
 * is proper in most cases, but it could be wrong when the application
 * process has multiple entries mapping the error page.
 */
static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
				  int flags)
{
	int ret;
	struct hwp_walk priv = {
		.pfn = pfn,
	};
	priv.tk.tsk = p;

	mmap_read_lock(p->mm);
	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
			      (void *)&priv);
	if (ret == 1 && priv.tk.addr)
		kill_proc(&priv.tk, pfn, flags);
	mmap_read_unlock(p->mm);
	return ret ? -EFAULT : -EHWPOISON;
}

713
static const char *action_name[] = {
714 715 716 717
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
718 719 720
};

static const char * const action_page_types[] = {
721 722 723 724 725 726 727
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
728
	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
729 730 731 732 733 734 735 736 737 738 739 740
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
741
	[MF_MSG_DAX]			= "dax page",
742
	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
743
	[MF_MSG_UNKNOWN]		= "unknown page",
744 745
};

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
761 762 763 764 765

		/*
		 * Poisoned page might never drop its ref count to 0 so we have
		 * to uncharge it manually from its memcg.
		 */
766
		mem_cgroup_uncharge(page_folio(p));
767

768 769 770
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
771
		put_page(p);
772 773 774 775 776
		return 0;
	}
	return -EIO;
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
static int truncate_error_page(struct page *p, unsigned long pfn,
				struct address_space *mapping)
{
	int ret = MF_FAILED;

	if (mapping->a_ops->error_remove_page) {
		int err = mapping->a_ops->error_remove_page(mapping, p);

		if (err != 0) {
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
				pfn, err);
		} else if (page_has_private(p) &&
			   !try_to_release_page(p, GFP_NOIO)) {
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
		} else {
			ret = MF_RECOVERED;
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
			ret = MF_RECOVERED;
		else
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
	}

	return ret;
}

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
struct page_state {
	unsigned long mask;
	unsigned long res;
	enum mf_action_page_type type;

	/* Callback ->action() has to unlock the relevant page inside it. */
	int (*action)(struct page_state *ps, struct page *p);
};

/*
 * Return true if page is still referenced by others, otherwise return
 * false.
 *
 * The extra_pins is true when one extra refcount is expected.
 */
static bool has_extra_refcount(struct page_state *ps, struct page *p,
			       bool extra_pins)
{
	int count = page_count(p) - 1;

	if (extra_pins)
		count -= 1;

	if (count > 0) {
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
		       page_to_pfn(p), action_page_types[ps->type], count);
		return true;
	}

	return false;
}

842 843 844 845 846
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
847
static int me_kernel(struct page_state *ps, struct page *p)
848
{
849
	unlock_page(p);
850
	return MF_IGNORED;
851 852 853 854 855
}

/*
 * Page in unknown state. Do nothing.
 */
856
static int me_unknown(struct page_state *ps, struct page *p)
857
{
858
	pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
859
	unlock_page(p);
860
	return MF_FAILED;
861 862 863 864 865
}

/*
 * Clean (or cleaned) page cache page.
 */
866
static int me_pagecache_clean(struct page_state *ps, struct page *p)
867
{
868
	int ret;
869 870
	struct address_space *mapping;

871 872
	delete_from_lru_cache(p);

873 874 875 876
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
877 878 879 880
	if (PageAnon(p)) {
		ret = MF_RECOVERED;
		goto out;
	}
881 882 883 884 885 886 887 888 889 890 891 892 893

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
894 895
		ret = MF_FAILED;
		goto out;
896 897 898 899 900
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
J
Jan Kara 已提交
901
	 * Open: to take i_rwsem or not for this? Right now we don't.
902
	 */
903
	ret = truncate_error_page(p, page_to_pfn(p), mapping);
904 905
out:
	unlock_page(p);
906

907 908 909
	if (has_extra_refcount(ps, p, false))
		ret = MF_FAILED;

910
	return ret;
911 912 913
}

/*
914
 * Dirty pagecache page
915 916 917
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
918
static int me_pagecache_dirty(struct page_state *ps, struct page *p)
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
947
		 * and the page is dropped between then the error
948 949 950 951 952 953 954 955 956 957 958
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
959
		mapping_set_error(mapping, -EIO);
960 961
	}

962
	return me_pagecache_clean(ps, p);
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
984
static int me_swapcache_dirty(struct page_state *ps, struct page *p)
985
{
986
	int ret;
987
	bool extra_pins = false;
988

989 990 991 992
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

993 994
	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
	unlock_page(p);
995 996 997 998 999 1000 1001

	if (ret == MF_DELAYED)
		extra_pins = true;

	if (has_extra_refcount(ps, p, extra_pins))
		ret = MF_FAILED;

1002
	return ret;
1003 1004
}

1005
static int me_swapcache_clean(struct page_state *ps, struct page *p)
1006
{
1007 1008
	int ret;

1009
	delete_from_swap_cache(p);
1010

1011 1012
	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
	unlock_page(p);
1013 1014 1015 1016

	if (has_extra_refcount(ps, p, false))
		ret = MF_FAILED;

1017
	return ret;
1018 1019 1020 1021 1022
}

/*
 * Huge pages. Needs work.
 * Issues:
1023 1024
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
1025
 */
1026
static int me_huge_page(struct page_state *ps, struct page *p)
1027
{
1028
	int res;
1029
	struct page *hpage = compound_head(p);
1030
	struct address_space *mapping;
1031 1032 1033 1034

	if (!PageHuge(hpage))
		return MF_DELAYED;

1035 1036
	mapping = page_mapping(hpage);
	if (mapping) {
1037
		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1038
		unlock_page(hpage);
1039
	} else {
1040
		res = MF_FAILED;
1041 1042 1043 1044 1045 1046 1047 1048
		unlock_page(hpage);
		/*
		 * migration entry prevents later access on error anonymous
		 * hugepage, so we can free and dissolve it into buddy to
		 * save healthy subpages.
		 */
		if (PageAnon(hpage))
			put_page(hpage);
1049
		if (__page_handle_poison(p)) {
1050 1051 1052
			page_ref_inc(p);
			res = MF_RECOVERED;
		}
1053
	}
1054

1055 1056 1057
	if (has_extra_refcount(ps, p, false))
		res = MF_FAILED;

1058
	return res;
1059 1060 1061 1062 1063 1064 1065 1066 1067
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
1068
 * in its live cycle, so all accesses have to be extremely careful.
1069 1070 1071 1072 1073 1074
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
1075
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1076 1077 1078 1079 1080 1081 1082
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

1083
static struct page_state error_states[] = {
1084
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1085 1086 1087 1088
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
1089 1090 1091 1092 1093 1094

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
1095
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1096

1097
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1098

1099 1100
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1101

1102 1103
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1104

1105 1106
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1107

1108 1109
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1110 1111 1112 1113

	/*
	 * Catchall entry: must be at end.
	 */
1114
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1115 1116
};

1117 1118 1119 1120 1121 1122 1123 1124 1125
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef lru
#undef head
#undef slab
#undef reserved

1126 1127 1128 1129
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
1130 1131
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
1132
{
1133 1134
	trace_memory_failure_event(pfn, type, result);

1135
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1136
		pfn, action_page_types[type], action_name[result]);
1137 1138 1139
}

static int page_action(struct page_state *ps, struct page *p,
1140
			unsigned long pfn)
1141 1142 1143
{
	int result;

1144
	/* page p should be unlocked after returning from ps->action().  */
1145
	result = ps->action(ps, p);
1146

1147
	action_result(pfn, ps->type, result);
1148 1149 1150 1151 1152 1153

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

1154
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1155 1156
}

1157 1158 1159 1160 1161 1162 1163 1164
/*
 * Return true if a page type of a given page is supported by hwpoison
 * mechanism (while handling could fail), otherwise false.  This function
 * does not return true for hugetlb or device memory pages, so it's assumed
 * to be called only in the context where we never have such pages.
 */
static inline bool HWPoisonHandlable(struct page *page)
{
1165
	return PageLRU(page) || __PageMovable(page) || is_free_buddy_page(page);
1166 1167
}

1168
static int __get_hwpoison_page(struct page *page)
1169 1170
{
	struct page *head = compound_head(page);
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	int ret = 0;
	bool hugetlb = false;

	ret = get_hwpoison_huge_page(head, &hugetlb);
	if (hugetlb)
		return ret;

	/*
	 * This check prevents from calling get_hwpoison_unless_zero()
	 * for any unsupported type of page in order to reduce the risk of
	 * unexpected races caused by taking a page refcount.
	 */
	if (!HWPoisonHandlable(head))
1184
		return -EBUSY;
1185

1186 1187 1188 1189
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

1190 1191
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
1192 1193 1194 1195
		put_page(head);
	}

	return 0;
1196 1197
}

1198
static int get_any_page(struct page *p, unsigned long flags)
1199
{
1200 1201
	int ret = 0, pass = 0;
	bool count_increased = false;
1202

1203 1204 1205 1206
	if (flags & MF_COUNT_INCREASED)
		count_increased = true;

try_again:
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	if (!count_increased) {
		ret = __get_hwpoison_page(p);
		if (!ret) {
			if (page_count(p)) {
				/* We raced with an allocation, retry. */
				if (pass++ < 3)
					goto try_again;
				ret = -EBUSY;
			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
				/* We raced with put_page, retry. */
				if (pass++ < 3)
					goto try_again;
				ret = -EIO;
			}
			goto out;
		} else if (ret == -EBUSY) {
1223 1224 1225 1226 1227
			/*
			 * We raced with (possibly temporary) unhandlable
			 * page, retry.
			 */
			if (pass++ < 3) {
1228
				shake_page(p);
1229
				goto try_again;
1230 1231
			}
			ret = -EIO;
1232
			goto out;
1233
		}
1234 1235 1236 1237
	}

	if (PageHuge(p) || HWPoisonHandlable(p)) {
		ret = 1;
1238
	} else {
1239 1240 1241 1242 1243
		/*
		 * A page we cannot handle. Check whether we can turn
		 * it into something we can handle.
		 */
		if (pass++ < 3) {
1244
			put_page(p);
1245
			shake_page(p);
1246 1247
			count_increased = false;
			goto try_again;
1248
		}
1249 1250
		put_page(p);
		ret = -EIO;
1251
	}
1252
out:
1253 1254 1255
	if (ret == -EIO)
		dump_page(p, "hwpoison: unhandlable page");

1256 1257 1258
	return ret;
}

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
/**
 * get_hwpoison_page() - Get refcount for memory error handling
 * @p:		Raw error page (hit by memory error)
 * @flags:	Flags controlling behavior of error handling
 *
 * get_hwpoison_page() takes a page refcount of an error page to handle memory
 * error on it, after checking that the error page is in a well-defined state
 * (defined as a page-type we can successfully handle the memor error on it,
 * such as LRU page and hugetlb page).
 *
 * Memory error handling could be triggered at any time on any type of page,
 * so it's prone to race with typical memory management lifecycle (like
 * allocation and free).  So to avoid such races, get_hwpoison_page() takes
 * extra care for the error page's state (as done in __get_hwpoison_page()),
 * and has some retry logic in get_any_page().
 *
 * Return: 0 on failure,
 *         1 on success for in-use pages in a well-defined state,
 *         -EIO for pages on which we can not handle memory errors,
 *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
 *         operations like allocation and free.
 */
static int get_hwpoison_page(struct page *p, unsigned long flags)
1282 1283 1284 1285
{
	int ret;

	zone_pcp_disable(page_zone(p));
1286
	ret = get_any_page(p, flags);
1287 1288 1289 1290 1291
	zone_pcp_enable(page_zone(p));

	return ret;
}

1292 1293 1294 1295
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
1296
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1297
				  int flags, struct page *hpage)
1298
{
1299
	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1300 1301
	struct address_space *mapping;
	LIST_HEAD(tokill);
1302
	bool unmap_success;
1303
	int kill = 1, forcekill;
1304
	bool mlocked = PageMlocked(hpage);
1305

1306 1307 1308 1309 1310
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
1311
		return true;
1312
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
1313
		return true;
1314 1315 1316 1317 1318

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
1319
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
1320
		return true;
W
Wu Fengguang 已提交
1321

1322
	if (PageKsm(p)) {
1323
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
1324
		return false;
1325
	}
1326 1327

	if (PageSwapCache(p)) {
1328 1329
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
1330 1331 1332 1333 1334 1335
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
1336 1337
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
1338
	 */
1339
	mapping = page_mapping(hpage);
1340
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1341
	    mapping_can_writeback(mapping)) {
1342 1343
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
1344 1345 1346
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
1347
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
1361
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1362

1363
	if (!PageHuge(hpage)) {
1364
		try_to_unmap(hpage, ttu);
1365
	} else {
1366 1367 1368 1369 1370 1371
		if (!PageAnon(hpage)) {
			/*
			 * For hugetlb pages in shared mappings, try_to_unmap
			 * could potentially call huge_pmd_unshare.  Because of
			 * this, take semaphore in write mode here and set
			 * TTU_RMAP_LOCKED to indicate we have taken the lock
Z
Zhen Lei 已提交
1372
			 * at this higher level.
1373 1374 1375
			 */
			mapping = hugetlb_page_mapping_lock_write(hpage);
			if (mapping) {
1376
				try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1377
				i_mmap_unlock_write(mapping);
1378
			} else
1379
				pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1380
		} else {
1381
			try_to_unmap(hpage, ttu);
1382 1383
		}
	}
1384 1385

	unmap_success = !page_mapped(hpage);
M
Minchan Kim 已提交
1386
	if (!unmap_success)
1387
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1388
		       pfn, page_mapcount(hpage));
1389

1390 1391 1392 1393 1394
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
1395
		shake_page(hpage);
1396

1397 1398 1399 1400
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1401 1402
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1403 1404 1405 1406
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1407
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1408
	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
W
Wu Fengguang 已提交
1409

M
Minchan Kim 已提交
1410
	return unmap_success;
1411 1412
}

1413 1414
static int identify_page_state(unsigned long pfn, struct page *p,
				unsigned long page_flags)
1415 1416
{
	struct page_state *ps;
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435

	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flags is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
			break;

	page_flags |= (p->flags & (1UL << PG_dirty));

	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	return page_action(ps, p, pfn);
}

1436 1437 1438
static int try_to_split_thp_page(struct page *page, const char *msg)
{
	lock_page(page);
1439
	if (unlikely(split_huge_page(page))) {
1440 1441 1442
		unsigned long pfn = page_to_pfn(page);

		unlock_page(page);
1443
		pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1444 1445 1446 1447 1448 1449 1450 1451
		put_page(page);
		return -EBUSY;
	}
	unlock_page(page);

	return 0;
}

1452
static int memory_failure_hugetlb(unsigned long pfn, int flags)
1453
{
1454 1455 1456 1457 1458 1459 1460 1461
	struct page *p = pfn_to_page(pfn);
	struct page *head = compound_head(p);
	int res;
	unsigned long page_flags;

	if (TestSetPageHWPoison(head)) {
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
		       pfn);
1462 1463 1464 1465
		res = -EHWPOISON;
		if (flags & MF_ACTION_REQUIRED)
			res = kill_accessing_process(current, page_to_pfn(head), flags);
		return res;
1466 1467 1468 1469
	}

	num_poisoned_pages_inc();

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	if (!(flags & MF_COUNT_INCREASED)) {
		res = get_hwpoison_page(p, flags);
		if (!res) {
			/*
			 * Check "filter hit" and "race with other subpage."
			 */
			lock_page(head);
			if (PageHWPoison(head)) {
				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
				    || (p != head && TestSetPageHWPoison(head))) {
					num_poisoned_pages_dec();
					unlock_page(head);
					return 0;
				}
1484
			}
1485 1486
			unlock_page(head);
			res = MF_FAILED;
1487
			if (__page_handle_poison(p)) {
1488 1489 1490 1491 1492 1493 1494 1495
				page_ref_inc(p);
				res = MF_RECOVERED;
			}
			action_result(pfn, MF_MSG_FREE_HUGE, res);
			return res == MF_RECOVERED ? 0 : -EBUSY;
		} else if (res < 0) {
			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
			return -EBUSY;
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		}
	}

	lock_page(head);
	page_flags = head->flags;

	if (!PageHWPoison(head)) {
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
		num_poisoned_pages_dec();
		unlock_page(head);
1506
		put_page(head);
1507 1508 1509
		return 0;
	}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	/*
	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
	 * simply disable it. In order to make it work properly, we need
	 * make sure that:
	 *  - conversion of a pud that maps an error hugetlb into hwpoison
	 *    entry properly works, and
	 *  - other mm code walking over page table is aware of pud-aligned
	 *    hwpoison entries.
	 */
	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1525
	if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1526 1527 1528 1529 1530
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1531
	return identify_page_state(pfn, p, page_flags);
1532 1533 1534 1535 1536
out:
	unlock_page(head);
	return res;
}

1537 1538 1539 1540 1541 1542 1543 1544 1545
static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
		struct dev_pagemap *pgmap)
{
	struct page *page = pfn_to_page(pfn);
	unsigned long size = 0;
	struct to_kill *tk;
	LIST_HEAD(tokill);
	int rc = -EBUSY;
	loff_t start;
1546
	dax_entry_t cookie;
1547

1548 1549 1550 1551 1552 1553
	if (flags & MF_COUNT_INCREASED)
		/*
		 * Drop the extra refcount in case we come from madvise().
		 */
		put_page(page);

1554 1555 1556 1557 1558 1559
	/* device metadata space is not recoverable */
	if (!pgmap_pfn_valid(pgmap, pfn)) {
		rc = -ENXIO;
		goto out;
	}

1560 1561 1562 1563 1564 1565 1566
	/*
	 * Prevent the inode from being freed while we are interrogating
	 * the address_space, typically this would be handled by
	 * lock_page(), but dax pages do not use the page lock. This
	 * also prevents changes to the mapping of this pfn until
	 * poison signaling is complete.
	 */
1567 1568
	cookie = dax_lock_page(page);
	if (!cookie)
1569 1570 1571 1572 1573 1574 1575
		goto out;

	if (hwpoison_filter(page)) {
		rc = 0;
		goto unlock;
	}

1576
	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
		/*
		 * TODO: Handle HMM pages which may need coordination
		 * with device-side memory.
		 */
		goto unlock;
	}

	/*
	 * Use this flag as an indication that the dax page has been
	 * remapped UC to prevent speculative consumption of poison.
	 */
	SetPageHWPoison(page);

	/*
	 * Unlike System-RAM there is no possibility to swap in a
	 * different physical page at a given virtual address, so all
	 * userspace consumption of ZONE_DEVICE memory necessitates
	 * SIGBUS (i.e. MF_MUST_KILL)
	 */
	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);

	list_for_each_entry(tk, &tokill, nd)
		if (tk->size_shift)
			size = max(size, 1UL << tk->size_shift);
	if (size) {
		/*
		 * Unmap the largest mapping to avoid breaking up
		 * device-dax mappings which are constant size. The
		 * actual size of the mapping being torn down is
		 * communicated in siginfo, see kill_proc()
		 */
		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1610
		unmap_mapping_range(page->mapping, start, size, 0);
1611
	}
1612
	kill_procs(&tokill, flags & MF_MUST_KILL, false, pfn, flags);
1613 1614
	rc = 0;
unlock:
1615
	dax_unlock_page(page, cookie);
1616 1617 1618 1619 1620 1621 1622
out:
	/* drop pgmap ref acquired in caller */
	put_dev_pagemap(pgmap);
	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
	return rc;
}

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
1640
int memory_failure(unsigned long pfn, int flags)
1641 1642
{
	struct page *p;
1643
	struct page *hpage;
1644
	struct page *orig_head;
1645
	struct dev_pagemap *pgmap;
1646
	int res = 0;
1647
	unsigned long page_flags;
1648
	bool retry = true;
1649
	static DEFINE_MUTEX(mf_mutex);
1650 1651

	if (!sysctl_memory_failure_recovery)
1652
		panic("Memory failure on page %lx", pfn);
1653

1654 1655 1656 1657 1658 1659 1660 1661
	p = pfn_to_online_page(pfn);
	if (!p) {
		if (pfn_valid(pfn)) {
			pgmap = get_dev_pagemap(pfn, NULL);
			if (pgmap)
				return memory_failure_dev_pagemap(pfn, flags,
								  pgmap);
		}
1662 1663
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1664
		return -ENXIO;
1665 1666
	}

1667 1668
	mutex_lock(&mf_mutex);

1669
try_again:
1670 1671 1672 1673 1674
	if (PageHuge(p)) {
		res = memory_failure_hugetlb(pfn, flags);
		goto unlock_mutex;
	}

1675
	if (TestSetPageHWPoison(p)) {
1676 1677
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1678
		res = -EHWPOISON;
1679 1680
		if (flags & MF_ACTION_REQUIRED)
			res = kill_accessing_process(current, pfn, flags);
1681
		goto unlock_mutex;
1682 1683
	}

1684
	orig_head = hpage = compound_head(p);
1685
	num_poisoned_pages_inc();
1686 1687 1688 1689 1690

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1691
	 * 2) it's part of a non-compound high order page.
1692 1693 1694 1695
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
1696
	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1697
	 */
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	if (!(flags & MF_COUNT_INCREASED)) {
		res = get_hwpoison_page(p, flags);
		if (!res) {
			if (is_free_buddy_page(p)) {
				if (take_page_off_buddy(p)) {
					page_ref_inc(p);
					res = MF_RECOVERED;
				} else {
					/* We lost the race, try again */
					if (retry) {
						ClearPageHWPoison(p);
						num_poisoned_pages_dec();
						retry = false;
						goto try_again;
					}
					res = MF_FAILED;
1714
				}
1715 1716 1717 1718 1719
				action_result(pfn, MF_MSG_BUDDY, res);
				res = res == MF_RECOVERED ? 0 : -EBUSY;
			} else {
				action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
				res = -EBUSY;
1720
			}
1721 1722 1723
			goto unlock_mutex;
		} else if (res < 0) {
			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1724
			res = -EBUSY;
1725
			goto unlock_mutex;
1726
		}
1727 1728
	}

1729
	if (PageTransHuge(hpage)) {
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
		/*
		 * The flag must be set after the refcount is bumped
		 * otherwise it may race with THP split.
		 * And the flag can't be set in get_hwpoison_page() since
		 * it is called by soft offline too and it is just called
		 * for !MF_COUNT_INCREASE.  So here seems to be the best
		 * place.
		 *
		 * Don't need care about the above error handling paths for
		 * get_hwpoison_page() since they handle either free page
		 * or unhandlable page.  The refcount is bumped iff the
		 * page is a valid handlable page.
		 */
		SetPageHasHWPoisoned(hpage);
1744 1745
		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1746 1747
			res = -EBUSY;
			goto unlock_mutex;
1748
		}
1749 1750 1751
		VM_BUG_ON_PAGE(!page_count(p), p);
	}

1752 1753 1754
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1755
	 * - to avoid races with __SetPageLocked()
1756 1757 1758 1759
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1760
	shake_page(p);
1761

1762
	lock_page(p);
W
Wu Fengguang 已提交
1763

1764 1765 1766 1767
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1768
	if (PageCompound(p) && compound_head(p) != orig_head) {
1769
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1770
		res = -EBUSY;
1771
		goto unlock_page;
1772 1773
	}

1774 1775 1776 1777 1778 1779 1780
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
1781
	page_flags = p->flags;
1782

W
Wu Fengguang 已提交
1783 1784 1785 1786
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1787
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1788
		num_poisoned_pages_dec();
1789
		unlock_page(p);
1790
		put_page(p);
1791
		goto unlock_mutex;
W
Wu Fengguang 已提交
1792
	}
W
Wu Fengguang 已提交
1793 1794
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1795
			num_poisoned_pages_dec();
1796
		unlock_page(p);
1797
		put_page(p);
1798
		goto unlock_mutex;
W
Wu Fengguang 已提交
1799
	}
W
Wu Fengguang 已提交
1800

1801 1802 1803 1804 1805 1806
	/*
	 * __munlock_pagevec may clear a writeback page's LRU flag without
	 * page_lock. We need wait writeback completion for this page or it
	 * may trigger vfs BUG while evict inode.
	 */
	if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1807 1808
		goto identify_page_state;

1809 1810 1811 1812
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1813 1814 1815 1816
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1817
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1818
	 */
1819
	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1820
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1821
		res = -EBUSY;
1822
		goto unlock_page;
W
Wu Fengguang 已提交
1823
	}
1824 1825 1826 1827

	/*
	 * Torn down by someone else?
	 */
1828
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1829
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1830
		res = -EBUSY;
1831
		goto unlock_page;
1832 1833
	}

1834
identify_page_state:
1835
	res = identify_page_state(pfn, p, page_flags);
1836 1837
	mutex_unlock(&mf_mutex);
	return res;
1838
unlock_page:
1839
	unlock_page(p);
1840 1841
unlock_mutex:
	mutex_unlock(&mf_mutex);
1842 1843
	return res;
}
1844
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1845

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
1879
void memory_failure_queue(unsigned long pfn, int flags)
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1890
	if (kfifo_put(&mf_cpu->fifo, entry))
1891 1892
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1893
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1907
	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1908 1909 1910 1911 1912 1913
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1914
		if (entry.flags & MF_SOFT_OFFLINE)
1915
			soft_offline_page(entry.pfn, entry.flags);
1916
		else
1917
			memory_failure(entry.pfn, entry.flags);
1918 1919 1920
	}
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
/*
 * Process memory_failure work queued on the specified CPU.
 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
 */
void memory_failure_queue_kick(int cpu)
{
	struct memory_failure_cpu *mf_cpu;

	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
	cancel_work_sync(&mf_cpu->work);
	memory_failure_work_func(&mf_cpu->work);
}

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1950 1951 1952 1953 1954 1955
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1973
	unsigned long flags = 0;
1974 1975
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1976 1977 1978 1979 1980 1981 1982 1983

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1984
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1985
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1986 1987 1988
		return 0;
	}

1989
	if (page_count(page) > 1) {
1990
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1991
				 pfn, &unpoison_rs);
1992 1993 1994 1995
		return 0;
	}

	if (page_mapped(page)) {
1996
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1997
				 pfn, &unpoison_rs);
1998 1999 2000 2001
		return 0;
	}

	if (page_mapping(page)) {
2002
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2003
				 pfn, &unpoison_rs);
2004 2005 2006
		return 0;
	}

2007 2008 2009 2010 2011
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
2012
	if (!PageHuge(page) && PageTransHuge(page)) {
2013
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
2014
				 pfn, &unpoison_rs);
2015
		return 0;
2016 2017
	}

2018
	if (!get_hwpoison_page(p, flags)) {
W
Wu Fengguang 已提交
2019
		if (TestClearPageHWPoison(p))
2020
			num_poisoned_pages_dec();
2021
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
2022
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
2023 2024 2025
		return 0;
	}

J
Jens Axboe 已提交
2026
	lock_page(page);
W
Wu Fengguang 已提交
2027 2028 2029 2030 2031 2032
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
2033
	if (TestClearPageHWPoison(page)) {
2034
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2035
				 pfn, &unpoison_rs);
2036
		num_poisoned_pages_dec();
W
Wu Fengguang 已提交
2037 2038 2039 2040
		freeit = 1;
	}
	unlock_page(page);

2041
	put_page(page);
2042
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
2043
		put_page(page);
W
Wu Fengguang 已提交
2044 2045 2046 2047

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
2048

2049
static bool isolate_page(struct page *page, struct list_head *pagelist)
2050
{
2051 2052
	bool isolated = false;
	bool lru = PageLRU(page);
2053

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	if (PageHuge(page)) {
		isolated = isolate_huge_page(page, pagelist);
	} else {
		if (lru)
			isolated = !isolate_lru_page(page);
		else
			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);

		if (isolated)
			list_add(&page->lru, pagelist);
2064
	}
2065

2066 2067 2068 2069
	if (isolated && lru)
		inc_node_page_state(page, NR_ISOLATED_ANON +
				    page_is_file_lru(page));

2070
	/*
2071 2072 2073 2074 2075
	 * If we succeed to isolate the page, we grabbed another refcount on
	 * the page, so we can safely drop the one we got from get_any_pages().
	 * If we failed to isolate the page, it means that we cannot go further
	 * and we will return an error, so drop the reference we got from
	 * get_any_pages() as well.
2076
	 */
2077 2078
	put_page(page);
	return isolated;
2079 2080
}

2081 2082 2083 2084 2085 2086
/*
 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
 * If the page is mapped, it migrates the contents over.
 */
static int __soft_offline_page(struct page *page)
2087
{
2088
	int ret = 0;
2089
	unsigned long pfn = page_to_pfn(page);
2090 2091 2092 2093
	struct page *hpage = compound_head(page);
	char const *msg_page[] = {"page", "hugepage"};
	bool huge = PageHuge(page);
	LIST_HEAD(pagelist);
2094 2095 2096 2097
	struct migration_target_control mtc = {
		.nid = NUMA_NO_NODE,
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
	};
2098 2099

	/*
2100 2101 2102 2103
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
2104
	 */
2105
	lock_page(page);
2106 2107
	if (!PageHuge(page))
		wait_on_page_writeback(page);
2108 2109
	if (PageHWPoison(page)) {
		unlock_page(page);
2110
		put_page(page);
2111
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2112
		return 0;
2113
	}
2114 2115 2116 2117 2118 2119 2120

	if (!PageHuge(page))
		/*
		 * Try to invalidate first. This should work for
		 * non dirty unmapped page cache pages.
		 */
		ret = invalidate_inode_page(page);
2121
	unlock_page(page);
2122

2123 2124 2125 2126
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
2127
	if (ret) {
2128
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2129
		page_handle_poison(page, false, true);
2130
		return 0;
2131 2132
	}

2133
	if (isolate_page(hpage, &pagelist)) {
2134
		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2135
			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2136
		if (!ret) {
2137 2138 2139 2140
			bool release = !huge;

			if (!page_handle_poison(page, huge, release))
				ret = -EBUSY;
2141
		} else {
2142 2143
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
2144

2145 2146
			pr_info("soft offline: %#lx: %s migration failed %d, type %pGp\n",
				pfn, msg_page[huge], ret, &page->flags);
2147
			if (ret > 0)
2148
				ret = -EBUSY;
2149 2150
		}
	} else {
2151 2152
		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
			pfn, msg_page[huge], page_count(page), &page->flags);
2153
		ret = -EBUSY;
2154 2155 2156
	}
	return ret;
}
2157

2158
static int soft_offline_in_use_page(struct page *page)
2159 2160 2161
{
	struct page *hpage = compound_head(page);

2162 2163
	if (!PageHuge(page) && PageTransHuge(hpage))
		if (try_to_split_thp_page(page, "soft offline") < 0)
2164
			return -EBUSY;
2165
	return __soft_offline_page(page);
2166 2167
}

2168
static int soft_offline_free_page(struct page *page)
2169
{
2170
	int rc = 0;
2171

2172 2173
	if (!page_handle_poison(page, true, false))
		rc = -EBUSY;
2174

2175
	return rc;
2176 2177
}

2178 2179 2180 2181 2182 2183
static void put_ref_page(struct page *page)
{
	if (page)
		put_page(page);
}

2184 2185
/**
 * soft_offline_page - Soft offline a page.
2186
 * @pfn: pfn to soft-offline
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
2206
int soft_offline_page(unsigned long pfn, int flags)
2207 2208
{
	int ret;
2209
	bool try_again = true;
2210 2211 2212
	struct page *page, *ref_page = NULL;

	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2213

2214 2215
	if (!pfn_valid(pfn))
		return -ENXIO;
2216 2217 2218
	if (flags & MF_COUNT_INCREASED)
		ref_page = pfn_to_page(pfn);

2219 2220
	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
	page = pfn_to_online_page(pfn);
2221 2222
	if (!page) {
		put_ref_page(ref_page);
2223
		return -EIO;
2224
	}
2225

2226
	if (PageHWPoison(page)) {
2227
		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2228
		put_ref_page(ref_page);
2229
		return 0;
2230 2231
	}

2232
retry:
2233
	get_online_mems();
2234
	ret = get_hwpoison_page(page, flags);
2235
	put_online_mems();
2236

2237
	if (ret > 0) {
2238
		ret = soft_offline_in_use_page(page);
2239
	} else if (ret == 0) {
2240 2241 2242 2243
		if (soft_offline_free_page(page) && try_again) {
			try_again = false;
			goto retry;
		}
2244
	}
2245

2246 2247
	return ret;
}