memory-failure.c 52.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * High level machine check handler. Handles pages reported by the
7
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8
 * failure.
9 10 11
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
12 13
 *
 * Handles page cache pages in various states.	The tricky part
14 15 16 17 18 19
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
20 21 22 23 24 25 26 27
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
28 29 30 31 32 33 34
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
35 36 37 38
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
39
#include <linux/kernel-page-flags.h>
40
#include <linux/sched/signal.h>
41
#include <linux/sched/task.h>
H
Hugh Dickins 已提交
42
#include <linux/ksm.h>
43
#include <linux/rmap.h>
44
#include <linux/export.h>
45 46 47
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
48 49
#include <linux/migrate.h>
#include <linux/suspend.h>
50
#include <linux/slab.h>
51
#include <linux/swapops.h>
52
#include <linux/hugetlb.h>
53
#include <linux/memory_hotplug.h>
54
#include <linux/mm_inline.h>
55
#include <linux/memremap.h>
56
#include <linux/kfifo.h>
57
#include <linux/ratelimit.h>
58
#include <linux/page-isolation.h>
59
#include "internal.h"
60
#include "ras/ras_event.h"
61 62 63 64 65

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

66
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67

68 69
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

70
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
71 72
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
73 74
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
75
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
76 77
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
78 79
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
80 81 82 83 84 85 86 87 88 89 90

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
91
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
111 112 113 114 115 116 117 118 119 120 121 122
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
123 124 125 126 127 128 129 130 131 132
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
133
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
134 135 136 137 138 139 140
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

141
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
142 143 144 145 146 147 148 149
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
150 151
int hwpoison_filter(struct page *p)
{
152 153 154
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
155 156 157
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
158 159 160
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
161 162 163
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
164 165
	return 0;
}
166 167 168 169 170 171 172
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
173 174
EXPORT_SYMBOL_GPL(hwpoison_filter);

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
	short size_shift;
};

204
/*
205 206 207
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
208
 */
209
static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
210
{
211 212
	struct task_struct *t = tk->tsk;
	short addr_lsb = tk->size_shift;
213 214
	int ret;

215
	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
216
		pfn, t->comm, t->pid);
217

218
	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
219
		ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
220
				       addr_lsb);
221 222 223 224 225 226 227
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
228
		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
229
				      addr_lsb, t);  /* synchronous? */
230
	}
231
	if (ret < 0)
232
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
233
			t->comm, t->pid, ret);
234 235 236
	return ret;
}

237 238 239 240
/*
 * When a unknown page type is encountered drain as many buffers as possible
 * in the hope to turn the page into a LRU or free page, which we can handle.
 */
241
void shake_page(struct page *p, int access)
242
{
243 244 245
	if (PageHuge(p))
		return;

246 247 248 249
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p))
			return;
250
		drain_all_pages(page_zone(p));
251 252 253
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
254

255
	/*
256 257
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
258
	 */
259 260
	if (access)
		drop_slab_node(page_to_nid(p));
261 262 263
}
EXPORT_SYMBOL_GPL(shake_page);

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static unsigned long dev_pagemap_mapping_shift(struct page *page,
		struct vm_area_struct *vma)
{
	unsigned long address = vma_address(page, vma);
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = pgd_offset(vma->vm_mm, address);
	if (!pgd_present(*pgd))
		return 0;
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;
	pud = pud_offset(p4d, address);
	if (!pud_present(*pud))
		return 0;
	if (pud_devmap(*pud))
		return PUD_SHIFT;
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;
	if (pmd_devmap(*pmd))
		return PMD_SHIFT;
	pte = pte_offset_map(pmd, address);
	if (!pte_present(*pte))
		return 0;
	if (pte_devmap(*pte))
		return PAGE_SHIFT;
	return 0;
}
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 * TBD would GFP_NOIO be enough?
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
		       struct list_head *to_kill,
		       struct to_kill **tkc)
{
	struct to_kill *tk;

	if (*tkc) {
		tk = *tkc;
		*tkc = NULL;
	} else {
		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
		if (!tk) {
321
			pr_err("Memory failure: Out of memory while machine check handling\n");
322 323 324 325
			return;
		}
	}
	tk->addr = page_address_in_vma(p, vma);
326 327 328 329
	if (is_zone_device_page(p))
		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
	else
		tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT;
330 331

	/*
332 333 334 335 336 337 338 339
	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
	 * so "tk->size_shift == 0" effectively checks no mapping on
	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
	 * to a process' address space, it's possible not all N VMAs
	 * contain mappings for the page, but at least one VMA does.
	 * Only deliver SIGBUS with payload derived from the VMA that
	 * has a mapping for the page.
340
	 */
341
	if (tk->addr == -EFAULT) {
342
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
343
			page_to_pfn(p), tsk->comm);
344 345 346
	} else if (tk->size_shift == 0) {
		kfree(tk);
		return;
347 348 349 350 351 352 353 354 355 356 357 358 359 360
	}
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
361 362
static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
		unsigned long pfn, int flags)
363 364 365 366
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
367
		if (forcekill) {
368
			/*
369
			 * In case something went wrong with munmapping
370 371 372
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
373
			if (fail || tk->addr == -EFAULT) {
374
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
375
				       pfn, tk->tsk->comm, tk->tsk->pid);
376 377
				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
						 tk->tsk, PIDTYPE_PID);
378 379 380 381 382 383 384 385
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
386
			else if (kill_proc(tk, pfn, flags) < 0)
387
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
388
				       pfn, tk->tsk->comm, tk->tsk->pid);
389 390 391 392 393 394
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

395 396 397 398 399 400 401 402 403
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
404
{
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
	struct task_struct *t;

	for_each_thread(tsk, t)
		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
			return t;
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
 * specified) if the process is "early kill," and otherwise returns NULL.
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
	struct task_struct *t;
423
	if (!tsk->mm)
424
		return NULL;
425
	if (force_early)
426 427 428 429 430 431 432
		return tsk;
	t = find_early_kill_thread(tsk);
	if (t)
		return t;
	if (sysctl_memory_failure_early_kill)
		return tsk;
	return NULL;
433 434 435 436 437 438
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
439
			      struct to_kill **tkc, int force_early)
440 441 442 443
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
444
	pgoff_t pgoff;
445

446
	av = page_lock_anon_vma_read(page);
447
	if (av == NULL)	/* Not actually mapped anymore */
448 449
		return;

450
	pgoff = page_to_pgoff(page);
451
	read_lock(&tasklist_lock);
452
	for_each_process (tsk) {
453
		struct anon_vma_chain *vmac;
454
		struct task_struct *t = task_early_kill(tsk, force_early);
455

456
		if (!t)
457
			continue;
458 459
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
460
			vma = vmac->vma;
461 462
			if (!page_mapped_in_vma(page, vma))
				continue;
463 464
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
465 466 467
		}
	}
	read_unlock(&tasklist_lock);
468
	page_unlock_anon_vma_read(av);
469 470 471 472 473 474
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
475
			      struct to_kill **tkc, int force_early)
476 477 478 479 480
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;

481
	i_mmap_lock_read(mapping);
482
	read_lock(&tasklist_lock);
483
	for_each_process(tsk) {
484
		pgoff_t pgoff = page_to_pgoff(page);
485
		struct task_struct *t = task_early_kill(tsk, force_early);
486

487
		if (!t)
488
			continue;
489
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
490 491 492 493 494 495 496 497
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
498 499
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
500 501 502
		}
	}
	read_unlock(&tasklist_lock);
503
	i_mmap_unlock_read(mapping);
504 505 506 507 508 509 510 511
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 * This is done in two steps for locking reasons.
 * First preallocate one tokill structure outside the spin locks,
 * so that we can kill at least one process reasonably reliable.
 */
512 513
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
514 515 516 517 518 519 520 521 522 523
{
	struct to_kill *tk;

	if (!page->mapping)
		return;

	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
	if (!tk)
		return;
	if (PageAnon(page))
524
		collect_procs_anon(page, tokill, &tk, force_early);
525
	else
526
		collect_procs_file(page, tokill, &tk, force_early);
527 528 529 530
	kfree(tk);
}

static const char *action_name[] = {
531 532 533 534
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
535 536 537
};

static const char * const action_page_types[] = {
538 539 540 541 542 543 544
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
545
	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
546 547 548 549 550 551 552 553 554 555 556 557
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
558
	[MF_MSG_DAX]			= "dax page",
559
	[MF_MSG_UNKNOWN]		= "unknown page",
560 561
};

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
577 578 579 580 581 582 583

		/*
		 * Poisoned page might never drop its ref count to 0 so we have
		 * to uncharge it manually from its memcg.
		 */
		mem_cgroup_uncharge(p);

584 585 586
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
587
		put_page(p);
588 589 590 591 592
		return 0;
	}
	return -EIO;
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
static int truncate_error_page(struct page *p, unsigned long pfn,
				struct address_space *mapping)
{
	int ret = MF_FAILED;

	if (mapping->a_ops->error_remove_page) {
		int err = mapping->a_ops->error_remove_page(mapping, p);

		if (err != 0) {
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
				pfn, err);
		} else if (page_has_private(p) &&
			   !try_to_release_page(p, GFP_NOIO)) {
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
		} else {
			ret = MF_RECOVERED;
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
			ret = MF_RECOVERED;
		else
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
	}

	return ret;
}

626 627 628 629 630 631 632
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
633
	return MF_IGNORED;
634 635 636 637 638 639 640
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
641
	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
642
	return MF_FAILED;
643 644 645 646 647 648 649 650 651
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
	struct address_space *mapping;

652 653
	delete_from_lru_cache(p);

654 655 656 657 658
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
	if (PageAnon(p))
659
		return MF_RECOVERED;
660 661 662 663 664 665 666 667 668 669 670 671 672

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
673
		return MF_FAILED;
674 675 676 677 678 679 680
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
681
	return truncate_error_page(p, pfn, mapping);
682 683 684
}

/*
685
 * Dirty pagecache page
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
718
		 * and the page is dropped between then the error
719 720 721 722 723 724 725 726 727 728 729
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
730
		mapping_set_error(mapping, -EIO);
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

761
	if (!delete_from_lru_cache(p))
762
		return MF_DELAYED;
763
	else
764
		return MF_FAILED;
765 766 767 768 769
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
	delete_from_swap_cache(p);
770

771
	if (!delete_from_lru_cache(p))
772
		return MF_RECOVERED;
773
	else
774
		return MF_FAILED;
775 776 777 778 779
}

/*
 * Huge pages. Needs work.
 * Issues:
780 781
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
782 783 784
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
785
	int res = 0;
786
	struct page *hpage = compound_head(p);
787
	struct address_space *mapping;
788 789 790 791

	if (!PageHuge(hpage))
		return MF_DELAYED;

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
	mapping = page_mapping(hpage);
	if (mapping) {
		res = truncate_error_page(hpage, pfn, mapping);
	} else {
		unlock_page(hpage);
		/*
		 * migration entry prevents later access on error anonymous
		 * hugepage, so we can free and dissolve it into buddy to
		 * save healthy subpages.
		 */
		if (PageAnon(hpage))
			put_page(hpage);
		dissolve_free_huge_page(p);
		res = MF_RECOVERED;
		lock_page(hpage);
807
	}
808 809

	return res;
810 811 812 813 814 815 816 817 818
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
819
 * in its live cycle, so all accesses have to be extremely careful.
820 821 822 823 824 825
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
826
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
827 828 829 830 831 832 833 834 835 836 837
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define writeback	(1UL << PG_writeback)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
838
	enum mf_action_page_type type;
839 840
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
841
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
842 843 844 845
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
846 847 848 849 850 851

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
852
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
853

854
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
855

856 857
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
858

859 860
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
861

862 863
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
864

865 866
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
867 868 869 870

	/*
	 * Catchall entry: must be at end.
	 */
871
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
872 873
};

874 875 876 877 878 879 880 881 882 883
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef writeback
#undef lru
#undef head
#undef slab
#undef reserved

884 885 886 887
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
888 889
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
890
{
891 892
	trace_memory_failure_event(pfn, type, result);

893
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
894
		pfn, action_page_types[type], action_name[result]);
895 896 897
}

static int page_action(struct page_state *ps, struct page *p,
898
			unsigned long pfn)
899 900
{
	int result;
901
	int count;
902 903

	result = ps->action(p, pfn);
904

905
	count = page_count(p) - 1;
906
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
907
		count--;
908
	if (count > 0) {
909
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
910
		       pfn, action_page_types[ps->type], count);
911
		result = MF_FAILED;
912
	}
913
	action_result(pfn, ps->type, result);
914 915 916 917 918 919

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

920
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
921 922
}

923 924 925 926 927 928 929 930 931 932 933
/**
 * get_hwpoison_page() - Get refcount for memory error handling:
 * @page:	raw error page (hit by memory error)
 *
 * Return: return 0 if failed to grab the refcount, otherwise true (some
 * non-zero value.)
 */
int get_hwpoison_page(struct page *page)
{
	struct page *head = compound_head(page);

934
	if (!PageHuge(head) && PageTransHuge(head)) {
935 936 937 938 939 940 941
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
942
			pr_err("Memory failure: %#lx: non anonymous thp\n",
943 944 945
				page_to_pfn(page));
			return 0;
		}
946 947
	}

948 949 950 951
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

952 953
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
954 955 956 957
		put_page(head);
	}

	return 0;
958 959 960
}
EXPORT_SYMBOL_GPL(get_hwpoison_page);

961 962 963 964
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
965
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
966
				  int flags, struct page **hpagep)
967
{
S
Shaohua Li 已提交
968
	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
969 970
	struct address_space *mapping;
	LIST_HEAD(tokill);
971
	bool unmap_success;
972
	int kill = 1, forcekill;
973
	struct page *hpage = *hpagep;
974
	bool mlocked = PageMlocked(hpage);
975

976 977 978 979 980
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
981
		return true;
982
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
983
		return true;
984 985 986 987 988

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
989
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
990
		return true;
W
Wu Fengguang 已提交
991

992
	if (PageKsm(p)) {
993
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
994
		return false;
995
	}
996 997

	if (PageSwapCache(p)) {
998 999
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
1000 1001 1002 1003 1004 1005
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
1006 1007
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
1008
	 */
1009
	mapping = page_mapping(hpage);
1010
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1011 1012 1013
	    mapping_cap_writeback_dirty(mapping)) {
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
1014 1015 1016
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
1017
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
1031
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1032

1033
	unmap_success = try_to_unmap(hpage, ttu);
M
Minchan Kim 已提交
1034
	if (!unmap_success)
1035
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1036
		       pfn, page_mapcount(hpage));
1037

1038 1039 1040 1041 1042 1043 1044
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
		shake_page(hpage, 0);

1045 1046 1047 1048
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1049 1050
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1051 1052 1053 1054
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1055
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1056
	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
W
Wu Fengguang 已提交
1057

M
Minchan Kim 已提交
1058
	return unmap_success;
1059 1060
}

1061 1062
static int identify_page_state(unsigned long pfn, struct page *p,
				unsigned long page_flags)
1063 1064
{
	struct page_state *ps;
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083

	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flags is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
			break;

	page_flags |= (p->flags & (1UL << PG_dirty));

	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	return page_action(ps, p, pfn);
}

1084
static int memory_failure_hugetlb(unsigned long pfn, int flags)
1085
{
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	struct page *p = pfn_to_page(pfn);
	struct page *head = compound_head(p);
	int res;
	unsigned long page_flags;

	if (TestSetPageHWPoison(head)) {
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
		       pfn);
		return 0;
	}

	num_poisoned_pages_inc();

	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
		/*
		 * Check "filter hit" and "race with other subpage."
		 */
		lock_page(head);
		if (PageHWPoison(head)) {
			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
			    || (p != head && TestSetPageHWPoison(head))) {
				num_poisoned_pages_dec();
				unlock_page(head);
				return 0;
			}
		}
		unlock_page(head);
		dissolve_free_huge_page(p);
		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
		return 0;
	}

	lock_page(head);
	page_flags = head->flags;

	if (!PageHWPoison(head)) {
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
		num_poisoned_pages_dec();
		unlock_page(head);
		put_hwpoison_page(head);
		return 0;
	}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	/*
	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
	 * simply disable it. In order to make it work properly, we need
	 * make sure that:
	 *  - conversion of a pud that maps an error hugetlb into hwpoison
	 *    entry properly works, and
	 *  - other mm code walking over page table is aware of pud-aligned
	 *    hwpoison entries.
	 */
	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1144
	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1145 1146 1147 1148 1149
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1150
	res = identify_page_state(pfn, p, page_flags);
1151 1152 1153 1154 1155
out:
	unlock_page(head);
	return res;
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
		struct dev_pagemap *pgmap)
{
	struct page *page = pfn_to_page(pfn);
	const bool unmap_success = true;
	unsigned long size = 0;
	struct to_kill *tk;
	LIST_HEAD(tokill);
	int rc = -EBUSY;
	loff_t start;
1166
	dax_entry_t cookie;
1167 1168 1169 1170 1171 1172 1173 1174

	/*
	 * Prevent the inode from being freed while we are interrogating
	 * the address_space, typically this would be handled by
	 * lock_page(), but dax pages do not use the page lock. This
	 * also prevents changes to the mapping of this pfn until
	 * poison signaling is complete.
	 */
1175 1176
	cookie = dax_lock_page(page);
	if (!cookie)
1177 1178 1179 1180 1181 1182 1183
		goto out;

	if (hwpoison_filter(page)) {
		rc = 0;
		goto unlock;
	}

1184
	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
		/*
		 * TODO: Handle HMM pages which may need coordination
		 * with device-side memory.
		 */
		goto unlock;
	}

	/*
	 * Use this flag as an indication that the dax page has been
	 * remapped UC to prevent speculative consumption of poison.
	 */
	SetPageHWPoison(page);

	/*
	 * Unlike System-RAM there is no possibility to swap in a
	 * different physical page at a given virtual address, so all
	 * userspace consumption of ZONE_DEVICE memory necessitates
	 * SIGBUS (i.e. MF_MUST_KILL)
	 */
	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);

	list_for_each_entry(tk, &tokill, nd)
		if (tk->size_shift)
			size = max(size, 1UL << tk->size_shift);
	if (size) {
		/*
		 * Unmap the largest mapping to avoid breaking up
		 * device-dax mappings which are constant size. The
		 * actual size of the mapping being torn down is
		 * communicated in siginfo, see kill_proc()
		 */
		start = (page->index << PAGE_SHIFT) & ~(size - 1);
		unmap_mapping_range(page->mapping, start, start + size, 0);
	}
	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
	rc = 0;
unlock:
1223
	dax_unlock_page(page, cookie);
1224 1225 1226 1227 1228 1229 1230
out:
	/* drop pgmap ref acquired in caller */
	put_dev_pagemap(pgmap);
	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
	return rc;
}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
1248
int memory_failure(unsigned long pfn, int flags)
1249 1250
{
	struct page *p;
1251
	struct page *hpage;
1252
	struct page *orig_head;
1253
	struct dev_pagemap *pgmap;
1254
	int res;
1255
	unsigned long page_flags;
1256 1257

	if (!sysctl_memory_failure_recovery)
1258
		panic("Memory failure on page %lx", pfn);
1259

1260 1261 1262 1263 1264 1265 1266 1267
	p = pfn_to_online_page(pfn);
	if (!p) {
		if (pfn_valid(pfn)) {
			pgmap = get_dev_pagemap(pfn, NULL);
			if (pgmap)
				return memory_failure_dev_pagemap(pfn, flags,
								  pgmap);
		}
1268 1269
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1270
		return -ENXIO;
1271 1272
	}

1273
	if (PageHuge(p))
1274
		return memory_failure_hugetlb(pfn, flags);
1275
	if (TestSetPageHWPoison(p)) {
1276 1277
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1278 1279 1280
		return 0;
	}

1281
	orig_head = hpage = compound_head(p);
1282
	num_poisoned_pages_inc();
1283 1284 1285 1286 1287

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1288
	 * 2) it's part of a non-compound high order page.
1289 1290 1291 1292
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
1293
	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1294
	 */
1295
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1296
		if (is_free_buddy_page(p)) {
1297
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1298 1299
			return 0;
		} else {
1300
			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1301 1302
			return -EBUSY;
		}
1303 1304
	}

1305
	if (PageTransHuge(hpage)) {
1306 1307 1308 1309
		lock_page(p);
		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
			unlock_page(p);
			if (!PageAnon(p))
1310 1311
				pr_err("Memory failure: %#lx: non anonymous thp\n",
					pfn);
1312
			else
1313 1314
				pr_err("Memory failure: %#lx: thp split failed\n",
					pfn);
1315
			if (TestClearPageHWPoison(p))
1316
				num_poisoned_pages_dec();
1317
			put_hwpoison_page(p);
1318 1319
			return -EBUSY;
		}
1320
		unlock_page(p);
1321 1322 1323 1324
		VM_BUG_ON_PAGE(!page_count(p), p);
		hpage = compound_head(p);
	}

1325 1326 1327
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1328
	 * - to avoid races with __SetPageLocked()
1329 1330 1331 1332
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1333 1334 1335 1336 1337 1338 1339 1340
	shake_page(p, 0);
	/* shake_page could have turned it free. */
	if (!PageLRU(p) && is_free_buddy_page(p)) {
		if (flags & MF_COUNT_INCREASED)
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
		else
			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
		return 0;
1341 1342
	}

1343
	lock_page(p);
W
Wu Fengguang 已提交
1344

1345 1346 1347 1348
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1349
	if (PageCompound(p) && compound_head(p) != orig_head) {
1350
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1351 1352 1353 1354
		res = -EBUSY;
		goto out;
	}

1355 1356 1357 1358 1359 1360 1361
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
1362 1363 1364 1365
	if (PageHuge(p))
		page_flags = hpage->flags;
	else
		page_flags = p->flags;
1366

W
Wu Fengguang 已提交
1367 1368 1369 1370
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1371
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1372
		num_poisoned_pages_dec();
1373 1374
		unlock_page(p);
		put_hwpoison_page(p);
1375
		return 0;
W
Wu Fengguang 已提交
1376
	}
W
Wu Fengguang 已提交
1377 1378
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1379
			num_poisoned_pages_dec();
1380 1381
		unlock_page(p);
		put_hwpoison_page(p);
W
Wu Fengguang 已提交
1382 1383
		return 0;
	}
W
Wu Fengguang 已提交
1384

1385
	if (!PageTransTail(p) && !PageLRU(p))
1386 1387
		goto identify_page_state;

1388 1389 1390 1391
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1392 1393 1394 1395
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1396
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1397 1398 1399
	 *
	 * When the raw error page is thp tail page, hpage points to the raw
	 * page after thp split.
1400
	 */
1401
	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1402
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1403 1404 1405
		res = -EBUSY;
		goto out;
	}
1406 1407 1408 1409

	/*
	 * Torn down by someone else?
	 */
1410
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1411
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1412
		res = -EBUSY;
1413 1414 1415
		goto out;
	}

1416
identify_page_state:
1417
	res = identify_page_state(pfn, p, page_flags);
1418
out:
1419
	unlock_page(p);
1420 1421
	return res;
}
1422
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1423

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
1457
void memory_failure_queue(unsigned long pfn, int flags)
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1468
	if (kfifo_put(&mf_cpu->fifo, entry))
1469 1470
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1471
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1485
	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1486 1487 1488 1489 1490 1491
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1492 1493 1494
		if (entry.flags & MF_SOFT_OFFLINE)
			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
		else
1495
			memory_failure(entry.pfn, entry.flags);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	}
}

static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1515 1516 1517 1518 1519 1520
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1538 1539
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1540 1541 1542 1543 1544 1545 1546 1547

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1548
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1549
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1550 1551 1552
		return 0;
	}

1553
	if (page_count(page) > 1) {
1554
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1555
				 pfn, &unpoison_rs);
1556 1557 1558 1559
		return 0;
	}

	if (page_mapped(page)) {
1560
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1561
				 pfn, &unpoison_rs);
1562 1563 1564 1565
		return 0;
	}

	if (page_mapping(page)) {
1566
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1567
				 pfn, &unpoison_rs);
1568 1569 1570
		return 0;
	}

1571 1572 1573 1574 1575
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1576
	if (!PageHuge(page) && PageTransHuge(page)) {
1577
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1578
				 pfn, &unpoison_rs);
1579
		return 0;
1580 1581
	}

1582
	if (!get_hwpoison_page(p)) {
W
Wu Fengguang 已提交
1583
		if (TestClearPageHWPoison(p))
1584
			num_poisoned_pages_dec();
1585
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1586
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1587 1588 1589
		return 0;
	}

J
Jens Axboe 已提交
1590
	lock_page(page);
W
Wu Fengguang 已提交
1591 1592 1593 1594 1595 1596
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1597
	if (TestClearPageHWPoison(page)) {
1598
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1599
				 pfn, &unpoison_rs);
1600
		num_poisoned_pages_dec();
W
Wu Fengguang 已提交
1601 1602 1603 1604
		freeit = 1;
	}
	unlock_page(page);

1605
	put_hwpoison_page(page);
1606
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1607
		put_hwpoison_page(page);
W
Wu Fengguang 已提交
1608 1609 1610 1611

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1612

1613
static struct page *new_page(struct page *p, unsigned long private)
1614
{
1615
	int nid = page_to_nid(p);
1616

1617
	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1618 1619 1620 1621 1622 1623 1624 1625
}

/*
 * Safely get reference count of an arbitrary page.
 * Returns 0 for a free page, -EIO for a zero refcount page
 * that is not free, and 1 for any other page type.
 * For 1 the page is returned with increased page count, otherwise not.
 */
1626
static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1627 1628 1629 1630 1631 1632
{
	int ret;

	if (flags & MF_COUNT_INCREASED)
		return 1;

1633 1634 1635 1636
	/*
	 * When the target page is a free hugepage, just remove it
	 * from free hugepage list.
	 */
1637
	if (!get_hwpoison_page(p)) {
1638
		if (PageHuge(p)) {
1639
			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1640
			ret = 0;
1641
		} else if (is_free_buddy_page(p)) {
1642
			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1643 1644
			ret = 0;
		} else {
1645 1646
			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
				__func__, pfn, p->flags);
1647 1648 1649 1650 1651 1652 1653 1654 1655
			ret = -EIO;
		}
	} else {
		/* Not a free page */
		ret = 1;
	}
	return ret;
}

1656 1657 1658 1659
static int get_any_page(struct page *page, unsigned long pfn, int flags)
{
	int ret = __get_any_page(page, pfn, flags);

1660 1661
	if (ret == 1 && !PageHuge(page) &&
	    !PageLRU(page) && !__PageMovable(page)) {
1662 1663 1664
		/*
		 * Try to free it.
		 */
1665
		put_hwpoison_page(page);
1666 1667 1668 1669 1670 1671
		shake_page(page, 1);

		/*
		 * Did it turn free?
		 */
		ret = __get_any_page(page, pfn, 0);
1672
		if (ret == 1 && !PageLRU(page)) {
1673
			/* Drop page reference which is from __get_any_page() */
1674
			put_hwpoison_page(page);
1675 1676
			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
				pfn, page->flags, &page->flags);
1677 1678 1679 1680 1681 1682
			return -EIO;
		}
	}
	return ret;
}

1683 1684 1685 1686 1687
static int soft_offline_huge_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
	struct page *hpage = compound_head(page);
1688
	LIST_HEAD(pagelist);
1689

1690 1691 1692 1693 1694
	/*
	 * This double-check of PageHWPoison is to avoid the race with
	 * memory_failure(). See also comment in __soft_offline_page().
	 */
	lock_page(hpage);
1695
	if (PageHWPoison(hpage)) {
1696
		unlock_page(hpage);
1697
		put_hwpoison_page(hpage);
1698
		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1699
		return -EBUSY;
1700
	}
1701
	unlock_page(hpage);
1702

1703
	ret = isolate_huge_page(hpage, &pagelist);
1704 1705 1706 1707
	/*
	 * get_any_page() and isolate_huge_page() takes a refcount each,
	 * so need to drop one here.
	 */
1708
	put_hwpoison_page(hpage);
1709
	if (!ret) {
1710 1711 1712 1713
		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
		return -EBUSY;
	}

1714
	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1715
				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1716
	if (ret) {
1717
		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1718
			pfn, ret, page->flags, &page->flags);
1719 1720
		if (!list_empty(&pagelist))
			putback_movable_pages(&pagelist);
1721 1722
		if (ret > 0)
			ret = -EIO;
1723
	} else {
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
		/*
		 * We set PG_hwpoison only when the migration source hugepage
		 * was successfully dissolved, because otherwise hwpoisoned
		 * hugepage remains on free hugepage list, then userspace will
		 * find it as SIGBUS by allocation failure. That's not expected
		 * in soft-offlining.
		 */
		ret = dissolve_free_huge_page(page);
		if (!ret) {
			if (set_hwpoison_free_buddy_page(page))
				num_poisoned_pages_inc();
1735 1736
			else
				ret = -EBUSY;
1737
		}
1738 1739 1740 1741
	}
	return ret;
}

1742 1743 1744 1745
static int __soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
1746 1747

	/*
1748 1749 1750 1751
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
1752
	 */
1753 1754
	lock_page(page);
	wait_on_page_writeback(page);
1755 1756
	if (PageHWPoison(page)) {
		unlock_page(page);
1757
		put_hwpoison_page(page);
1758 1759 1760
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
		return -EBUSY;
	}
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	/*
	 * Try to invalidate first. This should work for
	 * non dirty unmapped page cache pages.
	 */
	ret = invalidate_inode_page(page);
	unlock_page(page);
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
	if (ret == 1) {
1772
		put_hwpoison_page(page);
1773
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1774
		SetPageHWPoison(page);
1775
		num_poisoned_pages_inc();
1776
		return 0;
1777 1778 1779 1780 1781 1782 1783
	}

	/*
	 * Simple invalidation didn't work.
	 * Try to migrate to a new page instead. migrate.c
	 * handles a large number of cases for us.
	 */
1784 1785 1786 1787
	if (PageLRU(page))
		ret = isolate_lru_page(page);
	else
		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1788 1789 1790 1791
	/*
	 * Drop page reference which is came from get_any_page()
	 * successful isolate_lru_page() already took another one.
	 */
1792
	put_hwpoison_page(page);
1793 1794
	if (!ret) {
		LIST_HEAD(pagelist);
1795 1796 1797 1798 1799 1800 1801 1802
		/*
		 * After isolated lru page, the PageLRU will be cleared,
		 * so use !__PageMovable instead for LRU page's mapping
		 * cannot have PAGE_MAPPING_MOVABLE.
		 */
		if (!__PageMovable(page))
			inc_node_page_state(page, NR_ISOLATED_ANON +
						page_is_file_cache(page));
1803
		list_add(&page->lru, &pagelist);
1804
		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1805
					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1806
		if (ret) {
1807 1808
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
1809

1810 1811
			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
				pfn, ret, page->flags, &page->flags);
1812 1813 1814 1815
			if (ret > 0)
				ret = -EIO;
		}
	} else {
1816 1817
		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
			pfn, ret, page_count(page), page->flags, &page->flags);
1818 1819 1820
	}
	return ret;
}
1821

1822 1823 1824
static int soft_offline_in_use_page(struct page *page, int flags)
{
	int ret;
1825
	int mt;
1826 1827 1828
	struct page *hpage = compound_head(page);

	if (!PageHuge(page) && PageTransHuge(hpage)) {
1829 1830 1831 1832
		lock_page(page);
		if (!PageAnon(page) || unlikely(split_huge_page(page))) {
			unlock_page(page);
			if (!PageAnon(page))
1833 1834 1835
				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
			else
				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1836
			put_hwpoison_page(page);
1837 1838
			return -EBUSY;
		}
1839
		unlock_page(page);
1840 1841
	}

1842 1843 1844 1845 1846 1847 1848 1849 1850
	/*
	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
	 * to free list immediately (not via pcplist) when released after
	 * successful page migration. Otherwise we can't guarantee that the
	 * page is really free after put_page() returns, so
	 * set_hwpoison_free_buddy_page() highly likely fails.
	 */
	mt = get_pageblock_migratetype(page);
	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1851 1852 1853 1854
	if (PageHuge(page))
		ret = soft_offline_huge_page(page, flags);
	else
		ret = __soft_offline_page(page, flags);
1855
	set_pageblock_migratetype(page, mt);
1856 1857 1858
	return ret;
}

1859
static int soft_offline_free_page(struct page *page)
1860
{
1861
	int rc = dissolve_free_huge_page(page);
1862

1863 1864 1865 1866 1867 1868 1869
	if (!rc) {
		if (set_hwpoison_free_buddy_page(page))
			num_poisoned_pages_inc();
		else
			rc = -EBUSY;
	}
	return rc;
1870 1871
}

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
/**
 * soft_offline_page - Soft offline a page.
 * @page: page to offline
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
int soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);

1899 1900 1901 1902 1903 1904 1905 1906
	if (is_zone_device_page(page)) {
		pr_debug_ratelimited("soft_offline: %#lx page is device page\n",
				pfn);
		if (flags & MF_COUNT_INCREASED)
			put_page(page);
		return -EIO;
	}

1907 1908
	if (PageHWPoison(page)) {
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1909
		if (flags & MF_COUNT_INCREASED)
1910
			put_hwpoison_page(page);
1911 1912 1913
		return -EBUSY;
	}

1914
	get_online_mems();
1915
	ret = get_any_page(page, pfn, flags);
1916
	put_online_mems();
1917

1918 1919 1920
	if (ret > 0)
		ret = soft_offline_in_use_page(page, flags);
	else if (ret == 0)
1921
		ret = soft_offline_free_page(page);
1922

1923 1924
	return ret;
}