memory-failure.c 54.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * High level machine check handler. Handles pages reported by the
7
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8
 * failure.
9 10 11
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
12 13
 *
 * Handles page cache pages in various states.	The tricky part
14 15 16 17 18 19
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
20 21 22 23 24 25 26 27
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
28 29 30 31 32 33 34
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
35 36 37 38
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
39
#include <linux/kernel-page-flags.h>
40
#include <linux/sched/signal.h>
41
#include <linux/sched/task.h>
H
Hugh Dickins 已提交
42
#include <linux/ksm.h>
43
#include <linux/rmap.h>
44
#include <linux/export.h>
45 46 47
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
48 49
#include <linux/migrate.h>
#include <linux/suspend.h>
50
#include <linux/slab.h>
51
#include <linux/swapops.h>
52
#include <linux/hugetlb.h>
53
#include <linux/memory_hotplug.h>
54
#include <linux/mm_inline.h>
55
#include <linux/memremap.h>
56
#include <linux/kfifo.h>
57
#include <linux/ratelimit.h>
58
#include <linux/page-isolation.h>
59
#include "internal.h"
60
#include "ras/ras_event.h"
61 62 63 64 65

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

66
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67

68
static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
69
{
70 71 72 73 74 75 76 77
	if (hugepage_or_freepage) {
		/*
		 * Doing this check for free pages is also fine since dissolve_free_huge_page
		 * returns 0 for non-hugetlb pages as well.
		 */
		if (dissolve_free_huge_page(page) || !take_page_off_buddy(page))
			/*
			 * We could fail to take off the target page from buddy
I
Ingo Molnar 已提交
78
			 * for example due to racy page allocation, but that's
79 80 81 82 83 84 85
			 * acceptable because soft-offlined page is not broken
			 * and if someone really want to use it, they should
			 * take it.
			 */
			return false;
	}

86
	SetPageHWPoison(page);
87 88
	if (release)
		put_page(page);
89 90
	page_ref_inc(page);
	num_poisoned_pages_inc();
91 92

	return true;
93 94
}

95 96
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

97
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
98 99
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
100 101
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
102
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
103 104
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
105 106
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
107 108 109 110 111 112 113 114 115 116 117

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
118
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
138 139 140 141 142 143 144 145 146 147 148 149
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
150 151 152 153 154 155 156 157 158 159
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
160
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
161 162 163 164 165 166 167
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

168
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
169 170 171 172 173 174 175 176
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
177 178
int hwpoison_filter(struct page *p)
{
179 180 181
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
182 183 184
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
185 186 187
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
188 189 190
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
191 192
	return 0;
}
193 194 195 196 197 198 199
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
200 201
EXPORT_SYMBOL_GPL(hwpoison_filter);

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
	short size_shift;
};

231
/*
232 233 234
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
235
 */
236
static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
237
{
238 239
	struct task_struct *t = tk->tsk;
	short addr_lsb = tk->size_shift;
240
	int ret = 0;
241

242
	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
243
			pfn, t->comm, t->pid);
244

245
	if (flags & MF_ACTION_REQUIRED) {
246 247
		if (t == current)
			ret = force_sig_mceerr(BUS_MCEERR_AR,
248
					 (void __user *)tk->addr, addr_lsb);
249 250 251 252
		else
			/* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
			ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
				addr_lsb, t);
253 254 255 256 257 258 259
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
260
		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
261
				      addr_lsb, t);  /* synchronous? */
262
	}
263
	if (ret < 0)
264
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
265
			t->comm, t->pid, ret);
266 267 268
	return ret;
}

269
/*
270 271
 * Unknown page type encountered. Try to check whether it can turn PageLRU by
 * lru_add_drain_all, or a free page by reclaiming slabs when possible.
272
 */
273
void shake_page(struct page *p, int access)
274
{
275 276 277
	if (PageHuge(p))
		return;

278 279 280 281 282
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
283

284
	/*
285 286
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
287
	 */
288 289
	if (access)
		drop_slab_node(page_to_nid(p));
290 291 292
}
EXPORT_SYMBOL_GPL(shake_page);

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
static unsigned long dev_pagemap_mapping_shift(struct page *page,
		struct vm_area_struct *vma)
{
	unsigned long address = vma_address(page, vma);
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = pgd_offset(vma->vm_mm, address);
	if (!pgd_present(*pgd))
		return 0;
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;
	pud = pud_offset(p4d, address);
	if (!pud_present(*pud))
		return 0;
	if (pud_devmap(*pud))
		return PUD_SHIFT;
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;
	if (pmd_devmap(*pmd))
		return PMD_SHIFT;
	pte = pte_offset_map(pmd, address);
	if (!pte_present(*pte))
		return 0;
	if (pte_devmap(*pte))
		return PAGE_SHIFT;
	return 0;
}
326 327 328 329 330 331 332 333 334 335 336 337

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
338
		       struct list_head *to_kill)
339 340 341
{
	struct to_kill *tk;

342 343 344 345
	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
	if (!tk) {
		pr_err("Memory failure: Out of memory while machine check handling\n");
		return;
346
	}
347

348
	tk->addr = page_address_in_vma(p, vma);
349 350 351
	if (is_zone_device_page(p))
		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
	else
352
		tk->size_shift = page_shift(compound_head(p));
353 354

	/*
355 356 357 358 359 360 361 362
	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
	 * so "tk->size_shift == 0" effectively checks no mapping on
	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
	 * to a process' address space, it's possible not all N VMAs
	 * contain mappings for the page, but at least one VMA does.
	 * Only deliver SIGBUS with payload derived from the VMA that
	 * has a mapping for the page.
363
	 */
364
	if (tk->addr == -EFAULT) {
365
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
366
			page_to_pfn(p), tsk->comm);
367 368 369
	} else if (tk->size_shift == 0) {
		kfree(tk);
		return;
370
	}
371

372 373 374 375 376 377 378 379 380 381 382 383 384
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
385 386
static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
		unsigned long pfn, int flags)
387 388 389 390
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
391
		if (forcekill) {
392
			/*
393
			 * In case something went wrong with munmapping
394 395 396
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
397
			if (fail || tk->addr == -EFAULT) {
398
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
399
				       pfn, tk->tsk->comm, tk->tsk->pid);
400 401
				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
						 tk->tsk, PIDTYPE_PID);
402 403 404 405 406 407 408 409
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
410
			else if (kill_proc(tk, pfn, flags) < 0)
411
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
412
				       pfn, tk->tsk->comm, tk->tsk->pid);
413 414 415 416 417 418
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

419 420 421 422 423 424 425 426 427
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
428
{
429 430
	struct task_struct *t;

431 432 433 434 435 436 437 438 439
	for_each_thread(tsk, t) {
		if (t->flags & PF_MCE_PROCESS) {
			if (t->flags & PF_MCE_EARLY)
				return t;
		} else {
			if (sysctl_memory_failure_early_kill)
				return t;
		}
	}
440 441 442 443 444 445 446
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
447
 * specified) if the process is "early kill" and otherwise returns NULL.
448
 *
449 450 451 452 453
 * Note that the above is true for Action Optional case. For Action Required
 * case, it's only meaningful to the current thread which need to be signaled
 * with SIGBUS, this error is Action Optional for other non current
 * processes sharing the same error page,if the process is "early kill", the
 * task_struct of the dedicated thread will also be returned.
454 455 456 457
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
458
	if (!tsk->mm)
459
		return NULL;
460 461 462 463 464 465 466
	/*
	 * Comparing ->mm here because current task might represent
	 * a subthread, while tsk always points to the main thread.
	 */
	if (force_early && tsk->mm == current->mm)
		return current;

467
	return find_early_kill_thread(tsk);
468 469 470 471 472 473
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
474
				int force_early)
475 476 477 478
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
479
	pgoff_t pgoff;
480

481
	av = page_lock_anon_vma_read(page);
482
	if (av == NULL)	/* Not actually mapped anymore */
483 484
		return;

485
	pgoff = page_to_pgoff(page);
486
	read_lock(&tasklist_lock);
487
	for_each_process (tsk) {
488
		struct anon_vma_chain *vmac;
489
		struct task_struct *t = task_early_kill(tsk, force_early);
490

491
		if (!t)
492
			continue;
493 494
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
495
			vma = vmac->vma;
496 497
			if (!page_mapped_in_vma(page, vma))
				continue;
498
			if (vma->vm_mm == t->mm)
499
				add_to_kill(t, page, vma, to_kill);
500 501 502
		}
	}
	read_unlock(&tasklist_lock);
503
	page_unlock_anon_vma_read(av);
504 505 506 507 508 509
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
510
				int force_early)
511 512 513 514
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;
515
	pgoff_t pgoff;
516

517
	i_mmap_lock_read(mapping);
518
	read_lock(&tasklist_lock);
519
	pgoff = page_to_pgoff(page);
520
	for_each_process(tsk) {
521
		struct task_struct *t = task_early_kill(tsk, force_early);
522

523
		if (!t)
524
			continue;
525
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
526 527 528 529 530 531 532 533
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
534
			if (vma->vm_mm == t->mm)
535
				add_to_kill(t, page, vma, to_kill);
536 537 538
		}
	}
	read_unlock(&tasklist_lock);
539
	i_mmap_unlock_read(mapping);
540 541 542 543 544
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 */
545 546
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
547 548 549 550 551
{
	if (!page->mapping)
		return;

	if (PageAnon(page))
552
		collect_procs_anon(page, tokill, force_early);
553
	else
554
		collect_procs_file(page, tokill, force_early);
555 556 557
}

static const char *action_name[] = {
558 559 560 561
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
562 563 564
};

static const char * const action_page_types[] = {
565 566 567 568 569 570 571
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
572
	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
573 574 575 576 577 578 579 580 581 582 583 584
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
585
	[MF_MSG_DAX]			= "dax page",
586
	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
587
	[MF_MSG_UNKNOWN]		= "unknown page",
588 589
};

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
605 606 607 608 609 610 611

		/*
		 * Poisoned page might never drop its ref count to 0 so we have
		 * to uncharge it manually from its memcg.
		 */
		mem_cgroup_uncharge(p);

612 613 614
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
615
		put_page(p);
616 617 618 619 620
		return 0;
	}
	return -EIO;
}

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
static int truncate_error_page(struct page *p, unsigned long pfn,
				struct address_space *mapping)
{
	int ret = MF_FAILED;

	if (mapping->a_ops->error_remove_page) {
		int err = mapping->a_ops->error_remove_page(mapping, p);

		if (err != 0) {
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
				pfn, err);
		} else if (page_has_private(p) &&
			   !try_to_release_page(p, GFP_NOIO)) {
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
		} else {
			ret = MF_RECOVERED;
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
			ret = MF_RECOVERED;
		else
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
	}

	return ret;
}

654 655 656 657 658 659 660
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
661
	return MF_IGNORED;
662 663 664 665 666 667 668
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
669
	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
670
	return MF_FAILED;
671 672 673 674 675 676 677 678 679
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
	struct address_space *mapping;

680 681
	delete_from_lru_cache(p);

682 683 684 685 686
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
	if (PageAnon(p))
687
		return MF_RECOVERED;
688 689 690 691 692 693 694 695 696 697 698 699 700

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
701
		return MF_FAILED;
702 703 704 705 706 707 708
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
709
	return truncate_error_page(p, pfn, mapping);
710 711 712
}

/*
713
 * Dirty pagecache page
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
746
		 * and the page is dropped between then the error
747 748 749 750 751 752 753 754 755 756 757
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
758
		mapping_set_error(mapping, -EIO);
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

789
	if (!delete_from_lru_cache(p))
790
		return MF_DELAYED;
791
	else
792
		return MF_FAILED;
793 794 795 796 797
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
	delete_from_swap_cache(p);
798

799
	if (!delete_from_lru_cache(p))
800
		return MF_RECOVERED;
801
	else
802
		return MF_FAILED;
803 804 805 806 807
}

/*
 * Huge pages. Needs work.
 * Issues:
808 809
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
810 811 812
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
813
	int res;
814
	struct page *hpage = compound_head(p);
815
	struct address_space *mapping;
816 817 818 819

	if (!PageHuge(hpage))
		return MF_DELAYED;

820 821 822 823
	mapping = page_mapping(hpage);
	if (mapping) {
		res = truncate_error_page(hpage, pfn, mapping);
	} else {
824
		res = MF_FAILED;
825 826 827 828 829 830 831 832
		unlock_page(hpage);
		/*
		 * migration entry prevents later access on error anonymous
		 * hugepage, so we can free and dissolve it into buddy to
		 * save healthy subpages.
		 */
		if (PageAnon(hpage))
			put_page(hpage);
833 834 835 836
		if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
			page_ref_inc(p);
			res = MF_RECOVERED;
		}
837
		lock_page(hpage);
838
	}
839 840

	return res;
841 842 843 844 845 846 847 848 849
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
850
 * in its live cycle, so all accesses have to be extremely careful.
851 852 853 854 855 856
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
857
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
858 859 860 861 862 863 864 865 866 867
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
868
	enum mf_action_page_type type;
869 870
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
871
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
872 873 874 875
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
876 877 878 879 880 881

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
882
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
883

884
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
885

886 887
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
888

889 890
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
891

892 893
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
894

895 896
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
897 898 899 900

	/*
	 * Catchall entry: must be at end.
	 */
901
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
902 903
};

904 905 906 907 908 909 910 911 912
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef lru
#undef head
#undef slab
#undef reserved

913 914 915 916
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
917 918
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
919
{
920 921
	trace_memory_failure_event(pfn, type, result);

922
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
923
		pfn, action_page_types[type], action_name[result]);
924 925 926
}

static int page_action(struct page_state *ps, struct page *p,
927
			unsigned long pfn)
928 929
{
	int result;
930
	int count;
931 932

	result = ps->action(p, pfn);
933

934
	count = page_count(p) - 1;
935
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
936
		count--;
937
	if (count > 0) {
938
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
939
		       pfn, action_page_types[ps->type], count);
940
		result = MF_FAILED;
941
	}
942
	action_result(pfn, ps->type, result);
943 944 945 946 947 948

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

949
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
950 951
}

952 953 954 955 956 957 958 959 960 961 962
/*
 * Return true if a page type of a given page is supported by hwpoison
 * mechanism (while handling could fail), otherwise false.  This function
 * does not return true for hugetlb or device memory pages, so it's assumed
 * to be called only in the context where we never have such pages.
 */
static inline bool HWPoisonHandlable(struct page *page)
{
	return PageLRU(page) || __PageMovable(page);
}

963
/**
964
 * __get_hwpoison_page() - Get refcount for memory error handling:
965 966 967 968 969
 * @page:	raw error page (hit by memory error)
 *
 * Return: return 0 if failed to grab the refcount, otherwise true (some
 * non-zero value.)
 */
970
static int __get_hwpoison_page(struct page *page)
971 972
{
	struct page *head = compound_head(page);
973 974 975 976 977 978 979 980 981 982 983 984 985 986
	int ret = 0;
	bool hugetlb = false;

	ret = get_hwpoison_huge_page(head, &hugetlb);
	if (hugetlb)
		return ret;

	/*
	 * This check prevents from calling get_hwpoison_unless_zero()
	 * for any unsupported type of page in order to reduce the risk of
	 * unexpected races caused by taking a page refcount.
	 */
	if (!HWPoisonHandlable(head))
		return 0;
987

988
	if (PageTransHuge(head)) {
989 990 991 992 993 994 995
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
996
			pr_err("Memory failure: %#lx: non anonymous thp\n",
997 998 999
				page_to_pfn(page));
			return 0;
		}
1000 1001
	}

1002 1003 1004 1005
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

1006 1007
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
1008 1009 1010 1011
		put_page(head);
	}

	return 0;
1012 1013
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
/*
 * Safely get reference count of an arbitrary page.
 *
 * Returns 0 for a free page, 1 for an in-use page,
 * -EIO for a page-type we cannot handle and -EBUSY if we raced with an
 * allocation.
 * We only incremented refcount in case the page was already in-use and it
 * is a known type we can handle.
 */
static int get_any_page(struct page *p, unsigned long flags)
1024
{
1025 1026
	int ret = 0, pass = 0;
	bool count_increased = false;
1027

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	if (flags & MF_COUNT_INCREASED)
		count_increased = true;

try_again:
	if (!count_increased && !__get_hwpoison_page(p)) {
		if (page_count(p)) {
			/* We raced with an allocation, retry. */
			if (pass++ < 3)
				goto try_again;
			ret = -EBUSY;
		} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
			/* We raced with put_page, retry. */
			if (pass++ < 3)
				goto try_again;
			ret = -EIO;
		}
	} else {
1045
		if (PageHuge(p) || HWPoisonHandlable(p)) {
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
			ret = 1;
		} else {
			/*
			 * A page we cannot handle. Check whether we can turn
			 * it into something we can handle.
			 */
			if (pass++ < 3) {
				put_page(p);
				shake_page(p, 1);
				count_increased = false;
				goto try_again;
			}
			put_page(p);
			ret = -EIO;
		}
1061 1062 1063 1064 1065
	}

	return ret;
}

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
static int get_hwpoison_page(struct page *p, unsigned long flags,
			     enum mf_flags ctxt)
{
	int ret;

	zone_pcp_disable(page_zone(p));
	if (ctxt == MF_SOFT_OFFLINE)
		ret = get_any_page(p, flags);
	else
		ret = __get_hwpoison_page(p);
	zone_pcp_enable(page_zone(p));

	return ret;
}

1081 1082 1083 1084
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
1085
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1086
				  int flags, struct page **hpagep)
1087
{
1088
	enum ttu_flags ttu = TTU_IGNORE_MLOCK;
1089 1090
	struct address_space *mapping;
	LIST_HEAD(tokill);
1091
	bool unmap_success = true;
1092
	int kill = 1, forcekill;
1093
	struct page *hpage = *hpagep;
1094
	bool mlocked = PageMlocked(hpage);
1095

1096 1097 1098 1099 1100
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
1101
		return true;
1102
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
1103
		return true;
1104 1105 1106 1107 1108

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
1109
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
1110
		return true;
W
Wu Fengguang 已提交
1111

1112
	if (PageKsm(p)) {
1113
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
1114
		return false;
1115
	}
1116 1117

	if (PageSwapCache(p)) {
1118 1119
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
1120 1121 1122 1123 1124 1125
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
1126 1127
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
1128
	 */
1129
	mapping = page_mapping(hpage);
1130
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1131
	    mapping_can_writeback(mapping)) {
1132 1133
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
1134 1135 1136
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
1137
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
1151
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1152

1153 1154 1155
	if (!PageHuge(hpage)) {
		unmap_success = try_to_unmap(hpage, ttu);
	} else {
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		if (!PageAnon(hpage)) {
			/*
			 * For hugetlb pages in shared mappings, try_to_unmap
			 * could potentially call huge_pmd_unshare.  Because of
			 * this, take semaphore in write mode here and set
			 * TTU_RMAP_LOCKED to indicate we have taken the lock
			 * at this higer level.
			 */
			mapping = hugetlb_page_mapping_lock_write(hpage);
			if (mapping) {
				unmap_success = try_to_unmap(hpage,
1167
						     ttu|TTU_RMAP_LOCKED);
1168 1169 1170 1171 1172
				i_mmap_unlock_write(mapping);
			} else {
				pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
				unmap_success = false;
			}
1173
		} else {
1174
			unmap_success = try_to_unmap(hpage, ttu);
1175 1176
		}
	}
M
Minchan Kim 已提交
1177
	if (!unmap_success)
1178
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1179
		       pfn, page_mapcount(hpage));
1180

1181 1182 1183 1184 1185 1186 1187
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
		shake_page(hpage, 0);

1188 1189 1190 1191
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1192 1193
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1194 1195 1196 1197
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1198
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1199
	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
W
Wu Fengguang 已提交
1200

M
Minchan Kim 已提交
1201
	return unmap_success;
1202 1203
}

1204 1205
static int identify_page_state(unsigned long pfn, struct page *p,
				unsigned long page_flags)
1206 1207
{
	struct page_state *ps;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flags is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
			break;

	page_flags |= (p->flags & (1UL << PG_dirty));

	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	return page_action(ps, p, pfn);
}

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
static int try_to_split_thp_page(struct page *page, const char *msg)
{
	lock_page(page);
	if (!PageAnon(page) || unlikely(split_huge_page(page))) {
		unsigned long pfn = page_to_pfn(page);

		unlock_page(page);
		if (!PageAnon(page))
			pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
		else
			pr_info("%s: %#lx: thp split failed\n", msg, pfn);
		put_page(page);
		return -EBUSY;
	}
	unlock_page(page);

	return 0;
}

1246
static int memory_failure_hugetlb(unsigned long pfn, int flags)
1247
{
1248 1249 1250 1251 1252 1253 1254 1255
	struct page *p = pfn_to_page(pfn);
	struct page *head = compound_head(p);
	int res;
	unsigned long page_flags;

	if (TestSetPageHWPoison(head)) {
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
		       pfn);
1256
		return -EHWPOISON;
1257 1258 1259 1260
	}

	num_poisoned_pages_inc();

1261
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
		/*
		 * Check "filter hit" and "race with other subpage."
		 */
		lock_page(head);
		if (PageHWPoison(head)) {
			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
			    || (p != head && TestSetPageHWPoison(head))) {
				num_poisoned_pages_dec();
				unlock_page(head);
				return 0;
			}
		}
		unlock_page(head);
1275 1276 1277 1278 1279 1280 1281
		res = MF_FAILED;
		if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
			page_ref_inc(p);
			res = MF_RECOVERED;
		}
		action_result(pfn, MF_MSG_FREE_HUGE, res);
		return res == MF_RECOVERED ? 0 : -EBUSY;
1282 1283 1284 1285 1286 1287 1288 1289 1290
	}

	lock_page(head);
	page_flags = head->flags;

	if (!PageHWPoison(head)) {
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
		num_poisoned_pages_dec();
		unlock_page(head);
1291
		put_page(head);
1292 1293 1294
		return 0;
	}

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	/*
	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
	 * simply disable it. In order to make it work properly, we need
	 * make sure that:
	 *  - conversion of a pud that maps an error hugetlb into hwpoison
	 *    entry properly works, and
	 *  - other mm code walking over page table is aware of pud-aligned
	 *    hwpoison entries.
	 */
	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1310
	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1311 1312 1313 1314 1315
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1316
	res = identify_page_state(pfn, p, page_flags);
1317 1318 1319 1320 1321
out:
	unlock_page(head);
	return res;
}

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
		struct dev_pagemap *pgmap)
{
	struct page *page = pfn_to_page(pfn);
	const bool unmap_success = true;
	unsigned long size = 0;
	struct to_kill *tk;
	LIST_HEAD(tokill);
	int rc = -EBUSY;
	loff_t start;
1332
	dax_entry_t cookie;
1333

1334 1335 1336 1337 1338 1339
	if (flags & MF_COUNT_INCREASED)
		/*
		 * Drop the extra refcount in case we come from madvise().
		 */
		put_page(page);

1340 1341 1342 1343 1344 1345
	/* device metadata space is not recoverable */
	if (!pgmap_pfn_valid(pgmap, pfn)) {
		rc = -ENXIO;
		goto out;
	}

1346 1347 1348 1349 1350 1351 1352
	/*
	 * Prevent the inode from being freed while we are interrogating
	 * the address_space, typically this would be handled by
	 * lock_page(), but dax pages do not use the page lock. This
	 * also prevents changes to the mapping of this pfn until
	 * poison signaling is complete.
	 */
1353 1354
	cookie = dax_lock_page(page);
	if (!cookie)
1355 1356 1357 1358 1359 1360 1361
		goto out;

	if (hwpoison_filter(page)) {
		rc = 0;
		goto unlock;
	}

1362
	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
		/*
		 * TODO: Handle HMM pages which may need coordination
		 * with device-side memory.
		 */
		goto unlock;
	}

	/*
	 * Use this flag as an indication that the dax page has been
	 * remapped UC to prevent speculative consumption of poison.
	 */
	SetPageHWPoison(page);

	/*
	 * Unlike System-RAM there is no possibility to swap in a
	 * different physical page at a given virtual address, so all
	 * userspace consumption of ZONE_DEVICE memory necessitates
	 * SIGBUS (i.e. MF_MUST_KILL)
	 */
	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);

	list_for_each_entry(tk, &tokill, nd)
		if (tk->size_shift)
			size = max(size, 1UL << tk->size_shift);
	if (size) {
		/*
		 * Unmap the largest mapping to avoid breaking up
		 * device-dax mappings which are constant size. The
		 * actual size of the mapping being torn down is
		 * communicated in siginfo, see kill_proc()
		 */
		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1396
		unmap_mapping_range(page->mapping, start, size, 0);
1397 1398 1399 1400
	}
	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
	rc = 0;
unlock:
1401
	dax_unlock_page(page, cookie);
1402 1403 1404 1405 1406 1407 1408
out:
	/* drop pgmap ref acquired in caller */
	put_dev_pagemap(pgmap);
	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
	return rc;
}

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
1426
int memory_failure(unsigned long pfn, int flags)
1427 1428
{
	struct page *p;
1429
	struct page *hpage;
1430
	struct page *orig_head;
1431
	struct dev_pagemap *pgmap;
1432
	int res = 0;
1433
	unsigned long page_flags;
1434
	bool retry = true;
1435
	static DEFINE_MUTEX(mf_mutex);
1436 1437

	if (!sysctl_memory_failure_recovery)
1438
		panic("Memory failure on page %lx", pfn);
1439

1440 1441 1442 1443 1444 1445 1446 1447
	p = pfn_to_online_page(pfn);
	if (!p) {
		if (pfn_valid(pfn)) {
			pgmap = get_dev_pagemap(pfn, NULL);
			if (pgmap)
				return memory_failure_dev_pagemap(pfn, flags,
								  pgmap);
		}
1448 1449
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1450
		return -ENXIO;
1451 1452
	}

1453 1454
	mutex_lock(&mf_mutex);

1455
try_again:
1456 1457 1458 1459 1460
	if (PageHuge(p)) {
		res = memory_failure_hugetlb(pfn, flags);
		goto unlock_mutex;
	}

1461
	if (TestSetPageHWPoison(p)) {
1462 1463
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1464
		res = -EHWPOISON;
1465
		goto unlock_mutex;
1466 1467
	}

1468
	orig_head = hpage = compound_head(p);
1469
	num_poisoned_pages_inc();
1470 1471 1472 1473 1474

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1475
	 * 2) it's part of a non-compound high order page.
1476 1477 1478 1479
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
1480
	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1481
	 */
1482
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
1483
		if (is_free_buddy_page(p)) {
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
			if (take_page_off_buddy(p)) {
				page_ref_inc(p);
				res = MF_RECOVERED;
			} else {
				/* We lost the race, try again */
				if (retry) {
					ClearPageHWPoison(p);
					num_poisoned_pages_dec();
					retry = false;
					goto try_again;
				}
				res = MF_FAILED;
			}
			action_result(pfn, MF_MSG_BUDDY, res);
1498
			res = res == MF_RECOVERED ? 0 : -EBUSY;
1499
		} else {
1500
			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1501
			res = -EBUSY;
1502
		}
1503
		goto unlock_mutex;
1504 1505
	}

1506
	if (PageTransHuge(hpage)) {
1507 1508
		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1509 1510
			res = -EBUSY;
			goto unlock_mutex;
1511
		}
1512 1513 1514
		VM_BUG_ON_PAGE(!page_count(p), p);
	}

1515 1516 1517
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1518
	 * - to avoid races with __SetPageLocked()
1519 1520 1521 1522
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1523
	shake_page(p, 0);
1524

1525
	lock_page(p);
W
Wu Fengguang 已提交
1526

1527 1528 1529 1530
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1531
	if (PageCompound(p) && compound_head(p) != orig_head) {
1532
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1533
		res = -EBUSY;
1534
		goto unlock_page;
1535 1536
	}

1537 1538 1539 1540 1541 1542 1543
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
1544
	page_flags = p->flags;
1545

W
Wu Fengguang 已提交
1546 1547 1548 1549
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1550
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1551
		num_poisoned_pages_dec();
1552
		unlock_page(p);
1553
		put_page(p);
1554
		goto unlock_mutex;
W
Wu Fengguang 已提交
1555
	}
W
Wu Fengguang 已提交
1556 1557
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1558
			num_poisoned_pages_dec();
1559
		unlock_page(p);
1560
		put_page(p);
1561
		goto unlock_mutex;
W
Wu Fengguang 已提交
1562
	}
W
Wu Fengguang 已提交
1563

1564 1565 1566 1567 1568 1569
	/*
	 * __munlock_pagevec may clear a writeback page's LRU flag without
	 * page_lock. We need wait writeback completion for this page or it
	 * may trigger vfs BUG while evict inode.
	 */
	if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1570 1571
		goto identify_page_state;

1572 1573 1574 1575
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1576 1577 1578 1579
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1580
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1581
	 */
1582
	if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1583
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1584
		res = -EBUSY;
1585
		goto unlock_page;
W
Wu Fengguang 已提交
1586
	}
1587 1588 1589 1590

	/*
	 * Torn down by someone else?
	 */
1591
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1592
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1593
		res = -EBUSY;
1594
		goto unlock_page;
1595 1596
	}

1597
identify_page_state:
1598
	res = identify_page_state(pfn, p, page_flags);
1599
unlock_page:
1600
	unlock_page(p);
1601 1602
unlock_mutex:
	mutex_unlock(&mf_mutex);
1603 1604
	return res;
}
1605
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1606

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
1640
void memory_failure_queue(unsigned long pfn, int flags)
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1651
	if (kfifo_put(&mf_cpu->fifo, entry))
1652 1653
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1654
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1668
	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1669 1670 1671 1672 1673 1674
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1675
		if (entry.flags & MF_SOFT_OFFLINE)
1676
			soft_offline_page(entry.pfn, entry.flags);
1677
		else
1678
			memory_failure(entry.pfn, entry.flags);
1679 1680 1681
	}
}

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
/*
 * Process memory_failure work queued on the specified CPU.
 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
 */
void memory_failure_queue_kick(int cpu)
{
	struct memory_failure_cpu *mf_cpu;

	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
	cancel_work_sync(&mf_cpu->work);
	memory_failure_work_func(&mf_cpu->work);
}

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1711 1712 1713 1714 1715 1716
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1734
	unsigned long flags = 0;
1735 1736
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1737 1738 1739 1740 1741 1742 1743 1744

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1745
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1746
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1747 1748 1749
		return 0;
	}

1750
	if (page_count(page) > 1) {
1751
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1752
				 pfn, &unpoison_rs);
1753 1754 1755 1756
		return 0;
	}

	if (page_mapped(page)) {
1757
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1758
				 pfn, &unpoison_rs);
1759 1760 1761 1762
		return 0;
	}

	if (page_mapping(page)) {
1763
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1764
				 pfn, &unpoison_rs);
1765 1766 1767
		return 0;
	}

1768 1769 1770 1771 1772
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1773
	if (!PageHuge(page) && PageTransHuge(page)) {
1774
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1775
				 pfn, &unpoison_rs);
1776
		return 0;
1777 1778
	}

1779
	if (!get_hwpoison_page(p, flags, 0)) {
W
Wu Fengguang 已提交
1780
		if (TestClearPageHWPoison(p))
1781
			num_poisoned_pages_dec();
1782
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1783
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1784 1785 1786
		return 0;
	}

J
Jens Axboe 已提交
1787
	lock_page(page);
W
Wu Fengguang 已提交
1788 1789 1790 1791 1792 1793
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1794
	if (TestClearPageHWPoison(page)) {
1795
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1796
				 pfn, &unpoison_rs);
1797
		num_poisoned_pages_dec();
W
Wu Fengguang 已提交
1798 1799 1800 1801
		freeit = 1;
	}
	unlock_page(page);

1802
	put_page(page);
1803
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1804
		put_page(page);
W
Wu Fengguang 已提交
1805 1806 1807 1808

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1809

1810
static bool isolate_page(struct page *page, struct list_head *pagelist)
1811
{
1812 1813
	bool isolated = false;
	bool lru = PageLRU(page);
1814

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
	if (PageHuge(page)) {
		isolated = isolate_huge_page(page, pagelist);
	} else {
		if (lru)
			isolated = !isolate_lru_page(page);
		else
			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);

		if (isolated)
			list_add(&page->lru, pagelist);
1825
	}
1826

1827 1828 1829 1830
	if (isolated && lru)
		inc_node_page_state(page, NR_ISOLATED_ANON +
				    page_is_file_lru(page));

1831
	/*
1832 1833 1834 1835 1836
	 * If we succeed to isolate the page, we grabbed another refcount on
	 * the page, so we can safely drop the one we got from get_any_pages().
	 * If we failed to isolate the page, it means that we cannot go further
	 * and we will return an error, so drop the reference we got from
	 * get_any_pages() as well.
1837
	 */
1838 1839
	put_page(page);
	return isolated;
1840 1841
}

1842 1843 1844 1845 1846 1847
/*
 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
 * If the page is mapped, it migrates the contents over.
 */
static int __soft_offline_page(struct page *page)
1848
{
1849
	int ret = 0;
1850
	unsigned long pfn = page_to_pfn(page);
1851 1852 1853 1854
	struct page *hpage = compound_head(page);
	char const *msg_page[] = {"page", "hugepage"};
	bool huge = PageHuge(page);
	LIST_HEAD(pagelist);
1855 1856 1857 1858
	struct migration_target_control mtc = {
		.nid = NUMA_NO_NODE,
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
	};
1859 1860

	/*
1861 1862 1863 1864
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
1865
	 */
1866
	lock_page(page);
1867 1868
	if (!PageHuge(page))
		wait_on_page_writeback(page);
1869 1870
	if (PageHWPoison(page)) {
		unlock_page(page);
1871
		put_page(page);
1872
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1873
		return 0;
1874
	}
1875 1876 1877 1878 1879 1880 1881

	if (!PageHuge(page))
		/*
		 * Try to invalidate first. This should work for
		 * non dirty unmapped page cache pages.
		 */
		ret = invalidate_inode_page(page);
1882
	unlock_page(page);
1883

1884 1885 1886 1887
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
1888
	if (ret) {
1889
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1890
		page_handle_poison(page, false, true);
1891
		return 0;
1892 1893
	}

1894
	if (isolate_page(hpage, &pagelist)) {
1895 1896
		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
1897
		if (!ret) {
1898 1899 1900 1901
			bool release = !huge;

			if (!page_handle_poison(page, huge, release))
				ret = -EBUSY;
1902
		} else {
1903 1904
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
1905

1906 1907
			pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
				pfn, msg_page[huge], ret, page->flags, &page->flags);
1908
			if (ret > 0)
1909
				ret = -EBUSY;
1910 1911
		}
	} else {
1912 1913
		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
			pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
1914
		ret = -EBUSY;
1915 1916 1917
	}
	return ret;
}
1918

1919
static int soft_offline_in_use_page(struct page *page)
1920 1921 1922
{
	struct page *hpage = compound_head(page);

1923 1924
	if (!PageHuge(page) && PageTransHuge(hpage))
		if (try_to_split_thp_page(page, "soft offline") < 0)
1925
			return -EBUSY;
1926
	return __soft_offline_page(page);
1927 1928
}

1929
static int soft_offline_free_page(struct page *page)
1930
{
1931
	int rc = 0;
1932

1933 1934
	if (!page_handle_poison(page, true, false))
		rc = -EBUSY;
1935

1936
	return rc;
1937 1938
}

1939 1940 1941 1942 1943 1944
static void put_ref_page(struct page *page)
{
	if (page)
		put_page(page);
}

1945 1946
/**
 * soft_offline_page - Soft offline a page.
1947
 * @pfn: pfn to soft-offline
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
1967
int soft_offline_page(unsigned long pfn, int flags)
1968 1969
{
	int ret;
1970
	bool try_again = true;
1971 1972 1973
	struct page *page, *ref_page = NULL;

	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
1974

1975 1976
	if (!pfn_valid(pfn))
		return -ENXIO;
1977 1978 1979
	if (flags & MF_COUNT_INCREASED)
		ref_page = pfn_to_page(pfn);

1980 1981
	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
	page = pfn_to_online_page(pfn);
1982 1983
	if (!page) {
		put_ref_page(ref_page);
1984
		return -EIO;
1985
	}
1986

1987
	if (PageHWPoison(page)) {
1988
		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
1989
		put_ref_page(ref_page);
1990
		return 0;
1991 1992
	}

1993
retry:
1994
	get_online_mems();
1995
	ret = get_hwpoison_page(page, flags, MF_SOFT_OFFLINE);
1996
	put_online_mems();
1997

1998
	if (ret > 0) {
1999
		ret = soft_offline_in_use_page(page);
2000
	} else if (ret == 0) {
2001 2002 2003 2004
		if (soft_offline_free_page(page) && try_again) {
			try_again = false;
			goto retry;
		}
2005
	} else if (ret == -EIO) {
2006
		pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
2007 2008
			 __func__, pfn, page->flags, &page->flags);
	}
2009

2010 2011
	return ret;
}