memory-failure.c 52.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * High level machine check handler. Handles pages reported by the
7
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8
 * failure.
9 10 11
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
12 13
 *
 * Handles page cache pages in various states.	The tricky part
14 15 16 17 18 19
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
20 21 22 23 24 25 26 27
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
28 29 30 31 32 33 34
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
35 36 37 38
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
39
#include <linux/kernel-page-flags.h>
40
#include <linux/sched/signal.h>
41
#include <linux/sched/task.h>
H
Hugh Dickins 已提交
42
#include <linux/ksm.h>
43
#include <linux/rmap.h>
44
#include <linux/export.h>
45 46 47
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
48 49
#include <linux/migrate.h>
#include <linux/suspend.h>
50
#include <linux/slab.h>
51
#include <linux/swapops.h>
52
#include <linux/hugetlb.h>
53
#include <linux/memory_hotplug.h>
54
#include <linux/mm_inline.h>
55
#include <linux/memremap.h>
56
#include <linux/kfifo.h>
57
#include <linux/ratelimit.h>
58
#include <linux/page-isolation.h>
59
#include "internal.h"
60
#include "ras/ras_event.h"
61 62 63 64 65

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

66
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67

68 69
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

70
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
71 72
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
73 74
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
75
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
76 77
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
78 79
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
80 81 82 83 84 85 86 87 88 89 90

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
91
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
111 112 113 114 115 116 117 118 119 120 121 122
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
123 124 125 126 127 128 129 130 131 132
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
133
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
134 135 136 137 138 139 140
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

141
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
142 143 144 145 146 147 148 149
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
150 151
int hwpoison_filter(struct page *p)
{
152 153 154
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
155 156 157
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
158 159 160
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
161 162 163
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
164 165
	return 0;
}
166 167 168 169 170 171 172
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
173 174
EXPORT_SYMBOL_GPL(hwpoison_filter);

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
	short size_shift;
};

204
/*
205 206 207
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
208
 */
209
static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
210
{
211 212
	struct task_struct *t = tk->tsk;
	short addr_lsb = tk->size_shift;
213
	int ret = 0;
214

215 216 217
	if ((t->mm == current->mm) || !(flags & MF_ACTION_REQUIRED))
		pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
			pfn, t->comm, t->pid);
218

219 220 221 222 223
	if (flags & MF_ACTION_REQUIRED) {
		if (t->mm == current->mm)
			ret = force_sig_mceerr(BUS_MCEERR_AR,
					 (void __user *)tk->addr, addr_lsb);
		/* send no signal to non-current processes */
224 225 226 227 228 229 230
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
231
		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
232
				      addr_lsb, t);  /* synchronous? */
233
	}
234
	if (ret < 0)
235
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
236
			t->comm, t->pid, ret);
237 238 239
	return ret;
}

240 241 242 243
/*
 * When a unknown page type is encountered drain as many buffers as possible
 * in the hope to turn the page into a LRU or free page, which we can handle.
 */
244
void shake_page(struct page *p, int access)
245
{
246 247 248
	if (PageHuge(p))
		return;

249 250 251 252
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p))
			return;
253
		drain_all_pages(page_zone(p));
254 255 256
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
257

258
	/*
259 260
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
261
	 */
262 263
	if (access)
		drop_slab_node(page_to_nid(p));
264 265 266
}
EXPORT_SYMBOL_GPL(shake_page);

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
static unsigned long dev_pagemap_mapping_shift(struct page *page,
		struct vm_area_struct *vma)
{
	unsigned long address = vma_address(page, vma);
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = pgd_offset(vma->vm_mm, address);
	if (!pgd_present(*pgd))
		return 0;
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;
	pud = pud_offset(p4d, address);
	if (!pud_present(*pud))
		return 0;
	if (pud_devmap(*pud))
		return PUD_SHIFT;
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;
	if (pmd_devmap(*pmd))
		return PMD_SHIFT;
	pte = pte_offset_map(pmd, address);
	if (!pte_present(*pte))
		return 0;
	if (pte_devmap(*pte))
		return PAGE_SHIFT;
	return 0;
}
300 301 302 303 304 305 306 307 308 309 310 311

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
312
		       struct list_head *to_kill)
313 314 315
{
	struct to_kill *tk;

316 317 318 319
	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
	if (!tk) {
		pr_err("Memory failure: Out of memory while machine check handling\n");
		return;
320
	}
321

322
	tk->addr = page_address_in_vma(p, vma);
323 324 325
	if (is_zone_device_page(p))
		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
	else
326
		tk->size_shift = page_shift(compound_head(p));
327 328

	/*
329 330 331 332 333 334 335 336
	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
	 * so "tk->size_shift == 0" effectively checks no mapping on
	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
	 * to a process' address space, it's possible not all N VMAs
	 * contain mappings for the page, but at least one VMA does.
	 * Only deliver SIGBUS with payload derived from the VMA that
	 * has a mapping for the page.
337
	 */
338
	if (tk->addr == -EFAULT) {
339
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
340
			page_to_pfn(p), tsk->comm);
341 342 343
	} else if (tk->size_shift == 0) {
		kfree(tk);
		return;
344
	}
345

346 347 348 349 350 351 352 353 354 355 356 357 358
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
359 360
static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
		unsigned long pfn, int flags)
361 362 363 364
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
365
		if (forcekill) {
366
			/*
367
			 * In case something went wrong with munmapping
368 369 370
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
371
			if (fail || tk->addr == -EFAULT) {
372
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
373
				       pfn, tk->tsk->comm, tk->tsk->pid);
374 375
				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
						 tk->tsk, PIDTYPE_PID);
376 377 378 379 380 381 382 383
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
384
			else if (kill_proc(tk, pfn, flags) < 0)
385
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
386
				       pfn, tk->tsk->comm, tk->tsk->pid);
387 388 389 390 391 392
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

393 394 395 396 397 398 399 400 401
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
402
{
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
	struct task_struct *t;

	for_each_thread(tsk, t)
		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
			return t;
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
 * specified) if the process is "early kill," and otherwise returns NULL.
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
	struct task_struct *t;
421
	if (!tsk->mm)
422
		return NULL;
423
	if (force_early)
424 425 426 427 428 429 430
		return tsk;
	t = find_early_kill_thread(tsk);
	if (t)
		return t;
	if (sysctl_memory_failure_early_kill)
		return tsk;
	return NULL;
431 432 433 434 435 436
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
437
				int force_early)
438 439 440 441
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
442
	pgoff_t pgoff;
443

444
	av = page_lock_anon_vma_read(page);
445
	if (av == NULL)	/* Not actually mapped anymore */
446 447
		return;

448
	pgoff = page_to_pgoff(page);
449
	read_lock(&tasklist_lock);
450
	for_each_process (tsk) {
451
		struct anon_vma_chain *vmac;
452
		struct task_struct *t = task_early_kill(tsk, force_early);
453

454
		if (!t)
455
			continue;
456 457
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
458
			vma = vmac->vma;
459 460
			if (!page_mapped_in_vma(page, vma))
				continue;
461
			if (vma->vm_mm == t->mm)
462
				add_to_kill(t, page, vma, to_kill);
463 464 465
		}
	}
	read_unlock(&tasklist_lock);
466
	page_unlock_anon_vma_read(av);
467 468 469 470 471 472
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
473
				int force_early)
474 475 476 477 478
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;

479
	i_mmap_lock_read(mapping);
480
	read_lock(&tasklist_lock);
481
	for_each_process(tsk) {
482
		pgoff_t pgoff = page_to_pgoff(page);
483
		struct task_struct *t = task_early_kill(tsk, force_early);
484

485
		if (!t)
486
			continue;
487
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
488 489 490 491 492 493 494 495
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
496
			if (vma->vm_mm == t->mm)
497
				add_to_kill(t, page, vma, to_kill);
498 499 500
		}
	}
	read_unlock(&tasklist_lock);
501
	i_mmap_unlock_read(mapping);
502 503 504 505 506
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 */
507 508
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
509 510 511 512 513
{
	if (!page->mapping)
		return;

	if (PageAnon(page))
514
		collect_procs_anon(page, tokill, force_early);
515
	else
516
		collect_procs_file(page, tokill, force_early);
517 518 519
}

static const char *action_name[] = {
520 521 522 523
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
524 525 526
};

static const char * const action_page_types[] = {
527 528 529 530 531 532 533
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
534
	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
535 536 537 538 539 540 541 542 543 544 545 546
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
547
	[MF_MSG_DAX]			= "dax page",
548
	[MF_MSG_UNKNOWN]		= "unknown page",
549 550
};

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
566 567 568 569 570 571 572

		/*
		 * Poisoned page might never drop its ref count to 0 so we have
		 * to uncharge it manually from its memcg.
		 */
		mem_cgroup_uncharge(p);

573 574 575
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
576
		put_page(p);
577 578 579 580 581
		return 0;
	}
	return -EIO;
}

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
static int truncate_error_page(struct page *p, unsigned long pfn,
				struct address_space *mapping)
{
	int ret = MF_FAILED;

	if (mapping->a_ops->error_remove_page) {
		int err = mapping->a_ops->error_remove_page(mapping, p);

		if (err != 0) {
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
				pfn, err);
		} else if (page_has_private(p) &&
			   !try_to_release_page(p, GFP_NOIO)) {
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
		} else {
			ret = MF_RECOVERED;
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
			ret = MF_RECOVERED;
		else
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
	}

	return ret;
}

615 616 617 618 619 620 621
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
622
	return MF_IGNORED;
623 624 625 626 627 628 629
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
630
	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
631
	return MF_FAILED;
632 633 634 635 636 637 638 639 640
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
	struct address_space *mapping;

641 642
	delete_from_lru_cache(p);

643 644 645 646 647
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
	if (PageAnon(p))
648
		return MF_RECOVERED;
649 650 651 652 653 654 655 656 657 658 659 660 661

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
662
		return MF_FAILED;
663 664 665 666 667 668 669
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
670
	return truncate_error_page(p, pfn, mapping);
671 672 673
}

/*
674
 * Dirty pagecache page
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
707
		 * and the page is dropped between then the error
708 709 710 711 712 713 714 715 716 717 718
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
719
		mapping_set_error(mapping, -EIO);
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

750
	if (!delete_from_lru_cache(p))
751
		return MF_DELAYED;
752
	else
753
		return MF_FAILED;
754 755 756 757 758
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
	delete_from_swap_cache(p);
759

760
	if (!delete_from_lru_cache(p))
761
		return MF_RECOVERED;
762
	else
763
		return MF_FAILED;
764 765 766 767 768
}

/*
 * Huge pages. Needs work.
 * Issues:
769 770
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
771 772 773
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
774
	int res = 0;
775
	struct page *hpage = compound_head(p);
776
	struct address_space *mapping;
777 778 779 780

	if (!PageHuge(hpage))
		return MF_DELAYED;

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
	mapping = page_mapping(hpage);
	if (mapping) {
		res = truncate_error_page(hpage, pfn, mapping);
	} else {
		unlock_page(hpage);
		/*
		 * migration entry prevents later access on error anonymous
		 * hugepage, so we can free and dissolve it into buddy to
		 * save healthy subpages.
		 */
		if (PageAnon(hpage))
			put_page(hpage);
		dissolve_free_huge_page(p);
		res = MF_RECOVERED;
		lock_page(hpage);
796
	}
797 798

	return res;
799 800 801 802 803 804 805 806 807
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
808
 * in its live cycle, so all accesses have to be extremely careful.
809 810 811 812 813 814
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
815
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
816 817 818 819 820 821 822 823 824 825 826
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define writeback	(1UL << PG_writeback)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
827
	enum mf_action_page_type type;
828 829
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
830
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
831 832 833 834
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
835 836 837 838 839 840

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
841
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
842

843
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
844

845 846
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
847

848 849
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
850

851 852
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
853

854 855
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
856 857 858 859

	/*
	 * Catchall entry: must be at end.
	 */
860
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
861 862
};

863 864 865 866 867 868 869 870 871 872
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef writeback
#undef lru
#undef head
#undef slab
#undef reserved

873 874 875 876
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
877 878
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
879
{
880 881
	trace_memory_failure_event(pfn, type, result);

882
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
883
		pfn, action_page_types[type], action_name[result]);
884 885 886
}

static int page_action(struct page_state *ps, struct page *p,
887
			unsigned long pfn)
888 889
{
	int result;
890
	int count;
891 892

	result = ps->action(p, pfn);
893

894
	count = page_count(p) - 1;
895
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
896
		count--;
897
	if (count > 0) {
898
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
899
		       pfn, action_page_types[ps->type], count);
900
		result = MF_FAILED;
901
	}
902
	action_result(pfn, ps->type, result);
903 904 905 906 907 908

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

909
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
910 911
}

912 913 914 915 916 917 918 919 920 921 922
/**
 * get_hwpoison_page() - Get refcount for memory error handling:
 * @page:	raw error page (hit by memory error)
 *
 * Return: return 0 if failed to grab the refcount, otherwise true (some
 * non-zero value.)
 */
int get_hwpoison_page(struct page *page)
{
	struct page *head = compound_head(page);

923
	if (!PageHuge(head) && PageTransHuge(head)) {
924 925 926 927 928 929 930
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
931
			pr_err("Memory failure: %#lx: non anonymous thp\n",
932 933 934
				page_to_pfn(page));
			return 0;
		}
935 936
	}

937 938 939 940
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

941 942
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
943 944 945 946
		put_page(head);
	}

	return 0;
947 948 949
}
EXPORT_SYMBOL_GPL(get_hwpoison_page);

950 951 952 953
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
954
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
955
				  int flags, struct page **hpagep)
956
{
S
Shaohua Li 已提交
957
	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
958 959
	struct address_space *mapping;
	LIST_HEAD(tokill);
960
	bool unmap_success = true;
961
	int kill = 1, forcekill;
962
	struct page *hpage = *hpagep;
963
	bool mlocked = PageMlocked(hpage);
964

965 966 967 968 969
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
970
		return true;
971
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
972
		return true;
973 974 975 976 977

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
978
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
979
		return true;
W
Wu Fengguang 已提交
980

981
	if (PageKsm(p)) {
982
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
983
		return false;
984
	}
985 986

	if (PageSwapCache(p)) {
987 988
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
989 990 991 992 993 994
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
995 996
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
997
	 */
998
	mapping = page_mapping(hpage);
999
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1000 1001 1002
	    mapping_cap_writeback_dirty(mapping)) {
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
1003 1004 1005
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
1006
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
1020
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1021

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	if (!PageHuge(hpage)) {
		unmap_success = try_to_unmap(hpage, ttu);
	} else {
		/*
		 * For hugetlb pages, try_to_unmap could potentially call
		 * huge_pmd_unshare.  Because of this, take semaphore in
		 * write mode here and set TTU_RMAP_LOCKED to indicate we
		 * have taken the lock at this higer level.
		 *
		 * Note that the call to hugetlb_page_mapping_lock_write
		 * is necessary even if mapping is already set.  It handles
		 * ugliness of potentially having to drop page lock to obtain
		 * i_mmap_rwsem.
		 */
		mapping = hugetlb_page_mapping_lock_write(hpage);

		if (mapping) {
			unmap_success = try_to_unmap(hpage,
						     ttu|TTU_RMAP_LOCKED);
			i_mmap_unlock_write(mapping);
		} else {
			pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n",
				pfn);
			unmap_success = false;
		}
	}
M
Minchan Kim 已提交
1048
	if (!unmap_success)
1049
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1050
		       pfn, page_mapcount(hpage));
1051

1052 1053 1054 1055 1056 1057 1058
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
		shake_page(hpage, 0);

1059 1060 1061 1062
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1063 1064
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1065 1066 1067 1068
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1069
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1070
	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
W
Wu Fengguang 已提交
1071

M
Minchan Kim 已提交
1072
	return unmap_success;
1073 1074
}

1075 1076
static int identify_page_state(unsigned long pfn, struct page *p,
				unsigned long page_flags)
1077 1078
{
	struct page_state *ps;
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flags is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
			break;

	page_flags |= (p->flags & (1UL << PG_dirty));

	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	return page_action(ps, p, pfn);
}

1098
static int memory_failure_hugetlb(unsigned long pfn, int flags)
1099
{
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	struct page *p = pfn_to_page(pfn);
	struct page *head = compound_head(p);
	int res;
	unsigned long page_flags;

	if (TestSetPageHWPoison(head)) {
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
		       pfn);
		return 0;
	}

	num_poisoned_pages_inc();

	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
		/*
		 * Check "filter hit" and "race with other subpage."
		 */
		lock_page(head);
		if (PageHWPoison(head)) {
			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
			    || (p != head && TestSetPageHWPoison(head))) {
				num_poisoned_pages_dec();
				unlock_page(head);
				return 0;
			}
		}
		unlock_page(head);
		dissolve_free_huge_page(p);
		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
		return 0;
	}

	lock_page(head);
	page_flags = head->flags;

	if (!PageHWPoison(head)) {
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
		num_poisoned_pages_dec();
		unlock_page(head);
		put_hwpoison_page(head);
		return 0;
	}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	/*
	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
	 * simply disable it. In order to make it work properly, we need
	 * make sure that:
	 *  - conversion of a pud that maps an error hugetlb into hwpoison
	 *    entry properly works, and
	 *  - other mm code walking over page table is aware of pud-aligned
	 *    hwpoison entries.
	 */
	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1158
	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1159 1160 1161 1162 1163
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1164
	res = identify_page_state(pfn, p, page_flags);
1165 1166 1167 1168 1169
out:
	unlock_page(head);
	return res;
}

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
		struct dev_pagemap *pgmap)
{
	struct page *page = pfn_to_page(pfn);
	const bool unmap_success = true;
	unsigned long size = 0;
	struct to_kill *tk;
	LIST_HEAD(tokill);
	int rc = -EBUSY;
	loff_t start;
1180
	dax_entry_t cookie;
1181 1182 1183 1184 1185 1186 1187 1188

	/*
	 * Prevent the inode from being freed while we are interrogating
	 * the address_space, typically this would be handled by
	 * lock_page(), but dax pages do not use the page lock. This
	 * also prevents changes to the mapping of this pfn until
	 * poison signaling is complete.
	 */
1189 1190
	cookie = dax_lock_page(page);
	if (!cookie)
1191 1192 1193 1194 1195 1196 1197
		goto out;

	if (hwpoison_filter(page)) {
		rc = 0;
		goto unlock;
	}

1198
	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
		/*
		 * TODO: Handle HMM pages which may need coordination
		 * with device-side memory.
		 */
		goto unlock;
	}

	/*
	 * Use this flag as an indication that the dax page has been
	 * remapped UC to prevent speculative consumption of poison.
	 */
	SetPageHWPoison(page);

	/*
	 * Unlike System-RAM there is no possibility to swap in a
	 * different physical page at a given virtual address, so all
	 * userspace consumption of ZONE_DEVICE memory necessitates
	 * SIGBUS (i.e. MF_MUST_KILL)
	 */
	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);

	list_for_each_entry(tk, &tokill, nd)
		if (tk->size_shift)
			size = max(size, 1UL << tk->size_shift);
	if (size) {
		/*
		 * Unmap the largest mapping to avoid breaking up
		 * device-dax mappings which are constant size. The
		 * actual size of the mapping being torn down is
		 * communicated in siginfo, see kill_proc()
		 */
		start = (page->index << PAGE_SHIFT) & ~(size - 1);
		unmap_mapping_range(page->mapping, start, start + size, 0);
	}
	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
	rc = 0;
unlock:
1237
	dax_unlock_page(page, cookie);
1238 1239 1240 1241 1242 1243 1244
out:
	/* drop pgmap ref acquired in caller */
	put_dev_pagemap(pgmap);
	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
	return rc;
}

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
1262
int memory_failure(unsigned long pfn, int flags)
1263 1264
{
	struct page *p;
1265
	struct page *hpage;
1266
	struct page *orig_head;
1267
	struct dev_pagemap *pgmap;
1268
	int res;
1269
	unsigned long page_flags;
1270 1271

	if (!sysctl_memory_failure_recovery)
1272
		panic("Memory failure on page %lx", pfn);
1273

1274 1275 1276 1277 1278 1279 1280 1281
	p = pfn_to_online_page(pfn);
	if (!p) {
		if (pfn_valid(pfn)) {
			pgmap = get_dev_pagemap(pfn, NULL);
			if (pgmap)
				return memory_failure_dev_pagemap(pfn, flags,
								  pgmap);
		}
1282 1283
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1284
		return -ENXIO;
1285 1286
	}

1287
	if (PageHuge(p))
1288
		return memory_failure_hugetlb(pfn, flags);
1289
	if (TestSetPageHWPoison(p)) {
1290 1291
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1292 1293 1294
		return 0;
	}

1295
	orig_head = hpage = compound_head(p);
1296
	num_poisoned_pages_inc();
1297 1298 1299 1300 1301

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1302
	 * 2) it's part of a non-compound high order page.
1303 1304 1305 1306
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
1307
	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1308
	 */
1309
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1310
		if (is_free_buddy_page(p)) {
1311
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1312 1313
			return 0;
		} else {
1314
			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1315 1316
			return -EBUSY;
		}
1317 1318
	}

1319
	if (PageTransHuge(hpage)) {
1320 1321 1322 1323
		lock_page(p);
		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
			unlock_page(p);
			if (!PageAnon(p))
1324 1325
				pr_err("Memory failure: %#lx: non anonymous thp\n",
					pfn);
1326
			else
1327 1328
				pr_err("Memory failure: %#lx: thp split failed\n",
					pfn);
1329
			if (TestClearPageHWPoison(p))
1330
				num_poisoned_pages_dec();
1331
			put_hwpoison_page(p);
1332 1333
			return -EBUSY;
		}
1334
		unlock_page(p);
1335 1336 1337 1338
		VM_BUG_ON_PAGE(!page_count(p), p);
		hpage = compound_head(p);
	}

1339 1340 1341
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1342
	 * - to avoid races with __SetPageLocked()
1343 1344 1345 1346
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1347 1348 1349 1350 1351 1352 1353 1354
	shake_page(p, 0);
	/* shake_page could have turned it free. */
	if (!PageLRU(p) && is_free_buddy_page(p)) {
		if (flags & MF_COUNT_INCREASED)
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
		else
			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
		return 0;
1355 1356
	}

1357
	lock_page(p);
W
Wu Fengguang 已提交
1358

1359 1360 1361 1362
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1363
	if (PageCompound(p) && compound_head(p) != orig_head) {
1364
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1365 1366 1367 1368
		res = -EBUSY;
		goto out;
	}

1369 1370 1371 1372 1373 1374 1375
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
1376 1377 1378 1379
	if (PageHuge(p))
		page_flags = hpage->flags;
	else
		page_flags = p->flags;
1380

W
Wu Fengguang 已提交
1381 1382 1383 1384
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1385
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1386
		num_poisoned_pages_dec();
1387 1388
		unlock_page(p);
		put_hwpoison_page(p);
1389
		return 0;
W
Wu Fengguang 已提交
1390
	}
W
Wu Fengguang 已提交
1391 1392
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1393
			num_poisoned_pages_dec();
1394 1395
		unlock_page(p);
		put_hwpoison_page(p);
W
Wu Fengguang 已提交
1396 1397
		return 0;
	}
W
Wu Fengguang 已提交
1398

1399
	if (!PageTransTail(p) && !PageLRU(p))
1400 1401
		goto identify_page_state;

1402 1403 1404 1405
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1406 1407 1408 1409
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1410
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1411 1412 1413
	 *
	 * When the raw error page is thp tail page, hpage points to the raw
	 * page after thp split.
1414
	 */
1415
	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1416
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1417 1418 1419
		res = -EBUSY;
		goto out;
	}
1420 1421 1422 1423

	/*
	 * Torn down by someone else?
	 */
1424
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1425
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1426
		res = -EBUSY;
1427 1428 1429
		goto out;
	}

1430
identify_page_state:
1431
	res = identify_page_state(pfn, p, page_flags);
1432
out:
1433
	unlock_page(p);
1434 1435
	return res;
}
1436
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1437

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
1471
void memory_failure_queue(unsigned long pfn, int flags)
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1482
	if (kfifo_put(&mf_cpu->fifo, entry))
1483 1484
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1485
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1499
	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1500 1501 1502 1503 1504 1505
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1506
		if (entry.flags & MF_SOFT_OFFLINE)
1507
			soft_offline_page(entry.pfn, entry.flags);
1508
		else
1509
			memory_failure(entry.pfn, entry.flags);
1510 1511 1512
	}
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
/*
 * Process memory_failure work queued on the specified CPU.
 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
 */
void memory_failure_queue_kick(int cpu)
{
	struct memory_failure_cpu *mf_cpu;

	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
	cancel_work_sync(&mf_cpu->work);
	memory_failure_work_func(&mf_cpu->work);
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1542 1543 1544 1545 1546 1547
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1565 1566
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1567 1568 1569 1570 1571 1572 1573 1574

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1575
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1576
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1577 1578 1579
		return 0;
	}

1580
	if (page_count(page) > 1) {
1581
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1582
				 pfn, &unpoison_rs);
1583 1584 1585 1586
		return 0;
	}

	if (page_mapped(page)) {
1587
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1588
				 pfn, &unpoison_rs);
1589 1590 1591 1592
		return 0;
	}

	if (page_mapping(page)) {
1593
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1594
				 pfn, &unpoison_rs);
1595 1596 1597
		return 0;
	}

1598 1599 1600 1601 1602
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1603
	if (!PageHuge(page) && PageTransHuge(page)) {
1604
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1605
				 pfn, &unpoison_rs);
1606
		return 0;
1607 1608
	}

1609
	if (!get_hwpoison_page(p)) {
W
Wu Fengguang 已提交
1610
		if (TestClearPageHWPoison(p))
1611
			num_poisoned_pages_dec();
1612
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1613
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1614 1615 1616
		return 0;
	}

J
Jens Axboe 已提交
1617
	lock_page(page);
W
Wu Fengguang 已提交
1618 1619 1620 1621 1622 1623
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1624
	if (TestClearPageHWPoison(page)) {
1625
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1626
				 pfn, &unpoison_rs);
1627
		num_poisoned_pages_dec();
W
Wu Fengguang 已提交
1628 1629 1630 1631
		freeit = 1;
	}
	unlock_page(page);

1632
	put_hwpoison_page(page);
1633
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1634
		put_hwpoison_page(page);
W
Wu Fengguang 已提交
1635 1636 1637 1638

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1639

1640
static struct page *new_page(struct page *p, unsigned long private)
1641
{
1642
	int nid = page_to_nid(p);
1643

1644
	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1645 1646 1647 1648 1649 1650 1651 1652
}

/*
 * Safely get reference count of an arbitrary page.
 * Returns 0 for a free page, -EIO for a zero refcount page
 * that is not free, and 1 for any other page type.
 * For 1 the page is returned with increased page count, otherwise not.
 */
1653
static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1654 1655 1656 1657 1658 1659
{
	int ret;

	if (flags & MF_COUNT_INCREASED)
		return 1;

1660 1661 1662 1663
	/*
	 * When the target page is a free hugepage, just remove it
	 * from free hugepage list.
	 */
1664
	if (!get_hwpoison_page(p)) {
1665
		if (PageHuge(p)) {
1666
			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1667
			ret = 0;
1668
		} else if (is_free_buddy_page(p)) {
1669
			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1670 1671
			ret = 0;
		} else {
1672 1673
			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
				__func__, pfn, p->flags);
1674 1675 1676 1677 1678 1679 1680 1681 1682
			ret = -EIO;
		}
	} else {
		/* Not a free page */
		ret = 1;
	}
	return ret;
}

1683 1684 1685 1686
static int get_any_page(struct page *page, unsigned long pfn, int flags)
{
	int ret = __get_any_page(page, pfn, flags);

1687 1688
	if (ret == 1 && !PageHuge(page) &&
	    !PageLRU(page) && !__PageMovable(page)) {
1689 1690 1691
		/*
		 * Try to free it.
		 */
1692
		put_hwpoison_page(page);
1693 1694 1695 1696 1697 1698
		shake_page(page, 1);

		/*
		 * Did it turn free?
		 */
		ret = __get_any_page(page, pfn, 0);
1699
		if (ret == 1 && !PageLRU(page)) {
1700
			/* Drop page reference which is from __get_any_page() */
1701
			put_hwpoison_page(page);
1702 1703
			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
				pfn, page->flags, &page->flags);
1704 1705 1706 1707 1708 1709
			return -EIO;
		}
	}
	return ret;
}

1710 1711 1712 1713 1714
static int soft_offline_huge_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
	struct page *hpage = compound_head(page);
1715
	LIST_HEAD(pagelist);
1716

1717 1718 1719 1720 1721
	/*
	 * This double-check of PageHWPoison is to avoid the race with
	 * memory_failure(). See also comment in __soft_offline_page().
	 */
	lock_page(hpage);
1722
	if (PageHWPoison(hpage)) {
1723
		unlock_page(hpage);
1724
		put_hwpoison_page(hpage);
1725
		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1726
		return -EBUSY;
1727
	}
1728
	unlock_page(hpage);
1729

1730
	ret = isolate_huge_page(hpage, &pagelist);
1731 1732 1733 1734
	/*
	 * get_any_page() and isolate_huge_page() takes a refcount each,
	 * so need to drop one here.
	 */
1735
	put_hwpoison_page(hpage);
1736
	if (!ret) {
1737 1738 1739 1740
		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
		return -EBUSY;
	}

1741
	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1742
				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1743
	if (ret) {
1744
		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1745
			pfn, ret, page->flags, &page->flags);
1746 1747
		if (!list_empty(&pagelist))
			putback_movable_pages(&pagelist);
1748 1749
		if (ret > 0)
			ret = -EIO;
1750
	} else {
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
		/*
		 * We set PG_hwpoison only when the migration source hugepage
		 * was successfully dissolved, because otherwise hwpoisoned
		 * hugepage remains on free hugepage list, then userspace will
		 * find it as SIGBUS by allocation failure. That's not expected
		 * in soft-offlining.
		 */
		ret = dissolve_free_huge_page(page);
		if (!ret) {
			if (set_hwpoison_free_buddy_page(page))
				num_poisoned_pages_inc();
1762 1763
			else
				ret = -EBUSY;
1764
		}
1765 1766 1767 1768
	}
	return ret;
}

1769 1770 1771 1772
static int __soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
1773 1774

	/*
1775 1776 1777 1778
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
1779
	 */
1780 1781
	lock_page(page);
	wait_on_page_writeback(page);
1782 1783
	if (PageHWPoison(page)) {
		unlock_page(page);
1784
		put_hwpoison_page(page);
1785 1786 1787
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
		return -EBUSY;
	}
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	/*
	 * Try to invalidate first. This should work for
	 * non dirty unmapped page cache pages.
	 */
	ret = invalidate_inode_page(page);
	unlock_page(page);
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
	if (ret == 1) {
1799
		put_hwpoison_page(page);
1800
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1801
		SetPageHWPoison(page);
1802
		num_poisoned_pages_inc();
1803
		return 0;
1804 1805 1806 1807 1808 1809 1810
	}

	/*
	 * Simple invalidation didn't work.
	 * Try to migrate to a new page instead. migrate.c
	 * handles a large number of cases for us.
	 */
1811 1812 1813 1814
	if (PageLRU(page))
		ret = isolate_lru_page(page);
	else
		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1815 1816 1817 1818
	/*
	 * Drop page reference which is came from get_any_page()
	 * successful isolate_lru_page() already took another one.
	 */
1819
	put_hwpoison_page(page);
1820 1821
	if (!ret) {
		LIST_HEAD(pagelist);
1822 1823 1824 1825 1826 1827 1828
		/*
		 * After isolated lru page, the PageLRU will be cleared,
		 * so use !__PageMovable instead for LRU page's mapping
		 * cannot have PAGE_MAPPING_MOVABLE.
		 */
		if (!__PageMovable(page))
			inc_node_page_state(page, NR_ISOLATED_ANON +
H
Huang Ying 已提交
1829
						page_is_file_lru(page));
1830
		list_add(&page->lru, &pagelist);
1831
		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1832
					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1833
		if (ret) {
1834 1835
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
1836

1837 1838
			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
				pfn, ret, page->flags, &page->flags);
1839 1840 1841 1842
			if (ret > 0)
				ret = -EIO;
		}
	} else {
1843 1844
		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
			pfn, ret, page_count(page), page->flags, &page->flags);
1845 1846 1847
	}
	return ret;
}
1848

1849 1850 1851
static int soft_offline_in_use_page(struct page *page, int flags)
{
	int ret;
1852
	int mt;
1853 1854 1855
	struct page *hpage = compound_head(page);

	if (!PageHuge(page) && PageTransHuge(hpage)) {
1856 1857 1858 1859
		lock_page(page);
		if (!PageAnon(page) || unlikely(split_huge_page(page))) {
			unlock_page(page);
			if (!PageAnon(page))
1860 1861 1862
				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
			else
				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1863
			put_hwpoison_page(page);
1864 1865
			return -EBUSY;
		}
1866
		unlock_page(page);
1867 1868
	}

1869 1870 1871 1872 1873 1874 1875 1876 1877
	/*
	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
	 * to free list immediately (not via pcplist) when released after
	 * successful page migration. Otherwise we can't guarantee that the
	 * page is really free after put_page() returns, so
	 * set_hwpoison_free_buddy_page() highly likely fails.
	 */
	mt = get_pageblock_migratetype(page);
	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1878 1879 1880 1881
	if (PageHuge(page))
		ret = soft_offline_huge_page(page, flags);
	else
		ret = __soft_offline_page(page, flags);
1882
	set_pageblock_migratetype(page, mt);
1883 1884 1885
	return ret;
}

1886
static int soft_offline_free_page(struct page *page)
1887
{
1888
	int rc = dissolve_free_huge_page(page);
1889

1890 1891 1892 1893 1894 1895 1896
	if (!rc) {
		if (set_hwpoison_free_buddy_page(page))
			num_poisoned_pages_inc();
		else
			rc = -EBUSY;
	}
	return rc;
1897 1898
}

1899 1900
/**
 * soft_offline_page - Soft offline a page.
1901
 * @pfn: pfn to soft-offline
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
1921
int soft_offline_page(unsigned long pfn, int flags)
1922 1923
{
	int ret;
1924
	struct page *page;
1925

1926 1927 1928 1929 1930
	if (!pfn_valid(pfn))
		return -ENXIO;
	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
	page = pfn_to_online_page(pfn);
	if (!page)
1931 1932
		return -EIO;

1933 1934
	if (PageHWPoison(page)) {
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1935
		if (flags & MF_COUNT_INCREASED)
1936
			put_hwpoison_page(page);
1937 1938 1939
		return -EBUSY;
	}

1940
	get_online_mems();
1941
	ret = get_any_page(page, pfn, flags);
1942
	put_online_mems();
1943

1944 1945 1946
	if (ret > 0)
		ret = soft_offline_in_use_page(page, flags);
	else if (ret == 0)
1947
		ret = soft_offline_free_page(page);
1948

1949 1950
	return ret;
}