memory-failure.c 53.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * High level machine check handler. Handles pages reported by the
7
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8
 * failure.
9 10 11
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
12 13
 *
 * Handles page cache pages in various states.	The tricky part
14 15 16 17 18 19
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
20 21 22 23 24 25 26 27
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
28 29 30 31 32 33 34
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
35 36 37 38
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
39
#include <linux/kernel-page-flags.h>
40
#include <linux/sched/signal.h>
41
#include <linux/sched/task.h>
H
Hugh Dickins 已提交
42
#include <linux/ksm.h>
43
#include <linux/rmap.h>
44
#include <linux/export.h>
45 46 47
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
48 49
#include <linux/migrate.h>
#include <linux/suspend.h>
50
#include <linux/slab.h>
51
#include <linux/swapops.h>
52
#include <linux/hugetlb.h>
53
#include <linux/memory_hotplug.h>
54
#include <linux/mm_inline.h>
55
#include <linux/memremap.h>
56
#include <linux/kfifo.h>
57
#include <linux/ratelimit.h>
58
#include <linux/page-isolation.h>
59
#include "internal.h"
60
#include "ras/ras_event.h"
61 62 63 64 65

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

66
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67

68 69
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

70
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
71 72
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
73 74
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
75
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
76 77
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
78 79
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
80 81 82 83 84 85 86 87 88 89 90

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
91
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
111 112 113 114 115 116 117 118 119 120 121 122
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
123 124 125 126 127 128 129 130 131 132
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
133
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
134 135 136 137 138 139 140
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

141
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
142 143 144 145 146 147 148 149
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
150 151
int hwpoison_filter(struct page *p)
{
152 153 154
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
155 156 157
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
158 159 160
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
161 162 163
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
164 165
	return 0;
}
166 167 168 169 170 171 172
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
173 174
EXPORT_SYMBOL_GPL(hwpoison_filter);

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
	short size_shift;
};

204
/*
205 206 207
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
208
 */
209
static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
210
{
211 212
	struct task_struct *t = tk->tsk;
	short addr_lsb = tk->size_shift;
213
	int ret = 0;
214

215
	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
216
			pfn, t->comm, t->pid);
217

218
	if (flags & MF_ACTION_REQUIRED) {
219 220
		WARN_ON_ONCE(t != current);
		ret = force_sig_mceerr(BUS_MCEERR_AR,
221
					 (void __user *)tk->addr, addr_lsb);
222 223 224 225 226 227 228
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
229
		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
230
				      addr_lsb, t);  /* synchronous? */
231
	}
232
	if (ret < 0)
233
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
234
			t->comm, t->pid, ret);
235 236 237
	return ret;
}

238 239 240 241
/*
 * When a unknown page type is encountered drain as many buffers as possible
 * in the hope to turn the page into a LRU or free page, which we can handle.
 */
242
void shake_page(struct page *p, int access)
243
{
244 245 246
	if (PageHuge(p))
		return;

247 248 249 250
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p))
			return;
251
		drain_all_pages(page_zone(p));
252 253 254
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
255

256
	/*
257 258
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
259
	 */
260 261
	if (access)
		drop_slab_node(page_to_nid(p));
262 263 264
}
EXPORT_SYMBOL_GPL(shake_page);

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
static unsigned long dev_pagemap_mapping_shift(struct page *page,
		struct vm_area_struct *vma)
{
	unsigned long address = vma_address(page, vma);
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = pgd_offset(vma->vm_mm, address);
	if (!pgd_present(*pgd))
		return 0;
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;
	pud = pud_offset(p4d, address);
	if (!pud_present(*pud))
		return 0;
	if (pud_devmap(*pud))
		return PUD_SHIFT;
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;
	if (pmd_devmap(*pmd))
		return PMD_SHIFT;
	pte = pte_offset_map(pmd, address);
	if (!pte_present(*pte))
		return 0;
	if (pte_devmap(*pte))
		return PAGE_SHIFT;
	return 0;
}
298 299 300 301 302 303 304 305 306 307 308 309

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
310
		       struct list_head *to_kill)
311 312 313
{
	struct to_kill *tk;

314 315 316 317
	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
	if (!tk) {
		pr_err("Memory failure: Out of memory while machine check handling\n");
		return;
318
	}
319

320
	tk->addr = page_address_in_vma(p, vma);
321 322 323
	if (is_zone_device_page(p))
		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
	else
324
		tk->size_shift = page_shift(compound_head(p));
325 326

	/*
327 328 329 330 331 332 333 334
	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
	 * so "tk->size_shift == 0" effectively checks no mapping on
	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
	 * to a process' address space, it's possible not all N VMAs
	 * contain mappings for the page, but at least one VMA does.
	 * Only deliver SIGBUS with payload derived from the VMA that
	 * has a mapping for the page.
335
	 */
336
	if (tk->addr == -EFAULT) {
337
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
338
			page_to_pfn(p), tsk->comm);
339 340 341
	} else if (tk->size_shift == 0) {
		kfree(tk);
		return;
342
	}
343

344 345 346 347 348 349 350 351 352 353 354 355 356
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
357 358
static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
		unsigned long pfn, int flags)
359 360 361 362
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
363
		if (forcekill) {
364
			/*
365
			 * In case something went wrong with munmapping
366 367 368
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
369
			if (fail || tk->addr == -EFAULT) {
370
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
371
				       pfn, tk->tsk->comm, tk->tsk->pid);
372 373
				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
						 tk->tsk, PIDTYPE_PID);
374 375 376 377 378 379 380 381
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
382
			else if (kill_proc(tk, pfn, flags) < 0)
383
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
384
				       pfn, tk->tsk->comm, tk->tsk->pid);
385 386 387 388 389 390
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

391 392 393 394 395 396 397 398 399
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
400
{
401 402
	struct task_struct *t;

403 404 405 406 407 408 409 410 411
	for_each_thread(tsk, t) {
		if (t->flags & PF_MCE_PROCESS) {
			if (t->flags & PF_MCE_EARLY)
				return t;
		} else {
			if (sysctl_memory_failure_early_kill)
				return t;
		}
	}
412 413 414 415 416 417 418 419
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
 * specified) if the process is "early kill," and otherwise returns NULL.
420 421 422
 *
 * Note that the above is true for Action Optional case, but not for Action
 * Required case where SIGBUS should sent only to the current thread.
423 424 425 426
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
427
	if (!tsk->mm)
428
		return NULL;
429 430 431 432 433 434 435 436 437 438
	if (force_early) {
		/*
		 * Comparing ->mm here because current task might represent
		 * a subthread, while tsk always points to the main thread.
		 */
		if (tsk->mm == current->mm)
			return current;
		else
			return NULL;
	}
439
	return find_early_kill_thread(tsk);
440 441 442 443 444 445
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
446
				int force_early)
447 448 449 450
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
451
	pgoff_t pgoff;
452

453
	av = page_lock_anon_vma_read(page);
454
	if (av == NULL)	/* Not actually mapped anymore */
455 456
		return;

457
	pgoff = page_to_pgoff(page);
458
	read_lock(&tasklist_lock);
459
	for_each_process (tsk) {
460
		struct anon_vma_chain *vmac;
461
		struct task_struct *t = task_early_kill(tsk, force_early);
462

463
		if (!t)
464
			continue;
465 466
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
467
			vma = vmac->vma;
468 469
			if (!page_mapped_in_vma(page, vma))
				continue;
470
			if (vma->vm_mm == t->mm)
471
				add_to_kill(t, page, vma, to_kill);
472 473 474
		}
	}
	read_unlock(&tasklist_lock);
475
	page_unlock_anon_vma_read(av);
476 477 478 479 480 481
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
482
				int force_early)
483 484 485 486
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;
487
	pgoff_t pgoff;
488

489
	i_mmap_lock_read(mapping);
490
	read_lock(&tasklist_lock);
491
	pgoff = page_to_pgoff(page);
492
	for_each_process(tsk) {
493
		struct task_struct *t = task_early_kill(tsk, force_early);
494

495
		if (!t)
496
			continue;
497
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
498 499 500 501 502 503 504 505
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
506
			if (vma->vm_mm == t->mm)
507
				add_to_kill(t, page, vma, to_kill);
508 509 510
		}
	}
	read_unlock(&tasklist_lock);
511
	i_mmap_unlock_read(mapping);
512 513 514 515 516
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 */
517 518
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
519 520 521 522 523
{
	if (!page->mapping)
		return;

	if (PageAnon(page))
524
		collect_procs_anon(page, tokill, force_early);
525
	else
526
		collect_procs_file(page, tokill, force_early);
527 528 529
}

static const char *action_name[] = {
530 531 532 533
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
534 535 536
};

static const char * const action_page_types[] = {
537 538 539 540 541 542 543
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
544
	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
545 546 547 548 549 550 551 552 553 554 555 556
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
557
	[MF_MSG_DAX]			= "dax page",
558
	[MF_MSG_UNKNOWN]		= "unknown page",
559 560
};

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
576 577 578 579 580 581 582

		/*
		 * Poisoned page might never drop its ref count to 0 so we have
		 * to uncharge it manually from its memcg.
		 */
		mem_cgroup_uncharge(p);

583 584 585
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
586
		put_page(p);
587 588 589 590 591
		return 0;
	}
	return -EIO;
}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
static int truncate_error_page(struct page *p, unsigned long pfn,
				struct address_space *mapping)
{
	int ret = MF_FAILED;

	if (mapping->a_ops->error_remove_page) {
		int err = mapping->a_ops->error_remove_page(mapping, p);

		if (err != 0) {
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
				pfn, err);
		} else if (page_has_private(p) &&
			   !try_to_release_page(p, GFP_NOIO)) {
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
		} else {
			ret = MF_RECOVERED;
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
			ret = MF_RECOVERED;
		else
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
	}

	return ret;
}

625 626 627 628 629 630 631
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
632
	return MF_IGNORED;
633 634 635 636 637 638 639
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
640
	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
641
	return MF_FAILED;
642 643 644 645 646 647 648 649 650
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
	struct address_space *mapping;

651 652
	delete_from_lru_cache(p);

653 654 655 656 657
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
	if (PageAnon(p))
658
		return MF_RECOVERED;
659 660 661 662 663 664 665 666 667 668 669 670 671

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
672
		return MF_FAILED;
673 674 675 676 677 678 679
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
680
	return truncate_error_page(p, pfn, mapping);
681 682 683
}

/*
684
 * Dirty pagecache page
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
717
		 * and the page is dropped between then the error
718 719 720 721 722 723 724 725 726 727 728
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
729
		mapping_set_error(mapping, -EIO);
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

760
	if (!delete_from_lru_cache(p))
761
		return MF_DELAYED;
762
	else
763
		return MF_FAILED;
764 765 766 767 768
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
	delete_from_swap_cache(p);
769

770
	if (!delete_from_lru_cache(p))
771
		return MF_RECOVERED;
772
	else
773
		return MF_FAILED;
774 775 776 777 778
}

/*
 * Huge pages. Needs work.
 * Issues:
779 780
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
781 782 783
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
784
	int res = 0;
785
	struct page *hpage = compound_head(p);
786
	struct address_space *mapping;
787 788 789 790

	if (!PageHuge(hpage))
		return MF_DELAYED;

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
	mapping = page_mapping(hpage);
	if (mapping) {
		res = truncate_error_page(hpage, pfn, mapping);
	} else {
		unlock_page(hpage);
		/*
		 * migration entry prevents later access on error anonymous
		 * hugepage, so we can free and dissolve it into buddy to
		 * save healthy subpages.
		 */
		if (PageAnon(hpage))
			put_page(hpage);
		dissolve_free_huge_page(p);
		res = MF_RECOVERED;
		lock_page(hpage);
806
	}
807 808

	return res;
809 810 811 812 813 814 815 816 817
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
818
 * in its live cycle, so all accesses have to be extremely careful.
819 820 821 822 823 824
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
825
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
826 827 828 829 830 831 832 833 834 835
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
836
	enum mf_action_page_type type;
837 838
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
839
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
840 841 842 843
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
844 845 846 847 848 849

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
850
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
851

852
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
853

854 855
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
856

857 858
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
859

860 861
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
862

863 864
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
865 866 867 868

	/*
	 * Catchall entry: must be at end.
	 */
869
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
870 871
};

872 873 874 875 876 877 878 879 880
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef lru
#undef head
#undef slab
#undef reserved

881 882 883 884
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
885 886
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
887
{
888 889
	trace_memory_failure_event(pfn, type, result);

890
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
891
		pfn, action_page_types[type], action_name[result]);
892 893 894
}

static int page_action(struct page_state *ps, struct page *p,
895
			unsigned long pfn)
896 897
{
	int result;
898
	int count;
899 900

	result = ps->action(p, pfn);
901

902
	count = page_count(p) - 1;
903
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
904
		count--;
905
	if (count > 0) {
906
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
907
		       pfn, action_page_types[ps->type], count);
908
		result = MF_FAILED;
909
	}
910
	action_result(pfn, ps->type, result);
911 912 913 914 915 916

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

917
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
918 919
}

920 921 922 923 924 925 926 927 928 929 930
/**
 * get_hwpoison_page() - Get refcount for memory error handling:
 * @page:	raw error page (hit by memory error)
 *
 * Return: return 0 if failed to grab the refcount, otherwise true (some
 * non-zero value.)
 */
int get_hwpoison_page(struct page *page)
{
	struct page *head = compound_head(page);

931
	if (!PageHuge(head) && PageTransHuge(head)) {
932 933 934 935 936 937 938
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
939
			pr_err("Memory failure: %#lx: non anonymous thp\n",
940 941 942
				page_to_pfn(page));
			return 0;
		}
943 944
	}

945 946 947 948
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

949 950
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
951 952 953 954
		put_page(head);
	}

	return 0;
955 956 957
}
EXPORT_SYMBOL_GPL(get_hwpoison_page);

958 959 960 961
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
962
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
963
				  int flags, struct page **hpagep)
964
{
S
Shaohua Li 已提交
965
	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
966 967
	struct address_space *mapping;
	LIST_HEAD(tokill);
968
	bool unmap_success = true;
969
	int kill = 1, forcekill;
970
	struct page *hpage = *hpagep;
971
	bool mlocked = PageMlocked(hpage);
972

973 974 975 976 977
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
978
		return true;
979
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
980
		return true;
981 982 983 984 985

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
986
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
987
		return true;
W
Wu Fengguang 已提交
988

989
	if (PageKsm(p)) {
990
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
991
		return false;
992
	}
993 994

	if (PageSwapCache(p)) {
995 996
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
997 998 999 1000 1001 1002
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
1003 1004
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
1005
	 */
1006
	mapping = page_mapping(hpage);
1007
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1008
	    mapping_can_writeback(mapping)) {
1009 1010
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
1011 1012 1013
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
1014
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
1028
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	if (!PageHuge(hpage)) {
		unmap_success = try_to_unmap(hpage, ttu);
	} else {
		/*
		 * For hugetlb pages, try_to_unmap could potentially call
		 * huge_pmd_unshare.  Because of this, take semaphore in
		 * write mode here and set TTU_RMAP_LOCKED to indicate we
		 * have taken the lock at this higer level.
		 *
		 * Note that the call to hugetlb_page_mapping_lock_write
		 * is necessary even if mapping is already set.  It handles
		 * ugliness of potentially having to drop page lock to obtain
		 * i_mmap_rwsem.
		 */
		mapping = hugetlb_page_mapping_lock_write(hpage);

		if (mapping) {
			unmap_success = try_to_unmap(hpage,
						     ttu|TTU_RMAP_LOCKED);
			i_mmap_unlock_write(mapping);
		} else {
			pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n",
				pfn);
			unmap_success = false;
		}
	}
M
Minchan Kim 已提交
1056
	if (!unmap_success)
1057
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1058
		       pfn, page_mapcount(hpage));
1059

1060 1061 1062 1063 1064 1065 1066
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
		shake_page(hpage, 0);

1067 1068 1069 1070
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1071 1072
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1073 1074 1075 1076
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1077
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1078
	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
W
Wu Fengguang 已提交
1079

M
Minchan Kim 已提交
1080
	return unmap_success;
1081 1082
}

1083 1084
static int identify_page_state(unsigned long pfn, struct page *p,
				unsigned long page_flags)
1085 1086
{
	struct page_state *ps;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flags is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
			break;

	page_flags |= (p->flags & (1UL << PG_dirty));

	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	return page_action(ps, p, pfn);
}

1106
static int memory_failure_hugetlb(unsigned long pfn, int flags)
1107
{
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	struct page *p = pfn_to_page(pfn);
	struct page *head = compound_head(p);
	int res;
	unsigned long page_flags;

	if (TestSetPageHWPoison(head)) {
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
		       pfn);
		return 0;
	}

	num_poisoned_pages_inc();

	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
		/*
		 * Check "filter hit" and "race with other subpage."
		 */
		lock_page(head);
		if (PageHWPoison(head)) {
			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
			    || (p != head && TestSetPageHWPoison(head))) {
				num_poisoned_pages_dec();
				unlock_page(head);
				return 0;
			}
		}
		unlock_page(head);
		dissolve_free_huge_page(p);
		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
		return 0;
	}

	lock_page(head);
	page_flags = head->flags;

	if (!PageHWPoison(head)) {
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
		num_poisoned_pages_dec();
		unlock_page(head);
		put_hwpoison_page(head);
		return 0;
	}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	/*
	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
	 * simply disable it. In order to make it work properly, we need
	 * make sure that:
	 *  - conversion of a pud that maps an error hugetlb into hwpoison
	 *    entry properly works, and
	 *  - other mm code walking over page table is aware of pud-aligned
	 *    hwpoison entries.
	 */
	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1166
	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1167 1168 1169 1170 1171
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1172
	res = identify_page_state(pfn, p, page_flags);
1173 1174 1175 1176 1177
out:
	unlock_page(head);
	return res;
}

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
		struct dev_pagemap *pgmap)
{
	struct page *page = pfn_to_page(pfn);
	const bool unmap_success = true;
	unsigned long size = 0;
	struct to_kill *tk;
	LIST_HEAD(tokill);
	int rc = -EBUSY;
	loff_t start;
1188
	dax_entry_t cookie;
1189 1190 1191 1192 1193 1194 1195 1196

	/*
	 * Prevent the inode from being freed while we are interrogating
	 * the address_space, typically this would be handled by
	 * lock_page(), but dax pages do not use the page lock. This
	 * also prevents changes to the mapping of this pfn until
	 * poison signaling is complete.
	 */
1197 1198
	cookie = dax_lock_page(page);
	if (!cookie)
1199 1200 1201 1202 1203 1204 1205
		goto out;

	if (hwpoison_filter(page)) {
		rc = 0;
		goto unlock;
	}

1206
	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
		/*
		 * TODO: Handle HMM pages which may need coordination
		 * with device-side memory.
		 */
		goto unlock;
	}

	/*
	 * Use this flag as an indication that the dax page has been
	 * remapped UC to prevent speculative consumption of poison.
	 */
	SetPageHWPoison(page);

	/*
	 * Unlike System-RAM there is no possibility to swap in a
	 * different physical page at a given virtual address, so all
	 * userspace consumption of ZONE_DEVICE memory necessitates
	 * SIGBUS (i.e. MF_MUST_KILL)
	 */
	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);

	list_for_each_entry(tk, &tokill, nd)
		if (tk->size_shift)
			size = max(size, 1UL << tk->size_shift);
	if (size) {
		/*
		 * Unmap the largest mapping to avoid breaking up
		 * device-dax mappings which are constant size. The
		 * actual size of the mapping being torn down is
		 * communicated in siginfo, see kill_proc()
		 */
		start = (page->index << PAGE_SHIFT) & ~(size - 1);
		unmap_mapping_range(page->mapping, start, start + size, 0);
	}
	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
	rc = 0;
unlock:
1245
	dax_unlock_page(page, cookie);
1246 1247 1248 1249 1250 1251 1252
out:
	/* drop pgmap ref acquired in caller */
	put_dev_pagemap(pgmap);
	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
	return rc;
}

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
1270
int memory_failure(unsigned long pfn, int flags)
1271 1272
{
	struct page *p;
1273
	struct page *hpage;
1274
	struct page *orig_head;
1275
	struct dev_pagemap *pgmap;
1276
	int res;
1277
	unsigned long page_flags;
1278 1279

	if (!sysctl_memory_failure_recovery)
1280
		panic("Memory failure on page %lx", pfn);
1281

1282 1283 1284 1285 1286 1287 1288 1289
	p = pfn_to_online_page(pfn);
	if (!p) {
		if (pfn_valid(pfn)) {
			pgmap = get_dev_pagemap(pfn, NULL);
			if (pgmap)
				return memory_failure_dev_pagemap(pfn, flags,
								  pgmap);
		}
1290 1291
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1292
		return -ENXIO;
1293 1294
	}

1295
	if (PageHuge(p))
1296
		return memory_failure_hugetlb(pfn, flags);
1297
	if (TestSetPageHWPoison(p)) {
1298 1299
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1300 1301 1302
		return 0;
	}

1303
	orig_head = hpage = compound_head(p);
1304
	num_poisoned_pages_inc();
1305 1306 1307 1308 1309

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1310
	 * 2) it's part of a non-compound high order page.
1311 1312 1313 1314
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
1315
	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1316
	 */
1317
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1318
		if (is_free_buddy_page(p)) {
1319
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1320 1321
			return 0;
		} else {
1322
			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1323 1324
			return -EBUSY;
		}
1325 1326
	}

1327
	if (PageTransHuge(hpage)) {
1328 1329 1330 1331
		lock_page(p);
		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
			unlock_page(p);
			if (!PageAnon(p))
1332 1333
				pr_err("Memory failure: %#lx: non anonymous thp\n",
					pfn);
1334
			else
1335 1336
				pr_err("Memory failure: %#lx: thp split failed\n",
					pfn);
1337
			if (TestClearPageHWPoison(p))
1338
				num_poisoned_pages_dec();
1339
			put_hwpoison_page(p);
1340 1341
			return -EBUSY;
		}
1342
		unlock_page(p);
1343 1344 1345 1346
		VM_BUG_ON_PAGE(!page_count(p), p);
		hpage = compound_head(p);
	}

1347 1348 1349
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1350
	 * - to avoid races with __SetPageLocked()
1351 1352 1353 1354
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1355 1356 1357 1358 1359 1360 1361 1362
	shake_page(p, 0);
	/* shake_page could have turned it free. */
	if (!PageLRU(p) && is_free_buddy_page(p)) {
		if (flags & MF_COUNT_INCREASED)
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
		else
			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
		return 0;
1363 1364
	}

1365
	lock_page(p);
W
Wu Fengguang 已提交
1366

1367 1368 1369 1370
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1371
	if (PageCompound(p) && compound_head(p) != orig_head) {
1372
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1373 1374 1375 1376
		res = -EBUSY;
		goto out;
	}

1377 1378 1379 1380 1381 1382 1383
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
1384 1385 1386 1387
	if (PageHuge(p))
		page_flags = hpage->flags;
	else
		page_flags = p->flags;
1388

W
Wu Fengguang 已提交
1389 1390 1391 1392
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1393
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1394
		num_poisoned_pages_dec();
1395 1396
		unlock_page(p);
		put_hwpoison_page(p);
1397
		return 0;
W
Wu Fengguang 已提交
1398
	}
W
Wu Fengguang 已提交
1399 1400
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1401
			num_poisoned_pages_dec();
1402 1403
		unlock_page(p);
		put_hwpoison_page(p);
W
Wu Fengguang 已提交
1404 1405
		return 0;
	}
W
Wu Fengguang 已提交
1406

1407
	if (!PageTransTail(p) && !PageLRU(p))
1408 1409
		goto identify_page_state;

1410 1411 1412 1413
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1414 1415 1416 1417
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1418
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1419 1420 1421
	 *
	 * When the raw error page is thp tail page, hpage points to the raw
	 * page after thp split.
1422
	 */
1423
	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1424
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1425 1426 1427
		res = -EBUSY;
		goto out;
	}
1428 1429 1430 1431

	/*
	 * Torn down by someone else?
	 */
1432
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1433
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1434
		res = -EBUSY;
1435 1436 1437
		goto out;
	}

1438
identify_page_state:
1439
	res = identify_page_state(pfn, p, page_flags);
1440
out:
1441
	unlock_page(p);
1442 1443
	return res;
}
1444
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1445

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
1479
void memory_failure_queue(unsigned long pfn, int flags)
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1490
	if (kfifo_put(&mf_cpu->fifo, entry))
1491 1492
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1493
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1507
	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1508 1509 1510 1511 1512 1513
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1514
		if (entry.flags & MF_SOFT_OFFLINE)
1515
			soft_offline_page(entry.pfn, entry.flags);
1516
		else
1517
			memory_failure(entry.pfn, entry.flags);
1518 1519 1520
	}
}

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
/*
 * Process memory_failure work queued on the specified CPU.
 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
 */
void memory_failure_queue_kick(int cpu)
{
	struct memory_failure_cpu *mf_cpu;

	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
	cancel_work_sync(&mf_cpu->work);
	memory_failure_work_func(&mf_cpu->work);
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1550 1551 1552 1553 1554 1555
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1573 1574
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1575 1576 1577 1578 1579 1580 1581 1582

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1583
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1584
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1585 1586 1587
		return 0;
	}

1588
	if (page_count(page) > 1) {
1589
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1590
				 pfn, &unpoison_rs);
1591 1592 1593 1594
		return 0;
	}

	if (page_mapped(page)) {
1595
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1596
				 pfn, &unpoison_rs);
1597 1598 1599 1600
		return 0;
	}

	if (page_mapping(page)) {
1601
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1602
				 pfn, &unpoison_rs);
1603 1604 1605
		return 0;
	}

1606 1607 1608 1609 1610
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1611
	if (!PageHuge(page) && PageTransHuge(page)) {
1612
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1613
				 pfn, &unpoison_rs);
1614
		return 0;
1615 1616
	}

1617
	if (!get_hwpoison_page(p)) {
W
Wu Fengguang 已提交
1618
		if (TestClearPageHWPoison(p))
1619
			num_poisoned_pages_dec();
1620
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1621
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1622 1623 1624
		return 0;
	}

J
Jens Axboe 已提交
1625
	lock_page(page);
W
Wu Fengguang 已提交
1626 1627 1628 1629 1630 1631
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1632
	if (TestClearPageHWPoison(page)) {
1633
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1634
				 pfn, &unpoison_rs);
1635
		num_poisoned_pages_dec();
W
Wu Fengguang 已提交
1636 1637 1638 1639
		freeit = 1;
	}
	unlock_page(page);

1640
	put_hwpoison_page(page);
1641
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1642
		put_hwpoison_page(page);
W
Wu Fengguang 已提交
1643 1644 1645 1646

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1647

1648
static struct page *new_page(struct page *p, unsigned long private)
1649
{
1650 1651 1652 1653
	struct migration_target_control mtc = {
		.nid = page_to_nid(p),
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
	};
1654

1655
	return alloc_migration_target(p, (unsigned long)&mtc);
1656 1657 1658 1659 1660 1661 1662 1663
}

/*
 * Safely get reference count of an arbitrary page.
 * Returns 0 for a free page, -EIO for a zero refcount page
 * that is not free, and 1 for any other page type.
 * For 1 the page is returned with increased page count, otherwise not.
 */
1664
static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1665 1666 1667 1668 1669 1670
{
	int ret;

	if (flags & MF_COUNT_INCREASED)
		return 1;

1671 1672 1673 1674
	/*
	 * When the target page is a free hugepage, just remove it
	 * from free hugepage list.
	 */
1675
	if (!get_hwpoison_page(p)) {
1676
		if (PageHuge(p)) {
1677
			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1678
			ret = 0;
1679
		} else if (is_free_buddy_page(p)) {
1680
			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1681 1682
			ret = 0;
		} else {
1683 1684
			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
				__func__, pfn, p->flags);
1685 1686 1687 1688 1689 1690 1691 1692 1693
			ret = -EIO;
		}
	} else {
		/* Not a free page */
		ret = 1;
	}
	return ret;
}

1694 1695 1696 1697
static int get_any_page(struct page *page, unsigned long pfn, int flags)
{
	int ret = __get_any_page(page, pfn, flags);

1698 1699
	if (ret == 1 && !PageHuge(page) &&
	    !PageLRU(page) && !__PageMovable(page)) {
1700 1701 1702
		/*
		 * Try to free it.
		 */
1703
		put_hwpoison_page(page);
1704 1705 1706 1707 1708 1709
		shake_page(page, 1);

		/*
		 * Did it turn free?
		 */
		ret = __get_any_page(page, pfn, 0);
1710
		if (ret == 1 && !PageLRU(page)) {
1711
			/* Drop page reference which is from __get_any_page() */
1712
			put_hwpoison_page(page);
1713 1714
			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
				pfn, page->flags, &page->flags);
1715 1716 1717 1718 1719 1720
			return -EIO;
		}
	}
	return ret;
}

1721 1722 1723 1724 1725
static int soft_offline_huge_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
	struct page *hpage = compound_head(page);
1726
	LIST_HEAD(pagelist);
1727

1728 1729 1730 1731 1732
	/*
	 * This double-check of PageHWPoison is to avoid the race with
	 * memory_failure(). See also comment in __soft_offline_page().
	 */
	lock_page(hpage);
1733
	if (PageHWPoison(hpage)) {
1734
		unlock_page(hpage);
1735
		put_hwpoison_page(hpage);
1736
		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1737
		return -EBUSY;
1738
	}
1739
	unlock_page(hpage);
1740

1741
	ret = isolate_huge_page(hpage, &pagelist);
1742 1743 1744 1745
	/*
	 * get_any_page() and isolate_huge_page() takes a refcount each,
	 * so need to drop one here.
	 */
1746
	put_hwpoison_page(hpage);
1747
	if (!ret) {
1748 1749 1750 1751
		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
		return -EBUSY;
	}

1752
	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1753
				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1754
	if (ret) {
1755
		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1756
			pfn, ret, page->flags, &page->flags);
1757 1758
		if (!list_empty(&pagelist))
			putback_movable_pages(&pagelist);
1759 1760
		if (ret > 0)
			ret = -EIO;
1761
	} else {
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
		/*
		 * We set PG_hwpoison only when the migration source hugepage
		 * was successfully dissolved, because otherwise hwpoisoned
		 * hugepage remains on free hugepage list, then userspace will
		 * find it as SIGBUS by allocation failure. That's not expected
		 * in soft-offlining.
		 */
		ret = dissolve_free_huge_page(page);
		if (!ret) {
			if (set_hwpoison_free_buddy_page(page))
				num_poisoned_pages_inc();
1773 1774
			else
				ret = -EBUSY;
1775
		}
1776 1777 1778 1779
	}
	return ret;
}

1780 1781 1782 1783
static int __soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
1784 1785

	/*
1786 1787 1788 1789
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
1790
	 */
1791 1792
	lock_page(page);
	wait_on_page_writeback(page);
1793 1794
	if (PageHWPoison(page)) {
		unlock_page(page);
1795
		put_hwpoison_page(page);
1796 1797 1798
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
		return -EBUSY;
	}
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	/*
	 * Try to invalidate first. This should work for
	 * non dirty unmapped page cache pages.
	 */
	ret = invalidate_inode_page(page);
	unlock_page(page);
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
	if (ret == 1) {
1810
		put_hwpoison_page(page);
1811
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1812
		SetPageHWPoison(page);
1813
		num_poisoned_pages_inc();
1814
		return 0;
1815 1816 1817 1818 1819 1820 1821
	}

	/*
	 * Simple invalidation didn't work.
	 * Try to migrate to a new page instead. migrate.c
	 * handles a large number of cases for us.
	 */
1822 1823 1824 1825
	if (PageLRU(page))
		ret = isolate_lru_page(page);
	else
		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1826 1827 1828 1829
	/*
	 * Drop page reference which is came from get_any_page()
	 * successful isolate_lru_page() already took another one.
	 */
1830
	put_hwpoison_page(page);
1831 1832
	if (!ret) {
		LIST_HEAD(pagelist);
1833 1834 1835 1836 1837 1838 1839
		/*
		 * After isolated lru page, the PageLRU will be cleared,
		 * so use !__PageMovable instead for LRU page's mapping
		 * cannot have PAGE_MAPPING_MOVABLE.
		 */
		if (!__PageMovable(page))
			inc_node_page_state(page, NR_ISOLATED_ANON +
H
Huang Ying 已提交
1840
						page_is_file_lru(page));
1841
		list_add(&page->lru, &pagelist);
1842
		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1843
					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1844
		if (ret) {
1845 1846
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
1847

1848 1849
			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
				pfn, ret, page->flags, &page->flags);
1850 1851 1852 1853
			if (ret > 0)
				ret = -EIO;
		}
	} else {
1854 1855
		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
			pfn, ret, page_count(page), page->flags, &page->flags);
1856 1857 1858
	}
	return ret;
}
1859

1860 1861 1862
static int soft_offline_in_use_page(struct page *page, int flags)
{
	int ret;
1863
	int mt;
1864 1865 1866
	struct page *hpage = compound_head(page);

	if (!PageHuge(page) && PageTransHuge(hpage)) {
1867 1868 1869 1870
		lock_page(page);
		if (!PageAnon(page) || unlikely(split_huge_page(page))) {
			unlock_page(page);
			if (!PageAnon(page))
1871 1872 1873
				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
			else
				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1874
			put_hwpoison_page(page);
1875 1876
			return -EBUSY;
		}
1877
		unlock_page(page);
1878 1879
	}

1880 1881 1882 1883 1884 1885 1886 1887 1888
	/*
	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
	 * to free list immediately (not via pcplist) when released after
	 * successful page migration. Otherwise we can't guarantee that the
	 * page is really free after put_page() returns, so
	 * set_hwpoison_free_buddy_page() highly likely fails.
	 */
	mt = get_pageblock_migratetype(page);
	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1889 1890 1891 1892
	if (PageHuge(page))
		ret = soft_offline_huge_page(page, flags);
	else
		ret = __soft_offline_page(page, flags);
1893
	set_pageblock_migratetype(page, mt);
1894 1895 1896
	return ret;
}

1897
static int soft_offline_free_page(struct page *page)
1898
{
1899
	int rc = dissolve_free_huge_page(page);
1900

1901 1902 1903 1904 1905 1906 1907
	if (!rc) {
		if (set_hwpoison_free_buddy_page(page))
			num_poisoned_pages_inc();
		else
			rc = -EBUSY;
	}
	return rc;
1908 1909
}

1910 1911
/**
 * soft_offline_page - Soft offline a page.
1912
 * @pfn: pfn to soft-offline
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
1932
int soft_offline_page(unsigned long pfn, int flags)
1933 1934
{
	int ret;
1935
	struct page *page;
1936

1937 1938 1939 1940 1941
	if (!pfn_valid(pfn))
		return -ENXIO;
	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
	page = pfn_to_online_page(pfn);
	if (!page)
1942 1943
		return -EIO;

1944 1945
	if (PageHWPoison(page)) {
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1946
		if (flags & MF_COUNT_INCREASED)
1947
			put_hwpoison_page(page);
1948 1949 1950
		return -EBUSY;
	}

1951
	get_online_mems();
1952
	ret = get_any_page(page, pfn, flags);
1953
	put_online_mems();
1954

1955 1956 1957
	if (ret > 0)
		ret = soft_offline_in_use_page(page, flags);
	else if (ret == 0)
1958
		ret = soft_offline_free_page(page);
1959

1960 1961
	return ret;
}