memory-failure.c 51.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * High level machine check handler. Handles pages reported by the
7
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8
 * failure.
9 10 11
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
12 13
 *
 * Handles page cache pages in various states.	The tricky part
14 15 16 17 18 19
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
20 21 22 23 24 25 26 27
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
28 29 30 31 32 33 34
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
35 36 37 38
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
39
#include <linux/kernel-page-flags.h>
40
#include <linux/sched/signal.h>
41
#include <linux/sched/task.h>
H
Hugh Dickins 已提交
42
#include <linux/ksm.h>
43
#include <linux/rmap.h>
44
#include <linux/export.h>
45 46 47
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
48 49
#include <linux/migrate.h>
#include <linux/suspend.h>
50
#include <linux/slab.h>
51
#include <linux/swapops.h>
52
#include <linux/hugetlb.h>
53
#include <linux/memory_hotplug.h>
54
#include <linux/mm_inline.h>
55
#include <linux/memremap.h>
56
#include <linux/kfifo.h>
57
#include <linux/ratelimit.h>
58
#include <linux/page-isolation.h>
59
#include "internal.h"
60
#include "ras/ras_event.h"
61 62 63 64 65

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

66
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67

68 69
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

70
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
71 72
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
73 74
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
75
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
76 77
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
78 79
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
80 81 82 83 84 85 86 87 88 89 90

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
91
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
111 112 113 114 115 116 117 118 119 120 121 122
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
123 124 125 126 127 128 129 130 131 132
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
133
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
134 135 136 137 138 139 140
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

141
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
142 143 144 145 146 147 148 149
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
150 151
int hwpoison_filter(struct page *p)
{
152 153 154
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
155 156 157
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
158 159 160
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
161 162 163
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
164 165
	return 0;
}
166 167 168 169 170 171 172
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
173 174
EXPORT_SYMBOL_GPL(hwpoison_filter);

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
	short size_shift;
	char addr_valid;
};

205
/*
206 207 208
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
209
 */
210
static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
211
{
212 213
	struct task_struct *t = tk->tsk;
	short addr_lsb = tk->size_shift;
214 215
	int ret;

216
	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
217
		pfn, t->comm, t->pid);
218

219
	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
220
		ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
221
				       addr_lsb);
222 223 224 225 226 227 228
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
229
		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
230
				      addr_lsb, t);  /* synchronous? */
231
	}
232
	if (ret < 0)
233
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
234
			t->comm, t->pid, ret);
235 236 237
	return ret;
}

238 239 240 241
/*
 * When a unknown page type is encountered drain as many buffers as possible
 * in the hope to turn the page into a LRU or free page, which we can handle.
 */
242
void shake_page(struct page *p, int access)
243
{
244 245 246
	if (PageHuge(p))
		return;

247 248 249 250
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p))
			return;
251
		drain_all_pages(page_zone(p));
252 253 254
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
255

256
	/*
257 258
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
259
	 */
260 261
	if (access)
		drop_slab_node(page_to_nid(p));
262 263 264
}
EXPORT_SYMBOL_GPL(shake_page);

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
static unsigned long dev_pagemap_mapping_shift(struct page *page,
		struct vm_area_struct *vma)
{
	unsigned long address = vma_address(page, vma);
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = pgd_offset(vma->vm_mm, address);
	if (!pgd_present(*pgd))
		return 0;
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;
	pud = pud_offset(p4d, address);
	if (!pud_present(*pud))
		return 0;
	if (pud_devmap(*pud))
		return PUD_SHIFT;
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;
	if (pmd_devmap(*pmd))
		return PMD_SHIFT;
	pte = pte_offset_map(pmd, address);
	if (!pte_present(*pte))
		return 0;
	if (pte_devmap(*pte))
		return PAGE_SHIFT;
	return 0;
}
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 * TBD would GFP_NOIO be enough?
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
		       struct list_head *to_kill,
		       struct to_kill **tkc)
{
	struct to_kill *tk;

	if (*tkc) {
		tk = *tkc;
		*tkc = NULL;
	} else {
		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
		if (!tk) {
322
			pr_err("Memory failure: Out of memory while machine check handling\n");
323 324 325 326 327
			return;
		}
	}
	tk->addr = page_address_in_vma(p, vma);
	tk->addr_valid = 1;
328 329 330 331
	if (is_zone_device_page(p))
		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
	else
		tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT;
332 333 334 335 336 337 338

	/*
	 * In theory we don't have to kill when the page was
	 * munmaped. But it could be also a mremap. Since that's
	 * likely very rare kill anyways just out of paranoia, but use
	 * a SIGKILL because the error is not contained anymore.
	 */
339
	if (tk->addr == -EFAULT || tk->size_shift == 0) {
340
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
			page_to_pfn(p), tsk->comm);
		tk->addr_valid = 0;
	}
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
357 358
static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
		unsigned long pfn, int flags)
359 360 361 362
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
363
		if (forcekill) {
364
			/*
365
			 * In case something went wrong with munmapping
366 367 368 369
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
			if (fail || tk->addr_valid == 0) {
370
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
371
				       pfn, tk->tsk->comm, tk->tsk->pid);
372 373
				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
						 tk->tsk, PIDTYPE_PID);
374 375 376 377 378 379 380 381
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
382
			else if (kill_proc(tk, pfn, flags) < 0)
383
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
384
				       pfn, tk->tsk->comm, tk->tsk->pid);
385 386 387 388 389 390
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

391 392 393 394 395 396 397 398 399
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
400
{
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	struct task_struct *t;

	for_each_thread(tsk, t)
		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
			return t;
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
 * specified) if the process is "early kill," and otherwise returns NULL.
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
	struct task_struct *t;
419
	if (!tsk->mm)
420
		return NULL;
421
	if (force_early)
422 423 424 425 426 427 428
		return tsk;
	t = find_early_kill_thread(tsk);
	if (t)
		return t;
	if (sysctl_memory_failure_early_kill)
		return tsk;
	return NULL;
429 430 431 432 433 434
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
435
			      struct to_kill **tkc, int force_early)
436 437 438 439
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
440
	pgoff_t pgoff;
441

442
	av = page_lock_anon_vma_read(page);
443
	if (av == NULL)	/* Not actually mapped anymore */
444 445
		return;

446
	pgoff = page_to_pgoff(page);
447
	read_lock(&tasklist_lock);
448
	for_each_process (tsk) {
449
		struct anon_vma_chain *vmac;
450
		struct task_struct *t = task_early_kill(tsk, force_early);
451

452
		if (!t)
453
			continue;
454 455
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
456
			vma = vmac->vma;
457 458
			if (!page_mapped_in_vma(page, vma))
				continue;
459 460
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
461 462 463
		}
	}
	read_unlock(&tasklist_lock);
464
	page_unlock_anon_vma_read(av);
465 466 467 468 469 470
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
471
			      struct to_kill **tkc, int force_early)
472 473 474 475 476
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;

477
	i_mmap_lock_read(mapping);
478
	read_lock(&tasklist_lock);
479
	for_each_process(tsk) {
480
		pgoff_t pgoff = page_to_pgoff(page);
481
		struct task_struct *t = task_early_kill(tsk, force_early);
482

483
		if (!t)
484
			continue;
485
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
486 487 488 489 490 491 492 493
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
494 495
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
496 497 498
		}
	}
	read_unlock(&tasklist_lock);
499
	i_mmap_unlock_read(mapping);
500 501 502 503 504 505 506 507
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 * This is done in two steps for locking reasons.
 * First preallocate one tokill structure outside the spin locks,
 * so that we can kill at least one process reasonably reliable.
 */
508 509
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
510 511 512 513 514 515 516 517 518 519
{
	struct to_kill *tk;

	if (!page->mapping)
		return;

	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
	if (!tk)
		return;
	if (PageAnon(page))
520
		collect_procs_anon(page, tokill, &tk, force_early);
521
	else
522
		collect_procs_file(page, tokill, &tk, force_early);
523 524 525 526
	kfree(tk);
}

static const char *action_name[] = {
527 528 529 530
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
531 532 533
};

static const char * const action_page_types[] = {
534 535 536 537 538 539 540
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
541
	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
542 543 544 545 546 547 548 549 550 551 552 553
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
554
	[MF_MSG_DAX]			= "dax page",
555
	[MF_MSG_UNKNOWN]		= "unknown page",
556 557
};

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
573 574 575 576 577 578 579

		/*
		 * Poisoned page might never drop its ref count to 0 so we have
		 * to uncharge it manually from its memcg.
		 */
		mem_cgroup_uncharge(p);

580 581 582
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
583
		put_page(p);
584 585 586 587 588
		return 0;
	}
	return -EIO;
}

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
static int truncate_error_page(struct page *p, unsigned long pfn,
				struct address_space *mapping)
{
	int ret = MF_FAILED;

	if (mapping->a_ops->error_remove_page) {
		int err = mapping->a_ops->error_remove_page(mapping, p);

		if (err != 0) {
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
				pfn, err);
		} else if (page_has_private(p) &&
			   !try_to_release_page(p, GFP_NOIO)) {
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
		} else {
			ret = MF_RECOVERED;
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
			ret = MF_RECOVERED;
		else
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
	}

	return ret;
}

622 623 624 625 626 627 628
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
629
	return MF_IGNORED;
630 631 632 633 634 635 636
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
637
	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
638
	return MF_FAILED;
639 640 641 642 643 644 645 646 647
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
	struct address_space *mapping;

648 649
	delete_from_lru_cache(p);

650 651 652 653 654
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
	if (PageAnon(p))
655
		return MF_RECOVERED;
656 657 658 659 660 661 662 663 664 665 666 667 668

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
669
		return MF_FAILED;
670 671 672 673 674 675 676
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
677
	return truncate_error_page(p, pfn, mapping);
678 679 680
}

/*
681
 * Dirty pagecache page
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
714
		 * and the page is dropped between then the error
715 716 717 718 719 720 721 722 723 724 725
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
726
		mapping_set_error(mapping, -EIO);
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

757
	if (!delete_from_lru_cache(p))
758
		return MF_DELAYED;
759
	else
760
		return MF_FAILED;
761 762 763 764 765
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
	delete_from_swap_cache(p);
766

767
	if (!delete_from_lru_cache(p))
768
		return MF_RECOVERED;
769
	else
770
		return MF_FAILED;
771 772 773 774 775
}

/*
 * Huge pages. Needs work.
 * Issues:
776 777
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
778 779 780
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
781
	int res = 0;
782
	struct page *hpage = compound_head(p);
783
	struct address_space *mapping;
784 785 786 787

	if (!PageHuge(hpage))
		return MF_DELAYED;

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
	mapping = page_mapping(hpage);
	if (mapping) {
		res = truncate_error_page(hpage, pfn, mapping);
	} else {
		unlock_page(hpage);
		/*
		 * migration entry prevents later access on error anonymous
		 * hugepage, so we can free and dissolve it into buddy to
		 * save healthy subpages.
		 */
		if (PageAnon(hpage))
			put_page(hpage);
		dissolve_free_huge_page(p);
		res = MF_RECOVERED;
		lock_page(hpage);
803
	}
804 805

	return res;
806 807 808 809 810 811 812 813 814
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
815
 * in its live cycle, so all accesses have to be extremely careful.
816 817 818 819 820 821
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
822
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
823 824 825 826 827 828 829 830 831 832 833
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define writeback	(1UL << PG_writeback)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
834
	enum mf_action_page_type type;
835 836
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
837
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
838 839 840 841
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
842 843 844 845 846 847

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
848
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
849

850
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
851

852 853
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
854

855 856
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
857

858 859
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
860

861 862
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
863 864 865 866

	/*
	 * Catchall entry: must be at end.
	 */
867
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
868 869
};

870 871 872 873 874 875 876 877 878 879
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef writeback
#undef lru
#undef head
#undef slab
#undef reserved

880 881 882 883
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
884 885
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
886
{
887 888
	trace_memory_failure_event(pfn, type, result);

889
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
890
		pfn, action_page_types[type], action_name[result]);
891 892 893
}

static int page_action(struct page_state *ps, struct page *p,
894
			unsigned long pfn)
895 896
{
	int result;
897
	int count;
898 899

	result = ps->action(p, pfn);
900

901
	count = page_count(p) - 1;
902
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
903
		count--;
904
	if (count > 0) {
905
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
906
		       pfn, action_page_types[ps->type], count);
907
		result = MF_FAILED;
908
	}
909
	action_result(pfn, ps->type, result);
910 911 912 913 914 915

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

916
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
917 918
}

919 920 921 922 923 924 925 926 927 928 929
/**
 * get_hwpoison_page() - Get refcount for memory error handling:
 * @page:	raw error page (hit by memory error)
 *
 * Return: return 0 if failed to grab the refcount, otherwise true (some
 * non-zero value.)
 */
int get_hwpoison_page(struct page *page)
{
	struct page *head = compound_head(page);

930
	if (!PageHuge(head) && PageTransHuge(head)) {
931 932 933 934 935 936 937
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
938
			pr_err("Memory failure: %#lx: non anonymous thp\n",
939 940 941
				page_to_pfn(page));
			return 0;
		}
942 943
	}

944 945 946 947
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

948 949
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
950 951 952 953
		put_page(head);
	}

	return 0;
954 955 956
}
EXPORT_SYMBOL_GPL(get_hwpoison_page);

957 958 959 960
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
961
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
962
				  int flags, struct page **hpagep)
963
{
S
Shaohua Li 已提交
964
	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
965 966
	struct address_space *mapping;
	LIST_HEAD(tokill);
967
	bool unmap_success;
968
	int kill = 1, forcekill;
969
	struct page *hpage = *hpagep;
970
	bool mlocked = PageMlocked(hpage);
971

972 973 974 975 976
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
977
		return true;
978
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
979
		return true;
980 981 982 983 984

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
985
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
986
		return true;
W
Wu Fengguang 已提交
987

988
	if (PageKsm(p)) {
989
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
990
		return false;
991
	}
992 993

	if (PageSwapCache(p)) {
994 995
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
996 997 998 999 1000 1001
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
1002 1003
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
1004
	 */
1005
	mapping = page_mapping(hpage);
1006
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1007 1008 1009
	    mapping_cap_writeback_dirty(mapping)) {
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
1010 1011 1012
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
1013
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
1027
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1028

1029
	unmap_success = try_to_unmap(hpage, ttu);
M
Minchan Kim 已提交
1030
	if (!unmap_success)
1031
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1032
		       pfn, page_mapcount(hpage));
1033

1034 1035 1036 1037 1038 1039 1040
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
		shake_page(hpage, 0);

1041 1042 1043 1044
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1045 1046
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1047 1048 1049 1050
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1051
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1052
	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
W
Wu Fengguang 已提交
1053

M
Minchan Kim 已提交
1054
	return unmap_success;
1055 1056
}

1057 1058
static int identify_page_state(unsigned long pfn, struct page *p,
				unsigned long page_flags)
1059 1060
{
	struct page_state *ps;
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flags is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
			break;

	page_flags |= (p->flags & (1UL << PG_dirty));

	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	return page_action(ps, p, pfn);
}

1080
static int memory_failure_hugetlb(unsigned long pfn, int flags)
1081
{
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	struct page *p = pfn_to_page(pfn);
	struct page *head = compound_head(p);
	int res;
	unsigned long page_flags;

	if (TestSetPageHWPoison(head)) {
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
		       pfn);
		return 0;
	}

	num_poisoned_pages_inc();

	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
		/*
		 * Check "filter hit" and "race with other subpage."
		 */
		lock_page(head);
		if (PageHWPoison(head)) {
			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
			    || (p != head && TestSetPageHWPoison(head))) {
				num_poisoned_pages_dec();
				unlock_page(head);
				return 0;
			}
		}
		unlock_page(head);
		dissolve_free_huge_page(p);
		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
		return 0;
	}

	lock_page(head);
	page_flags = head->flags;

	if (!PageHWPoison(head)) {
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
		num_poisoned_pages_dec();
		unlock_page(head);
		put_hwpoison_page(head);
		return 0;
	}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	/*
	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
	 * simply disable it. In order to make it work properly, we need
	 * make sure that:
	 *  - conversion of a pud that maps an error hugetlb into hwpoison
	 *    entry properly works, and
	 *  - other mm code walking over page table is aware of pud-aligned
	 *    hwpoison entries.
	 */
	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1140
	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1141 1142 1143 1144 1145
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1146
	res = identify_page_state(pfn, p, page_flags);
1147 1148 1149 1150 1151
out:
	unlock_page(head);
	return res;
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
		struct dev_pagemap *pgmap)
{
	struct page *page = pfn_to_page(pfn);
	const bool unmap_success = true;
	unsigned long size = 0;
	struct to_kill *tk;
	LIST_HEAD(tokill);
	int rc = -EBUSY;
	loff_t start;
1162
	dax_entry_t cookie;
1163 1164 1165 1166 1167 1168 1169 1170

	/*
	 * Prevent the inode from being freed while we are interrogating
	 * the address_space, typically this would be handled by
	 * lock_page(), but dax pages do not use the page lock. This
	 * also prevents changes to the mapping of this pfn until
	 * poison signaling is complete.
	 */
1171 1172
	cookie = dax_lock_page(page);
	if (!cookie)
1173 1174 1175 1176 1177 1178 1179
		goto out;

	if (hwpoison_filter(page)) {
		rc = 0;
		goto unlock;
	}

1180
	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
		/*
		 * TODO: Handle HMM pages which may need coordination
		 * with device-side memory.
		 */
		goto unlock;
	}

	/*
	 * Use this flag as an indication that the dax page has been
	 * remapped UC to prevent speculative consumption of poison.
	 */
	SetPageHWPoison(page);

	/*
	 * Unlike System-RAM there is no possibility to swap in a
	 * different physical page at a given virtual address, so all
	 * userspace consumption of ZONE_DEVICE memory necessitates
	 * SIGBUS (i.e. MF_MUST_KILL)
	 */
	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);

	list_for_each_entry(tk, &tokill, nd)
		if (tk->size_shift)
			size = max(size, 1UL << tk->size_shift);
	if (size) {
		/*
		 * Unmap the largest mapping to avoid breaking up
		 * device-dax mappings which are constant size. The
		 * actual size of the mapping being torn down is
		 * communicated in siginfo, see kill_proc()
		 */
		start = (page->index << PAGE_SHIFT) & ~(size - 1);
		unmap_mapping_range(page->mapping, start, start + size, 0);
	}
	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
	rc = 0;
unlock:
1219
	dax_unlock_page(page, cookie);
1220 1221 1222 1223 1224 1225 1226
out:
	/* drop pgmap ref acquired in caller */
	put_dev_pagemap(pgmap);
	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
	return rc;
}

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
1244
int memory_failure(unsigned long pfn, int flags)
1245 1246
{
	struct page *p;
1247
	struct page *hpage;
1248
	struct page *orig_head;
1249
	struct dev_pagemap *pgmap;
1250
	int res;
1251
	unsigned long page_flags;
1252 1253

	if (!sysctl_memory_failure_recovery)
1254
		panic("Memory failure on page %lx", pfn);
1255 1256

	if (!pfn_valid(pfn)) {
1257 1258
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1259
		return -ENXIO;
1260 1261
	}

1262 1263 1264 1265
	pgmap = get_dev_pagemap(pfn, NULL);
	if (pgmap)
		return memory_failure_dev_pagemap(pfn, flags, pgmap);

1266
	p = pfn_to_page(pfn);
1267
	if (PageHuge(p))
1268
		return memory_failure_hugetlb(pfn, flags);
1269
	if (TestSetPageHWPoison(p)) {
1270 1271
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1272 1273 1274
		return 0;
	}

1275
	orig_head = hpage = compound_head(p);
1276
	num_poisoned_pages_inc();
1277 1278 1279 1280 1281

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1282
	 * 2) it's part of a non-compound high order page.
1283 1284 1285 1286
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
1287
	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1288
	 */
1289
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1290
		if (is_free_buddy_page(p)) {
1291
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1292 1293
			return 0;
		} else {
1294
			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1295 1296
			return -EBUSY;
		}
1297 1298
	}

1299
	if (PageTransHuge(hpage)) {
1300 1301 1302 1303
		lock_page(p);
		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
			unlock_page(p);
			if (!PageAnon(p))
1304 1305
				pr_err("Memory failure: %#lx: non anonymous thp\n",
					pfn);
1306
			else
1307 1308
				pr_err("Memory failure: %#lx: thp split failed\n",
					pfn);
1309
			if (TestClearPageHWPoison(p))
1310
				num_poisoned_pages_dec();
1311
			put_hwpoison_page(p);
1312 1313
			return -EBUSY;
		}
1314
		unlock_page(p);
1315 1316 1317 1318
		VM_BUG_ON_PAGE(!page_count(p), p);
		hpage = compound_head(p);
	}

1319 1320 1321
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1322
	 * - to avoid races with __SetPageLocked()
1323 1324 1325 1326
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1327 1328 1329 1330 1331 1332 1333 1334
	shake_page(p, 0);
	/* shake_page could have turned it free. */
	if (!PageLRU(p) && is_free_buddy_page(p)) {
		if (flags & MF_COUNT_INCREASED)
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
		else
			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
		return 0;
1335 1336
	}

1337
	lock_page(p);
W
Wu Fengguang 已提交
1338

1339 1340 1341 1342
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1343
	if (PageCompound(p) && compound_head(p) != orig_head) {
1344
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1345 1346 1347 1348
		res = -EBUSY;
		goto out;
	}

1349 1350 1351 1352 1353 1354 1355
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
1356 1357 1358 1359
	if (PageHuge(p))
		page_flags = hpage->flags;
	else
		page_flags = p->flags;
1360

W
Wu Fengguang 已提交
1361 1362 1363 1364
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1365
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1366
		num_poisoned_pages_dec();
1367 1368
		unlock_page(p);
		put_hwpoison_page(p);
1369
		return 0;
W
Wu Fengguang 已提交
1370
	}
W
Wu Fengguang 已提交
1371 1372
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1373
			num_poisoned_pages_dec();
1374 1375
		unlock_page(p);
		put_hwpoison_page(p);
W
Wu Fengguang 已提交
1376 1377
		return 0;
	}
W
Wu Fengguang 已提交
1378

1379
	if (!PageTransTail(p) && !PageLRU(p))
1380 1381
		goto identify_page_state;

1382 1383 1384 1385
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1386 1387 1388 1389
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1390
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1391 1392 1393
	 *
	 * When the raw error page is thp tail page, hpage points to the raw
	 * page after thp split.
1394
	 */
1395
	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1396
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1397 1398 1399
		res = -EBUSY;
		goto out;
	}
1400 1401 1402 1403

	/*
	 * Torn down by someone else?
	 */
1404
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1405
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1406
		res = -EBUSY;
1407 1408 1409
		goto out;
	}

1410
identify_page_state:
1411
	res = identify_page_state(pfn, p, page_flags);
1412
out:
1413
	unlock_page(p);
1414 1415
	return res;
}
1416
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1417

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
1451
void memory_failure_queue(unsigned long pfn, int flags)
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1462
	if (kfifo_put(&mf_cpu->fifo, entry))
1463 1464
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1465
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1479
	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1480 1481 1482 1483 1484 1485
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1486 1487 1488
		if (entry.flags & MF_SOFT_OFFLINE)
			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
		else
1489
			memory_failure(entry.pfn, entry.flags);
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	}
}

static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1509 1510 1511 1512 1513 1514
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1532 1533
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1534 1535 1536 1537 1538 1539 1540 1541

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1542
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1543
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1544 1545 1546
		return 0;
	}

1547
	if (page_count(page) > 1) {
1548
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1549
				 pfn, &unpoison_rs);
1550 1551 1552 1553
		return 0;
	}

	if (page_mapped(page)) {
1554
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1555
				 pfn, &unpoison_rs);
1556 1557 1558 1559
		return 0;
	}

	if (page_mapping(page)) {
1560
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1561
				 pfn, &unpoison_rs);
1562 1563 1564
		return 0;
	}

1565 1566 1567 1568 1569
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1570
	if (!PageHuge(page) && PageTransHuge(page)) {
1571
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1572
				 pfn, &unpoison_rs);
1573
		return 0;
1574 1575
	}

1576
	if (!get_hwpoison_page(p)) {
W
Wu Fengguang 已提交
1577
		if (TestClearPageHWPoison(p))
1578
			num_poisoned_pages_dec();
1579
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1580
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1581 1582 1583
		return 0;
	}

J
Jens Axboe 已提交
1584
	lock_page(page);
W
Wu Fengguang 已提交
1585 1586 1587 1588 1589 1590
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1591
	if (TestClearPageHWPoison(page)) {
1592
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1593
				 pfn, &unpoison_rs);
1594
		num_poisoned_pages_dec();
W
Wu Fengguang 已提交
1595 1596 1597 1598
		freeit = 1;
	}
	unlock_page(page);

1599
	put_hwpoison_page(page);
1600
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1601
		put_hwpoison_page(page);
W
Wu Fengguang 已提交
1602 1603 1604 1605

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1606

1607
static struct page *new_page(struct page *p, unsigned long private)
1608
{
1609
	int nid = page_to_nid(p);
1610

1611
	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1612 1613 1614 1615 1616 1617 1618 1619
}

/*
 * Safely get reference count of an arbitrary page.
 * Returns 0 for a free page, -EIO for a zero refcount page
 * that is not free, and 1 for any other page type.
 * For 1 the page is returned with increased page count, otherwise not.
 */
1620
static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1621 1622 1623 1624 1625 1626
{
	int ret;

	if (flags & MF_COUNT_INCREASED)
		return 1;

1627 1628 1629 1630
	/*
	 * When the target page is a free hugepage, just remove it
	 * from free hugepage list.
	 */
1631
	if (!get_hwpoison_page(p)) {
1632
		if (PageHuge(p)) {
1633
			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1634
			ret = 0;
1635
		} else if (is_free_buddy_page(p)) {
1636
			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1637 1638
			ret = 0;
		} else {
1639 1640
			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
				__func__, pfn, p->flags);
1641 1642 1643 1644 1645 1646 1647 1648 1649
			ret = -EIO;
		}
	} else {
		/* Not a free page */
		ret = 1;
	}
	return ret;
}

1650 1651 1652 1653
static int get_any_page(struct page *page, unsigned long pfn, int flags)
{
	int ret = __get_any_page(page, pfn, flags);

1654 1655
	if (ret == 1 && !PageHuge(page) &&
	    !PageLRU(page) && !__PageMovable(page)) {
1656 1657 1658
		/*
		 * Try to free it.
		 */
1659
		put_hwpoison_page(page);
1660 1661 1662 1663 1664 1665
		shake_page(page, 1);

		/*
		 * Did it turn free?
		 */
		ret = __get_any_page(page, pfn, 0);
1666
		if (ret == 1 && !PageLRU(page)) {
1667
			/* Drop page reference which is from __get_any_page() */
1668
			put_hwpoison_page(page);
1669 1670
			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
				pfn, page->flags, &page->flags);
1671 1672 1673 1674 1675 1676
			return -EIO;
		}
	}
	return ret;
}

1677 1678 1679 1680 1681
static int soft_offline_huge_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
	struct page *hpage = compound_head(page);
1682
	LIST_HEAD(pagelist);
1683

1684 1685 1686 1687 1688
	/*
	 * This double-check of PageHWPoison is to avoid the race with
	 * memory_failure(). See also comment in __soft_offline_page().
	 */
	lock_page(hpage);
1689
	if (PageHWPoison(hpage)) {
1690
		unlock_page(hpage);
1691
		put_hwpoison_page(hpage);
1692
		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1693
		return -EBUSY;
1694
	}
1695
	unlock_page(hpage);
1696

1697
	ret = isolate_huge_page(hpage, &pagelist);
1698 1699 1700 1701
	/*
	 * get_any_page() and isolate_huge_page() takes a refcount each,
	 * so need to drop one here.
	 */
1702
	put_hwpoison_page(hpage);
1703
	if (!ret) {
1704 1705 1706 1707
		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
		return -EBUSY;
	}

1708
	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1709
				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1710
	if (ret) {
1711
		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1712
			pfn, ret, page->flags, &page->flags);
1713 1714
		if (!list_empty(&pagelist))
			putback_movable_pages(&pagelist);
1715 1716
		if (ret > 0)
			ret = -EIO;
1717
	} else {
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
		/*
		 * We set PG_hwpoison only when the migration source hugepage
		 * was successfully dissolved, because otherwise hwpoisoned
		 * hugepage remains on free hugepage list, then userspace will
		 * find it as SIGBUS by allocation failure. That's not expected
		 * in soft-offlining.
		 */
		ret = dissolve_free_huge_page(page);
		if (!ret) {
			if (set_hwpoison_free_buddy_page(page))
				num_poisoned_pages_inc();
1729 1730
			else
				ret = -EBUSY;
1731
		}
1732 1733 1734 1735
	}
	return ret;
}

1736 1737 1738 1739
static int __soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
1740 1741

	/*
1742 1743 1744 1745
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
1746
	 */
1747 1748
	lock_page(page);
	wait_on_page_writeback(page);
1749 1750
	if (PageHWPoison(page)) {
		unlock_page(page);
1751
		put_hwpoison_page(page);
1752 1753 1754
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
		return -EBUSY;
	}
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	/*
	 * Try to invalidate first. This should work for
	 * non dirty unmapped page cache pages.
	 */
	ret = invalidate_inode_page(page);
	unlock_page(page);
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
	if (ret == 1) {
1766
		put_hwpoison_page(page);
1767
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1768
		SetPageHWPoison(page);
1769
		num_poisoned_pages_inc();
1770
		return 0;
1771 1772 1773 1774 1775 1776 1777
	}

	/*
	 * Simple invalidation didn't work.
	 * Try to migrate to a new page instead. migrate.c
	 * handles a large number of cases for us.
	 */
1778 1779 1780 1781
	if (PageLRU(page))
		ret = isolate_lru_page(page);
	else
		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1782 1783 1784 1785
	/*
	 * Drop page reference which is came from get_any_page()
	 * successful isolate_lru_page() already took another one.
	 */
1786
	put_hwpoison_page(page);
1787 1788
	if (!ret) {
		LIST_HEAD(pagelist);
1789 1790 1791 1792 1793 1794 1795 1796
		/*
		 * After isolated lru page, the PageLRU will be cleared,
		 * so use !__PageMovable instead for LRU page's mapping
		 * cannot have PAGE_MAPPING_MOVABLE.
		 */
		if (!__PageMovable(page))
			inc_node_page_state(page, NR_ISOLATED_ANON +
						page_is_file_cache(page));
1797
		list_add(&page->lru, &pagelist);
1798
		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1799
					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1800
		if (ret) {
1801 1802
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
1803

1804 1805
			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
				pfn, ret, page->flags, &page->flags);
1806 1807 1808 1809
			if (ret > 0)
				ret = -EIO;
		}
	} else {
1810 1811
		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
			pfn, ret, page_count(page), page->flags, &page->flags);
1812 1813 1814
	}
	return ret;
}
1815

1816 1817 1818
static int soft_offline_in_use_page(struct page *page, int flags)
{
	int ret;
1819
	int mt;
1820 1821 1822
	struct page *hpage = compound_head(page);

	if (!PageHuge(page) && PageTransHuge(hpage)) {
1823 1824 1825 1826
		lock_page(page);
		if (!PageAnon(page) || unlikely(split_huge_page(page))) {
			unlock_page(page);
			if (!PageAnon(page))
1827 1828 1829
				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
			else
				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1830
			put_hwpoison_page(page);
1831 1832
			return -EBUSY;
		}
1833
		unlock_page(page);
1834 1835
	}

1836 1837 1838 1839 1840 1841 1842 1843 1844
	/*
	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
	 * to free list immediately (not via pcplist) when released after
	 * successful page migration. Otherwise we can't guarantee that the
	 * page is really free after put_page() returns, so
	 * set_hwpoison_free_buddy_page() highly likely fails.
	 */
	mt = get_pageblock_migratetype(page);
	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1845 1846 1847 1848
	if (PageHuge(page))
		ret = soft_offline_huge_page(page, flags);
	else
		ret = __soft_offline_page(page, flags);
1849
	set_pageblock_migratetype(page, mt);
1850 1851 1852
	return ret;
}

1853
static int soft_offline_free_page(struct page *page)
1854
{
1855
	int rc = dissolve_free_huge_page(page);
1856

1857 1858 1859 1860 1861 1862 1863
	if (!rc) {
		if (set_hwpoison_free_buddy_page(page))
			num_poisoned_pages_inc();
		else
			rc = -EBUSY;
	}
	return rc;
1864 1865
}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
/**
 * soft_offline_page - Soft offline a page.
 * @page: page to offline
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
int soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);

1893 1894 1895 1896 1897 1898 1899 1900
	if (is_zone_device_page(page)) {
		pr_debug_ratelimited("soft_offline: %#lx page is device page\n",
				pfn);
		if (flags & MF_COUNT_INCREASED)
			put_page(page);
		return -EIO;
	}

1901 1902
	if (PageHWPoison(page)) {
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1903
		if (flags & MF_COUNT_INCREASED)
1904
			put_hwpoison_page(page);
1905 1906 1907
		return -EBUSY;
	}

1908
	get_online_mems();
1909
	ret = get_any_page(page, pfn, flags);
1910
	put_online_mems();
1911

1912 1913 1914
	if (ret > 0)
		ret = soft_offline_in_use_page(page, flags);
	else if (ret == 0)
1915
		ret = soft_offline_free_page(page);
1916

1917 1918
	return ret;
}