memory-failure.c 58.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * High level machine check handler. Handles pages reported by the
7
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8
 * failure.
9 10 11
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
12 13
 *
 * Handles page cache pages in various states.	The tricky part
14 15 16 17 18 19
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
20 21 22 23 24 25 26 27
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
28 29 30 31 32 33 34
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
35 36 37 38
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
39
#include <linux/kernel-page-flags.h>
40
#include <linux/sched/signal.h>
41
#include <linux/sched/task.h>
H
Hugh Dickins 已提交
42
#include <linux/ksm.h>
43
#include <linux/rmap.h>
44
#include <linux/export.h>
45 46 47
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
48 49
#include <linux/migrate.h>
#include <linux/suspend.h>
50
#include <linux/slab.h>
51
#include <linux/swapops.h>
52
#include <linux/hugetlb.h>
53
#include <linux/memory_hotplug.h>
54
#include <linux/mm_inline.h>
55
#include <linux/memremap.h>
56
#include <linux/kfifo.h>
57
#include <linux/ratelimit.h>
58
#include <linux/page-isolation.h>
59
#include <linux/pagewalk.h>
60
#include "internal.h"
61
#include "ras/ras_event.h"
62 63 64 65 66

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

67
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68

69 70
static bool __page_handle_poison(struct page *page)
{
71
	int ret;
72 73 74 75 76 77 78

	zone_pcp_disable(page_zone(page));
	ret = dissolve_free_huge_page(page);
	if (!ret)
		ret = take_page_off_buddy(page);
	zone_pcp_enable(page_zone(page));

79
	return ret > 0;
80 81
}

82
static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
83
{
84 85 86 87 88
	if (hugepage_or_freepage) {
		/*
		 * Doing this check for free pages is also fine since dissolve_free_huge_page
		 * returns 0 for non-hugetlb pages as well.
		 */
89
		if (!__page_handle_poison(page))
90 91
			/*
			 * We could fail to take off the target page from buddy
I
Ingo Molnar 已提交
92
			 * for example due to racy page allocation, but that's
93 94 95 96 97 98 99
			 * acceptable because soft-offlined page is not broken
			 * and if someone really want to use it, they should
			 * take it.
			 */
			return false;
	}

100
	SetPageHWPoison(page);
101 102
	if (release)
		put_page(page);
103 104
	page_ref_inc(page);
	num_poisoned_pages_inc();
105 106

	return true;
107 108
}

109 110
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

111
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
112 113
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
114 115
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
116
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
117 118
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
119 120
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
121 122 123 124 125 126 127 128 129 130 131

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
132
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
152 153 154 155 156 157 158 159 160 161 162 163
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
164 165 166 167 168 169 170 171 172 173
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
174
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
175 176 177 178 179 180 181
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

182
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
183 184 185 186 187 188 189 190
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
191 192
int hwpoison_filter(struct page *p)
{
193 194 195
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
196 197 198
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
199 200 201
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
202 203 204
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
205 206
	return 0;
}
207 208 209 210 211 212 213
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
214 215
EXPORT_SYMBOL_GPL(hwpoison_filter);

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
	short size_shift;
};

245
/*
246 247 248
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
249
 */
250
static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
251
{
252 253
	struct task_struct *t = tk->tsk;
	short addr_lsb = tk->size_shift;
254
	int ret = 0;
255

256
	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
257
			pfn, t->comm, t->pid);
258

259
	if (flags & MF_ACTION_REQUIRED) {
260 261
		if (t == current)
			ret = force_sig_mceerr(BUS_MCEERR_AR,
262
					 (void __user *)tk->addr, addr_lsb);
263 264 265 266
		else
			/* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
			ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
				addr_lsb, t);
267 268 269 270 271 272 273
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
274
		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
275
				      addr_lsb, t);  /* synchronous? */
276
	}
277
	if (ret < 0)
278
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
279
			t->comm, t->pid, ret);
280 281 282
	return ret;
}

283
/*
284
 * Unknown page type encountered. Try to check whether it can turn PageLRU by
285
 * lru_add_drain_all.
286
 */
287
void shake_page(struct page *p)
288
{
289 290 291
	if (PageHuge(p))
		return;

292 293 294 295 296
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
297

298
	/*
299 300
	 * TODO: Could shrink slab caches here if a lightweight range-based
	 * shrinker will be available.
301 302 303 304
	 */
}
EXPORT_SYMBOL_GPL(shake_page);

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
static unsigned long dev_pagemap_mapping_shift(struct page *page,
		struct vm_area_struct *vma)
{
	unsigned long address = vma_address(page, vma);
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = pgd_offset(vma->vm_mm, address);
	if (!pgd_present(*pgd))
		return 0;
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;
	pud = pud_offset(p4d, address);
	if (!pud_present(*pud))
		return 0;
	if (pud_devmap(*pud))
		return PUD_SHIFT;
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;
	if (pmd_devmap(*pmd))
		return PMD_SHIFT;
	pte = pte_offset_map(pmd, address);
	if (!pte_present(*pte))
		return 0;
	if (pte_devmap(*pte))
		return PAGE_SHIFT;
	return 0;
}
338 339 340 341 342 343 344 345 346 347 348 349

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
350
		       struct list_head *to_kill)
351 352 353
{
	struct to_kill *tk;

354 355 356 357
	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
	if (!tk) {
		pr_err("Memory failure: Out of memory while machine check handling\n");
		return;
358
	}
359

360
	tk->addr = page_address_in_vma(p, vma);
361 362 363
	if (is_zone_device_page(p))
		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
	else
364
		tk->size_shift = page_shift(compound_head(p));
365 366

	/*
367 368 369 370 371 372 373 374
	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
	 * so "tk->size_shift == 0" effectively checks no mapping on
	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
	 * to a process' address space, it's possible not all N VMAs
	 * contain mappings for the page, but at least one VMA does.
	 * Only deliver SIGBUS with payload derived from the VMA that
	 * has a mapping for the page.
375
	 */
376
	if (tk->addr == -EFAULT) {
377
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
378
			page_to_pfn(p), tsk->comm);
379 380 381
	} else if (tk->size_shift == 0) {
		kfree(tk);
		return;
382
	}
383

384 385 386 387 388 389 390 391
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
392 393
 * Only do anything when FORCEKILL is set, otherwise just free the
 * list (this is used for clean pages which do not need killing)
394 395 396
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
397 398
static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
		unsigned long pfn, int flags)
399 400 401 402
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
403
		if (forcekill) {
404
			/*
405
			 * In case something went wrong with munmapping
406 407 408
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
409
			if (fail || tk->addr == -EFAULT) {
410
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
411
				       pfn, tk->tsk->comm, tk->tsk->pid);
412 413
				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
						 tk->tsk, PIDTYPE_PID);
414 415 416 417 418 419 420 421
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
422
			else if (kill_proc(tk, pfn, flags) < 0)
423
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
424
				       pfn, tk->tsk->comm, tk->tsk->pid);
425 426 427 428 429 430
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

431 432 433 434 435 436 437 438 439
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
440
{
441 442
	struct task_struct *t;

443 444 445 446 447 448 449 450 451
	for_each_thread(tsk, t) {
		if (t->flags & PF_MCE_PROCESS) {
			if (t->flags & PF_MCE_EARLY)
				return t;
		} else {
			if (sysctl_memory_failure_early_kill)
				return t;
		}
	}
452 453 454 455 456 457 458
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
459
 * specified) if the process is "early kill" and otherwise returns NULL.
460
 *
461 462 463 464 465
 * Note that the above is true for Action Optional case. For Action Required
 * case, it's only meaningful to the current thread which need to be signaled
 * with SIGBUS, this error is Action Optional for other non current
 * processes sharing the same error page,if the process is "early kill", the
 * task_struct of the dedicated thread will also be returned.
466 467 468 469
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
470
	if (!tsk->mm)
471
		return NULL;
472 473 474 475 476 477 478
	/*
	 * Comparing ->mm here because current task might represent
	 * a subthread, while tsk always points to the main thread.
	 */
	if (force_early && tsk->mm == current->mm)
		return current;

479
	return find_early_kill_thread(tsk);
480 481 482 483 484 485
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
486
				int force_early)
487 488 489 490
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
491
	pgoff_t pgoff;
492

493
	av = page_lock_anon_vma_read(page);
494
	if (av == NULL)	/* Not actually mapped anymore */
495 496
		return;

497
	pgoff = page_to_pgoff(page);
498
	read_lock(&tasklist_lock);
499
	for_each_process (tsk) {
500
		struct anon_vma_chain *vmac;
501
		struct task_struct *t = task_early_kill(tsk, force_early);
502

503
		if (!t)
504
			continue;
505 506
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
507
			vma = vmac->vma;
508 509
			if (!page_mapped_in_vma(page, vma))
				continue;
510
			if (vma->vm_mm == t->mm)
511
				add_to_kill(t, page, vma, to_kill);
512 513 514
		}
	}
	read_unlock(&tasklist_lock);
515
	page_unlock_anon_vma_read(av);
516 517 518 519 520 521
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
522
				int force_early)
523 524 525 526
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;
527
	pgoff_t pgoff;
528

529
	i_mmap_lock_read(mapping);
530
	read_lock(&tasklist_lock);
531
	pgoff = page_to_pgoff(page);
532
	for_each_process(tsk) {
533
		struct task_struct *t = task_early_kill(tsk, force_early);
534

535
		if (!t)
536
			continue;
537
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
538 539 540 541 542 543 544 545
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
546
			if (vma->vm_mm == t->mm)
547
				add_to_kill(t, page, vma, to_kill);
548 549 550
		}
	}
	read_unlock(&tasklist_lock);
551
	i_mmap_unlock_read(mapping);
552 553 554 555 556
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 */
557 558
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
559 560 561 562 563
{
	if (!page->mapping)
		return;

	if (PageAnon(page))
564
		collect_procs_anon(page, tokill, force_early);
565
	else
566
		collect_procs_file(page, tokill, force_early);
567 568
}

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
struct hwp_walk {
	struct to_kill tk;
	unsigned long pfn;
	int flags;
};

static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
{
	tk->addr = addr;
	tk->size_shift = shift;
}

static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
				unsigned long poisoned_pfn, struct to_kill *tk)
{
	unsigned long pfn = 0;

	if (pte_present(pte)) {
		pfn = pte_pfn(pte);
	} else {
		swp_entry_t swp = pte_to_swp_entry(pte);

		if (is_hwpoison_entry(swp))
			pfn = hwpoison_entry_to_pfn(swp);
	}

	if (!pfn || pfn != poisoned_pfn)
		return 0;

	set_to_kill(tk, addr, shift);
	return 1;
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
				      struct hwp_walk *hwp)
{
	pmd_t pmd = *pmdp;
	unsigned long pfn;
	unsigned long hwpoison_vaddr;

	if (!pmd_present(pmd))
		return 0;
	pfn = pmd_pfn(pmd);
	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
		return 1;
	}
	return 0;
}
#else
static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
				      struct hwp_walk *hwp)
{
	return 0;
}
#endif

static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
			      unsigned long end, struct mm_walk *walk)
{
	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
	int ret = 0;
633
	pte_t *ptep, *mapped_pte;
634 635 636 637 638 639 640 641 642 643 644 645
	spinlock_t *ptl;

	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
	if (ptl) {
		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
		spin_unlock(ptl);
		goto out;
	}

	if (pmd_trans_unstable(pmdp))
		goto out;

646 647
	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
						addr, &ptl);
648 649 650 651 652 653
	for (; addr != end; ptep++, addr += PAGE_SIZE) {
		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
					     hwp->pfn, &hwp->tk);
		if (ret == 1)
			break;
	}
654
	pte_unmap_unlock(mapped_pte, ptl);
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
out:
	cond_resched();
	return ret;
}

#ifdef CONFIG_HUGETLB_PAGE
static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
			    unsigned long addr, unsigned long end,
			    struct mm_walk *walk)
{
	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
	pte_t pte = huge_ptep_get(ptep);
	struct hstate *h = hstate_vma(walk->vma);

	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
				      hwp->pfn, &hwp->tk);
}
#else
#define hwpoison_hugetlb_range	NULL
#endif

static struct mm_walk_ops hwp_walk_ops = {
	.pmd_entry = hwpoison_pte_range,
	.hugetlb_entry = hwpoison_hugetlb_range,
};

/*
 * Sends SIGBUS to the current process with error info.
 *
 * This function is intended to handle "Action Required" MCEs on already
 * hardware poisoned pages. They could happen, for example, when
 * memory_failure() failed to unmap the error page at the first call, or
 * when multiple local machine checks happened on different CPUs.
 *
 * MCE handler currently has no easy access to the error virtual address,
 * so this function walks page table to find it. The returned virtual address
 * is proper in most cases, but it could be wrong when the application
 * process has multiple entries mapping the error page.
 */
static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
				  int flags)
{
	int ret;
	struct hwp_walk priv = {
		.pfn = pfn,
	};
	priv.tk.tsk = p;

	mmap_read_lock(p->mm);
	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
			      (void *)&priv);
	if (ret == 1 && priv.tk.addr)
		kill_proc(&priv.tk, pfn, flags);
	mmap_read_unlock(p->mm);
	return ret ? -EFAULT : -EHWPOISON;
}

712
static const char *action_name[] = {
713 714 715 716
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
717 718 719
};

static const char * const action_page_types[] = {
720 721 722 723 724 725 726
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
727
	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
728 729 730 731 732 733 734 735 736 737 738 739
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
740
	[MF_MSG_DAX]			= "dax page",
741
	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
742
	[MF_MSG_UNKNOWN]		= "unknown page",
743 744
};

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
760 761 762 763 764 765 766

		/*
		 * Poisoned page might never drop its ref count to 0 so we have
		 * to uncharge it manually from its memcg.
		 */
		mem_cgroup_uncharge(p);

767 768 769
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
770
		put_page(p);
771 772 773 774 775
		return 0;
	}
	return -EIO;
}

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
static int truncate_error_page(struct page *p, unsigned long pfn,
				struct address_space *mapping)
{
	int ret = MF_FAILED;

	if (mapping->a_ops->error_remove_page) {
		int err = mapping->a_ops->error_remove_page(mapping, p);

		if (err != 0) {
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
				pfn, err);
		} else if (page_has_private(p) &&
			   !try_to_release_page(p, GFP_NOIO)) {
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
		} else {
			ret = MF_RECOVERED;
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
			ret = MF_RECOVERED;
		else
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
	}

	return ret;
}

809 810 811 812 813 814 815
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
816
	unlock_page(p);
817
	return MF_IGNORED;
818 819 820 821 822 823 824
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
825
	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
826
	unlock_page(p);
827
	return MF_FAILED;
828 829 830 831 832 833 834
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
835
	int ret;
836 837
	struct address_space *mapping;

838 839
	delete_from_lru_cache(p);

840 841 842 843
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
844 845 846 847
	if (PageAnon(p)) {
		ret = MF_RECOVERED;
		goto out;
	}
848 849 850 851 852 853 854 855 856 857 858 859 860

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
861 862
		ret = MF_FAILED;
		goto out;
863 864 865 866 867
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
J
Jan Kara 已提交
868
	 * Open: to take i_rwsem or not for this? Right now we don't.
869
	 */
870 871 872 873
	ret = truncate_error_page(p, pfn, mapping);
out:
	unlock_page(p);
	return ret;
874 875 876
}

/*
877
 * Dirty pagecache page
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
910
		 * and the page is dropped between then the error
911 912 913 914 915 916 917 918 919 920 921
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
922
		mapping_set_error(mapping, -EIO);
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
949 950
	int ret;

951 952 953 954
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

955 956 957
	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
	unlock_page(p);
	return ret;
958 959 960 961
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
962 963
	int ret;

964
	delete_from_swap_cache(p);
965

966 967 968
	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
	unlock_page(p);
	return ret;
969 970 971 972 973
}

/*
 * Huge pages. Needs work.
 * Issues:
974 975
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
976 977 978
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
979
	int res;
980
	struct page *hpage = compound_head(p);
981
	struct address_space *mapping;
982 983 984 985

	if (!PageHuge(hpage))
		return MF_DELAYED;

986 987 988
	mapping = page_mapping(hpage);
	if (mapping) {
		res = truncate_error_page(hpage, pfn, mapping);
989
		unlock_page(hpage);
990
	} else {
991
		res = MF_FAILED;
992 993 994 995 996 997 998 999
		unlock_page(hpage);
		/*
		 * migration entry prevents later access on error anonymous
		 * hugepage, so we can free and dissolve it into buddy to
		 * save healthy subpages.
		 */
		if (PageAnon(hpage))
			put_page(hpage);
1000
		if (__page_handle_poison(p)) {
1001 1002 1003
			page_ref_inc(p);
			res = MF_RECOVERED;
		}
1004
	}
1005 1006

	return res;
1007 1008 1009 1010 1011 1012 1013 1014 1015
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
1016
 * in its live cycle, so all accesses have to be extremely careful.
1017 1018 1019 1020 1021 1022
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
1023
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
1034
	enum mf_action_page_type type;
1035 1036

	/* Callback ->action() has to unlock the relevant page inside it. */
1037 1038
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
1039
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1040 1041 1042 1043
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
1044 1045 1046 1047 1048 1049

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
1050
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1051

1052
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1053

1054 1055
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1056

1057 1058
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1059

1060 1061
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1062

1063 1064
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1065 1066 1067 1068

	/*
	 * Catchall entry: must be at end.
	 */
1069
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1070 1071
};

1072 1073 1074 1075 1076 1077 1078 1079 1080
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef lru
#undef head
#undef slab
#undef reserved

1081 1082 1083 1084
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
1085 1086
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
1087
{
1088 1089
	trace_memory_failure_event(pfn, type, result);

1090
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1091
		pfn, action_page_types[type], action_name[result]);
1092 1093 1094
}

static int page_action(struct page_state *ps, struct page *p,
1095
			unsigned long pfn)
1096 1097
{
	int result;
1098
	int count;
1099

1100
	/* page p should be unlocked after returning from ps->action().  */
1101
	result = ps->action(p, pfn);
1102

1103
	count = page_count(p) - 1;
1104
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
1105
		count--;
1106
	if (count > 0) {
1107
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
1108
		       pfn, action_page_types[ps->type], count);
1109
		result = MF_FAILED;
1110
	}
1111
	action_result(pfn, ps->type, result);
1112 1113 1114 1115 1116 1117

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

1118
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1119 1120
}

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
/*
 * Return true if a page type of a given page is supported by hwpoison
 * mechanism (while handling could fail), otherwise false.  This function
 * does not return true for hugetlb or device memory pages, so it's assumed
 * to be called only in the context where we never have such pages.
 */
static inline bool HWPoisonHandlable(struct page *page)
{
	return PageLRU(page) || __PageMovable(page);
}

1132
static int __get_hwpoison_page(struct page *page)
1133 1134
{
	struct page *head = compound_head(page);
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	int ret = 0;
	bool hugetlb = false;

	ret = get_hwpoison_huge_page(head, &hugetlb);
	if (hugetlb)
		return ret;

	/*
	 * This check prevents from calling get_hwpoison_unless_zero()
	 * for any unsupported type of page in order to reduce the risk of
	 * unexpected races caused by taking a page refcount.
	 */
	if (!HWPoisonHandlable(head))
1148
		return -EBUSY;
1149

1150
	if (PageTransHuge(head)) {
1151 1152 1153 1154 1155 1156 1157
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
1158
			pr_err("Memory failure: %#lx: non anonymous thp\n",
1159 1160 1161
				page_to_pfn(page));
			return 0;
		}
1162 1163
	}

1164 1165 1166 1167
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

1168 1169
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
1170 1171 1172 1173
		put_page(head);
	}

	return 0;
1174 1175
}

1176
static int get_any_page(struct page *p, unsigned long flags)
1177
{
1178 1179
	int ret = 0, pass = 0;
	bool count_increased = false;
1180

1181 1182 1183 1184
	if (flags & MF_COUNT_INCREASED)
		count_increased = true;

try_again:
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	if (!count_increased) {
		ret = __get_hwpoison_page(p);
		if (!ret) {
			if (page_count(p)) {
				/* We raced with an allocation, retry. */
				if (pass++ < 3)
					goto try_again;
				ret = -EBUSY;
			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
				/* We raced with put_page, retry. */
				if (pass++ < 3)
					goto try_again;
				ret = -EIO;
			}
			goto out;
		} else if (ret == -EBUSY) {
1201 1202 1203 1204 1205
			/*
			 * We raced with (possibly temporary) unhandlable
			 * page, retry.
			 */
			if (pass++ < 3) {
1206
				shake_page(p);
1207
				goto try_again;
1208 1209
			}
			ret = -EIO;
1210
			goto out;
1211
		}
1212 1213 1214 1215
	}

	if (PageHuge(p) || HWPoisonHandlable(p)) {
		ret = 1;
1216
	} else {
1217 1218 1219 1220 1221
		/*
		 * A page we cannot handle. Check whether we can turn
		 * it into something we can handle.
		 */
		if (pass++ < 3) {
1222
			put_page(p);
1223
			shake_page(p);
1224 1225
			count_increased = false;
			goto try_again;
1226
		}
1227 1228
		put_page(p);
		ret = -EIO;
1229
	}
1230
out:
1231 1232 1233
	if (ret == -EIO)
		dump_page(p, "hwpoison: unhandlable page");

1234 1235 1236
	return ret;
}

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
/**
 * get_hwpoison_page() - Get refcount for memory error handling
 * @p:		Raw error page (hit by memory error)
 * @flags:	Flags controlling behavior of error handling
 *
 * get_hwpoison_page() takes a page refcount of an error page to handle memory
 * error on it, after checking that the error page is in a well-defined state
 * (defined as a page-type we can successfully handle the memor error on it,
 * such as LRU page and hugetlb page).
 *
 * Memory error handling could be triggered at any time on any type of page,
 * so it's prone to race with typical memory management lifecycle (like
 * allocation and free).  So to avoid such races, get_hwpoison_page() takes
 * extra care for the error page's state (as done in __get_hwpoison_page()),
 * and has some retry logic in get_any_page().
 *
 * Return: 0 on failure,
 *         1 on success for in-use pages in a well-defined state,
 *         -EIO for pages on which we can not handle memory errors,
 *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
 *         operations like allocation and free.
 */
static int get_hwpoison_page(struct page *p, unsigned long flags)
1260 1261 1262 1263
{
	int ret;

	zone_pcp_disable(page_zone(p));
1264
	ret = get_any_page(p, flags);
1265 1266 1267 1268 1269
	zone_pcp_enable(page_zone(p));

	return ret;
}

1270 1271 1272 1273
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
1274
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1275
				  int flags, struct page *hpage)
1276
{
1277
	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1278 1279
	struct address_space *mapping;
	LIST_HEAD(tokill);
1280
	bool unmap_success;
1281
	int kill = 1, forcekill;
1282
	bool mlocked = PageMlocked(hpage);
1283

1284 1285 1286 1287 1288
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
1289
		return true;
1290
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
1291
		return true;
1292 1293 1294 1295 1296

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
1297
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
1298
		return true;
W
Wu Fengguang 已提交
1299

1300
	if (PageKsm(p)) {
1301
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
1302
		return false;
1303
	}
1304 1305

	if (PageSwapCache(p)) {
1306 1307
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
1308 1309 1310 1311 1312 1313
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
1314 1315
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
1316
	 */
1317
	mapping = page_mapping(hpage);
1318
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1319
	    mapping_can_writeback(mapping)) {
1320 1321
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
1322 1323 1324
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
1325
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
1339
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1340

1341
	if (!PageHuge(hpage)) {
1342
		try_to_unmap(hpage, ttu);
1343
	} else {
1344 1345 1346 1347 1348 1349
		if (!PageAnon(hpage)) {
			/*
			 * For hugetlb pages in shared mappings, try_to_unmap
			 * could potentially call huge_pmd_unshare.  Because of
			 * this, take semaphore in write mode here and set
			 * TTU_RMAP_LOCKED to indicate we have taken the lock
Z
Zhen Lei 已提交
1350
			 * at this higher level.
1351 1352 1353
			 */
			mapping = hugetlb_page_mapping_lock_write(hpage);
			if (mapping) {
1354
				try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1355
				i_mmap_unlock_write(mapping);
1356
			} else
1357
				pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1358
		} else {
1359
			try_to_unmap(hpage, ttu);
1360 1361
		}
	}
1362 1363

	unmap_success = !page_mapped(hpage);
M
Minchan Kim 已提交
1364
	if (!unmap_success)
1365
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1366
		       pfn, page_mapcount(hpage));
1367

1368 1369 1370 1371 1372
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
1373
		shake_page(hpage);
1374

1375 1376 1377 1378
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1379 1380
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1381 1382 1383 1384
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1385
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1386
	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
W
Wu Fengguang 已提交
1387

M
Minchan Kim 已提交
1388
	return unmap_success;
1389 1390
}

1391 1392
static int identify_page_state(unsigned long pfn, struct page *p,
				unsigned long page_flags)
1393 1394
{
	struct page_state *ps;
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flags is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
			break;

	page_flags |= (p->flags & (1UL << PG_dirty));

	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	return page_action(ps, p, pfn);
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
static int try_to_split_thp_page(struct page *page, const char *msg)
{
	lock_page(page);
	if (!PageAnon(page) || unlikely(split_huge_page(page))) {
		unsigned long pfn = page_to_pfn(page);

		unlock_page(page);
		if (!PageAnon(page))
			pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
		else
			pr_info("%s: %#lx: thp split failed\n", msg, pfn);
		put_page(page);
		return -EBUSY;
	}
	unlock_page(page);

	return 0;
}

1433
static int memory_failure_hugetlb(unsigned long pfn, int flags)
1434
{
1435 1436 1437 1438 1439 1440 1441 1442
	struct page *p = pfn_to_page(pfn);
	struct page *head = compound_head(p);
	int res;
	unsigned long page_flags;

	if (TestSetPageHWPoison(head)) {
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
		       pfn);
1443 1444 1445 1446
		res = -EHWPOISON;
		if (flags & MF_ACTION_REQUIRED)
			res = kill_accessing_process(current, page_to_pfn(head), flags);
		return res;
1447 1448 1449 1450
	}

	num_poisoned_pages_inc();

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	if (!(flags & MF_COUNT_INCREASED)) {
		res = get_hwpoison_page(p, flags);
		if (!res) {
			/*
			 * Check "filter hit" and "race with other subpage."
			 */
			lock_page(head);
			if (PageHWPoison(head)) {
				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
				    || (p != head && TestSetPageHWPoison(head))) {
					num_poisoned_pages_dec();
					unlock_page(head);
					return 0;
				}
1465
			}
1466 1467
			unlock_page(head);
			res = MF_FAILED;
1468
			if (__page_handle_poison(p)) {
1469 1470 1471 1472 1473 1474 1475 1476
				page_ref_inc(p);
				res = MF_RECOVERED;
			}
			action_result(pfn, MF_MSG_FREE_HUGE, res);
			return res == MF_RECOVERED ? 0 : -EBUSY;
		} else if (res < 0) {
			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
			return -EBUSY;
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
		}
	}

	lock_page(head);
	page_flags = head->flags;

	if (!PageHWPoison(head)) {
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
		num_poisoned_pages_dec();
		unlock_page(head);
1487
		put_page(head);
1488 1489 1490
		return 0;
	}

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	/*
	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
	 * simply disable it. In order to make it work properly, we need
	 * make sure that:
	 *  - conversion of a pud that maps an error hugetlb into hwpoison
	 *    entry properly works, and
	 *  - other mm code walking over page table is aware of pud-aligned
	 *    hwpoison entries.
	 */
	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1506
	if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1507 1508 1509 1510 1511
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1512
	return identify_page_state(pfn, p, page_flags);
1513 1514 1515 1516 1517
out:
	unlock_page(head);
	return res;
}

1518 1519 1520 1521 1522 1523 1524 1525 1526
static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
		struct dev_pagemap *pgmap)
{
	struct page *page = pfn_to_page(pfn);
	unsigned long size = 0;
	struct to_kill *tk;
	LIST_HEAD(tokill);
	int rc = -EBUSY;
	loff_t start;
1527
	dax_entry_t cookie;
1528

1529 1530 1531 1532 1533 1534
	if (flags & MF_COUNT_INCREASED)
		/*
		 * Drop the extra refcount in case we come from madvise().
		 */
		put_page(page);

1535 1536 1537 1538 1539 1540
	/* device metadata space is not recoverable */
	if (!pgmap_pfn_valid(pgmap, pfn)) {
		rc = -ENXIO;
		goto out;
	}

1541 1542 1543 1544 1545 1546 1547
	/*
	 * Prevent the inode from being freed while we are interrogating
	 * the address_space, typically this would be handled by
	 * lock_page(), but dax pages do not use the page lock. This
	 * also prevents changes to the mapping of this pfn until
	 * poison signaling is complete.
	 */
1548 1549
	cookie = dax_lock_page(page);
	if (!cookie)
1550 1551 1552 1553 1554 1555 1556
		goto out;

	if (hwpoison_filter(page)) {
		rc = 0;
		goto unlock;
	}

1557
	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
		/*
		 * TODO: Handle HMM pages which may need coordination
		 * with device-side memory.
		 */
		goto unlock;
	}

	/*
	 * Use this flag as an indication that the dax page has been
	 * remapped UC to prevent speculative consumption of poison.
	 */
	SetPageHWPoison(page);

	/*
	 * Unlike System-RAM there is no possibility to swap in a
	 * different physical page at a given virtual address, so all
	 * userspace consumption of ZONE_DEVICE memory necessitates
	 * SIGBUS (i.e. MF_MUST_KILL)
	 */
	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);

	list_for_each_entry(tk, &tokill, nd)
		if (tk->size_shift)
			size = max(size, 1UL << tk->size_shift);
	if (size) {
		/*
		 * Unmap the largest mapping to avoid breaking up
		 * device-dax mappings which are constant size. The
		 * actual size of the mapping being torn down is
		 * communicated in siginfo, see kill_proc()
		 */
		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1591
		unmap_mapping_range(page->mapping, start, size, 0);
1592
	}
1593
	kill_procs(&tokill, flags & MF_MUST_KILL, false, pfn, flags);
1594 1595
	rc = 0;
unlock:
1596
	dax_unlock_page(page, cookie);
1597 1598 1599 1600 1601 1602 1603
out:
	/* drop pgmap ref acquired in caller */
	put_dev_pagemap(pgmap);
	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
	return rc;
}

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
1621
int memory_failure(unsigned long pfn, int flags)
1622 1623
{
	struct page *p;
1624
	struct page *hpage;
1625
	struct page *orig_head;
1626
	struct dev_pagemap *pgmap;
1627
	int res = 0;
1628
	unsigned long page_flags;
1629
	bool retry = true;
1630
	static DEFINE_MUTEX(mf_mutex);
1631 1632

	if (!sysctl_memory_failure_recovery)
1633
		panic("Memory failure on page %lx", pfn);
1634

1635 1636 1637 1638 1639 1640 1641 1642
	p = pfn_to_online_page(pfn);
	if (!p) {
		if (pfn_valid(pfn)) {
			pgmap = get_dev_pagemap(pfn, NULL);
			if (pgmap)
				return memory_failure_dev_pagemap(pfn, flags,
								  pgmap);
		}
1643 1644
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1645
		return -ENXIO;
1646 1647
	}

1648 1649
	mutex_lock(&mf_mutex);

1650
try_again:
1651 1652 1653 1654 1655
	if (PageHuge(p)) {
		res = memory_failure_hugetlb(pfn, flags);
		goto unlock_mutex;
	}

1656
	if (TestSetPageHWPoison(p)) {
1657 1658
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1659
		res = -EHWPOISON;
1660 1661
		if (flags & MF_ACTION_REQUIRED)
			res = kill_accessing_process(current, pfn, flags);
1662
		goto unlock_mutex;
1663 1664
	}

1665
	orig_head = hpage = compound_head(p);
1666
	num_poisoned_pages_inc();
1667 1668 1669 1670 1671

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1672
	 * 2) it's part of a non-compound high order page.
1673 1674 1675 1676
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
1677
	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1678
	 */
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	if (!(flags & MF_COUNT_INCREASED)) {
		res = get_hwpoison_page(p, flags);
		if (!res) {
			if (is_free_buddy_page(p)) {
				if (take_page_off_buddy(p)) {
					page_ref_inc(p);
					res = MF_RECOVERED;
				} else {
					/* We lost the race, try again */
					if (retry) {
						ClearPageHWPoison(p);
						num_poisoned_pages_dec();
						retry = false;
						goto try_again;
					}
					res = MF_FAILED;
1695
				}
1696 1697 1698 1699 1700
				action_result(pfn, MF_MSG_BUDDY, res);
				res = res == MF_RECOVERED ? 0 : -EBUSY;
			} else {
				action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
				res = -EBUSY;
1701
			}
1702 1703 1704
			goto unlock_mutex;
		} else if (res < 0) {
			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1705
			res = -EBUSY;
1706
			goto unlock_mutex;
1707
		}
1708 1709
	}

1710
	if (PageTransHuge(hpage)) {
1711 1712
		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1713 1714
			res = -EBUSY;
			goto unlock_mutex;
1715
		}
1716 1717 1718
		VM_BUG_ON_PAGE(!page_count(p), p);
	}

1719 1720 1721
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1722
	 * - to avoid races with __SetPageLocked()
1723 1724 1725 1726
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1727
	shake_page(p);
1728

1729
	lock_page(p);
W
Wu Fengguang 已提交
1730

1731 1732 1733 1734
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1735
	if (PageCompound(p) && compound_head(p) != orig_head) {
1736
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1737
		res = -EBUSY;
1738
		goto unlock_page;
1739 1740
	}

1741 1742 1743 1744 1745 1746 1747
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
1748
	page_flags = p->flags;
1749

W
Wu Fengguang 已提交
1750 1751 1752 1753
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1754
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1755
		num_poisoned_pages_dec();
1756
		unlock_page(p);
1757
		put_page(p);
1758
		goto unlock_mutex;
W
Wu Fengguang 已提交
1759
	}
W
Wu Fengguang 已提交
1760 1761
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1762
			num_poisoned_pages_dec();
1763
		unlock_page(p);
1764
		put_page(p);
1765
		goto unlock_mutex;
W
Wu Fengguang 已提交
1766
	}
W
Wu Fengguang 已提交
1767

1768 1769 1770 1771 1772 1773
	/*
	 * __munlock_pagevec may clear a writeback page's LRU flag without
	 * page_lock. We need wait writeback completion for this page or it
	 * may trigger vfs BUG while evict inode.
	 */
	if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1774 1775
		goto identify_page_state;

1776 1777 1778 1779
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1780 1781 1782 1783
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1784
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1785
	 */
1786
	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1787
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1788
		res = -EBUSY;
1789
		goto unlock_page;
W
Wu Fengguang 已提交
1790
	}
1791 1792 1793 1794

	/*
	 * Torn down by someone else?
	 */
1795
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1796
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1797
		res = -EBUSY;
1798
		goto unlock_page;
1799 1800
	}

1801
identify_page_state:
1802
	res = identify_page_state(pfn, p, page_flags);
1803 1804
	mutex_unlock(&mf_mutex);
	return res;
1805
unlock_page:
1806
	unlock_page(p);
1807 1808
unlock_mutex:
	mutex_unlock(&mf_mutex);
1809 1810
	return res;
}
1811
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1812

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
1846
void memory_failure_queue(unsigned long pfn, int flags)
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1857
	if (kfifo_put(&mf_cpu->fifo, entry))
1858 1859
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1860
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1874
	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1875 1876 1877 1878 1879 1880
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1881
		if (entry.flags & MF_SOFT_OFFLINE)
1882
			soft_offline_page(entry.pfn, entry.flags);
1883
		else
1884
			memory_failure(entry.pfn, entry.flags);
1885 1886 1887
	}
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
/*
 * Process memory_failure work queued on the specified CPU.
 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
 */
void memory_failure_queue_kick(int cpu)
{
	struct memory_failure_cpu *mf_cpu;

	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
	cancel_work_sync(&mf_cpu->work);
	memory_failure_work_func(&mf_cpu->work);
}

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1917 1918 1919 1920 1921 1922
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1940
	unsigned long flags = 0;
1941 1942
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1943 1944 1945 1946 1947 1948 1949 1950

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1951
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1952
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1953 1954 1955
		return 0;
	}

1956
	if (page_count(page) > 1) {
1957
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1958
				 pfn, &unpoison_rs);
1959 1960 1961 1962
		return 0;
	}

	if (page_mapped(page)) {
1963
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1964
				 pfn, &unpoison_rs);
1965 1966 1967 1968
		return 0;
	}

	if (page_mapping(page)) {
1969
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1970
				 pfn, &unpoison_rs);
1971 1972 1973
		return 0;
	}

1974 1975 1976 1977 1978
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1979
	if (!PageHuge(page) && PageTransHuge(page)) {
1980
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1981
				 pfn, &unpoison_rs);
1982
		return 0;
1983 1984
	}

1985
	if (!get_hwpoison_page(p, flags)) {
W
Wu Fengguang 已提交
1986
		if (TestClearPageHWPoison(p))
1987
			num_poisoned_pages_dec();
1988
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1989
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1990 1991 1992
		return 0;
	}

J
Jens Axboe 已提交
1993
	lock_page(page);
W
Wu Fengguang 已提交
1994 1995 1996 1997 1998 1999
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
2000
	if (TestClearPageHWPoison(page)) {
2001
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2002
				 pfn, &unpoison_rs);
2003
		num_poisoned_pages_dec();
W
Wu Fengguang 已提交
2004 2005 2006 2007
		freeit = 1;
	}
	unlock_page(page);

2008
	put_page(page);
2009
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
2010
		put_page(page);
W
Wu Fengguang 已提交
2011 2012 2013 2014

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
2015

2016
static bool isolate_page(struct page *page, struct list_head *pagelist)
2017
{
2018 2019
	bool isolated = false;
	bool lru = PageLRU(page);
2020

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	if (PageHuge(page)) {
		isolated = isolate_huge_page(page, pagelist);
	} else {
		if (lru)
			isolated = !isolate_lru_page(page);
		else
			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);

		if (isolated)
			list_add(&page->lru, pagelist);
2031
	}
2032

2033 2034 2035 2036
	if (isolated && lru)
		inc_node_page_state(page, NR_ISOLATED_ANON +
				    page_is_file_lru(page));

2037
	/*
2038 2039 2040 2041 2042
	 * If we succeed to isolate the page, we grabbed another refcount on
	 * the page, so we can safely drop the one we got from get_any_pages().
	 * If we failed to isolate the page, it means that we cannot go further
	 * and we will return an error, so drop the reference we got from
	 * get_any_pages() as well.
2043
	 */
2044 2045
	put_page(page);
	return isolated;
2046 2047
}

2048 2049 2050 2051 2052 2053
/*
 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
 * If the page is mapped, it migrates the contents over.
 */
static int __soft_offline_page(struct page *page)
2054
{
2055
	int ret = 0;
2056
	unsigned long pfn = page_to_pfn(page);
2057 2058 2059 2060
	struct page *hpage = compound_head(page);
	char const *msg_page[] = {"page", "hugepage"};
	bool huge = PageHuge(page);
	LIST_HEAD(pagelist);
2061 2062 2063 2064
	struct migration_target_control mtc = {
		.nid = NUMA_NO_NODE,
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
	};
2065 2066

	/*
2067 2068 2069 2070
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
2071
	 */
2072
	lock_page(page);
2073 2074
	if (!PageHuge(page))
		wait_on_page_writeback(page);
2075 2076
	if (PageHWPoison(page)) {
		unlock_page(page);
2077
		put_page(page);
2078
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2079
		return 0;
2080
	}
2081 2082 2083 2084 2085 2086 2087

	if (!PageHuge(page))
		/*
		 * Try to invalidate first. This should work for
		 * non dirty unmapped page cache pages.
		 */
		ret = invalidate_inode_page(page);
2088
	unlock_page(page);
2089

2090 2091 2092 2093
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
2094
	if (ret) {
2095
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2096
		page_handle_poison(page, false, true);
2097
		return 0;
2098 2099
	}

2100
	if (isolate_page(hpage, &pagelist)) {
2101
		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2102
			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2103
		if (!ret) {
2104 2105 2106 2107
			bool release = !huge;

			if (!page_handle_poison(page, huge, release))
				ret = -EBUSY;
2108
		} else {
2109 2110
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
2111

2112 2113
			pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
				pfn, msg_page[huge], ret, page->flags, &page->flags);
2114
			if (ret > 0)
2115
				ret = -EBUSY;
2116 2117
		}
	} else {
2118 2119
		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
			pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
2120
		ret = -EBUSY;
2121 2122 2123
	}
	return ret;
}
2124

2125
static int soft_offline_in_use_page(struct page *page)
2126 2127 2128
{
	struct page *hpage = compound_head(page);

2129 2130
	if (!PageHuge(page) && PageTransHuge(hpage))
		if (try_to_split_thp_page(page, "soft offline") < 0)
2131
			return -EBUSY;
2132
	return __soft_offline_page(page);
2133 2134
}

2135
static int soft_offline_free_page(struct page *page)
2136
{
2137
	int rc = 0;
2138

2139 2140
	if (!page_handle_poison(page, true, false))
		rc = -EBUSY;
2141

2142
	return rc;
2143 2144
}

2145 2146 2147 2148 2149 2150
static void put_ref_page(struct page *page)
{
	if (page)
		put_page(page);
}

2151 2152
/**
 * soft_offline_page - Soft offline a page.
2153
 * @pfn: pfn to soft-offline
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
2173
int soft_offline_page(unsigned long pfn, int flags)
2174 2175
{
	int ret;
2176
	bool try_again = true;
2177 2178 2179
	struct page *page, *ref_page = NULL;

	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2180

2181 2182
	if (!pfn_valid(pfn))
		return -ENXIO;
2183 2184 2185
	if (flags & MF_COUNT_INCREASED)
		ref_page = pfn_to_page(pfn);

2186 2187
	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
	page = pfn_to_online_page(pfn);
2188 2189
	if (!page) {
		put_ref_page(ref_page);
2190
		return -EIO;
2191
	}
2192

2193
	if (PageHWPoison(page)) {
2194
		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2195
		put_ref_page(ref_page);
2196
		return 0;
2197 2198
	}

2199
retry:
2200
	get_online_mems();
2201
	ret = get_hwpoison_page(page, flags);
2202
	put_online_mems();
2203

2204
	if (ret > 0) {
2205
		ret = soft_offline_in_use_page(page);
2206
	} else if (ret == 0) {
2207 2208 2209 2210
		if (soft_offline_free_page(page) && try_again) {
			try_again = false;
			goto retry;
		}
2211
	}
2212

2213 2214
	return ret;
}