memory-failure.c 51.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * High level machine check handler. Handles pages reported by the
7
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8
 * failure.
9 10 11
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
12 13
 *
 * Handles page cache pages in various states.	The tricky part
14 15 16 17 18 19
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
20 21 22 23 24 25 26 27
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
28 29 30 31 32 33 34
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
35 36 37 38
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
39
#include <linux/kernel-page-flags.h>
40
#include <linux/sched/signal.h>
41
#include <linux/sched/task.h>
H
Hugh Dickins 已提交
42
#include <linux/ksm.h>
43
#include <linux/rmap.h>
44
#include <linux/export.h>
45 46 47
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
48 49
#include <linux/migrate.h>
#include <linux/suspend.h>
50
#include <linux/slab.h>
51
#include <linux/swapops.h>
52
#include <linux/hugetlb.h>
53
#include <linux/memory_hotplug.h>
54
#include <linux/mm_inline.h>
55
#include <linux/memremap.h>
56
#include <linux/kfifo.h>
57
#include <linux/ratelimit.h>
58
#include <linux/page-isolation.h>
59
#include "internal.h"
60
#include "ras/ras_event.h"
61 62 63 64 65

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

66
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67

68
static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
69
{
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
	if (hugepage_or_freepage) {
		/*
		 * Doing this check for free pages is also fine since dissolve_free_huge_page
		 * returns 0 for non-hugetlb pages as well.
		 */
		if (dissolve_free_huge_page(page) || !take_page_off_buddy(page))
			/*
			 * We could fail to take off the target page from buddy
			 * for example due to racy page allocaiton, but that's
			 * acceptable because soft-offlined page is not broken
			 * and if someone really want to use it, they should
			 * take it.
			 */
			return false;
	}

86
	SetPageHWPoison(page);
87 88
	if (release)
		put_page(page);
89 90
	page_ref_inc(page);
	num_poisoned_pages_inc();
91 92

	return true;
93 94
}

95 96
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

97
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
98 99
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
100 101
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
102
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
103 104
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
105 106
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
107 108 109 110 111 112 113 114 115 116 117

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
118
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
138 139 140 141 142 143 144 145 146 147 148 149
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
150 151 152 153 154 155 156 157 158 159
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
160
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
161 162 163 164 165 166 167
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

168
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
169 170 171 172 173 174 175 176
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
177 178
int hwpoison_filter(struct page *p)
{
179 180 181
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
182 183 184
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
185 186 187
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
188 189 190
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
191 192
	return 0;
}
193 194 195 196 197 198 199
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
200 201
EXPORT_SYMBOL_GPL(hwpoison_filter);

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
	short size_shift;
};

231
/*
232 233 234
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
235
 */
236
static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
237
{
238 239
	struct task_struct *t = tk->tsk;
	short addr_lsb = tk->size_shift;
240
	int ret = 0;
241

242
	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
243
			pfn, t->comm, t->pid);
244

245
	if (flags & MF_ACTION_REQUIRED) {
246 247
		WARN_ON_ONCE(t != current);
		ret = force_sig_mceerr(BUS_MCEERR_AR,
248
					 (void __user *)tk->addr, addr_lsb);
249 250 251 252 253 254 255
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
256
		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
257
				      addr_lsb, t);  /* synchronous? */
258
	}
259
	if (ret < 0)
260
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
261
			t->comm, t->pid, ret);
262 263 264
	return ret;
}

265 266 267 268
/*
 * When a unknown page type is encountered drain as many buffers as possible
 * in the hope to turn the page into a LRU or free page, which we can handle.
 */
269
void shake_page(struct page *p, int access)
270
{
271 272 273
	if (PageHuge(p))
		return;

274 275 276 277
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p))
			return;
278
		drain_all_pages(page_zone(p));
279 280 281
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
282

283
	/*
284 285
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
286
	 */
287 288
	if (access)
		drop_slab_node(page_to_nid(p));
289 290 291
}
EXPORT_SYMBOL_GPL(shake_page);

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
static unsigned long dev_pagemap_mapping_shift(struct page *page,
		struct vm_area_struct *vma)
{
	unsigned long address = vma_address(page, vma);
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = pgd_offset(vma->vm_mm, address);
	if (!pgd_present(*pgd))
		return 0;
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;
	pud = pud_offset(p4d, address);
	if (!pud_present(*pud))
		return 0;
	if (pud_devmap(*pud))
		return PUD_SHIFT;
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;
	if (pmd_devmap(*pmd))
		return PMD_SHIFT;
	pte = pte_offset_map(pmd, address);
	if (!pte_present(*pte))
		return 0;
	if (pte_devmap(*pte))
		return PAGE_SHIFT;
	return 0;
}
325 326 327 328 329 330 331 332 333 334 335 336

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
337
		       struct list_head *to_kill)
338 339 340
{
	struct to_kill *tk;

341 342 343 344
	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
	if (!tk) {
		pr_err("Memory failure: Out of memory while machine check handling\n");
		return;
345
	}
346

347
	tk->addr = page_address_in_vma(p, vma);
348 349 350
	if (is_zone_device_page(p))
		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
	else
351
		tk->size_shift = page_shift(compound_head(p));
352 353

	/*
354 355 356 357 358 359 360 361
	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
	 * so "tk->size_shift == 0" effectively checks no mapping on
	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
	 * to a process' address space, it's possible not all N VMAs
	 * contain mappings for the page, but at least one VMA does.
	 * Only deliver SIGBUS with payload derived from the VMA that
	 * has a mapping for the page.
362
	 */
363
	if (tk->addr == -EFAULT) {
364
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
365
			page_to_pfn(p), tsk->comm);
366 367 368
	} else if (tk->size_shift == 0) {
		kfree(tk);
		return;
369
	}
370

371 372 373 374 375 376 377 378 379 380 381 382 383
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
384 385
static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
		unsigned long pfn, int flags)
386 387 388 389
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
390
		if (forcekill) {
391
			/*
392
			 * In case something went wrong with munmapping
393 394 395
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
396
			if (fail || tk->addr == -EFAULT) {
397
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
398
				       pfn, tk->tsk->comm, tk->tsk->pid);
399 400
				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
						 tk->tsk, PIDTYPE_PID);
401 402 403 404 405 406 407 408
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
409
			else if (kill_proc(tk, pfn, flags) < 0)
410
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
411
				       pfn, tk->tsk->comm, tk->tsk->pid);
412 413 414 415 416 417
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

418 419 420 421 422 423 424 425 426
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
427
{
428 429
	struct task_struct *t;

430 431 432 433 434 435 436 437 438
	for_each_thread(tsk, t) {
		if (t->flags & PF_MCE_PROCESS) {
			if (t->flags & PF_MCE_EARLY)
				return t;
		} else {
			if (sysctl_memory_failure_early_kill)
				return t;
		}
	}
439 440 441 442 443 444 445 446
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
 * specified) if the process is "early kill," and otherwise returns NULL.
447 448 449
 *
 * Note that the above is true for Action Optional case, but not for Action
 * Required case where SIGBUS should sent only to the current thread.
450 451 452 453
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
454
	if (!tsk->mm)
455
		return NULL;
456 457 458 459 460 461 462 463 464 465
	if (force_early) {
		/*
		 * Comparing ->mm here because current task might represent
		 * a subthread, while tsk always points to the main thread.
		 */
		if (tsk->mm == current->mm)
			return current;
		else
			return NULL;
	}
466
	return find_early_kill_thread(tsk);
467 468 469 470 471 472
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
473
				int force_early)
474 475 476 477
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
478
	pgoff_t pgoff;
479

480
	av = page_lock_anon_vma_read(page);
481
	if (av == NULL)	/* Not actually mapped anymore */
482 483
		return;

484
	pgoff = page_to_pgoff(page);
485
	read_lock(&tasklist_lock);
486
	for_each_process (tsk) {
487
		struct anon_vma_chain *vmac;
488
		struct task_struct *t = task_early_kill(tsk, force_early);
489

490
		if (!t)
491
			continue;
492 493
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
494
			vma = vmac->vma;
495 496
			if (!page_mapped_in_vma(page, vma))
				continue;
497
			if (vma->vm_mm == t->mm)
498
				add_to_kill(t, page, vma, to_kill);
499 500 501
		}
	}
	read_unlock(&tasklist_lock);
502
	page_unlock_anon_vma_read(av);
503 504 505 506 507 508
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
509
				int force_early)
510 511 512 513
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;
514
	pgoff_t pgoff;
515

516
	i_mmap_lock_read(mapping);
517
	read_lock(&tasklist_lock);
518
	pgoff = page_to_pgoff(page);
519
	for_each_process(tsk) {
520
		struct task_struct *t = task_early_kill(tsk, force_early);
521

522
		if (!t)
523
			continue;
524
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
525 526 527 528 529 530 531 532
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
533
			if (vma->vm_mm == t->mm)
534
				add_to_kill(t, page, vma, to_kill);
535 536 537
		}
	}
	read_unlock(&tasklist_lock);
538
	i_mmap_unlock_read(mapping);
539 540 541 542 543
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 */
544 545
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
546 547 548 549 550
{
	if (!page->mapping)
		return;

	if (PageAnon(page))
551
		collect_procs_anon(page, tokill, force_early);
552
	else
553
		collect_procs_file(page, tokill, force_early);
554 555 556
}

static const char *action_name[] = {
557 558 559 560
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
561 562 563
};

static const char * const action_page_types[] = {
564 565 566 567 568 569 570
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
571
	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
572 573 574 575 576 577 578 579 580 581 582 583
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
584
	[MF_MSG_DAX]			= "dax page",
585
	[MF_MSG_UNKNOWN]		= "unknown page",
586 587
};

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
603 604 605 606 607 608 609

		/*
		 * Poisoned page might never drop its ref count to 0 so we have
		 * to uncharge it manually from its memcg.
		 */
		mem_cgroup_uncharge(p);

610 611 612
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
613
		put_page(p);
614 615 616 617 618
		return 0;
	}
	return -EIO;
}

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
static int truncate_error_page(struct page *p, unsigned long pfn,
				struct address_space *mapping)
{
	int ret = MF_FAILED;

	if (mapping->a_ops->error_remove_page) {
		int err = mapping->a_ops->error_remove_page(mapping, p);

		if (err != 0) {
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
				pfn, err);
		} else if (page_has_private(p) &&
			   !try_to_release_page(p, GFP_NOIO)) {
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
		} else {
			ret = MF_RECOVERED;
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
			ret = MF_RECOVERED;
		else
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
	}

	return ret;
}

652 653 654 655 656 657 658
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
659
	return MF_IGNORED;
660 661 662 663 664 665 666
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
667
	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
668
	return MF_FAILED;
669 670 671 672 673 674 675 676 677
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
	struct address_space *mapping;

678 679
	delete_from_lru_cache(p);

680 681 682 683 684
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
	if (PageAnon(p))
685
		return MF_RECOVERED;
686 687 688 689 690 691 692 693 694 695 696 697 698

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
699
		return MF_FAILED;
700 701 702 703 704 705 706
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
707
	return truncate_error_page(p, pfn, mapping);
708 709 710
}

/*
711
 * Dirty pagecache page
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
744
		 * and the page is dropped between then the error
745 746 747 748 749 750 751 752 753 754 755
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
756
		mapping_set_error(mapping, -EIO);
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

787
	if (!delete_from_lru_cache(p))
788
		return MF_DELAYED;
789
	else
790
		return MF_FAILED;
791 792 793 794 795
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
	delete_from_swap_cache(p);
796

797
	if (!delete_from_lru_cache(p))
798
		return MF_RECOVERED;
799
	else
800
		return MF_FAILED;
801 802 803 804 805
}

/*
 * Huge pages. Needs work.
 * Issues:
806 807
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
808 809 810
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
811
	int res = 0;
812
	struct page *hpage = compound_head(p);
813
	struct address_space *mapping;
814 815 816 817

	if (!PageHuge(hpage))
		return MF_DELAYED;

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
	mapping = page_mapping(hpage);
	if (mapping) {
		res = truncate_error_page(hpage, pfn, mapping);
	} else {
		unlock_page(hpage);
		/*
		 * migration entry prevents later access on error anonymous
		 * hugepage, so we can free and dissolve it into buddy to
		 * save healthy subpages.
		 */
		if (PageAnon(hpage))
			put_page(hpage);
		dissolve_free_huge_page(p);
		res = MF_RECOVERED;
		lock_page(hpage);
833
	}
834 835

	return res;
836 837 838 839 840 841 842 843 844
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
845
 * in its live cycle, so all accesses have to be extremely careful.
846 847 848 849 850 851
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
852
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
853 854 855 856 857 858 859 860 861 862
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
863
	enum mf_action_page_type type;
864 865
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
866
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
867 868 869 870
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
871 872 873 874 875 876

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
877
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
878

879
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
880

881 882
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
883

884 885
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
886

887 888
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
889

890 891
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
892 893 894 895

	/*
	 * Catchall entry: must be at end.
	 */
896
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
897 898
};

899 900 901 902 903 904 905 906 907
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef lru
#undef head
#undef slab
#undef reserved

908 909 910 911
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
912 913
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
914
{
915 916
	trace_memory_failure_event(pfn, type, result);

917
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
918
		pfn, action_page_types[type], action_name[result]);
919 920 921
}

static int page_action(struct page_state *ps, struct page *p,
922
			unsigned long pfn)
923 924
{
	int result;
925
	int count;
926 927

	result = ps->action(p, pfn);
928

929
	count = page_count(p) - 1;
930
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
931
		count--;
932
	if (count > 0) {
933
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
934
		       pfn, action_page_types[ps->type], count);
935
		result = MF_FAILED;
936
	}
937
	action_result(pfn, ps->type, result);
938 939 940 941 942 943

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

944
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
945 946
}

947 948 949 950 951 952 953
/**
 * get_hwpoison_page() - Get refcount for memory error handling:
 * @page:	raw error page (hit by memory error)
 *
 * Return: return 0 if failed to grab the refcount, otherwise true (some
 * non-zero value.)
 */
954
static int get_hwpoison_page(struct page *page)
955 956 957
{
	struct page *head = compound_head(page);

958
	if (!PageHuge(head) && PageTransHuge(head)) {
959 960 961 962 963 964 965
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
966
			pr_err("Memory failure: %#lx: non anonymous thp\n",
967 968 969
				page_to_pfn(page));
			return 0;
		}
970 971
	}

972 973 974 975
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

976 977
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
978 979 980 981
		put_page(head);
	}

	return 0;
982 983
}

984 985 986 987
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
988
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
989
				  int flags, struct page **hpagep)
990
{
S
Shaohua Li 已提交
991
	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
992 993
	struct address_space *mapping;
	LIST_HEAD(tokill);
994
	bool unmap_success = true;
995
	int kill = 1, forcekill;
996
	struct page *hpage = *hpagep;
997
	bool mlocked = PageMlocked(hpage);
998

999 1000 1001 1002 1003
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
1004
		return true;
1005
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
1006
		return true;
1007 1008 1009 1010 1011

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
1012
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
1013
		return true;
W
Wu Fengguang 已提交
1014

1015
	if (PageKsm(p)) {
1016
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
1017
		return false;
1018
	}
1019 1020

	if (PageSwapCache(p)) {
1021 1022
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
1023 1024 1025 1026 1027 1028
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
1029 1030
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
1031
	 */
1032
	mapping = page_mapping(hpage);
1033
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1034
	    mapping_can_writeback(mapping)) {
1035 1036
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
1037 1038 1039
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
1040
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
1054
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	if (!PageHuge(hpage)) {
		unmap_success = try_to_unmap(hpage, ttu);
	} else {
		/*
		 * For hugetlb pages, try_to_unmap could potentially call
		 * huge_pmd_unshare.  Because of this, take semaphore in
		 * write mode here and set TTU_RMAP_LOCKED to indicate we
		 * have taken the lock at this higer level.
		 *
		 * Note that the call to hugetlb_page_mapping_lock_write
		 * is necessary even if mapping is already set.  It handles
		 * ugliness of potentially having to drop page lock to obtain
		 * i_mmap_rwsem.
		 */
		mapping = hugetlb_page_mapping_lock_write(hpage);

		if (mapping) {
			unmap_success = try_to_unmap(hpage,
						     ttu|TTU_RMAP_LOCKED);
			i_mmap_unlock_write(mapping);
		} else {
			pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n",
				pfn);
			unmap_success = false;
		}
	}
M
Minchan Kim 已提交
1082
	if (!unmap_success)
1083
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1084
		       pfn, page_mapcount(hpage));
1085

1086 1087 1088 1089 1090 1091 1092
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
		shake_page(hpage, 0);

1093 1094 1095 1096
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1097 1098
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1099 1100 1101 1102
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1103
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1104
	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
W
Wu Fengguang 已提交
1105

M
Minchan Kim 已提交
1106
	return unmap_success;
1107 1108
}

1109 1110
static int identify_page_state(unsigned long pfn, struct page *p,
				unsigned long page_flags)
1111 1112
{
	struct page_state *ps;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flags is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
			break;

	page_flags |= (p->flags & (1UL << PG_dirty));

	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	return page_action(ps, p, pfn);
}

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
static int try_to_split_thp_page(struct page *page, const char *msg)
{
	lock_page(page);
	if (!PageAnon(page) || unlikely(split_huge_page(page))) {
		unsigned long pfn = page_to_pfn(page);

		unlock_page(page);
		if (!PageAnon(page))
			pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
		else
			pr_info("%s: %#lx: thp split failed\n", msg, pfn);
		put_page(page);
		return -EBUSY;
	}
	unlock_page(page);

	return 0;
}

1151
static int memory_failure_hugetlb(unsigned long pfn, int flags)
1152
{
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	struct page *p = pfn_to_page(pfn);
	struct page *head = compound_head(p);
	int res;
	unsigned long page_flags;

	if (TestSetPageHWPoison(head)) {
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
		       pfn);
		return 0;
	}

	num_poisoned_pages_inc();

	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
		/*
		 * Check "filter hit" and "race with other subpage."
		 */
		lock_page(head);
		if (PageHWPoison(head)) {
			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
			    || (p != head && TestSetPageHWPoison(head))) {
				num_poisoned_pages_dec();
				unlock_page(head);
				return 0;
			}
		}
		unlock_page(head);
		dissolve_free_huge_page(p);
		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
		return 0;
	}

	lock_page(head);
	page_flags = head->flags;

	if (!PageHWPoison(head)) {
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
		num_poisoned_pages_dec();
		unlock_page(head);
1192
		put_page(head);
1193 1194 1195
		return 0;
	}

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	/*
	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
	 * simply disable it. In order to make it work properly, we need
	 * make sure that:
	 *  - conversion of a pud that maps an error hugetlb into hwpoison
	 *    entry properly works, and
	 *  - other mm code walking over page table is aware of pud-aligned
	 *    hwpoison entries.
	 */
	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1211
	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1212 1213 1214 1215 1216
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1217
	res = identify_page_state(pfn, p, page_flags);
1218 1219 1220 1221 1222
out:
	unlock_page(head);
	return res;
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
		struct dev_pagemap *pgmap)
{
	struct page *page = pfn_to_page(pfn);
	const bool unmap_success = true;
	unsigned long size = 0;
	struct to_kill *tk;
	LIST_HEAD(tokill);
	int rc = -EBUSY;
	loff_t start;
1233
	dax_entry_t cookie;
1234 1235 1236 1237 1238 1239 1240 1241

	/*
	 * Prevent the inode from being freed while we are interrogating
	 * the address_space, typically this would be handled by
	 * lock_page(), but dax pages do not use the page lock. This
	 * also prevents changes to the mapping of this pfn until
	 * poison signaling is complete.
	 */
1242 1243
	cookie = dax_lock_page(page);
	if (!cookie)
1244 1245 1246 1247 1248 1249 1250
		goto out;

	if (hwpoison_filter(page)) {
		rc = 0;
		goto unlock;
	}

1251
	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
		/*
		 * TODO: Handle HMM pages which may need coordination
		 * with device-side memory.
		 */
		goto unlock;
	}

	/*
	 * Use this flag as an indication that the dax page has been
	 * remapped UC to prevent speculative consumption of poison.
	 */
	SetPageHWPoison(page);

	/*
	 * Unlike System-RAM there is no possibility to swap in a
	 * different physical page at a given virtual address, so all
	 * userspace consumption of ZONE_DEVICE memory necessitates
	 * SIGBUS (i.e. MF_MUST_KILL)
	 */
	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);

	list_for_each_entry(tk, &tokill, nd)
		if (tk->size_shift)
			size = max(size, 1UL << tk->size_shift);
	if (size) {
		/*
		 * Unmap the largest mapping to avoid breaking up
		 * device-dax mappings which are constant size. The
		 * actual size of the mapping being torn down is
		 * communicated in siginfo, see kill_proc()
		 */
		start = (page->index << PAGE_SHIFT) & ~(size - 1);
		unmap_mapping_range(page->mapping, start, start + size, 0);
	}
	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
	rc = 0;
unlock:
1290
	dax_unlock_page(page, cookie);
1291 1292 1293 1294 1295 1296 1297
out:
	/* drop pgmap ref acquired in caller */
	put_dev_pagemap(pgmap);
	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
	return rc;
}

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
1315
int memory_failure(unsigned long pfn, int flags)
1316 1317
{
	struct page *p;
1318
	struct page *hpage;
1319
	struct page *orig_head;
1320
	struct dev_pagemap *pgmap;
1321
	int res;
1322
	unsigned long page_flags;
1323 1324

	if (!sysctl_memory_failure_recovery)
1325
		panic("Memory failure on page %lx", pfn);
1326

1327 1328 1329 1330 1331 1332 1333 1334
	p = pfn_to_online_page(pfn);
	if (!p) {
		if (pfn_valid(pfn)) {
			pgmap = get_dev_pagemap(pfn, NULL);
			if (pgmap)
				return memory_failure_dev_pagemap(pfn, flags,
								  pgmap);
		}
1335 1336
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1337
		return -ENXIO;
1338 1339
	}

1340
	if (PageHuge(p))
1341
		return memory_failure_hugetlb(pfn, flags);
1342
	if (TestSetPageHWPoison(p)) {
1343 1344
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1345 1346 1347
		return 0;
	}

1348
	orig_head = hpage = compound_head(p);
1349
	num_poisoned_pages_inc();
1350 1351 1352 1353 1354

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1355
	 * 2) it's part of a non-compound high order page.
1356 1357 1358 1359
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
1360
	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1361
	 */
1362
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1363
		if (is_free_buddy_page(p)) {
1364
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1365 1366
			return 0;
		} else {
1367
			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1368 1369
			return -EBUSY;
		}
1370 1371
	}

1372
	if (PageTransHuge(hpage)) {
1373
		if (try_to_split_thp_page(p, "Memory Failure") < 0)
1374 1375 1376 1377
			return -EBUSY;
		VM_BUG_ON_PAGE(!page_count(p), p);
	}

1378 1379 1380
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1381
	 * - to avoid races with __SetPageLocked()
1382 1383 1384 1385
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1386 1387 1388 1389 1390 1391 1392 1393
	shake_page(p, 0);
	/* shake_page could have turned it free. */
	if (!PageLRU(p) && is_free_buddy_page(p)) {
		if (flags & MF_COUNT_INCREASED)
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
		else
			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
		return 0;
1394 1395
	}

1396
	lock_page(p);
W
Wu Fengguang 已提交
1397

1398 1399 1400 1401
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1402
	if (PageCompound(p) && compound_head(p) != orig_head) {
1403
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1404 1405 1406 1407
		res = -EBUSY;
		goto out;
	}

1408 1409 1410 1411 1412 1413 1414
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
1415
	page_flags = p->flags;
1416

W
Wu Fengguang 已提交
1417 1418 1419 1420
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1421
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1422
		num_poisoned_pages_dec();
1423
		unlock_page(p);
1424
		put_page(p);
1425
		return 0;
W
Wu Fengguang 已提交
1426
	}
W
Wu Fengguang 已提交
1427 1428
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1429
			num_poisoned_pages_dec();
1430
		unlock_page(p);
1431
		put_page(p);
W
Wu Fengguang 已提交
1432 1433
		return 0;
	}
W
Wu Fengguang 已提交
1434

1435
	if (!PageTransTail(p) && !PageLRU(p))
1436 1437
		goto identify_page_state;

1438 1439 1440 1441
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1442 1443 1444 1445
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1446
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1447
	 */
1448
	if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1449
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1450 1451 1452
		res = -EBUSY;
		goto out;
	}
1453 1454 1455 1456

	/*
	 * Torn down by someone else?
	 */
1457
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1458
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1459
		res = -EBUSY;
1460 1461 1462
		goto out;
	}

1463
identify_page_state:
1464
	res = identify_page_state(pfn, p, page_flags);
1465
out:
1466
	unlock_page(p);
1467 1468
	return res;
}
1469
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1470

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
1504
void memory_failure_queue(unsigned long pfn, int flags)
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1515
	if (kfifo_put(&mf_cpu->fifo, entry))
1516 1517
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1518
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1532
	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1533 1534 1535 1536 1537 1538
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1539
		if (entry.flags & MF_SOFT_OFFLINE)
1540
			soft_offline_page(entry.pfn, entry.flags);
1541
		else
1542
			memory_failure(entry.pfn, entry.flags);
1543 1544 1545
	}
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
/*
 * Process memory_failure work queued on the specified CPU.
 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
 */
void memory_failure_queue_kick(int cpu)
{
	struct memory_failure_cpu *mf_cpu;

	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
	cancel_work_sync(&mf_cpu->work);
	memory_failure_work_func(&mf_cpu->work);
}

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1575 1576 1577 1578 1579 1580
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1598 1599
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1600 1601 1602 1603 1604 1605 1606 1607

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1608
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1609
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1610 1611 1612
		return 0;
	}

1613
	if (page_count(page) > 1) {
1614
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1615
				 pfn, &unpoison_rs);
1616 1617 1618 1619
		return 0;
	}

	if (page_mapped(page)) {
1620
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1621
				 pfn, &unpoison_rs);
1622 1623 1624 1625
		return 0;
	}

	if (page_mapping(page)) {
1626
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1627
				 pfn, &unpoison_rs);
1628 1629 1630
		return 0;
	}

1631 1632 1633 1634 1635
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1636
	if (!PageHuge(page) && PageTransHuge(page)) {
1637
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1638
				 pfn, &unpoison_rs);
1639
		return 0;
1640 1641
	}

1642
	if (!get_hwpoison_page(p)) {
W
Wu Fengguang 已提交
1643
		if (TestClearPageHWPoison(p))
1644
			num_poisoned_pages_dec();
1645
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1646
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1647 1648 1649
		return 0;
	}

J
Jens Axboe 已提交
1650
	lock_page(page);
W
Wu Fengguang 已提交
1651 1652 1653 1654 1655 1656
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1657
	if (TestClearPageHWPoison(page)) {
1658
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1659
				 pfn, &unpoison_rs);
1660
		num_poisoned_pages_dec();
W
Wu Fengguang 已提交
1661 1662 1663 1664
		freeit = 1;
	}
	unlock_page(page);

1665
	put_page(page);
1666
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1667
		put_page(page);
W
Wu Fengguang 已提交
1668 1669 1670 1671

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1672

1673
static struct page *new_page(struct page *p, unsigned long private)
1674
{
1675 1676 1677 1678
	struct migration_target_control mtc = {
		.nid = page_to_nid(p),
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
	};
1679

1680
	return alloc_migration_target(p, (unsigned long)&mtc);
1681 1682 1683 1684 1685 1686 1687 1688
}

/*
 * Safely get reference count of an arbitrary page.
 * Returns 0 for a free page, -EIO for a zero refcount page
 * that is not free, and 1 for any other page type.
 * For 1 the page is returned with increased page count, otherwise not.
 */
1689
static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1690 1691 1692 1693 1694 1695
{
	int ret;

	if (flags & MF_COUNT_INCREASED)
		return 1;

1696 1697 1698 1699
	/*
	 * When the target page is a free hugepage, just remove it
	 * from free hugepage list.
	 */
1700
	if (!get_hwpoison_page(p)) {
1701
		if (PageHuge(p)) {
1702
			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1703
			ret = 0;
1704
		} else if (is_free_buddy_page(p)) {
1705
			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1706 1707
			ret = 0;
		} else {
1708 1709
			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
				__func__, pfn, p->flags);
1710 1711 1712 1713 1714 1715 1716 1717 1718
			ret = -EIO;
		}
	} else {
		/* Not a free page */
		ret = 1;
	}
	return ret;
}

1719 1720 1721 1722
static int get_any_page(struct page *page, unsigned long pfn, int flags)
{
	int ret = __get_any_page(page, pfn, flags);

1723 1724
	if (ret == 1 && !PageHuge(page) &&
	    !PageLRU(page) && !__PageMovable(page)) {
1725 1726 1727
		/*
		 * Try to free it.
		 */
1728
		put_page(page);
1729 1730 1731 1732 1733 1734
		shake_page(page, 1);

		/*
		 * Did it turn free?
		 */
		ret = __get_any_page(page, pfn, 0);
1735
		if (ret == 1 && !PageLRU(page)) {
1736
			/* Drop page reference which is from __get_any_page() */
1737
			put_page(page);
1738 1739
			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
				pfn, page->flags, &page->flags);
1740 1741 1742 1743 1744 1745
			return -EIO;
		}
	}
	return ret;
}

1746
static bool isolate_page(struct page *page, struct list_head *pagelist)
1747
{
1748 1749
	bool isolated = false;
	bool lru = PageLRU(page);
1750

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	if (PageHuge(page)) {
		isolated = isolate_huge_page(page, pagelist);
	} else {
		if (lru)
			isolated = !isolate_lru_page(page);
		else
			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);

		if (isolated)
			list_add(&page->lru, pagelist);
1761
	}
1762

1763 1764 1765 1766
	if (isolated && lru)
		inc_node_page_state(page, NR_ISOLATED_ANON +
				    page_is_file_lru(page));

1767
	/*
1768 1769 1770 1771 1772
	 * If we succeed to isolate the page, we grabbed another refcount on
	 * the page, so we can safely drop the one we got from get_any_pages().
	 * If we failed to isolate the page, it means that we cannot go further
	 * and we will return an error, so drop the reference we got from
	 * get_any_pages() as well.
1773
	 */
1774 1775
	put_page(page);
	return isolated;
1776 1777
}

1778 1779 1780 1781 1782 1783
/*
 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
 * If the page is mapped, it migrates the contents over.
 */
static int __soft_offline_page(struct page *page)
1784
{
1785
	int ret = 0;
1786
	unsigned long pfn = page_to_pfn(page);
1787 1788 1789 1790
	struct page *hpage = compound_head(page);
	char const *msg_page[] = {"page", "hugepage"};
	bool huge = PageHuge(page);
	LIST_HEAD(pagelist);
1791 1792

	/*
1793 1794 1795 1796
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
1797
	 */
1798
	lock_page(page);
1799 1800
	if (!PageHuge(page))
		wait_on_page_writeback(page);
1801 1802
	if (PageHWPoison(page)) {
		unlock_page(page);
1803
		put_page(page);
1804
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1805
		return 0;
1806
	}
1807 1808 1809 1810 1811 1812 1813

	if (!PageHuge(page))
		/*
		 * Try to invalidate first. This should work for
		 * non dirty unmapped page cache pages.
		 */
		ret = invalidate_inode_page(page);
1814
	unlock_page(page);
1815

1816 1817 1818 1819
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
1820
	if (ret) {
1821
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1822
		page_handle_poison(page, false, true);
1823
		return 0;
1824 1825
	}

1826
	if (isolate_page(hpage, &pagelist)) {
1827
		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1828
					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1829
		if (!ret) {
1830 1831 1832 1833
			bool release = !huge;

			if (!page_handle_poison(page, huge, release))
				ret = -EBUSY;
1834
		} else {
1835 1836
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
1837

1838 1839
			pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
				pfn, msg_page[huge], ret, page->flags, &page->flags);
1840 1841 1842 1843
			if (ret > 0)
				ret = -EIO;
		}
	} else {
1844 1845 1846
		pr_info("soft offline: %#lx: %s isolation failed: %d, page count %d, type %lx (%pGp)\n",
			pfn, msg_page[huge], ret, page_count(page), page->flags, &page->flags);
		ret = -EBUSY;
1847 1848 1849
	}
	return ret;
}
1850

1851
static int soft_offline_in_use_page(struct page *page)
1852 1853 1854
{
	struct page *hpage = compound_head(page);

1855 1856
	if (!PageHuge(page) && PageTransHuge(hpage))
		if (try_to_split_thp_page(page, "soft offline") < 0)
1857
			return -EBUSY;
1858
	return __soft_offline_page(page);
1859 1860
}

1861
static int soft_offline_free_page(struct page *page)
1862
{
1863
	int rc = 0;
1864

1865 1866
	if (!page_handle_poison(page, true, false))
		rc = -EBUSY;
1867

1868
	return rc;
1869 1870
}

1871 1872
/**
 * soft_offline_page - Soft offline a page.
1873
 * @pfn: pfn to soft-offline
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
1893
int soft_offline_page(unsigned long pfn, int flags)
1894 1895
{
	int ret;
1896
	struct page *page;
1897

1898 1899 1900 1901 1902
	if (!pfn_valid(pfn))
		return -ENXIO;
	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
	page = pfn_to_online_page(pfn);
	if (!page)
1903 1904
		return -EIO;

1905 1906
	if (PageHWPoison(page)) {
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1907
		if (flags & MF_COUNT_INCREASED)
1908
			put_page(page);
1909
		return 0;
1910 1911
	}

1912
	get_online_mems();
1913
	ret = get_any_page(page, pfn, flags);
1914
	put_online_mems();
1915

1916
	if (ret > 0)
1917
		ret = soft_offline_in_use_page(page);
1918
	else if (ret == 0)
1919
		ret = soft_offline_free_page(page);
1920

1921 1922
	return ret;
}