memory-failure.c 58.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * High level machine check handler. Handles pages reported by the
7
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8
 * failure.
9 10 11
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
12 13
 *
 * Handles page cache pages in various states.	The tricky part
14 15 16 17 18 19
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
20 21 22 23 24 25 26 27
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
28 29 30 31 32 33 34
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
35 36 37 38
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
39
#include <linux/kernel-page-flags.h>
40
#include <linux/sched/signal.h>
41
#include <linux/sched/task.h>
H
Hugh Dickins 已提交
42
#include <linux/ksm.h>
43
#include <linux/rmap.h>
44
#include <linux/export.h>
45 46 47
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
48 49
#include <linux/migrate.h>
#include <linux/suspend.h>
50
#include <linux/slab.h>
51
#include <linux/swapops.h>
52
#include <linux/hugetlb.h>
53
#include <linux/memory_hotplug.h>
54
#include <linux/mm_inline.h>
55
#include <linux/memremap.h>
56
#include <linux/kfifo.h>
57
#include <linux/ratelimit.h>
58
#include <linux/page-isolation.h>
59
#include <linux/pagewalk.h>
60
#include "internal.h"
61
#include "ras/ras_event.h"
62 63 64 65 66

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

67
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68

69 70 71 72 73 74 75 76 77 78 79 80 81
static bool __page_handle_poison(struct page *page)
{
	bool ret;

	zone_pcp_disable(page_zone(page));
	ret = dissolve_free_huge_page(page);
	if (!ret)
		ret = take_page_off_buddy(page);
	zone_pcp_enable(page_zone(page));

	return ret;
}

82
static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
83
{
84 85 86 87 88
	if (hugepage_or_freepage) {
		/*
		 * Doing this check for free pages is also fine since dissolve_free_huge_page
		 * returns 0 for non-hugetlb pages as well.
		 */
89
		if (!__page_handle_poison(page))
90 91
			/*
			 * We could fail to take off the target page from buddy
I
Ingo Molnar 已提交
92
			 * for example due to racy page allocation, but that's
93 94 95 96 97 98 99
			 * acceptable because soft-offlined page is not broken
			 * and if someone really want to use it, they should
			 * take it.
			 */
			return false;
	}

100
	SetPageHWPoison(page);
101 102
	if (release)
		put_page(page);
103 104
	page_ref_inc(page);
	num_poisoned_pages_inc();
105 106

	return true;
107 108
}

109 110
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

111
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
112 113
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
114 115
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
116
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
117 118
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
119 120
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
121 122 123 124 125 126 127 128 129 130 131

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
132
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
152 153 154 155 156 157 158 159 160 161 162 163
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
164 165 166 167 168 169 170 171 172 173
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
174
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
175 176 177 178 179 180 181
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

182
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
183 184 185 186 187 188 189 190
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
191 192
int hwpoison_filter(struct page *p)
{
193 194 195
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
196 197 198
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
199 200 201
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
202 203 204
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
205 206
	return 0;
}
207 208 209 210 211 212 213
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
214 215
EXPORT_SYMBOL_GPL(hwpoison_filter);

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
	short size_shift;
};

245
/*
246 247 248
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
249
 */
250
static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
251
{
252 253
	struct task_struct *t = tk->tsk;
	short addr_lsb = tk->size_shift;
254
	int ret = 0;
255

256
	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
257
			pfn, t->comm, t->pid);
258

259
	if (flags & MF_ACTION_REQUIRED) {
260 261
		if (t == current)
			ret = force_sig_mceerr(BUS_MCEERR_AR,
262
					 (void __user *)tk->addr, addr_lsb);
263 264 265 266
		else
			/* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
			ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
				addr_lsb, t);
267 268 269 270 271 272 273
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
274
		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
275
				      addr_lsb, t);  /* synchronous? */
276
	}
277
	if (ret < 0)
278
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
279
			t->comm, t->pid, ret);
280 281 282
	return ret;
}

283
/*
284 285
 * Unknown page type encountered. Try to check whether it can turn PageLRU by
 * lru_add_drain_all, or a free page by reclaiming slabs when possible.
286
 */
287
void shake_page(struct page *p, int access)
288
{
289 290 291
	if (PageHuge(p))
		return;

292 293 294 295 296
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
297

298
	/*
299 300
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
301
	 */
302 303
	if (access)
		drop_slab_node(page_to_nid(p));
304 305 306
}
EXPORT_SYMBOL_GPL(shake_page);

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
static unsigned long dev_pagemap_mapping_shift(struct page *page,
		struct vm_area_struct *vma)
{
	unsigned long address = vma_address(page, vma);
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = pgd_offset(vma->vm_mm, address);
	if (!pgd_present(*pgd))
		return 0;
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;
	pud = pud_offset(p4d, address);
	if (!pud_present(*pud))
		return 0;
	if (pud_devmap(*pud))
		return PUD_SHIFT;
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;
	if (pmd_devmap(*pmd))
		return PMD_SHIFT;
	pte = pte_offset_map(pmd, address);
	if (!pte_present(*pte))
		return 0;
	if (pte_devmap(*pte))
		return PAGE_SHIFT;
	return 0;
}
340 341 342 343 344 345 346 347 348 349 350 351

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
352
		       struct list_head *to_kill)
353 354 355
{
	struct to_kill *tk;

356 357 358 359
	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
	if (!tk) {
		pr_err("Memory failure: Out of memory while machine check handling\n");
		return;
360
	}
361

362
	tk->addr = page_address_in_vma(p, vma);
363 364 365
	if (is_zone_device_page(p))
		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
	else
366
		tk->size_shift = page_shift(compound_head(p));
367 368

	/*
369 370 371 372 373 374 375 376
	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
	 * so "tk->size_shift == 0" effectively checks no mapping on
	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
	 * to a process' address space, it's possible not all N VMAs
	 * contain mappings for the page, but at least one VMA does.
	 * Only deliver SIGBUS with payload derived from the VMA that
	 * has a mapping for the page.
377
	 */
378
	if (tk->addr == -EFAULT) {
379
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
380
			page_to_pfn(p), tsk->comm);
381 382 383
	} else if (tk->size_shift == 0) {
		kfree(tk);
		return;
384
	}
385

386 387 388 389 390 391 392 393 394 395 396 397 398
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
399 400
static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
		unsigned long pfn, int flags)
401 402 403 404
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
405
		if (forcekill) {
406
			/*
407
			 * In case something went wrong with munmapping
408 409 410
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
411
			if (fail || tk->addr == -EFAULT) {
412
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
413
				       pfn, tk->tsk->comm, tk->tsk->pid);
414 415
				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
						 tk->tsk, PIDTYPE_PID);
416 417 418 419 420 421 422 423
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
424
			else if (kill_proc(tk, pfn, flags) < 0)
425
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
426
				       pfn, tk->tsk->comm, tk->tsk->pid);
427 428 429 430 431 432
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

433 434 435 436 437 438 439 440 441
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
442
{
443 444
	struct task_struct *t;

445 446 447 448 449 450 451 452 453
	for_each_thread(tsk, t) {
		if (t->flags & PF_MCE_PROCESS) {
			if (t->flags & PF_MCE_EARLY)
				return t;
		} else {
			if (sysctl_memory_failure_early_kill)
				return t;
		}
	}
454 455 456 457 458 459 460
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
461
 * specified) if the process is "early kill" and otherwise returns NULL.
462
 *
463 464 465 466 467
 * Note that the above is true for Action Optional case. For Action Required
 * case, it's only meaningful to the current thread which need to be signaled
 * with SIGBUS, this error is Action Optional for other non current
 * processes sharing the same error page,if the process is "early kill", the
 * task_struct of the dedicated thread will also be returned.
468 469 470 471
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
472
	if (!tsk->mm)
473
		return NULL;
474 475 476 477 478 479 480
	/*
	 * Comparing ->mm here because current task might represent
	 * a subthread, while tsk always points to the main thread.
	 */
	if (force_early && tsk->mm == current->mm)
		return current;

481
	return find_early_kill_thread(tsk);
482 483 484 485 486 487
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
488
				int force_early)
489 490 491 492
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
493
	pgoff_t pgoff;
494

495
	av = page_lock_anon_vma_read(page);
496
	if (av == NULL)	/* Not actually mapped anymore */
497 498
		return;

499
	pgoff = page_to_pgoff(page);
500
	read_lock(&tasklist_lock);
501
	for_each_process (tsk) {
502
		struct anon_vma_chain *vmac;
503
		struct task_struct *t = task_early_kill(tsk, force_early);
504

505
		if (!t)
506
			continue;
507 508
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
509
			vma = vmac->vma;
510 511
			if (!page_mapped_in_vma(page, vma))
				continue;
512
			if (vma->vm_mm == t->mm)
513
				add_to_kill(t, page, vma, to_kill);
514 515 516
		}
	}
	read_unlock(&tasklist_lock);
517
	page_unlock_anon_vma_read(av);
518 519 520 521 522 523
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
524
				int force_early)
525 526 527 528
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;
529
	pgoff_t pgoff;
530

531
	i_mmap_lock_read(mapping);
532
	read_lock(&tasklist_lock);
533
	pgoff = page_to_pgoff(page);
534
	for_each_process(tsk) {
535
		struct task_struct *t = task_early_kill(tsk, force_early);
536

537
		if (!t)
538
			continue;
539
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
540 541 542 543 544 545 546 547
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
548
			if (vma->vm_mm == t->mm)
549
				add_to_kill(t, page, vma, to_kill);
550 551 552
		}
	}
	read_unlock(&tasklist_lock);
553
	i_mmap_unlock_read(mapping);
554 555 556 557 558
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 */
559 560
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
561 562 563 564 565
{
	if (!page->mapping)
		return;

	if (PageAnon(page))
566
		collect_procs_anon(page, tokill, force_early);
567
	else
568
		collect_procs_file(page, tokill, force_early);
569 570
}

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
struct hwp_walk {
	struct to_kill tk;
	unsigned long pfn;
	int flags;
};

static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
{
	tk->addr = addr;
	tk->size_shift = shift;
}

static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
				unsigned long poisoned_pfn, struct to_kill *tk)
{
	unsigned long pfn = 0;

	if (pte_present(pte)) {
		pfn = pte_pfn(pte);
	} else {
		swp_entry_t swp = pte_to_swp_entry(pte);

		if (is_hwpoison_entry(swp))
			pfn = hwpoison_entry_to_pfn(swp);
	}

	if (!pfn || pfn != poisoned_pfn)
		return 0;

	set_to_kill(tk, addr, shift);
	return 1;
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
				      struct hwp_walk *hwp)
{
	pmd_t pmd = *pmdp;
	unsigned long pfn;
	unsigned long hwpoison_vaddr;

	if (!pmd_present(pmd))
		return 0;
	pfn = pmd_pfn(pmd);
	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
		return 1;
	}
	return 0;
}
#else
static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
				      struct hwp_walk *hwp)
{
	return 0;
}
#endif

static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
			      unsigned long end, struct mm_walk *walk)
{
	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
	int ret = 0;
	pte_t *ptep;
	spinlock_t *ptl;

	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
	if (ptl) {
		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
		spin_unlock(ptl);
		goto out;
	}

	if (pmd_trans_unstable(pmdp))
		goto out;

	ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, addr, &ptl);
	for (; addr != end; ptep++, addr += PAGE_SIZE) {
		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
					     hwp->pfn, &hwp->tk);
		if (ret == 1)
			break;
	}
	pte_unmap_unlock(ptep - 1, ptl);
out:
	cond_resched();
	return ret;
}

#ifdef CONFIG_HUGETLB_PAGE
static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
			    unsigned long addr, unsigned long end,
			    struct mm_walk *walk)
{
	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
	pte_t pte = huge_ptep_get(ptep);
	struct hstate *h = hstate_vma(walk->vma);

	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
				      hwp->pfn, &hwp->tk);
}
#else
#define hwpoison_hugetlb_range	NULL
#endif

static struct mm_walk_ops hwp_walk_ops = {
	.pmd_entry = hwpoison_pte_range,
	.hugetlb_entry = hwpoison_hugetlb_range,
};

/*
 * Sends SIGBUS to the current process with error info.
 *
 * This function is intended to handle "Action Required" MCEs on already
 * hardware poisoned pages. They could happen, for example, when
 * memory_failure() failed to unmap the error page at the first call, or
 * when multiple local machine checks happened on different CPUs.
 *
 * MCE handler currently has no easy access to the error virtual address,
 * so this function walks page table to find it. The returned virtual address
 * is proper in most cases, but it could be wrong when the application
 * process has multiple entries mapping the error page.
 */
static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
				  int flags)
{
	int ret;
	struct hwp_walk priv = {
		.pfn = pfn,
	};
	priv.tk.tsk = p;

	mmap_read_lock(p->mm);
	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
			      (void *)&priv);
	if (ret == 1 && priv.tk.addr)
		kill_proc(&priv.tk, pfn, flags);
	mmap_read_unlock(p->mm);
	return ret ? -EFAULT : -EHWPOISON;
}

713
static const char *action_name[] = {
714 715 716 717
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
718 719 720
};

static const char * const action_page_types[] = {
721 722 723 724 725 726 727
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
728
	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
729 730 731 732 733 734 735 736 737 738 739 740
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
741
	[MF_MSG_DAX]			= "dax page",
742
	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
743
	[MF_MSG_UNKNOWN]		= "unknown page",
744 745
};

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
761 762 763 764 765 766 767

		/*
		 * Poisoned page might never drop its ref count to 0 so we have
		 * to uncharge it manually from its memcg.
		 */
		mem_cgroup_uncharge(p);

768 769 770
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
771
		put_page(p);
772 773 774 775 776
		return 0;
	}
	return -EIO;
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
static int truncate_error_page(struct page *p, unsigned long pfn,
				struct address_space *mapping)
{
	int ret = MF_FAILED;

	if (mapping->a_ops->error_remove_page) {
		int err = mapping->a_ops->error_remove_page(mapping, p);

		if (err != 0) {
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
				pfn, err);
		} else if (page_has_private(p) &&
			   !try_to_release_page(p, GFP_NOIO)) {
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
		} else {
			ret = MF_RECOVERED;
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
			ret = MF_RECOVERED;
		else
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
	}

	return ret;
}

810 811 812 813 814 815 816
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
817
	unlock_page(p);
818
	return MF_IGNORED;
819 820 821 822 823 824 825
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
826
	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
827
	unlock_page(p);
828
	return MF_FAILED;
829 830 831 832 833 834 835
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
836
	int ret;
837 838
	struct address_space *mapping;

839 840
	delete_from_lru_cache(p);

841 842 843 844
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
845 846 847 848
	if (PageAnon(p)) {
		ret = MF_RECOVERED;
		goto out;
	}
849 850 851 852 853 854 855 856 857 858 859 860 861

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
862 863
		ret = MF_FAILED;
		goto out;
864 865 866 867 868 869 870
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
871 872 873 874
	ret = truncate_error_page(p, pfn, mapping);
out:
	unlock_page(p);
	return ret;
875 876 877
}

/*
878
 * Dirty pagecache page
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
911
		 * and the page is dropped between then the error
912 913 914 915 916 917 918 919 920 921 922
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
923
		mapping_set_error(mapping, -EIO);
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
950 951
	int ret;

952 953 954 955
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

956 957 958
	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
	unlock_page(p);
	return ret;
959 960 961 962
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
963 964
	int ret;

965
	delete_from_swap_cache(p);
966

967 968 969
	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
	unlock_page(p);
	return ret;
970 971 972 973 974
}

/*
 * Huge pages. Needs work.
 * Issues:
975 976
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
977 978 979
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
980
	int res;
981
	struct page *hpage = compound_head(p);
982
	struct address_space *mapping;
983 984 985 986

	if (!PageHuge(hpage))
		return MF_DELAYED;

987 988 989
	mapping = page_mapping(hpage);
	if (mapping) {
		res = truncate_error_page(hpage, pfn, mapping);
990
		unlock_page(hpage);
991
	} else {
992
		res = MF_FAILED;
993 994 995 996 997 998 999 1000
		unlock_page(hpage);
		/*
		 * migration entry prevents later access on error anonymous
		 * hugepage, so we can free and dissolve it into buddy to
		 * save healthy subpages.
		 */
		if (PageAnon(hpage))
			put_page(hpage);
1001
		if (__page_handle_poison(p)) {
1002 1003 1004
			page_ref_inc(p);
			res = MF_RECOVERED;
		}
1005
	}
1006 1007

	return res;
1008 1009 1010 1011 1012 1013 1014 1015 1016
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
1017
 * in its live cycle, so all accesses have to be extremely careful.
1018 1019 1020 1021 1022 1023
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
1024
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
1035
	enum mf_action_page_type type;
1036 1037

	/* Callback ->action() has to unlock the relevant page inside it. */
1038 1039
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
1040
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1041 1042 1043 1044
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
1045 1046 1047 1048 1049 1050

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
1051
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1052

1053
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1054

1055 1056
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1057

1058 1059
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1060

1061 1062
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1063

1064 1065
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1066 1067 1068 1069

	/*
	 * Catchall entry: must be at end.
	 */
1070
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1071 1072
};

1073 1074 1075 1076 1077 1078 1079 1080 1081
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef lru
#undef head
#undef slab
#undef reserved

1082 1083 1084 1085
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
1086 1087
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
1088
{
1089 1090
	trace_memory_failure_event(pfn, type, result);

1091
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1092
		pfn, action_page_types[type], action_name[result]);
1093 1094 1095
}

static int page_action(struct page_state *ps, struct page *p,
1096
			unsigned long pfn)
1097 1098
{
	int result;
1099
	int count;
1100

1101
	/* page p should be unlocked after returning from ps->action().  */
1102
	result = ps->action(p, pfn);
1103

1104
	count = page_count(p) - 1;
1105
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
1106
		count--;
1107
	if (count > 0) {
1108
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
1109
		       pfn, action_page_types[ps->type], count);
1110
		result = MF_FAILED;
1111
	}
1112
	action_result(pfn, ps->type, result);
1113 1114 1115 1116 1117 1118

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

1119
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1120 1121
}

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
/*
 * Return true if a page type of a given page is supported by hwpoison
 * mechanism (while handling could fail), otherwise false.  This function
 * does not return true for hugetlb or device memory pages, so it's assumed
 * to be called only in the context where we never have such pages.
 */
static inline bool HWPoisonHandlable(struct page *page)
{
	return PageLRU(page) || __PageMovable(page);
}

1133
static int __get_hwpoison_page(struct page *page)
1134 1135
{
	struct page *head = compound_head(page);
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	int ret = 0;
	bool hugetlb = false;

	ret = get_hwpoison_huge_page(head, &hugetlb);
	if (hugetlb)
		return ret;

	/*
	 * This check prevents from calling get_hwpoison_unless_zero()
	 * for any unsupported type of page in order to reduce the risk of
	 * unexpected races caused by taking a page refcount.
	 */
	if (!HWPoisonHandlable(head))
		return 0;
1150

1151
	if (PageTransHuge(head)) {
1152 1153 1154 1155 1156 1157 1158
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
1159
			pr_err("Memory failure: %#lx: non anonymous thp\n",
1160 1161 1162
				page_to_pfn(page));
			return 0;
		}
1163 1164
	}

1165 1166 1167 1168
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

1169 1170
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
1171 1172 1173 1174
		put_page(head);
	}

	return 0;
1175 1176
}

1177
static int get_any_page(struct page *p, unsigned long flags)
1178
{
1179 1180
	int ret = 0, pass = 0;
	bool count_increased = false;
1181

1182 1183 1184 1185
	if (flags & MF_COUNT_INCREASED)
		count_increased = true;

try_again:
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	if (!count_increased) {
		ret = __get_hwpoison_page(p);
		if (!ret) {
			if (page_count(p)) {
				/* We raced with an allocation, retry. */
				if (pass++ < 3)
					goto try_again;
				ret = -EBUSY;
			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
				/* We raced with put_page, retry. */
				if (pass++ < 3)
					goto try_again;
				ret = -EIO;
			}
			goto out;
		} else if (ret == -EBUSY) {
			/* We raced with freeing huge page to buddy, retry. */
1203 1204
			if (pass++ < 3)
				goto try_again;
1205
			goto out;
1206
		}
1207 1208 1209 1210
	}

	if (PageHuge(p) || HWPoisonHandlable(p)) {
		ret = 1;
1211
	} else {
1212 1213 1214 1215 1216
		/*
		 * A page we cannot handle. Check whether we can turn
		 * it into something we can handle.
		 */
		if (pass++ < 3) {
1217
			put_page(p);
1218 1219 1220
			shake_page(p, 1);
			count_increased = false;
			goto try_again;
1221
		}
1222 1223
		put_page(p);
		ret = -EIO;
1224
	}
1225
out:
1226 1227 1228
	return ret;
}

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
/**
 * get_hwpoison_page() - Get refcount for memory error handling
 * @p:		Raw error page (hit by memory error)
 * @flags:	Flags controlling behavior of error handling
 *
 * get_hwpoison_page() takes a page refcount of an error page to handle memory
 * error on it, after checking that the error page is in a well-defined state
 * (defined as a page-type we can successfully handle the memor error on it,
 * such as LRU page and hugetlb page).
 *
 * Memory error handling could be triggered at any time on any type of page,
 * so it's prone to race with typical memory management lifecycle (like
 * allocation and free).  So to avoid such races, get_hwpoison_page() takes
 * extra care for the error page's state (as done in __get_hwpoison_page()),
 * and has some retry logic in get_any_page().
 *
 * Return: 0 on failure,
 *         1 on success for in-use pages in a well-defined state,
 *         -EIO for pages on which we can not handle memory errors,
 *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
 *         operations like allocation and free.
 */
static int get_hwpoison_page(struct page *p, unsigned long flags)
1252 1253 1254 1255
{
	int ret;

	zone_pcp_disable(page_zone(p));
1256
	ret = get_any_page(p, flags);
1257 1258 1259 1260 1261
	zone_pcp_enable(page_zone(p));

	return ret;
}

1262 1263 1264 1265
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
1266
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1267
				  int flags, struct page **hpagep)
1268
{
1269
	enum ttu_flags ttu = TTU_IGNORE_MLOCK;
1270 1271
	struct address_space *mapping;
	LIST_HEAD(tokill);
1272
	bool unmap_success;
1273
	int kill = 1, forcekill;
1274
	struct page *hpage = *hpagep;
1275
	bool mlocked = PageMlocked(hpage);
1276

1277 1278 1279 1280 1281
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
1282
		return true;
1283
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
1284
		return true;
1285 1286 1287 1288 1289

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
1290
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
1291
		return true;
W
Wu Fengguang 已提交
1292

1293
	if (PageKsm(p)) {
1294
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
1295
		return false;
1296
	}
1297 1298

	if (PageSwapCache(p)) {
1299 1300
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
1301 1302 1303 1304 1305 1306
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
1307 1308
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
1309
	 */
1310
	mapping = page_mapping(hpage);
1311
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1312
	    mapping_can_writeback(mapping)) {
1313 1314
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
1315 1316 1317
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
1318
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
1332
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1333

1334
	if (!PageHuge(hpage)) {
1335
		try_to_unmap(hpage, ttu);
1336
	} else {
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
		if (!PageAnon(hpage)) {
			/*
			 * For hugetlb pages in shared mappings, try_to_unmap
			 * could potentially call huge_pmd_unshare.  Because of
			 * this, take semaphore in write mode here and set
			 * TTU_RMAP_LOCKED to indicate we have taken the lock
			 * at this higer level.
			 */
			mapping = hugetlb_page_mapping_lock_write(hpage);
			if (mapping) {
1347
				try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1348
				i_mmap_unlock_write(mapping);
1349
			} else
1350
				pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1351
		} else {
1352
			try_to_unmap(hpage, ttu);
1353 1354
		}
	}
1355 1356

	unmap_success = !page_mapped(hpage);
M
Minchan Kim 已提交
1357
	if (!unmap_success)
1358
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1359
		       pfn, page_mapcount(hpage));
1360

1361 1362 1363 1364 1365 1366 1367
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
		shake_page(hpage, 0);

1368 1369 1370 1371
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1372 1373
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1374 1375 1376 1377
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1378
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1379
	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
W
Wu Fengguang 已提交
1380

M
Minchan Kim 已提交
1381
	return unmap_success;
1382 1383
}

1384 1385
static int identify_page_state(unsigned long pfn, struct page *p,
				unsigned long page_flags)
1386 1387
{
	struct page_state *ps;
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406

	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flags is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
			break;

	page_flags |= (p->flags & (1UL << PG_dirty));

	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	return page_action(ps, p, pfn);
}

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
static int try_to_split_thp_page(struct page *page, const char *msg)
{
	lock_page(page);
	if (!PageAnon(page) || unlikely(split_huge_page(page))) {
		unsigned long pfn = page_to_pfn(page);

		unlock_page(page);
		if (!PageAnon(page))
			pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
		else
			pr_info("%s: %#lx: thp split failed\n", msg, pfn);
		put_page(page);
		return -EBUSY;
	}
	unlock_page(page);

	return 0;
}

1426
static int memory_failure_hugetlb(unsigned long pfn, int flags)
1427
{
1428 1429 1430 1431 1432 1433 1434 1435
	struct page *p = pfn_to_page(pfn);
	struct page *head = compound_head(p);
	int res;
	unsigned long page_flags;

	if (TestSetPageHWPoison(head)) {
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
		       pfn);
1436 1437 1438 1439
		res = -EHWPOISON;
		if (flags & MF_ACTION_REQUIRED)
			res = kill_accessing_process(current, page_to_pfn(head), flags);
		return res;
1440 1441 1442 1443
	}

	num_poisoned_pages_inc();

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	if (!(flags & MF_COUNT_INCREASED)) {
		res = get_hwpoison_page(p, flags);
		if (!res) {
			/*
			 * Check "filter hit" and "race with other subpage."
			 */
			lock_page(head);
			if (PageHWPoison(head)) {
				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
				    || (p != head && TestSetPageHWPoison(head))) {
					num_poisoned_pages_dec();
					unlock_page(head);
					return 0;
				}
1458
			}
1459 1460
			unlock_page(head);
			res = MF_FAILED;
1461
			if (__page_handle_poison(p)) {
1462 1463 1464 1465 1466 1467 1468 1469
				page_ref_inc(p);
				res = MF_RECOVERED;
			}
			action_result(pfn, MF_MSG_FREE_HUGE, res);
			return res == MF_RECOVERED ? 0 : -EBUSY;
		} else if (res < 0) {
			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
			return -EBUSY;
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
		}
	}

	lock_page(head);
	page_flags = head->flags;

	if (!PageHWPoison(head)) {
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
		num_poisoned_pages_dec();
		unlock_page(head);
1480
		put_page(head);
1481 1482 1483
		return 0;
	}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	/*
	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
	 * simply disable it. In order to make it work properly, we need
	 * make sure that:
	 *  - conversion of a pud that maps an error hugetlb into hwpoison
	 *    entry properly works, and
	 *  - other mm code walking over page table is aware of pud-aligned
	 *    hwpoison entries.
	 */
	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1499
	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1500 1501 1502 1503 1504
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1505
	return identify_page_state(pfn, p, page_flags);
1506 1507 1508 1509 1510
out:
	unlock_page(head);
	return res;
}

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
		struct dev_pagemap *pgmap)
{
	struct page *page = pfn_to_page(pfn);
	const bool unmap_success = true;
	unsigned long size = 0;
	struct to_kill *tk;
	LIST_HEAD(tokill);
	int rc = -EBUSY;
	loff_t start;
1521
	dax_entry_t cookie;
1522

1523 1524 1525 1526 1527 1528
	if (flags & MF_COUNT_INCREASED)
		/*
		 * Drop the extra refcount in case we come from madvise().
		 */
		put_page(page);

1529 1530 1531 1532 1533 1534
	/* device metadata space is not recoverable */
	if (!pgmap_pfn_valid(pgmap, pfn)) {
		rc = -ENXIO;
		goto out;
	}

1535 1536 1537 1538 1539 1540 1541
	/*
	 * Prevent the inode from being freed while we are interrogating
	 * the address_space, typically this would be handled by
	 * lock_page(), but dax pages do not use the page lock. This
	 * also prevents changes to the mapping of this pfn until
	 * poison signaling is complete.
	 */
1542 1543
	cookie = dax_lock_page(page);
	if (!cookie)
1544 1545 1546 1547 1548 1549 1550
		goto out;

	if (hwpoison_filter(page)) {
		rc = 0;
		goto unlock;
	}

1551
	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
		/*
		 * TODO: Handle HMM pages which may need coordination
		 * with device-side memory.
		 */
		goto unlock;
	}

	/*
	 * Use this flag as an indication that the dax page has been
	 * remapped UC to prevent speculative consumption of poison.
	 */
	SetPageHWPoison(page);

	/*
	 * Unlike System-RAM there is no possibility to swap in a
	 * different physical page at a given virtual address, so all
	 * userspace consumption of ZONE_DEVICE memory necessitates
	 * SIGBUS (i.e. MF_MUST_KILL)
	 */
	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);

	list_for_each_entry(tk, &tokill, nd)
		if (tk->size_shift)
			size = max(size, 1UL << tk->size_shift);
	if (size) {
		/*
		 * Unmap the largest mapping to avoid breaking up
		 * device-dax mappings which are constant size. The
		 * actual size of the mapping being torn down is
		 * communicated in siginfo, see kill_proc()
		 */
		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1585
		unmap_mapping_range(page->mapping, start, size, 0);
1586 1587 1588 1589
	}
	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
	rc = 0;
unlock:
1590
	dax_unlock_page(page, cookie);
1591 1592 1593 1594 1595 1596 1597
out:
	/* drop pgmap ref acquired in caller */
	put_dev_pagemap(pgmap);
	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
	return rc;
}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
1615
int memory_failure(unsigned long pfn, int flags)
1616 1617
{
	struct page *p;
1618
	struct page *hpage;
1619
	struct page *orig_head;
1620
	struct dev_pagemap *pgmap;
1621
	int res = 0;
1622
	unsigned long page_flags;
1623
	bool retry = true;
1624
	static DEFINE_MUTEX(mf_mutex);
1625 1626

	if (!sysctl_memory_failure_recovery)
1627
		panic("Memory failure on page %lx", pfn);
1628

1629 1630 1631 1632 1633 1634 1635 1636
	p = pfn_to_online_page(pfn);
	if (!p) {
		if (pfn_valid(pfn)) {
			pgmap = get_dev_pagemap(pfn, NULL);
			if (pgmap)
				return memory_failure_dev_pagemap(pfn, flags,
								  pgmap);
		}
1637 1638
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1639
		return -ENXIO;
1640 1641
	}

1642 1643
	mutex_lock(&mf_mutex);

1644
try_again:
1645 1646 1647 1648 1649
	if (PageHuge(p)) {
		res = memory_failure_hugetlb(pfn, flags);
		goto unlock_mutex;
	}

1650
	if (TestSetPageHWPoison(p)) {
1651 1652
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1653
		res = -EHWPOISON;
1654 1655
		if (flags & MF_ACTION_REQUIRED)
			res = kill_accessing_process(current, pfn, flags);
1656
		goto unlock_mutex;
1657 1658
	}

1659
	orig_head = hpage = compound_head(p);
1660
	num_poisoned_pages_inc();
1661 1662 1663 1664 1665

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1666
	 * 2) it's part of a non-compound high order page.
1667 1668 1669 1670
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
1671
	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1672
	 */
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	if (!(flags & MF_COUNT_INCREASED)) {
		res = get_hwpoison_page(p, flags);
		if (!res) {
			if (is_free_buddy_page(p)) {
				if (take_page_off_buddy(p)) {
					page_ref_inc(p);
					res = MF_RECOVERED;
				} else {
					/* We lost the race, try again */
					if (retry) {
						ClearPageHWPoison(p);
						num_poisoned_pages_dec();
						retry = false;
						goto try_again;
					}
					res = MF_FAILED;
1689
				}
1690 1691 1692 1693 1694
				action_result(pfn, MF_MSG_BUDDY, res);
				res = res == MF_RECOVERED ? 0 : -EBUSY;
			} else {
				action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
				res = -EBUSY;
1695
			}
1696 1697 1698
			goto unlock_mutex;
		} else if (res < 0) {
			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1699
			res = -EBUSY;
1700
			goto unlock_mutex;
1701
		}
1702 1703
	}

1704
	if (PageTransHuge(hpage)) {
1705 1706
		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1707 1708
			res = -EBUSY;
			goto unlock_mutex;
1709
		}
1710 1711 1712
		VM_BUG_ON_PAGE(!page_count(p), p);
	}

1713 1714 1715
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1716
	 * - to avoid races with __SetPageLocked()
1717 1718 1719 1720
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1721
	shake_page(p, 0);
1722

1723
	lock_page(p);
W
Wu Fengguang 已提交
1724

1725 1726 1727 1728
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1729
	if (PageCompound(p) && compound_head(p) != orig_head) {
1730
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1731
		res = -EBUSY;
1732
		goto unlock_page;
1733 1734
	}

1735 1736 1737 1738 1739 1740 1741
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
1742
	page_flags = p->flags;
1743

W
Wu Fengguang 已提交
1744 1745 1746 1747
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1748
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1749
		num_poisoned_pages_dec();
1750
		unlock_page(p);
1751
		put_page(p);
1752
		goto unlock_mutex;
W
Wu Fengguang 已提交
1753
	}
W
Wu Fengguang 已提交
1754 1755
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1756
			num_poisoned_pages_dec();
1757
		unlock_page(p);
1758
		put_page(p);
1759
		goto unlock_mutex;
W
Wu Fengguang 已提交
1760
	}
W
Wu Fengguang 已提交
1761

1762 1763 1764 1765 1766 1767
	/*
	 * __munlock_pagevec may clear a writeback page's LRU flag without
	 * page_lock. We need wait writeback completion for this page or it
	 * may trigger vfs BUG while evict inode.
	 */
	if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1768 1769
		goto identify_page_state;

1770 1771 1772 1773
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1774 1775 1776 1777
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1778
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1779
	 */
1780
	if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1781
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1782
		res = -EBUSY;
1783
		goto unlock_page;
W
Wu Fengguang 已提交
1784
	}
1785 1786 1787 1788

	/*
	 * Torn down by someone else?
	 */
1789
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1790
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1791
		res = -EBUSY;
1792
		goto unlock_page;
1793 1794
	}

1795
identify_page_state:
1796
	res = identify_page_state(pfn, p, page_flags);
1797 1798
	mutex_unlock(&mf_mutex);
	return res;
1799
unlock_page:
1800
	unlock_page(p);
1801 1802
unlock_mutex:
	mutex_unlock(&mf_mutex);
1803 1804
	return res;
}
1805
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1806

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
1840
void memory_failure_queue(unsigned long pfn, int flags)
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1851
	if (kfifo_put(&mf_cpu->fifo, entry))
1852 1853
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1854
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1868
	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1869 1870 1871 1872 1873 1874
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1875
		if (entry.flags & MF_SOFT_OFFLINE)
1876
			soft_offline_page(entry.pfn, entry.flags);
1877
		else
1878
			memory_failure(entry.pfn, entry.flags);
1879 1880 1881
	}
}

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
/*
 * Process memory_failure work queued on the specified CPU.
 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
 */
void memory_failure_queue_kick(int cpu)
{
	struct memory_failure_cpu *mf_cpu;

	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
	cancel_work_sync(&mf_cpu->work);
	memory_failure_work_func(&mf_cpu->work);
}

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1911 1912 1913 1914 1915 1916
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1934
	unsigned long flags = 0;
1935 1936
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1937 1938 1939 1940 1941 1942 1943 1944

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1945
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1946
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1947 1948 1949
		return 0;
	}

1950
	if (page_count(page) > 1) {
1951
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1952
				 pfn, &unpoison_rs);
1953 1954 1955 1956
		return 0;
	}

	if (page_mapped(page)) {
1957
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1958
				 pfn, &unpoison_rs);
1959 1960 1961 1962
		return 0;
	}

	if (page_mapping(page)) {
1963
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1964
				 pfn, &unpoison_rs);
1965 1966 1967
		return 0;
	}

1968 1969 1970 1971 1972
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1973
	if (!PageHuge(page) && PageTransHuge(page)) {
1974
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1975
				 pfn, &unpoison_rs);
1976
		return 0;
1977 1978
	}

1979
	if (!get_hwpoison_page(p, flags)) {
W
Wu Fengguang 已提交
1980
		if (TestClearPageHWPoison(p))
1981
			num_poisoned_pages_dec();
1982
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1983
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1984 1985 1986
		return 0;
	}

J
Jens Axboe 已提交
1987
	lock_page(page);
W
Wu Fengguang 已提交
1988 1989 1990 1991 1992 1993
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1994
	if (TestClearPageHWPoison(page)) {
1995
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1996
				 pfn, &unpoison_rs);
1997
		num_poisoned_pages_dec();
W
Wu Fengguang 已提交
1998 1999 2000 2001
		freeit = 1;
	}
	unlock_page(page);

2002
	put_page(page);
2003
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
2004
		put_page(page);
W
Wu Fengguang 已提交
2005 2006 2007 2008

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
2009

2010
static bool isolate_page(struct page *page, struct list_head *pagelist)
2011
{
2012 2013
	bool isolated = false;
	bool lru = PageLRU(page);
2014

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	if (PageHuge(page)) {
		isolated = isolate_huge_page(page, pagelist);
	} else {
		if (lru)
			isolated = !isolate_lru_page(page);
		else
			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);

		if (isolated)
			list_add(&page->lru, pagelist);
2025
	}
2026

2027 2028 2029 2030
	if (isolated && lru)
		inc_node_page_state(page, NR_ISOLATED_ANON +
				    page_is_file_lru(page));

2031
	/*
2032 2033 2034 2035 2036
	 * If we succeed to isolate the page, we grabbed another refcount on
	 * the page, so we can safely drop the one we got from get_any_pages().
	 * If we failed to isolate the page, it means that we cannot go further
	 * and we will return an error, so drop the reference we got from
	 * get_any_pages() as well.
2037
	 */
2038 2039
	put_page(page);
	return isolated;
2040 2041
}

2042 2043 2044 2045 2046 2047
/*
 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
 * If the page is mapped, it migrates the contents over.
 */
static int __soft_offline_page(struct page *page)
2048
{
2049
	int ret = 0;
2050
	unsigned long pfn = page_to_pfn(page);
2051 2052 2053 2054
	struct page *hpage = compound_head(page);
	char const *msg_page[] = {"page", "hugepage"};
	bool huge = PageHuge(page);
	LIST_HEAD(pagelist);
2055 2056 2057 2058
	struct migration_target_control mtc = {
		.nid = NUMA_NO_NODE,
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
	};
2059 2060

	/*
2061 2062 2063 2064
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
2065
	 */
2066
	lock_page(page);
2067 2068
	if (!PageHuge(page))
		wait_on_page_writeback(page);
2069 2070
	if (PageHWPoison(page)) {
		unlock_page(page);
2071
		put_page(page);
2072
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2073
		return 0;
2074
	}
2075 2076 2077 2078 2079 2080 2081

	if (!PageHuge(page))
		/*
		 * Try to invalidate first. This should work for
		 * non dirty unmapped page cache pages.
		 */
		ret = invalidate_inode_page(page);
2082
	unlock_page(page);
2083

2084 2085 2086 2087
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
2088
	if (ret) {
2089
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2090
		page_handle_poison(page, false, true);
2091
		return 0;
2092 2093
	}

2094
	if (isolate_page(hpage, &pagelist)) {
2095 2096
		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
2097
		if (!ret) {
2098 2099 2100 2101
			bool release = !huge;

			if (!page_handle_poison(page, huge, release))
				ret = -EBUSY;
2102
		} else {
2103 2104
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
2105

2106 2107
			pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
				pfn, msg_page[huge], ret, page->flags, &page->flags);
2108
			if (ret > 0)
2109
				ret = -EBUSY;
2110 2111
		}
	} else {
2112 2113
		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
			pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
2114
		ret = -EBUSY;
2115 2116 2117
	}
	return ret;
}
2118

2119
static int soft_offline_in_use_page(struct page *page)
2120 2121 2122
{
	struct page *hpage = compound_head(page);

2123 2124
	if (!PageHuge(page) && PageTransHuge(hpage))
		if (try_to_split_thp_page(page, "soft offline") < 0)
2125
			return -EBUSY;
2126
	return __soft_offline_page(page);
2127 2128
}

2129
static int soft_offline_free_page(struct page *page)
2130
{
2131
	int rc = 0;
2132

2133 2134
	if (!page_handle_poison(page, true, false))
		rc = -EBUSY;
2135

2136
	return rc;
2137 2138
}

2139 2140 2141 2142 2143 2144
static void put_ref_page(struct page *page)
{
	if (page)
		put_page(page);
}

2145 2146
/**
 * soft_offline_page - Soft offline a page.
2147
 * @pfn: pfn to soft-offline
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
2167
int soft_offline_page(unsigned long pfn, int flags)
2168 2169
{
	int ret;
2170
	bool try_again = true;
2171 2172 2173
	struct page *page, *ref_page = NULL;

	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2174

2175 2176
	if (!pfn_valid(pfn))
		return -ENXIO;
2177 2178 2179
	if (flags & MF_COUNT_INCREASED)
		ref_page = pfn_to_page(pfn);

2180 2181
	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
	page = pfn_to_online_page(pfn);
2182 2183
	if (!page) {
		put_ref_page(ref_page);
2184
		return -EIO;
2185
	}
2186

2187
	if (PageHWPoison(page)) {
2188
		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2189
		put_ref_page(ref_page);
2190
		return 0;
2191 2192
	}

2193
retry:
2194
	get_online_mems();
2195
	ret = get_hwpoison_page(page, flags);
2196
	put_online_mems();
2197

2198
	if (ret > 0) {
2199
		ret = soft_offline_in_use_page(page);
2200
	} else if (ret == 0) {
2201 2202 2203 2204
		if (soft_offline_free_page(page) && try_again) {
			try_again = false;
			goto retry;
		}
2205
	} else if (ret == -EIO) {
2206
		pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
2207 2208
			 __func__, pfn, page->flags, &page->flags);
	}
2209

2210 2211
	return ret;
}