memory-failure.c 52.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * High level machine check handler. Handles pages reported by the
7
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8
 * failure.
9 10 11
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
12 13
 *
 * Handles page cache pages in various states.	The tricky part
14 15 16 17 18 19
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
20 21 22 23 24 25 26 27
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
28 29 30 31 32 33 34
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
35 36 37 38
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
39
#include <linux/kernel-page-flags.h>
40
#include <linux/sched/signal.h>
41
#include <linux/sched/task.h>
H
Hugh Dickins 已提交
42
#include <linux/ksm.h>
43
#include <linux/rmap.h>
44
#include <linux/export.h>
45 46 47
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
48 49
#include <linux/migrate.h>
#include <linux/suspend.h>
50
#include <linux/slab.h>
51
#include <linux/swapops.h>
52
#include <linux/hugetlb.h>
53
#include <linux/memory_hotplug.h>
54
#include <linux/mm_inline.h>
55
#include <linux/memremap.h>
56
#include <linux/kfifo.h>
57
#include <linux/ratelimit.h>
58
#include <linux/page-isolation.h>
59
#include "internal.h"
60
#include "ras/ras_event.h"
61 62 63 64 65

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

66
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67

68
static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
69
{
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
	if (hugepage_or_freepage) {
		/*
		 * Doing this check for free pages is also fine since dissolve_free_huge_page
		 * returns 0 for non-hugetlb pages as well.
		 */
		if (dissolve_free_huge_page(page) || !take_page_off_buddy(page))
			/*
			 * We could fail to take off the target page from buddy
			 * for example due to racy page allocaiton, but that's
			 * acceptable because soft-offlined page is not broken
			 * and if someone really want to use it, they should
			 * take it.
			 */
			return false;
	}

86
	SetPageHWPoison(page);
87 88
	if (release)
		put_page(page);
89 90
	page_ref_inc(page);
	num_poisoned_pages_inc();
91 92

	return true;
93 94
}

95 96
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

97
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
98 99
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
100 101
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
102
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
103 104
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
105 106
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
107 108 109 110 111 112 113 114 115 116 117

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
118
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
138 139 140 141 142 143 144 145 146 147 148 149
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
150 151 152 153 154 155 156 157 158 159
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
160
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
161 162 163 164 165 166 167
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

168
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
169 170 171 172 173 174 175 176
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
177 178
int hwpoison_filter(struct page *p)
{
179 180 181
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
182 183 184
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
185 186 187
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
188 189 190
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
191 192
	return 0;
}
193 194 195 196 197 198 199
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
200 201
EXPORT_SYMBOL_GPL(hwpoison_filter);

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
	short size_shift;
};

231
/*
232 233 234
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
235
 */
236
static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
237
{
238 239
	struct task_struct *t = tk->tsk;
	short addr_lsb = tk->size_shift;
240
	int ret = 0;
241

242
	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
243
			pfn, t->comm, t->pid);
244

245
	if (flags & MF_ACTION_REQUIRED) {
246 247
		WARN_ON_ONCE(t != current);
		ret = force_sig_mceerr(BUS_MCEERR_AR,
248
					 (void __user *)tk->addr, addr_lsb);
249 250 251 252 253 254 255
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
256
		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
257
				      addr_lsb, t);  /* synchronous? */
258
	}
259
	if (ret < 0)
260
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
261
			t->comm, t->pid, ret);
262 263 264
	return ret;
}

265
/*
266 267
 * Unknown page type encountered. Try to check whether it can turn PageLRU by
 * lru_add_drain_all, or a free page by reclaiming slabs when possible.
268
 */
269
void shake_page(struct page *p, int access)
270
{
271 272 273
	if (PageHuge(p))
		return;

274 275 276 277 278
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
279

280
	/*
281 282
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
283
	 */
284 285
	if (access)
		drop_slab_node(page_to_nid(p));
286 287 288
}
EXPORT_SYMBOL_GPL(shake_page);

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
static unsigned long dev_pagemap_mapping_shift(struct page *page,
		struct vm_area_struct *vma)
{
	unsigned long address = vma_address(page, vma);
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = pgd_offset(vma->vm_mm, address);
	if (!pgd_present(*pgd))
		return 0;
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;
	pud = pud_offset(p4d, address);
	if (!pud_present(*pud))
		return 0;
	if (pud_devmap(*pud))
		return PUD_SHIFT;
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;
	if (pmd_devmap(*pmd))
		return PMD_SHIFT;
	pte = pte_offset_map(pmd, address);
	if (!pte_present(*pte))
		return 0;
	if (pte_devmap(*pte))
		return PAGE_SHIFT;
	return 0;
}
322 323 324 325 326 327 328 329 330 331 332 333

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
334
		       struct list_head *to_kill)
335 336 337
{
	struct to_kill *tk;

338 339 340 341
	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
	if (!tk) {
		pr_err("Memory failure: Out of memory while machine check handling\n");
		return;
342
	}
343

344
	tk->addr = page_address_in_vma(p, vma);
345 346 347
	if (is_zone_device_page(p))
		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
	else
348
		tk->size_shift = page_shift(compound_head(p));
349 350

	/*
351 352 353 354 355 356 357 358
	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
	 * so "tk->size_shift == 0" effectively checks no mapping on
	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
	 * to a process' address space, it's possible not all N VMAs
	 * contain mappings for the page, but at least one VMA does.
	 * Only deliver SIGBUS with payload derived from the VMA that
	 * has a mapping for the page.
359
	 */
360
	if (tk->addr == -EFAULT) {
361
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
362
			page_to_pfn(p), tsk->comm);
363 364 365
	} else if (tk->size_shift == 0) {
		kfree(tk);
		return;
366
	}
367

368 369 370 371 372 373 374 375 376 377 378 379 380
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
381 382
static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
		unsigned long pfn, int flags)
383 384 385 386
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
387
		if (forcekill) {
388
			/*
389
			 * In case something went wrong with munmapping
390 391 392
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
393
			if (fail || tk->addr == -EFAULT) {
394
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
395
				       pfn, tk->tsk->comm, tk->tsk->pid);
396 397
				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
						 tk->tsk, PIDTYPE_PID);
398 399 400 401 402 403 404 405
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
406
			else if (kill_proc(tk, pfn, flags) < 0)
407
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
408
				       pfn, tk->tsk->comm, tk->tsk->pid);
409 410 411 412 413 414
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

415 416 417 418 419 420 421 422 423
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
424
{
425 426
	struct task_struct *t;

427 428 429 430 431 432 433 434 435
	for_each_thread(tsk, t) {
		if (t->flags & PF_MCE_PROCESS) {
			if (t->flags & PF_MCE_EARLY)
				return t;
		} else {
			if (sysctl_memory_failure_early_kill)
				return t;
		}
	}
436 437 438 439 440 441 442 443
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
 * specified) if the process is "early kill," and otherwise returns NULL.
444 445 446
 *
 * Note that the above is true for Action Optional case, but not for Action
 * Required case where SIGBUS should sent only to the current thread.
447 448 449 450
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
451
	if (!tsk->mm)
452
		return NULL;
453 454 455 456 457 458 459 460 461 462
	if (force_early) {
		/*
		 * Comparing ->mm here because current task might represent
		 * a subthread, while tsk always points to the main thread.
		 */
		if (tsk->mm == current->mm)
			return current;
		else
			return NULL;
	}
463
	return find_early_kill_thread(tsk);
464 465 466 467 468 469
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
470
				int force_early)
471 472 473 474
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
475
	pgoff_t pgoff;
476

477
	av = page_lock_anon_vma_read(page);
478
	if (av == NULL)	/* Not actually mapped anymore */
479 480
		return;

481
	pgoff = page_to_pgoff(page);
482
	read_lock(&tasklist_lock);
483
	for_each_process (tsk) {
484
		struct anon_vma_chain *vmac;
485
		struct task_struct *t = task_early_kill(tsk, force_early);
486

487
		if (!t)
488
			continue;
489 490
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
491
			vma = vmac->vma;
492 493
			if (!page_mapped_in_vma(page, vma))
				continue;
494
			if (vma->vm_mm == t->mm)
495
				add_to_kill(t, page, vma, to_kill);
496 497 498
		}
	}
	read_unlock(&tasklist_lock);
499
	page_unlock_anon_vma_read(av);
500 501 502 503 504 505
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
506
				int force_early)
507 508 509 510
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;
511
	pgoff_t pgoff;
512

513
	i_mmap_lock_read(mapping);
514
	read_lock(&tasklist_lock);
515
	pgoff = page_to_pgoff(page);
516
	for_each_process(tsk) {
517
		struct task_struct *t = task_early_kill(tsk, force_early);
518

519
		if (!t)
520
			continue;
521
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
522 523 524 525 526 527 528 529
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
530
			if (vma->vm_mm == t->mm)
531
				add_to_kill(t, page, vma, to_kill);
532 533 534
		}
	}
	read_unlock(&tasklist_lock);
535
	i_mmap_unlock_read(mapping);
536 537 538 539 540
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 */
541 542
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
543 544 545 546 547
{
	if (!page->mapping)
		return;

	if (PageAnon(page))
548
		collect_procs_anon(page, tokill, force_early);
549
	else
550
		collect_procs_file(page, tokill, force_early);
551 552 553
}

static const char *action_name[] = {
554 555 556 557
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
558 559 560
};

static const char * const action_page_types[] = {
561 562 563 564 565 566 567
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
568
	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
569 570 571 572 573 574 575 576 577 578 579 580
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
581
	[MF_MSG_DAX]			= "dax page",
582
	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
583
	[MF_MSG_UNKNOWN]		= "unknown page",
584 585
};

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
601 602 603 604 605 606 607

		/*
		 * Poisoned page might never drop its ref count to 0 so we have
		 * to uncharge it manually from its memcg.
		 */
		mem_cgroup_uncharge(p);

608 609 610
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
611
		put_page(p);
612 613 614 615 616
		return 0;
	}
	return -EIO;
}

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
static int truncate_error_page(struct page *p, unsigned long pfn,
				struct address_space *mapping)
{
	int ret = MF_FAILED;

	if (mapping->a_ops->error_remove_page) {
		int err = mapping->a_ops->error_remove_page(mapping, p);

		if (err != 0) {
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
				pfn, err);
		} else if (page_has_private(p) &&
			   !try_to_release_page(p, GFP_NOIO)) {
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
		} else {
			ret = MF_RECOVERED;
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
			ret = MF_RECOVERED;
		else
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
	}

	return ret;
}

650 651 652 653 654 655 656
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
657
	return MF_IGNORED;
658 659 660 661 662 663 664
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
665
	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
666
	return MF_FAILED;
667 668 669 670 671 672 673 674 675
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
	struct address_space *mapping;

676 677
	delete_from_lru_cache(p);

678 679 680 681 682
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
	if (PageAnon(p))
683
		return MF_RECOVERED;
684 685 686 687 688 689 690 691 692 693 694 695 696

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
697
		return MF_FAILED;
698 699 700 701 702 703 704
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
705
	return truncate_error_page(p, pfn, mapping);
706 707 708
}

/*
709
 * Dirty pagecache page
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
742
		 * and the page is dropped between then the error
743 744 745 746 747 748 749 750 751 752 753
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
754
		mapping_set_error(mapping, -EIO);
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

785
	if (!delete_from_lru_cache(p))
786
		return MF_DELAYED;
787
	else
788
		return MF_FAILED;
789 790 791 792 793
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
	delete_from_swap_cache(p);
794

795
	if (!delete_from_lru_cache(p))
796
		return MF_RECOVERED;
797
	else
798
		return MF_FAILED;
799 800 801 802 803
}

/*
 * Huge pages. Needs work.
 * Issues:
804 805
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
806 807 808
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
809
	int res;
810
	struct page *hpage = compound_head(p);
811
	struct address_space *mapping;
812 813 814 815

	if (!PageHuge(hpage))
		return MF_DELAYED;

816 817 818 819
	mapping = page_mapping(hpage);
	if (mapping) {
		res = truncate_error_page(hpage, pfn, mapping);
	} else {
820
		res = MF_FAILED;
821 822 823 824 825 826 827 828
		unlock_page(hpage);
		/*
		 * migration entry prevents later access on error anonymous
		 * hugepage, so we can free and dissolve it into buddy to
		 * save healthy subpages.
		 */
		if (PageAnon(hpage))
			put_page(hpage);
829 830 831 832
		if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
			page_ref_inc(p);
			res = MF_RECOVERED;
		}
833
		lock_page(hpage);
834
	}
835 836

	return res;
837 838 839 840 841 842 843 844 845
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
846
 * in its live cycle, so all accesses have to be extremely careful.
847 848 849 850 851 852
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
853
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
854 855 856 857 858 859 860 861 862 863
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
864
	enum mf_action_page_type type;
865 866
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
867
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
868 869 870 871
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
872 873 874 875 876 877

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
878
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
879

880
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
881

882 883
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
884

885 886
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
887

888 889
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
890

891 892
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
893 894 895 896

	/*
	 * Catchall entry: must be at end.
	 */
897
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
898 899
};

900 901 902 903 904 905 906 907 908
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef lru
#undef head
#undef slab
#undef reserved

909 910 911 912
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
913 914
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
915
{
916 917
	trace_memory_failure_event(pfn, type, result);

918
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
919
		pfn, action_page_types[type], action_name[result]);
920 921 922
}

static int page_action(struct page_state *ps, struct page *p,
923
			unsigned long pfn)
924 925
{
	int result;
926
	int count;
927 928

	result = ps->action(p, pfn);
929

930
	count = page_count(p) - 1;
931
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
932
		count--;
933
	if (count > 0) {
934
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
935
		       pfn, action_page_types[ps->type], count);
936
		result = MF_FAILED;
937
	}
938
	action_result(pfn, ps->type, result);
939 940 941 942 943 944

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

945
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
946 947
}

948
/**
949
 * __get_hwpoison_page() - Get refcount for memory error handling:
950 951 952 953 954
 * @page:	raw error page (hit by memory error)
 *
 * Return: return 0 if failed to grab the refcount, otherwise true (some
 * non-zero value.)
 */
955
static int __get_hwpoison_page(struct page *page)
956 957 958
{
	struct page *head = compound_head(page);

959
	if (!PageHuge(head) && PageTransHuge(head)) {
960 961 962 963 964 965 966
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
967
			pr_err("Memory failure: %#lx: non anonymous thp\n",
968 969 970
				page_to_pfn(page));
			return 0;
		}
971 972
	}

973 974 975 976
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

977 978
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
979 980 981 982
		put_page(head);
	}

	return 0;
983 984
}

985 986 987 988 989 990 991 992 993 994
/*
 * Safely get reference count of an arbitrary page.
 *
 * Returns 0 for a free page, 1 for an in-use page,
 * -EIO for a page-type we cannot handle and -EBUSY if we raced with an
 * allocation.
 * We only incremented refcount in case the page was already in-use and it
 * is a known type we can handle.
 */
static int get_any_page(struct page *p, unsigned long flags)
995
{
996 997
	int ret = 0, pass = 0;
	bool count_increased = false;
998

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	if (flags & MF_COUNT_INCREASED)
		count_increased = true;

try_again:
	if (!count_increased && !__get_hwpoison_page(p)) {
		if (page_count(p)) {
			/* We raced with an allocation, retry. */
			if (pass++ < 3)
				goto try_again;
			ret = -EBUSY;
		} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
			/* We raced with put_page, retry. */
			if (pass++ < 3)
				goto try_again;
			ret = -EIO;
		}
	} else {
		if (PageHuge(p) || PageLRU(p) || __PageMovable(p)) {
			ret = 1;
		} else {
			/*
			 * A page we cannot handle. Check whether we can turn
			 * it into something we can handle.
			 */
			if (pass++ < 3) {
				put_page(p);
				shake_page(p, 1);
				count_increased = false;
				goto try_again;
			}
			put_page(p);
			ret = -EIO;
		}
1032 1033 1034 1035 1036
	}

	return ret;
}

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
static int get_hwpoison_page(struct page *p, unsigned long flags,
			     enum mf_flags ctxt)
{
	int ret;

	zone_pcp_disable(page_zone(p));
	if (ctxt == MF_SOFT_OFFLINE)
		ret = get_any_page(p, flags);
	else
		ret = __get_hwpoison_page(p);
	zone_pcp_enable(page_zone(p));

	return ret;
}

1052 1053 1054 1055
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
1056
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1057
				  int flags, struct page **hpagep)
1058
{
1059
	enum ttu_flags ttu = TTU_IGNORE_MLOCK;
1060 1061
	struct address_space *mapping;
	LIST_HEAD(tokill);
1062
	bool unmap_success = true;
1063
	int kill = 1, forcekill;
1064
	struct page *hpage = *hpagep;
1065
	bool mlocked = PageMlocked(hpage);
1066

1067 1068 1069 1070 1071
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
1072
		return true;
1073
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
1074
		return true;
1075 1076 1077 1078 1079

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
1080
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
1081
		return true;
W
Wu Fengguang 已提交
1082

1083
	if (PageKsm(p)) {
1084
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
1085
		return false;
1086
	}
1087 1088

	if (PageSwapCache(p)) {
1089 1090
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
1091 1092 1093 1094 1095 1096
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
1097 1098
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
1099
	 */
1100
	mapping = page_mapping(hpage);
1101
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1102
	    mapping_can_writeback(mapping)) {
1103 1104
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
1105 1106 1107
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
1108
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
1122
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1123

1124 1125 1126
	if (!PageHuge(hpage)) {
		unmap_success = try_to_unmap(hpage, ttu);
	} else {
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
		if (!PageAnon(hpage)) {
			/*
			 * For hugetlb pages in shared mappings, try_to_unmap
			 * could potentially call huge_pmd_unshare.  Because of
			 * this, take semaphore in write mode here and set
			 * TTU_RMAP_LOCKED to indicate we have taken the lock
			 * at this higer level.
			 */
			mapping = hugetlb_page_mapping_lock_write(hpage);
			if (mapping) {
				unmap_success = try_to_unmap(hpage,
1138
						     ttu|TTU_RMAP_LOCKED);
1139 1140 1141 1142 1143
				i_mmap_unlock_write(mapping);
			} else {
				pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
				unmap_success = false;
			}
1144
		} else {
1145
			unmap_success = try_to_unmap(hpage, ttu);
1146 1147
		}
	}
M
Minchan Kim 已提交
1148
	if (!unmap_success)
1149
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1150
		       pfn, page_mapcount(hpage));
1151

1152 1153 1154 1155 1156 1157 1158
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
		shake_page(hpage, 0);

1159 1160 1161 1162
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1163 1164
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1165 1166 1167 1168
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1169
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1170
	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
W
Wu Fengguang 已提交
1171

M
Minchan Kim 已提交
1172
	return unmap_success;
1173 1174
}

1175 1176
static int identify_page_state(unsigned long pfn, struct page *p,
				unsigned long page_flags)
1177 1178
{
	struct page_state *ps;
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flags is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
			break;

	page_flags |= (p->flags & (1UL << PG_dirty));

	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	return page_action(ps, p, pfn);
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
static int try_to_split_thp_page(struct page *page, const char *msg)
{
	lock_page(page);
	if (!PageAnon(page) || unlikely(split_huge_page(page))) {
		unsigned long pfn = page_to_pfn(page);

		unlock_page(page);
		if (!PageAnon(page))
			pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
		else
			pr_info("%s: %#lx: thp split failed\n", msg, pfn);
		put_page(page);
		return -EBUSY;
	}
	unlock_page(page);

	return 0;
}

1217
static int memory_failure_hugetlb(unsigned long pfn, int flags)
1218
{
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	struct page *p = pfn_to_page(pfn);
	struct page *head = compound_head(p);
	int res;
	unsigned long page_flags;

	if (TestSetPageHWPoison(head)) {
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
		       pfn);
		return 0;
	}

	num_poisoned_pages_inc();

1232
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
		/*
		 * Check "filter hit" and "race with other subpage."
		 */
		lock_page(head);
		if (PageHWPoison(head)) {
			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
			    || (p != head && TestSetPageHWPoison(head))) {
				num_poisoned_pages_dec();
				unlock_page(head);
				return 0;
			}
		}
		unlock_page(head);
1246 1247 1248 1249 1250 1251 1252
		res = MF_FAILED;
		if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
			page_ref_inc(p);
			res = MF_RECOVERED;
		}
		action_result(pfn, MF_MSG_FREE_HUGE, res);
		return res == MF_RECOVERED ? 0 : -EBUSY;
1253 1254 1255 1256 1257 1258 1259 1260 1261
	}

	lock_page(head);
	page_flags = head->flags;

	if (!PageHWPoison(head)) {
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
		num_poisoned_pages_dec();
		unlock_page(head);
1262
		put_page(head);
1263 1264 1265
		return 0;
	}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	/*
	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
	 * simply disable it. In order to make it work properly, we need
	 * make sure that:
	 *  - conversion of a pud that maps an error hugetlb into hwpoison
	 *    entry properly works, and
	 *  - other mm code walking over page table is aware of pud-aligned
	 *    hwpoison entries.
	 */
	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1281
	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1282 1283 1284 1285 1286
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1287
	res = identify_page_state(pfn, p, page_flags);
1288 1289 1290 1291 1292
out:
	unlock_page(head);
	return res;
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
		struct dev_pagemap *pgmap)
{
	struct page *page = pfn_to_page(pfn);
	const bool unmap_success = true;
	unsigned long size = 0;
	struct to_kill *tk;
	LIST_HEAD(tokill);
	int rc = -EBUSY;
	loff_t start;
1303
	dax_entry_t cookie;
1304 1305 1306 1307 1308 1309 1310 1311

	/*
	 * Prevent the inode from being freed while we are interrogating
	 * the address_space, typically this would be handled by
	 * lock_page(), but dax pages do not use the page lock. This
	 * also prevents changes to the mapping of this pfn until
	 * poison signaling is complete.
	 */
1312 1313
	cookie = dax_lock_page(page);
	if (!cookie)
1314 1315 1316 1317 1318 1319 1320
		goto out;

	if (hwpoison_filter(page)) {
		rc = 0;
		goto unlock;
	}

1321
	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		/*
		 * TODO: Handle HMM pages which may need coordination
		 * with device-side memory.
		 */
		goto unlock;
	}

	/*
	 * Use this flag as an indication that the dax page has been
	 * remapped UC to prevent speculative consumption of poison.
	 */
	SetPageHWPoison(page);

	/*
	 * Unlike System-RAM there is no possibility to swap in a
	 * different physical page at a given virtual address, so all
	 * userspace consumption of ZONE_DEVICE memory necessitates
	 * SIGBUS (i.e. MF_MUST_KILL)
	 */
	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);

	list_for_each_entry(tk, &tokill, nd)
		if (tk->size_shift)
			size = max(size, 1UL << tk->size_shift);
	if (size) {
		/*
		 * Unmap the largest mapping to avoid breaking up
		 * device-dax mappings which are constant size. The
		 * actual size of the mapping being torn down is
		 * communicated in siginfo, see kill_proc()
		 */
		start = (page->index << PAGE_SHIFT) & ~(size - 1);
		unmap_mapping_range(page->mapping, start, start + size, 0);
	}
	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
	rc = 0;
unlock:
1360
	dax_unlock_page(page, cookie);
1361 1362 1363 1364 1365 1366 1367
out:
	/* drop pgmap ref acquired in caller */
	put_dev_pagemap(pgmap);
	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
	return rc;
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
1385
int memory_failure(unsigned long pfn, int flags)
1386 1387
{
	struct page *p;
1388
	struct page *hpage;
1389
	struct page *orig_head;
1390
	struct dev_pagemap *pgmap;
1391
	int res;
1392
	unsigned long page_flags;
1393
	bool retry = true;
1394 1395

	if (!sysctl_memory_failure_recovery)
1396
		panic("Memory failure on page %lx", pfn);
1397

1398 1399 1400 1401 1402 1403 1404 1405
	p = pfn_to_online_page(pfn);
	if (!p) {
		if (pfn_valid(pfn)) {
			pgmap = get_dev_pagemap(pfn, NULL);
			if (pgmap)
				return memory_failure_dev_pagemap(pfn, flags,
								  pgmap);
		}
1406 1407
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1408
		return -ENXIO;
1409 1410
	}

1411
try_again:
1412
	if (PageHuge(p))
1413
		return memory_failure_hugetlb(pfn, flags);
1414
	if (TestSetPageHWPoison(p)) {
1415 1416
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1417 1418 1419
		return 0;
	}

1420
	orig_head = hpage = compound_head(p);
1421
	num_poisoned_pages_inc();
1422 1423 1424 1425 1426

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1427
	 * 2) it's part of a non-compound high order page.
1428 1429 1430 1431
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
1432
	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1433
	 */
1434
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
1435
		if (is_free_buddy_page(p)) {
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
			if (take_page_off_buddy(p)) {
				page_ref_inc(p);
				res = MF_RECOVERED;
			} else {
				/* We lost the race, try again */
				if (retry) {
					ClearPageHWPoison(p);
					num_poisoned_pages_dec();
					retry = false;
					goto try_again;
				}
				res = MF_FAILED;
			}
			action_result(pfn, MF_MSG_BUDDY, res);
			return res == MF_RECOVERED ? 0 : -EBUSY;
1451
		} else {
1452
			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1453 1454
			return -EBUSY;
		}
1455 1456
	}

1457
	if (PageTransHuge(hpage)) {
1458 1459
		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1460
			return -EBUSY;
1461
		}
1462 1463 1464
		VM_BUG_ON_PAGE(!page_count(p), p);
	}

1465 1466 1467
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1468
	 * - to avoid races with __SetPageLocked()
1469 1470 1471 1472
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1473
	shake_page(p, 0);
1474

1475
	lock_page(p);
W
Wu Fengguang 已提交
1476

1477 1478 1479 1480
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1481
	if (PageCompound(p) && compound_head(p) != orig_head) {
1482
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1483 1484 1485 1486
		res = -EBUSY;
		goto out;
	}

1487 1488 1489 1490 1491 1492 1493
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
1494
	page_flags = p->flags;
1495

W
Wu Fengguang 已提交
1496 1497 1498 1499
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1500
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1501
		num_poisoned_pages_dec();
1502
		unlock_page(p);
1503
		put_page(p);
1504
		return 0;
W
Wu Fengguang 已提交
1505
	}
W
Wu Fengguang 已提交
1506 1507
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1508
			num_poisoned_pages_dec();
1509
		unlock_page(p);
1510
		put_page(p);
W
Wu Fengguang 已提交
1511 1512
		return 0;
	}
W
Wu Fengguang 已提交
1513

1514
	if (!PageTransTail(p) && !PageLRU(p))
1515 1516
		goto identify_page_state;

1517 1518 1519 1520
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1521 1522 1523 1524
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1525
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1526
	 */
1527
	if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1528
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1529 1530 1531
		res = -EBUSY;
		goto out;
	}
1532 1533 1534 1535

	/*
	 * Torn down by someone else?
	 */
1536
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1537
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1538
		res = -EBUSY;
1539 1540 1541
		goto out;
	}

1542
identify_page_state:
1543
	res = identify_page_state(pfn, p, page_flags);
1544
out:
1545
	unlock_page(p);
1546 1547
	return res;
}
1548
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1549

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
1583
void memory_failure_queue(unsigned long pfn, int flags)
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1594
	if (kfifo_put(&mf_cpu->fifo, entry))
1595 1596
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1597
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1611
	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1612 1613 1614 1615 1616 1617
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1618
		if (entry.flags & MF_SOFT_OFFLINE)
1619
			soft_offline_page(entry.pfn, entry.flags);
1620
		else
1621
			memory_failure(entry.pfn, entry.flags);
1622 1623 1624
	}
}

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
/*
 * Process memory_failure work queued on the specified CPU.
 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
 */
void memory_failure_queue_kick(int cpu)
{
	struct memory_failure_cpu *mf_cpu;

	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
	cancel_work_sync(&mf_cpu->work);
	memory_failure_work_func(&mf_cpu->work);
}

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1654 1655 1656 1657 1658 1659
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1677
	unsigned long flags = 0;
1678 1679
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1680 1681 1682 1683 1684 1685 1686 1687

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1688
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1689
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1690 1691 1692
		return 0;
	}

1693
	if (page_count(page) > 1) {
1694
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1695
				 pfn, &unpoison_rs);
1696 1697 1698 1699
		return 0;
	}

	if (page_mapped(page)) {
1700
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1701
				 pfn, &unpoison_rs);
1702 1703 1704 1705
		return 0;
	}

	if (page_mapping(page)) {
1706
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1707
				 pfn, &unpoison_rs);
1708 1709 1710
		return 0;
	}

1711 1712 1713 1714 1715
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1716
	if (!PageHuge(page) && PageTransHuge(page)) {
1717
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1718
				 pfn, &unpoison_rs);
1719
		return 0;
1720 1721
	}

1722
	if (!get_hwpoison_page(p, flags, 0)) {
W
Wu Fengguang 已提交
1723
		if (TestClearPageHWPoison(p))
1724
			num_poisoned_pages_dec();
1725
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1726
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1727 1728 1729
		return 0;
	}

J
Jens Axboe 已提交
1730
	lock_page(page);
W
Wu Fengguang 已提交
1731 1732 1733 1734 1735 1736
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1737
	if (TestClearPageHWPoison(page)) {
1738
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1739
				 pfn, &unpoison_rs);
1740
		num_poisoned_pages_dec();
W
Wu Fengguang 已提交
1741 1742 1743 1744
		freeit = 1;
	}
	unlock_page(page);

1745
	put_page(page);
1746
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1747
		put_page(page);
W
Wu Fengguang 已提交
1748 1749 1750 1751

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1752

1753
static bool isolate_page(struct page *page, struct list_head *pagelist)
1754
{
1755 1756
	bool isolated = false;
	bool lru = PageLRU(page);
1757

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	if (PageHuge(page)) {
		isolated = isolate_huge_page(page, pagelist);
	} else {
		if (lru)
			isolated = !isolate_lru_page(page);
		else
			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);

		if (isolated)
			list_add(&page->lru, pagelist);
1768
	}
1769

1770 1771 1772 1773
	if (isolated && lru)
		inc_node_page_state(page, NR_ISOLATED_ANON +
				    page_is_file_lru(page));

1774
	/*
1775 1776 1777 1778 1779
	 * If we succeed to isolate the page, we grabbed another refcount on
	 * the page, so we can safely drop the one we got from get_any_pages().
	 * If we failed to isolate the page, it means that we cannot go further
	 * and we will return an error, so drop the reference we got from
	 * get_any_pages() as well.
1780
	 */
1781 1782
	put_page(page);
	return isolated;
1783 1784
}

1785 1786 1787 1788 1789 1790
/*
 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
 * If the page is mapped, it migrates the contents over.
 */
static int __soft_offline_page(struct page *page)
1791
{
1792
	int ret = 0;
1793
	unsigned long pfn = page_to_pfn(page);
1794 1795 1796 1797
	struct page *hpage = compound_head(page);
	char const *msg_page[] = {"page", "hugepage"};
	bool huge = PageHuge(page);
	LIST_HEAD(pagelist);
1798 1799 1800 1801
	struct migration_target_control mtc = {
		.nid = NUMA_NO_NODE,
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
	};
1802 1803

	/*
1804 1805 1806 1807
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
1808
	 */
1809
	lock_page(page);
1810 1811
	if (!PageHuge(page))
		wait_on_page_writeback(page);
1812 1813
	if (PageHWPoison(page)) {
		unlock_page(page);
1814
		put_page(page);
1815
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1816
		return 0;
1817
	}
1818 1819 1820 1821 1822 1823 1824

	if (!PageHuge(page))
		/*
		 * Try to invalidate first. This should work for
		 * non dirty unmapped page cache pages.
		 */
		ret = invalidate_inode_page(page);
1825
	unlock_page(page);
1826

1827 1828 1829 1830
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
1831
	if (ret) {
1832
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1833
		page_handle_poison(page, false, true);
1834
		return 0;
1835 1836
	}

1837
	if (isolate_page(hpage, &pagelist)) {
1838 1839
		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
1840
		if (!ret) {
1841 1842 1843 1844
			bool release = !huge;

			if (!page_handle_poison(page, huge, release))
				ret = -EBUSY;
1845
		} else {
1846 1847
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
1848

1849 1850
			pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
				pfn, msg_page[huge], ret, page->flags, &page->flags);
1851 1852 1853 1854
			if (ret > 0)
				ret = -EIO;
		}
	} else {
1855 1856 1857
		pr_info("soft offline: %#lx: %s isolation failed: %d, page count %d, type %lx (%pGp)\n",
			pfn, msg_page[huge], ret, page_count(page), page->flags, &page->flags);
		ret = -EBUSY;
1858 1859 1860
	}
	return ret;
}
1861

1862
static int soft_offline_in_use_page(struct page *page)
1863 1864 1865
{
	struct page *hpage = compound_head(page);

1866 1867
	if (!PageHuge(page) && PageTransHuge(hpage))
		if (try_to_split_thp_page(page, "soft offline") < 0)
1868
			return -EBUSY;
1869
	return __soft_offline_page(page);
1870 1871
}

1872
static int soft_offline_free_page(struct page *page)
1873
{
1874
	int rc = 0;
1875

1876 1877
	if (!page_handle_poison(page, true, false))
		rc = -EBUSY;
1878

1879
	return rc;
1880 1881
}

1882 1883
/**
 * soft_offline_page - Soft offline a page.
1884
 * @pfn: pfn to soft-offline
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
1904
int soft_offline_page(unsigned long pfn, int flags)
1905 1906
{
	int ret;
1907
	struct page *page;
1908
	bool try_again = true;
1909

1910 1911 1912 1913 1914
	if (!pfn_valid(pfn))
		return -ENXIO;
	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
	page = pfn_to_online_page(pfn);
	if (!page)
1915 1916
		return -EIO;

1917
	if (PageHWPoison(page)) {
1918
		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
1919
		if (flags & MF_COUNT_INCREASED)
1920
			put_page(page);
1921
		return 0;
1922 1923
	}

1924
retry:
1925
	get_online_mems();
1926
	ret = get_hwpoison_page(page, flags, MF_SOFT_OFFLINE);
1927
	put_online_mems();
1928

1929
	if (ret > 0) {
1930
		ret = soft_offline_in_use_page(page);
1931
	} else if (ret == 0) {
1932 1933 1934 1935
		if (soft_offline_free_page(page) && try_again) {
			try_again = false;
			goto retry;
		}
1936 1937 1938 1939
	} else if (ret == -EIO) {
		pr_info("%s: %#lx: unknown page type: %lx (%pGP)\n",
			 __func__, pfn, page->flags, &page->flags);
	}
1940

1941 1942
	return ret;
}