blk-mq.c 56.7 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

45
	for (i = 0; i < hctx->ctx_map.size; i++)
46
		if (hctx->ctx_map.map[i].word)
47 48 49 50 51
			return true;

	return false;
}

52 53 54 55 56 57 58 59 60
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

61 62 63 64 65 66
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
67 68 69 70 71 72 73 74 75 76 77 78
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 80
}

81
void blk_mq_freeze_queue_start(struct request_queue *q)
82
{
83
	int freeze_depth;
84

85 86
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
87
		percpu_ref_kill(&q->q_usage_counter);
88
		blk_mq_run_hw_queues(q, false);
89
	}
90
}
91
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 93 94

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
95
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 97
}

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111 112 113
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
146 147 148 149 150 151 152

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
153 154
}

155 156 157 158 159 160
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

161
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 163
			       struct request *rq, int op,
			       unsigned int op_flags)
164
{
165
	if (blk_queue_io_stat(q))
166
		op_flags |= REQ_IO_STAT;
167

168 169 170
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
171
	rq->mq_ctx = ctx;
172
	req_set_op_attrs(rq, op, op_flags);
173 174 175 176 177 178
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
179
	rq->start_time = jiffies;
180 181
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
182
	set_start_time_ns(rq);
183 184 185 186 187 188 189 190 191 192
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

193 194
	rq->cmd = rq->__cmd;

195 196 197 198 199 200
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
201 202
	rq->timeout = 0;

203 204 205 206
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

207
	ctx->rq_dispatched[rw_is_sync(op | op_flags)]++;
208 209
}

210
static struct request *
211
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
212 213 214 215
{
	struct request *rq;
	unsigned int tag;

216
	tag = blk_mq_get_tag(data);
217
	if (tag != BLK_MQ_TAG_FAIL) {
218
		rq = data->hctx->tags->rqs[tag];
219

220
		if (blk_mq_tag_busy(data->hctx)) {
221
			rq->cmd_flags = REQ_MQ_INFLIGHT;
222
			atomic_inc(&data->hctx->nr_active);
223 224 225
		}

		rq->tag = tag;
226
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
227 228 229 230 231 232
		return rq;
	}

	return NULL;
}

233 234
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
235
{
236 237
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
238
	struct request *rq;
239
	struct blk_mq_alloc_data alloc_data;
240
	int ret;
241

242
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
243 244
	if (ret)
		return ERR_PTR(ret);
245

246 247
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
248
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
249

250
	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
251
	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
252 253 254 255 256
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
257
		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
258
		rq =  __blk_mq_alloc_request(&alloc_data, rw, 0);
259
		ctx = alloc_data.ctx;
260 261
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
262
	if (!rq) {
263
		blk_queue_exit(q);
264
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
265
	}
266 267
	return rq;
}
268
EXPORT_SYMBOL(blk_mq_alloc_request);
269 270 271 272 273 274 275

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

276 277
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
278
	rq->cmd_flags = 0;
279

280
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
281
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
282
	blk_queue_exit(q);
283 284
}

285
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
286 287 288 289 290
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
291 292 293 294 295 296 297 298 299 300 301

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
302
}
J
Jens Axboe 已提交
303
EXPORT_SYMBOL_GPL(blk_mq_free_request);
304

305
inline void __blk_mq_end_request(struct request *rq, int error)
306
{
M
Ming Lei 已提交
307 308
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
309
	if (rq->end_io) {
310
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
311 312 313
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
314
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
315
	}
316
}
317
EXPORT_SYMBOL(__blk_mq_end_request);
318

319
void blk_mq_end_request(struct request *rq, int error)
320 321 322
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
323
	__blk_mq_end_request(rq, error);
324
}
325
EXPORT_SYMBOL(blk_mq_end_request);
326

327
static void __blk_mq_complete_request_remote(void *data)
328
{
329
	struct request *rq = data;
330

331
	rq->q->softirq_done_fn(rq);
332 333
}

334
static void blk_mq_ipi_complete_request(struct request *rq)
335 336
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
337
	bool shared = false;
338 339
	int cpu;

C
Christoph Hellwig 已提交
340
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
341 342 343
		rq->q->softirq_done_fn(rq);
		return;
	}
344 345

	cpu = get_cpu();
C
Christoph Hellwig 已提交
346 347 348 349
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
350
		rq->csd.func = __blk_mq_complete_request_remote;
351 352
		rq->csd.info = rq;
		rq->csd.flags = 0;
353
		smp_call_function_single_async(ctx->cpu, &rq->csd);
354
	} else {
355
		rq->q->softirq_done_fn(rq);
356
	}
357 358
	put_cpu();
}
359

360
static void __blk_mq_complete_request(struct request *rq)
361 362 363 364
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
365
		blk_mq_end_request(rq, rq->errors);
366 367 368 369
	else
		blk_mq_ipi_complete_request(rq);
}

370 371 372 373 374 375 376 377
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
378
void blk_mq_complete_request(struct request *rq, int error)
379
{
380 381 382
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
383
		return;
384 385
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
386
		__blk_mq_complete_request(rq);
387
	}
388 389
}
EXPORT_SYMBOL(blk_mq_complete_request);
390

391 392 393 394 395 396
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

397
void blk_mq_start_request(struct request *rq)
398 399 400 401 402
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
403
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
404 405
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
406

407
	blk_add_timer(rq);
408

409 410 411 412 413 414
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

415 416 417 418 419 420
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
421 422 423 424
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
425 426 427 428 429 430 431 432 433

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
434
}
435
EXPORT_SYMBOL(blk_mq_start_request);
436

437
static void __blk_mq_requeue_request(struct request *rq)
438 439 440 441
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
442

443 444 445 446
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
447 448
}

449 450 451 452 453
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
454
	blk_mq_add_to_requeue_list(rq, true);
455 456 457
}
EXPORT_SYMBOL(blk_mq_requeue_request);

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

485 486 487 488 489
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

514 515 516 517 518 519
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
	cancel_work_sync(&q->requeue_work);
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

520 521 522 523 524 525
void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

546 547
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
548 549 550 551
	if (tag < tags->nr_tags)
		return tags->rqs[tag];

	return NULL;
552 553 554
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

555
struct blk_mq_timeout_data {
556 557
	unsigned long next;
	unsigned int next_set;
558 559
};

560
void blk_mq_rq_timed_out(struct request *req, bool reserved)
561
{
562 563
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
564 565 566 567 568 569 570 571 572 573

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
574 575
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
576

577
	if (ops->timeout)
578
		ret = ops->timeout(req, reserved);
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
594
}
595

596 597 598 599
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
600

601 602 603 604 605
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
606 607 608 609
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
610
		return;
611
	}
612

613 614
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
615
			blk_mq_rq_timed_out(rq, reserved);
616 617 618 619
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
620 621
}

622
static void blk_mq_timeout_work(struct work_struct *work)
623
{
624 625
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
626 627 628 629 630
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
631

632 633 634
	if (blk_queue_enter(q, true))
		return;

635
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
636

637 638 639
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
640
	} else {
641 642
		struct blk_mq_hw_ctx *hctx;

643 644 645 646 647
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
648
	}
649
	blk_queue_exit(q);
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

691 692 693 694 695 696 697 698 699
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

700
	for (i = 0; i < hctx->ctx_map.size; i++) {
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

725 726 727 728 729 730 731 732 733 734 735
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
736 737
	LIST_HEAD(driver_list);
	struct list_head *dptr;
738
	int queued;
739

740
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
741

742
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
743 744 745 746 747 748 749
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
750
	flush_busy_ctxs(hctx, &rq_list);
751 752 753 754 755 756 757 758 759 760 761 762

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

763 764 765 766 767 768
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

769 770 771
	/*
	 * Now process all the entries, sending them to the driver.
	 */
772
	queued = 0;
773
	while (!list_empty(&rq_list)) {
774
		struct blk_mq_queue_data bd;
775 776 777 778 779
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

780 781 782 783 784
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
785 786 787 788 789 790
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
791
			__blk_mq_requeue_request(rq);
792 793 794 795
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
796
			rq->errors = -EIO;
797
			blk_mq_end_request(rq, rq->errors);
798 799 800 801 802
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
803 804 805 806 807 808 809

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
825 826 827 828 829 830 831 832 833 834
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
835 836 837
	}
}

838 839 840 841 842 843 844 845
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
846 847
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
848 849

	if (--hctx->next_cpu_batch <= 0) {
850
		int cpu = hctx->next_cpu, next_cpu;
851 852 853 854 855 856 857

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
858 859

		return cpu;
860 861
	}

862
	return hctx->next_cpu;
863 864
}

865 866
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
867 868
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
869 870
		return;

871
	if (!async) {
872 873
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
874
			__blk_mq_run_hw_queue(hctx);
875
			put_cpu();
876 877
			return;
		}
878

879
		put_cpu();
880
	}
881

882 883
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->run_work, 0);
884 885
}

886
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
887 888 889 890 891 892 893
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
894
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
895 896
			continue;

897
		blk_mq_run_hw_queue(hctx, async);
898 899
	}
}
900
EXPORT_SYMBOL(blk_mq_run_hw_queues);
901 902 903

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
904 905
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
906 907 908 909
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

910 911 912 913 914 915 916 917 918 919
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

920 921 922
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
923

924
	blk_mq_run_hw_queue(hctx, false);
925 926 927
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

928 929 930 931 932 933 934 935 936 937
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

938
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
939 940 941 942 943 944 945 946 947
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
948
		blk_mq_run_hw_queue(hctx, async);
949 950 951 952
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

953
static void blk_mq_run_work_fn(struct work_struct *work)
954 955 956
{
	struct blk_mq_hw_ctx *hctx;

957
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
958

959 960 961
	__blk_mq_run_hw_queue(hctx);
}

962 963 964 965 966 967 968 969 970 971 972 973
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
974 975
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
976

977 978
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
979 980 981
}
EXPORT_SYMBOL(blk_mq_delay_queue);

982 983 984 985
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct blk_mq_ctx *ctx,
					    struct request *rq,
					    bool at_head)
986
{
987 988
	trace_block_rq_insert(hctx->queue, rq);

989 990 991 992
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
993
}
994

995 996 997 998 999 1000
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
1001 1002 1003
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1004 1005
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
1006
{
1007
	struct request_queue *q = rq->q;
1008
	struct blk_mq_hw_ctx *hctx;
1009 1010 1011 1012 1013
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
1014 1015 1016

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1017 1018 1019
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1020 1021 1022

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
1023 1024

	blk_mq_put_ctx(current_ctx);
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1056
		__blk_mq_insert_req_list(hctx, ctx, rq, false);
1057
	}
1058
	blk_mq_hctx_mark_pending(hctx, ctx);
1059 1060 1061
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1062
	blk_mq_put_ctx(current_ctx);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1125

1126
	blk_account_io_start(rq, 1);
1127 1128
}

1129 1130 1131 1132 1133 1134
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1135 1136 1137
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1138
{
1139
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1140 1141 1142 1143 1144 1145 1146
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1147 1148
		struct request_queue *q = hctx->queue;

1149 1150 1151 1152 1153
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1154

1155 1156 1157
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1158
	}
1159
}
1160

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
1173 1174
	int op = bio_data_dir(bio);
	int op_flags = 0;
1175
	struct blk_mq_alloc_data alloc_data;
1176

1177
	blk_queue_enter_live(q);
1178 1179 1180
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1181
	if (rw_is_sync(bio->bi_rw))
1182
		op_flags |= REQ_SYNC;
1183

1184
	trace_block_getrq(q, bio, op);
1185
	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1186
	rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1187
	if (unlikely(!rq)) {
1188
		__blk_mq_run_hw_queue(hctx);
1189
		blk_mq_put_ctx(ctx);
1190
		trace_block_sleeprq(q, bio, op);
1191 1192

		ctx = blk_mq_get_ctx(q);
1193
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1194
		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1195
		rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1196 1197
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1198 1199 1200
	}

	hctx->queued++;
1201 1202 1203 1204 1205
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1206
static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1217
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1218 1219 1220 1221 1222 1223 1224

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1225 1226
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1227
		return 0;
1228
	}
1229

1230 1231 1232 1233 1234 1235 1236
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
		return 0;
1237
	}
1238 1239

	return -1;
1240 1241
}

1242 1243 1244 1245 1246
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1247
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1248 1249 1250 1251 1252
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;
1253 1254
	unsigned int request_count = 0;
	struct blk_plug *plug;
1255
	struct request *same_queue_rq = NULL;
1256
	blk_qc_t cookie;
1257 1258 1259 1260

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1261
		bio_io_error(bio);
1262
		return BLK_QC_T_NONE;
1263 1264
	}

1265 1266
	blk_queue_split(q, &bio, q->bio_split);

1267 1268 1269
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count,
					   &same_queue_rq))
1270
			return BLK_QC_T_NONE;
1271 1272
	} else
		request_count = blk_plug_queued_count(q);
1273

1274 1275
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1276
		return BLK_QC_T_NONE;
1277

1278
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1279 1280 1281 1282 1283 1284 1285

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1286
	plug = current->plug;
1287 1288 1289 1290 1291
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1292 1293 1294
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1295 1296 1297 1298

		blk_mq_bio_to_request(rq, bio);

		/*
1299
		 * We do limited pluging. If the bio can be merged, do that.
1300 1301
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1302
		 */
1303
		if (plug) {
1304 1305
			/*
			 * The plug list might get flushed before this. If that
1306 1307 1308
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1309 1310
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1311
				list_del_init(&old_rq->queuelist);
1312
			}
1313 1314 1315 1316 1317
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1318 1319 1320
			goto done;
		if (!blk_mq_direct_issue_request(old_rq, &cookie))
			goto done;
1321
		blk_mq_insert_request(old_rq, false, true, true);
1322
		goto done;
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1336 1337
done:
	return cookie;
1338 1339 1340 1341 1342 1343
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1344
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1345 1346 1347
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1348 1349
	struct blk_plug *plug;
	unsigned int request_count = 0;
1350 1351
	struct blk_map_ctx data;
	struct request *rq;
1352
	blk_qc_t cookie;
1353 1354 1355 1356

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1357
		bio_io_error(bio);
1358
		return BLK_QC_T_NONE;
1359 1360
	}

1361 1362
	blk_queue_split(q, &bio, q->bio_split);

1363
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1364
	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1365
		return BLK_QC_T_NONE;
1366 1367

	rq = blk_mq_map_request(q, bio, &data);
1368
	if (unlikely(!rq))
1369
		return BLK_QC_T_NONE;
1370

1371
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1384 1385 1386
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1387
		if (!request_count)
1388
			trace_block_plug(q);
1389 1390 1391 1392

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1393 1394
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1395
		}
1396

1397
		list_add_tail(&rq->queuelist, &plug->mq_list);
1398
		return cookie;
1399 1400
	}

1401 1402 1403 1404 1405 1406 1407 1408 1409
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1410 1411
	}

1412
	blk_mq_put_ctx(data.ctx);
1413
	return cookie;
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1425 1426
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1427
{
1428
	struct page *page;
1429

1430
	if (tags->rqs && set->ops->exit_request) {
1431
		int i;
1432

1433 1434
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1435
				continue;
1436 1437
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1438
			tags->rqs[i] = NULL;
1439
		}
1440 1441
	}

1442 1443
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1444
		list_del_init(&page->lru);
1445 1446 1447 1448 1449
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1450 1451 1452
		__free_pages(page, page->private);
	}

1453
	kfree(tags->rqs);
1454

1455
	blk_mq_free_tags(tags);
1456 1457 1458 1459
}

static size_t order_to_size(unsigned int order)
{
1460
	return (size_t)PAGE_SIZE << order;
1461 1462
}

1463 1464
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1465
{
1466
	struct blk_mq_tags *tags;
1467 1468 1469
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1470
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1471 1472
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1473 1474
	if (!tags)
		return NULL;
1475

1476 1477
	INIT_LIST_HEAD(&tags->page_list);

1478 1479 1480
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1481 1482 1483 1484
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1485 1486 1487 1488 1489

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1490
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1491
				cache_line_size());
1492
	left = rq_size * set->queue_depth;
1493

1494
	for (i = 0; i < set->queue_depth; ) {
1495 1496 1497 1498 1499
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1500
		while (this_order && left < order_to_size(this_order - 1))
1501 1502 1503
			this_order--;

		do {
1504
			page = alloc_pages_node(set->numa_node,
1505
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1506
				this_order);
1507 1508 1509 1510 1511 1512 1513 1514 1515
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1516
			goto fail;
1517 1518

		page->private = this_order;
1519
		list_add_tail(&page->lru, &tags->page_list);
1520 1521

		p = page_address(page);
1522 1523 1524 1525 1526
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1527
		entries_per_page = order_to_size(this_order) / rq_size;
1528
		to_do = min(entries_per_page, set->queue_depth - i);
1529 1530
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1531 1532 1533 1534
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1535 1536
						set->numa_node)) {
					tags->rqs[i] = NULL;
1537
					goto fail;
1538
				}
1539 1540
			}

1541 1542 1543 1544
			p += rq_size;
			i++;
		}
	}
1545
	return tags;
1546

1547 1548 1549
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1550 1551
}

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1627 1628 1629 1630 1631

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1632 1633 1634 1635

	return NOTIFY_OK;
}

1636
/* hctx->ctxs will be freed in queue's release handler */
1637 1638 1639 1640
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1641 1642
	unsigned flush_start_tag = set->queue_depth;

1643 1644
	blk_mq_tag_idle(hctx);

1645 1646 1647 1648 1649
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1650 1651 1652 1653
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1654
	blk_free_flush_queue(hctx->fq);
1655 1656 1657
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1667
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1677
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1678 1679 1680
		free_cpumask_var(hctx->cpumask);
}

1681 1682 1683
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1684
{
1685
	int node;
1686
	unsigned flush_start_tag = set->queue_depth;
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1698
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1699 1700 1701 1702 1703 1704

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1705 1706

	/*
1707 1708
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1709
	 */
1710 1711 1712 1713
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1714

1715 1716
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1717

1718
	hctx->nr_ctx = 0;
1719

1720 1721 1722
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1723

1724 1725 1726
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1727

1728 1729 1730 1731 1732
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1733

1734
	return 0;
1735

1736 1737 1738 1739 1740
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1741 1742 1743 1744 1745 1746
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1747

1748 1749
	return -1;
}
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1770 1771
		hctx = q->mq_ops->map_queue(q, i);

1772 1773 1774 1775 1776
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1777
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1778 1779 1780
	}
}

1781 1782
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1783 1784 1785 1786
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1787
	struct blk_mq_tag_set *set = q->tag_set;
1788

1789 1790 1791 1792 1793
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1794
	queue_for_each_hw_ctx(q, hctx, i) {
1795
		cpumask_clear(hctx->cpumask);
1796 1797 1798 1799 1800 1801
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1802
	for_each_possible_cpu(i) {
1803
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1804
		if (!cpumask_test_cpu(i, online_mask))
1805 1806
			continue;

1807
		ctx = per_cpu_ptr(q->queue_ctx, i);
1808
		hctx = q->mq_ops->map_queue(q, i);
K
Keith Busch 已提交
1809

1810
		cpumask_set_cpu(i, hctx->cpumask);
1811 1812 1813
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1814

1815 1816
	mutex_unlock(&q->sysfs_lock);

1817
	queue_for_each_hw_ctx(q, hctx, i) {
1818 1819
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1820
		/*
1821 1822
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1823 1824 1825 1826 1827 1828
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1829
			hctx->tags = NULL;
1830 1831 1832
			continue;
		}

M
Ming Lei 已提交
1833 1834 1835 1836 1837 1838
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1839
		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1840 1841 1842 1843 1844
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1845
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1846

1847 1848 1849
		/*
		 * Initialize batch roundrobin counts
		 */
1850 1851 1852
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1853 1854
}

1855
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1856 1857 1858 1859
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1871 1872 1873

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1874
		queue_set_hctx_shared(q, shared);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1885 1886 1887 1888 1889 1890
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1891 1892 1893 1894 1895 1896 1897 1898 1899
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1900 1901 1902 1903 1904 1905 1906 1907 1908

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1909
	list_add_tail(&q->tag_set_list, &set->tag_list);
1910

1911 1912 1913
	mutex_unlock(&set->tag_list_lock);
}

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1926 1927 1928 1929
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1930
		kfree(hctx);
1931
	}
1932

1933 1934 1935
	kfree(q->mq_map);
	q->mq_map = NULL;

1936 1937 1938 1939 1940 1941
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1942
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
1958 1959
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
1960
{
K
Keith Busch 已提交
1961 1962
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1963

K
Keith Busch 已提交
1964
	blk_mq_sysfs_unregister(q);
1965
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
1966
		int node;
1967

K
Keith Busch 已提交
1968 1969 1970 1971
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
1972 1973
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1974
		if (!hctxs[i])
K
Keith Busch 已提交
1975
			break;
1976

1977
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
1978 1979 1980 1981 1982
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
1983

1984
		atomic_set(&hctxs[i]->nr_active, 0);
1985
		hctxs[i]->numa_node = node;
1986
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
1987 1988 1989 1990 1991 1992 1993 1994

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
1995
	}
K
Keith Busch 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2020 2021 2022
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2023 2024
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2025
		goto err_exit;
K
Keith Busch 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

	q->mq_map = blk_mq_make_queue_map(set);
	if (!q->mq_map)
		goto err_map;

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2039

2040
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2041
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2042 2043 2044

	q->nr_queues = nr_cpu_ids;

2045
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2046

2047 2048 2049
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2050 2051
	q->sg_reserved_size = INT_MAX;

2052 2053 2054 2055
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2056 2057 2058 2059 2060
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2061 2062 2063 2064 2065
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2066 2067
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2068

2069
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2070

2071
	get_online_cpus();
2072 2073
	mutex_lock(&all_q_mutex);

2074
	list_add_tail(&q->all_q_node, &all_q_list);
2075
	blk_mq_add_queue_tag_set(set, q);
2076
	blk_mq_map_swqueue(q, cpu_online_mask);
2077

2078
	mutex_unlock(&all_q_mutex);
2079
	put_online_cpus();
2080

2081
	return q;
2082

2083
err_hctxs:
K
Keith Busch 已提交
2084
	kfree(q->mq_map);
2085
err_map:
K
Keith Busch 已提交
2086
	kfree(q->queue_hw_ctx);
2087
err_percpu:
K
Keith Busch 已提交
2088
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2089 2090
err_exit:
	q->mq_ops = NULL;
2091 2092
	return ERR_PTR(-ENOMEM);
}
2093
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2094 2095 2096

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2097
	struct blk_mq_tag_set	*set = q->tag_set;
2098

2099 2100 2101 2102
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2103 2104
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2105 2106
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2107 2108 2109
}

/* Basically redo blk_mq_init_queue with queue frozen */
2110 2111
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2112
{
2113
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2114

2115 2116
	blk_mq_sysfs_unregister(q);

2117
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2118 2119 2120 2121 2122 2123 2124

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2125
	blk_mq_map_swqueue(q, online_mask);
2126

2127
	blk_mq_sysfs_register(q);
2128 2129
}

2130 2131
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2132 2133
{
	struct request_queue *q;
2134 2135 2136 2137 2138 2139 2140
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2141 2142

	/*
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2158
	 */
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2169
		return NOTIFY_OK;
2170
	}
2171 2172

	mutex_lock(&all_q_mutex);
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2183
	list_for_each_entry(q, &all_q_list, all_q_node) {
2184 2185
		blk_mq_freeze_queue_wait(q);

2186 2187 2188 2189 2190 2191 2192
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2193
	list_for_each_entry(q, &all_q_list, all_q_node)
2194
		blk_mq_queue_reinit(q, &online_new);
2195 2196 2197 2198

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2199 2200 2201 2202
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2257 2258 2259 2260 2261 2262
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2263 2264 2265 2266 2267 2268
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2269 2270
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2271 2272
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2273 2274
	if (!set->nr_hw_queues)
		return -EINVAL;
2275
	if (!set->queue_depth)
2276 2277 2278 2279
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2280
	if (!set->ops->queue_rq || !set->ops->map_queue)
2281 2282
		return -EINVAL;

2283 2284 2285 2286 2287
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2288

2289 2290 2291 2292 2293 2294 2295 2296 2297
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2298 2299 2300 2301 2302
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2303

K
Keith Busch 已提交
2304
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2305 2306
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2307
		return -ENOMEM;
2308

2309 2310
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2311

2312 2313 2314
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2315
	return 0;
2316
enomem:
2317 2318
	kfree(set->tags);
	set->tags = NULL;
2319 2320 2321 2322 2323 2324 2325 2326
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2327
	for (i = 0; i < nr_cpu_ids; i++) {
2328
		if (set->tags[i])
2329 2330 2331
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2332
	kfree(set->tags);
2333
	set->tags = NULL;
2334 2335 2336
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2348 2349
		if (!hctx->tags)
			continue;
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2400 2401 2402 2403
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2404
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2405 2406 2407 2408

	return 0;
}
subsys_initcall(blk_mq_init);