memcontrol.c 86.0 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
K
KAMEZAWA Hiroyuki 已提交
24
#include <linux/pagemap.h>
25
#include <linux/smp.h>
26
#include <linux/page-flags.h>
27
#include <linux/backing-dev.h>
28 29
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
30
#include <linux/limits.h>
31
#include <linux/mutex.h>
32
#include <linux/rbtree.h>
33
#include <linux/slab.h>
34 35 36
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
37
#include <linux/seq_file.h>
38
#include <linux/vmalloc.h>
39
#include <linux/mm_inline.h>
40
#include <linux/page_cgroup.h>
41
#include <linux/cpu.h>
K
KAMEZAWA Hiroyuki 已提交
42
#include "internal.h"
B
Balbir Singh 已提交
43

44 45
#include <asm/uaccess.h>

46 47
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
48
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
49

50
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
51
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
52 53 54 55 56 57
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

58
#define SOFTLIMIT_EVENTS_THRESH (1000)
59

60 61 62 63 64 65 66 67
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
68
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
69
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
70 71
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
72
	MEM_CGROUP_STAT_EVENTS,	/* sum of pagein + pageout for internal use */
73
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
74 75 76 77 78 79 80 81 82

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
83
	struct mem_cgroup_stat_cpu cpustat[0];
84 85
};

86 87 88 89 90 91 92 93 94 95 96 97 98 99
static inline void
__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	stat->count[idx] = 0;
}

static inline s64
__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	return stat->count[idx];
}

100 101 102
/*
 * For accounting under irq disable, no need for increment preempt count.
 */
103
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
104 105
		enum mem_cgroup_stat_index idx, int val)
{
106
	stat->count[idx] += val;
107 108 109 110 111 112 113 114 115 116 117 118
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
119 120 121 122 123 124 125 126 127
static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
{
	s64 ret;

	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
	return ret;
}

128 129 130 131
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
132 133 134
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
135 136
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
137 138

	struct zone_reclaim_stat reclaim_stat;
139 140 141 142
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
143 144
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
145 146 147 148 149 150 151 152 153 154 155 156
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

B
Balbir Singh 已提交
177 178 179 180 181 182 183
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
184 185 186
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
187 188 189 190 191 192 193
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
194 195 196 197
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
198 199 200 201
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
202
	struct mem_cgroup_lru_info info;
203

K
KOSAKI Motohiro 已提交
204 205 206 207 208
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

209
	int	prev_priority;	/* for recording reclaim priority */
210 211

	/*
212
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
213
	 * reclaimed from.
214
	 */
K
KAMEZAWA Hiroyuki 已提交
215
	int last_scanned_child;
216 217 218 219
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
220
	unsigned long	last_oom_jiffies;
221
	atomic_t	refcnt;
222

K
KOSAKI Motohiro 已提交
223 224
	unsigned int	swappiness;

225 226 227
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

228
	/*
229
	 * statistics. This must be placed at the end of memcg.
230 231
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
232 233
};

234 235 236 237 238 239 240
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

241 242 243
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
244
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
245
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
246
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
247
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
248 249 250
	NR_CHARGE_TYPE,
};

251 252 253 254
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
255 256
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
257

258 259 260 261 262 263 264
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

265 266 267 268 269 270 271
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
272 273
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
274

275 276
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
277
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
278
static void drain_all_stock_async(void);
279

280 281 282 283 284 285
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

286 287 288 289 290
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
320
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
321
				struct mem_cgroup_per_zone *mz,
322 323
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
324 325 326 327 328 329 330 331
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

332 333 334
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
351 352 353 354 355 356 357 358 359 360 361 362 363
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

364 365 366 367 368 369
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
370
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	spin_unlock(&mctz->lock);
}

static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
{
	bool ret = false;
	int cpu;
	s64 val;
	struct mem_cgroup_stat_cpu *cpustat;

	cpu = get_cpu();
	cpustat = &mem->stat.cpustat[cpu];
	val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
	if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
		__mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
		ret = true;
	}
	put_cpu();
	return ret;
}

static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
394
	unsigned long long excess;
395 396
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
397 398
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
399 400 401
	mctz = soft_limit_tree_from_page(page);

	/*
402 403
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
404
	 */
405 406
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
407
		excess = res_counter_soft_limit_excess(&mem->res);
408 409 410 411
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
412
		if (excess || mz->on_tree) {
413 414 415 416 417
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
418 419
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
420
			 */
421
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
422 423
			spin_unlock(&mctz->lock);
		}
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

442 443 444 445 446 447 448 449 450
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
451
	struct mem_cgroup_per_zone *mz;
452 453

retry:
454
	mz = NULL;
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

484 485 486 487 488 489 490 491 492 493 494 495 496
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu = get_cpu();

	cpustat = &stat->cpustat[cpu];
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
	put_cpu();
}

497 498 499
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
500
{
501
	int val = (charge) ? 1 : -1;
502
	struct mem_cgroup_stat *stat = &mem->stat;
503
	struct mem_cgroup_stat_cpu *cpustat;
K
KAMEZAWA Hiroyuki 已提交
504
	int cpu = get_cpu();
505

K
KAMEZAWA Hiroyuki 已提交
506
	cpustat = &stat->cpustat[cpu];
507
	if (PageCgroupCache(pc))
508
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
509
	else
510
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
511 512

	if (charge)
513
		__mem_cgroup_stat_add_safe(cpustat,
514 515
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
	else
516
		__mem_cgroup_stat_add_safe(cpustat,
517
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
518
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
K
KAMEZAWA Hiroyuki 已提交
519
	put_cpu();
520 521
}

K
KAMEZAWA Hiroyuki 已提交
522
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
523
					enum lru_list idx)
524 525 526 527 528 529 530 531 532 533 534
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
535 536
}

537
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
538 539 540 541 542 543
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

544
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
545
{
546 547 548 549 550 551 552 553
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

554 555 556 557
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

558 559 560
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
561 562 563

	if (!mm)
		return NULL;
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

614 615 616 617 618
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
632

K
KAMEZAWA Hiroyuki 已提交
633 634 635 636
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
637

638
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
639 640 641
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
642
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
643
		return;
644
	VM_BUG_ON(!pc->mem_cgroup);
645 646 647 648
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
649
	mz = page_cgroup_zoneinfo(pc);
650
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
651 652 653
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
654 655
	list_del_init(&pc->lru);
	return;
656 657
}

K
KAMEZAWA Hiroyuki 已提交
658
void mem_cgroup_del_lru(struct page *page)
659
{
K
KAMEZAWA Hiroyuki 已提交
660 661
	mem_cgroup_del_lru_list(page, page_lru(page));
}
662

K
KAMEZAWA Hiroyuki 已提交
663 664 665 666
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
667

668
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
669
		return;
670

K
KAMEZAWA Hiroyuki 已提交
671
	pc = lookup_page_cgroup(page);
672 673 674 675
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
676
	smp_rmb();
677 678
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
679 680 681
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
682 683
}

K
KAMEZAWA Hiroyuki 已提交
684
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
685
{
K
KAMEZAWA Hiroyuki 已提交
686 687
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
688

689
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
690 691
		return;
	pc = lookup_page_cgroup(page);
692
	VM_BUG_ON(PageCgroupAcctLRU(pc));
693 694 695 696
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
697 698
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
699
		return;
700

K
KAMEZAWA Hiroyuki 已提交
701
	mz = page_cgroup_zoneinfo(pc);
702
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
703 704 705
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
706 707
	list_add(&pc->lru, &mz->lists[lru]);
}
708

K
KAMEZAWA Hiroyuki 已提交
709
/*
710 711 712 713 714
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
715
 */
716
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
717
{
718 719 720 721 722 723 724 725 726 727 728 729
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
730 731
}

732 733 734 735 736 737 738 739
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
740
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
741 742 743 744 745
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
746 747 748
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
749
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
750 751 752
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
753 754
}

755 756 757
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
758
	struct mem_cgroup *curr = NULL;
759 760

	task_lock(task);
761 762 763
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
764
	task_unlock(task);
765 766
	if (!curr)
		return 0;
767 768 769 770 771 772 773
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
774 775 776 777
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
778 779 780
	return ret;
}

781 782 783 784 785
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
786 787 788 789 790 791 792
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
793 794 795 796
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
797
	spin_lock(&mem->reclaim_param_lock);
798 799
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
800
	spin_unlock(&mem->reclaim_param_lock);
801 802 803 804
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
805
	spin_lock(&mem->reclaim_param_lock);
806
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
807
	spin_unlock(&mem->reclaim_param_lock);
808 809
}

810
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
811 812 813
{
	unsigned long active;
	unsigned long inactive;
814 815
	unsigned long gb;
	unsigned long inactive_ratio;
816

K
KAMEZAWA Hiroyuki 已提交
817 818
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
819

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
847 848 849 850 851
		return 1;

	return 0;
}

852 853 854 855 856 857 858 859 860 861 862
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

863 864 865 866 867 868 869 870 871 872 873
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
894 895 896 897 898 899 900 901
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
902 903 904 905 906 907 908
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

909 910 911 912 913
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
914
					int active, int file)
915 916 917 918 919 920
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
921
	struct page_cgroup *pc, *tmp;
922 923 924
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
925
	int lru = LRU_FILE * file + active;
926
	int ret;
927

928
	BUG_ON(!mem_cont);
929
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
930
	src = &mz->lists[lru];
931

932 933
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
934
		if (scan >= nr_to_scan)
935
			break;
K
KAMEZAWA Hiroyuki 已提交
936 937

		page = pc->page;
938 939
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
940
		if (unlikely(!PageLRU(page)))
941 942
			continue;

H
Hugh Dickins 已提交
943
		scan++;
944 945 946
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
947
			list_move(&page->lru, dst);
948
			mem_cgroup_del_lru(page);
949
			nr_taken++;
950 951 952 953 954 955 956
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
957 958 959 960 961 962 963
		}
	}

	*scanned = scan;
	return nr_taken;
}

964 965 966
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

967 968 969 970 971 972 973 974 975 976 977 978
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

995 996 997 998 999 1000
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

/**
 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1022
	if (!memcg || !p)
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

1080
/*
K
KAMEZAWA Hiroyuki 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1123 1124
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1125 1126 1127
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1128 1129
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1130 1131
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1132
						struct zone *zone,
1133 1134
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1135
{
K
KAMEZAWA Hiroyuki 已提交
1136 1137 1138
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1139 1140
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1141 1142
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1143

1144 1145 1146 1147
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1148
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1149
		victim = mem_cgroup_select_victim(root_mem);
1150
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1151
			loop++;
1152 1153
			if (loop >= 1)
				drain_all_stock_async();
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
K
KAMEZAWA Hiroyuki 已提交
1177 1178 1179
		if (!mem_cgroup_local_usage(&victim->stat)) {
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1180 1181
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1182
		/* we use swappiness of local cgroup */
1183 1184 1185 1186 1187 1188 1189
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1190
		css_put(&victim->css);
1191 1192 1193 1194 1195 1196 1197
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1198
		total += ret;
1199 1200 1201 1202
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1203
			return 1 + total;
1204
	}
K
KAMEZAWA Hiroyuki 已提交
1205
	return total;
1206 1207
}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
{
	mem->last_oom_jiffies = jiffies;
	return 0;
}

static void record_last_oom(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
}

1236 1237 1238 1239
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
1240
void mem_cgroup_update_file_mapped(struct page *page, int val)
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
{
	struct mem_cgroup *mem;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
	if (!mem)
		goto done;

	if (!PageCgroupUsed(pc))
		goto done;

	/*
	 * Preemption is already disabled, we don't need get_cpu()
	 */
	cpu = smp_processor_id();
	stat = &mem->stat;
	cpustat = &stat->cpustat[cpu];

1267
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED, val);
1268 1269 1270
done:
	unlock_page_cgroup(pc);
}
1271

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
 * This will be consumed by consumt_stock() function, later.
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

	if (action != CPU_DEAD)
		return NOTIFY_OK;
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1399 1400 1401
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1402
 */
1403
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1404
			gfp_t gfp_mask, struct mem_cgroup **memcg,
1405
			bool oom, struct page *page)
1406
{
1407
	struct mem_cgroup *mem, *mem_over_limit;
1408
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1409
	struct res_counter *fail_res;
1410
	int csize = CHARGE_SIZE;
1411 1412 1413 1414 1415 1416 1417

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

1418
	/*
1419 1420
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1421 1422 1423
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1424 1425 1426
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
1427
		*memcg = mem;
1428
	} else {
1429
		css_get(&mem->css);
1430
	}
1431 1432 1433
	if (unlikely(!mem))
		return 0;

1434
	VM_BUG_ON(css_is_removed(&mem->css));
1435 1436
	if (mem_cgroup_is_root(mem))
		goto done;
1437

1438
	while (1) {
1439
		int ret = 0;
1440
		unsigned long flags = 0;
1441

1442 1443 1444 1445
		if (consume_stock(mem))
			goto charged;

		ret = res_counter_charge(&mem->res, csize, &fail_res);
1446 1447 1448
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1449
			ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1450 1451 1452
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
1453
			res_counter_uncharge(&mem->res, csize);
1454
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1455 1456 1457 1458 1459 1460 1461
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1462 1463 1464 1465 1466
		/* reduce request size and retry */
		if (csize > PAGE_SIZE) {
			csize = PAGE_SIZE;
			continue;
		}
1467
		if (!(gfp_mask & __GFP_WAIT))
1468
			goto nomem;
1469

1470 1471
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
						gfp_mask, flags);
1472 1473
		if (ret)
			continue;
1474 1475

		/*
1476 1477 1478 1479 1480
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1481
		 *
1482
		 */
1483 1484
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1485 1486

		if (!nr_retries--) {
1487
			if (oom) {
1488
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1489
				record_last_oom(mem_over_limit);
1490
			}
1491
			goto nomem;
1492
		}
1493
	}
1494 1495 1496
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
charged:
1497
	/*
1498 1499
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
1500
	 */
1501 1502
	if (mem_cgroup_soft_limit_check(mem))
		mem_cgroup_update_tree(mem, page);
1503
done:
1504 1505 1506 1507 1508
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	if (!mem_cgroup_is_root(mem)) {
		res_counter_uncharge(&mem->res, PAGE_SIZE);
		if (do_swap_account)
			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
	}
	css_put(&mem->css);
}

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1544
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1545
{
1546
	struct mem_cgroup *mem = NULL;
1547
	struct page_cgroup *pc;
1548
	unsigned short id;
1549 1550
	swp_entry_t ent;

1551 1552 1553
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
1554
	lock_page_cgroup(pc);
1555
	if (PageCgroupUsed(pc)) {
1556
		mem = pc->mem_cgroup;
1557 1558
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
1559
	} else if (PageSwapCache(page)) {
1560
		ent.val = page_private(page);
1561 1562 1563 1564 1565 1566
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1567
	}
1568
	unlock_page_cgroup(pc);
1569 1570 1571
	return mem;
}

1572
/*
1573
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1584 1585 1586 1587

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1588
		mem_cgroup_cancel_charge(mem);
1589
		return;
1590
	}
1591

1592
	pc->mem_cgroup = mem;
1593 1594 1595 1596 1597 1598 1599
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1600
	smp_wmb();
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1614

K
KAMEZAWA Hiroyuki 已提交
1615
	mem_cgroup_charge_statistics(mem, pc, true);
1616 1617

	unlock_page_cgroup(pc);
1618
}
1619

1620
/**
1621
 * __mem_cgroup_move_account - move account of the page
1622 1623 1624 1625 1626
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1627
 * - page is not on LRU (isolate_page() is useful.)
1628
 * - the pc is locked, used, and ->mem_cgroup points to @from.
1629 1630 1631 1632 1633
 *
 * This function does "uncharge" from old cgroup but doesn't do "charge" to
 * new cgroup. It should be done by a caller.
 */

1634
static void __mem_cgroup_move_account(struct page_cgroup *pc,
1635 1636
	struct mem_cgroup *from, struct mem_cgroup *to)
{
1637 1638 1639 1640
	struct page *page;
	int cpu;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
1641 1642

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1643
	VM_BUG_ON(PageLRU(pc->page));
1644 1645 1646
	VM_BUG_ON(!PageCgroupLocked(pc));
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
1647

1648
	if (!mem_cgroup_is_root(from))
1649
		res_counter_uncharge(&from->res, PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
1650
	mem_cgroup_charge_statistics(from, pc, false);
1651 1652

	page = pc->page;
1653
	if (page_mapped(page) && !PageAnon(page)) {
1654 1655 1656 1657
		cpu = smp_processor_id();
		/* Update mapped_file data for mem_cgroup "from" */
		stat = &from->stat;
		cpustat = &stat->cpustat[cpu];
1658
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
1659 1660 1661 1662 1663
						-1);

		/* Update mapped_file data for mem_cgroup "to" */
		stat = &to->stat;
		cpustat = &stat->cpustat[cpu];
1664
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
1665 1666 1667
						1);
	}

1668
	if (do_swap_account && !mem_cgroup_is_root(from))
1669
		res_counter_uncharge(&from->memsw, PAGE_SIZE);
1670 1671 1672
	css_put(&from->css);

	css_get(&to->css);
K
KAMEZAWA Hiroyuki 已提交
1673 1674
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
1675 1676 1677 1678 1679 1680
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
	 * this function is just force_empty() and it's garanteed that
	 * "to" is never removed. So, we don't check rmdir status here.
	 */
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
				struct mem_cgroup *from, struct mem_cgroup *to)
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
		__mem_cgroup_move_account(pc, from, to);
		ret = 0;
	}
	unlock_page_cgroup(pc);
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1708
	struct page *page = pc->page;
1709 1710 1711 1712 1713 1714 1715 1716 1717
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

1718 1719 1720 1721 1722
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
1723

1724
	parent = mem_cgroup_from_cont(pcg);
1725
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1726
	if (ret || !parent)
1727
		goto put_back;
1728 1729

	ret = mem_cgroup_move_account(pc, child, parent);
1730 1731 1732 1733 1734
	if (!ret)
		css_put(&parent->css);	/* drop extra refcnt by try_charge() */
	else
		mem_cgroup_cancel_charge(parent);	/* does css_put */
put_back:
K
KAMEZAWA Hiroyuki 已提交
1735
	putback_lru_page(page);
1736
put:
1737
	put_page(page);
1738
out:
1739 1740 1741
	return ret;
}

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1763
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1764
	if (ret || !mem)
1765 1766 1767
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1768 1769 1770
	return 0;
}

1771 1772
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1773
{
1774
	if (mem_cgroup_disabled())
1775
		return 0;
1776 1777
	if (PageCompound(page))
		return 0;
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1789
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1790
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1791 1792
}

D
Daisuke Nishimura 已提交
1793 1794 1795 1796
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

1797 1798
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1799
{
1800 1801 1802
	struct mem_cgroup *mem = NULL;
	int ret;

1803
	if (mem_cgroup_disabled())
1804
		return 0;
1805 1806
	if (PageCompound(page))
		return 0;
1807 1808 1809 1810 1811 1812 1813 1814
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
1815 1816
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
1817 1818 1819 1820
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1821 1822 1823 1824 1825 1826 1827

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1828 1829
			return 0;
		}
1830
		unlock_page_cgroup(pc);
1831 1832
	}

1833
	if (unlikely(!mm && !mem))
1834
		mm = &init_mm;
1835

1836 1837
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1838
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1839

D
Daisuke Nishimura 已提交
1840 1841 1842 1843 1844 1845 1846 1847 1848
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1849 1850

	return ret;
1851 1852
}

1853 1854 1855
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
1856
 * struct page_cgroup is acquired. This refcnt will be consumed by
1857 1858
 * "commit()" or removed by "cancel()"
 */
1859 1860 1861 1862 1863
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
1864
	int ret;
1865

1866
	if (mem_cgroup_disabled())
1867 1868 1869 1870 1871 1872
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
1873 1874 1875
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
1876 1877
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
1878
		goto charge_cur_mm;
1879
	mem = try_get_mem_cgroup_from_page(page);
1880 1881
	if (!mem)
		goto charge_cur_mm;
1882
	*ptr = mem;
1883
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1884 1885 1886
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
1887 1888 1889
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
1890
	return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1891 1892
}

D
Daisuke Nishimura 已提交
1893 1894 1895
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
1896 1897 1898
{
	struct page_cgroup *pc;

1899
	if (mem_cgroup_disabled())
1900 1901 1902
		return;
	if (!ptr)
		return;
1903
	cgroup_exclude_rmdir(&ptr->css);
1904
	pc = lookup_page_cgroup(page);
1905
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
1906
	__mem_cgroup_commit_charge(ptr, pc, ctype);
1907
	mem_cgroup_lru_add_after_commit_swapcache(page);
1908 1909 1910
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
1911 1912 1913
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
1914
	 */
1915
	if (do_swap_account && PageSwapCache(page)) {
1916
		swp_entry_t ent = {.val = page_private(page)};
1917
		unsigned short id;
1918
		struct mem_cgroup *memcg;
1919 1920 1921 1922

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
1923
		if (memcg) {
1924 1925 1926 1927
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
1928
			if (!mem_cgroup_is_root(memcg))
1929
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1930
			mem_cgroup_swap_statistics(memcg, false);
1931 1932
			mem_cgroup_put(memcg);
		}
1933
		rcu_read_unlock();
1934
	}
1935 1936 1937 1938 1939 1940
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
1941 1942
}

D
Daisuke Nishimura 已提交
1943 1944 1945 1946 1947 1948
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

1949 1950
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
1951
	if (mem_cgroup_disabled())
1952 1953 1954
		return;
	if (!mem)
		return;
1955
	mem_cgroup_cancel_charge(mem);
1956 1957
}

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */
	if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
	return;
}
2002

2003
/*
2004
 * uncharge if !page_mapped(page)
2005
 */
2006
static struct mem_cgroup *
2007
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2008
{
H
Hugh Dickins 已提交
2009
	struct page_cgroup *pc;
2010
	struct mem_cgroup *mem = NULL;
2011
	struct mem_cgroup_per_zone *mz;
2012

2013
	if (mem_cgroup_disabled())
2014
		return NULL;
2015

K
KAMEZAWA Hiroyuki 已提交
2016
	if (PageSwapCache(page))
2017
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2018

2019
	/*
2020
	 * Check if our page_cgroup is valid
2021
	 */
2022 2023
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2024
		return NULL;
2025

2026
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2027

2028 2029
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2030 2031 2032 2033 2034
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2035
	case MEM_CGROUP_CHARGE_TYPE_DROP:
K
KAMEZAWA Hiroyuki 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2048
	}
K
KAMEZAWA Hiroyuki 已提交
2049

2050 2051
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2052 2053
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		mem_cgroup_swap_statistics(mem, true);
K
KAMEZAWA Hiroyuki 已提交
2054
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2055

2056
	ClearPageCgroupUsed(pc);
2057 2058 2059 2060 2061 2062
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2063

2064
	mz = page_cgroup_zoneinfo(pc);
2065
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
2066

2067
	if (mem_cgroup_soft_limit_check(mem))
2068
		mem_cgroup_update_tree(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2069 2070 2071
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
2072

2073
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2074 2075 2076

unlock_out:
	unlock_page_cgroup(pc);
2077
	return NULL;
2078 2079
}

2080 2081
void mem_cgroup_uncharge_page(struct page *page)
{
2082 2083 2084 2085 2086
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2087 2088 2089 2090 2091 2092
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2093
	VM_BUG_ON(page->mapping);
2094 2095 2096
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2141
#ifdef CONFIG_SWAP
2142
/*
2143
 * called after __delete_from_swap_cache() and drop "page" account.
2144 2145
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2146 2147
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2148 2149
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2150 2151 2152 2153 2154 2155
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2156 2157

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
2158
	if (do_swap_account && swapout && memcg) {
2159
		swap_cgroup_record(ent, css_id(&memcg->css));
2160 2161
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
2162
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
2163
		css_put(&memcg->css);
2164
}
2165
#endif
2166 2167 2168 2169 2170 2171 2172

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2173
{
2174
	struct mem_cgroup *memcg;
2175
	unsigned short id;
2176 2177 2178 2179

	if (!do_swap_account)
		return;

2180 2181 2182
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2183
	if (memcg) {
2184 2185 2186 2187
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2188
		if (!mem_cgroup_is_root(memcg))
2189
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2190
		mem_cgroup_swap_statistics(memcg, false);
2191 2192
		mem_cgroup_put(memcg);
	}
2193
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2194
}
2195
#endif
K
KAMEZAWA Hiroyuki 已提交
2196

2197
/*
2198 2199
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2200
 */
2201
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2202 2203
{
	struct page_cgroup *pc;
2204 2205
	struct mem_cgroup *mem = NULL;
	int ret = 0;
2206

2207
	if (mem_cgroup_disabled())
2208 2209
		return 0;

2210 2211 2212
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2213 2214 2215
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
2216
	unlock_page_cgroup(pc);
2217

2218
	if (mem) {
2219 2220
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
						page);
2221 2222
		css_put(&mem->css);
	}
2223
	*ptr = mem;
2224
	return ret;
2225
}
2226

2227
/* remove redundant charge if migration failed*/
2228 2229
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
2230
{
2231 2232 2233 2234 2235 2236
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;
2237
	cgroup_exclude_rmdir(&mem->css);
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
2255
	if (unused)
2256 2257 2258
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
2259
	/*
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
2274
	 */
2275 2276
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
2277 2278 2279 2280 2281 2282
	/*
	 * At migration, we may charge account against cgroup which has no tasks
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2283
}
2284

2285
/*
2286 2287 2288 2289 2290 2291
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2292
 */
2293
int mem_cgroup_shmem_charge_fallback(struct page *page,
2294 2295
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2296
{
2297
	struct mem_cgroup *mem = NULL;
2298
	int ret;
2299

2300
	if (mem_cgroup_disabled())
2301
		return 0;
2302

2303 2304 2305
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2306

2307
	return ret;
2308 2309
}

2310 2311
static DEFINE_MUTEX(set_limit_mutex);

2312
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2313
				unsigned long long val)
2314
{
2315
	int retry_count;
2316
	u64 memswlimit;
2317
	int ret = 0;
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2329

2330
	while (retry_count) {
2331 2332 2333 2334
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2345 2346
			break;
		}
2347
		ret = res_counter_set_limit(&memcg->res, val);
2348 2349 2350 2351 2352 2353
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2354 2355 2356 2357 2358
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2359
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2360
						MEM_CGROUP_RECLAIM_SHRINK);
2361 2362 2363 2364 2365 2366
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2367
	}
2368

2369 2370 2371
	return ret;
}

L
Li Zefan 已提交
2372 2373
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2374
{
2375
	int retry_count;
2376
	u64 memlimit, oldusage, curusage;
2377 2378
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2379

2380 2381 2382
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
2401 2402 2403 2404 2405 2406
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2407 2408 2409 2410 2411
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2412
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2413 2414
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2415
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2416
		/* Usage is reduced ? */
2417
		if (curusage >= oldusage)
2418
			retry_count--;
2419 2420
		else
			oldusage = curusage;
2421 2422 2423 2424
	}
	return ret;
}

2425 2426 2427 2428 2429 2430 2431 2432 2433
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2434
	unsigned long long excess;
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2487
		excess = res_counter_soft_limit_excess(&mz->mem->res);
2488 2489 2490 2491 2492 2493 2494 2495
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
2496 2497
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2516 2517 2518 2519
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2520
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2521
				int node, int zid, enum lru_list lru)
2522
{
K
KAMEZAWA Hiroyuki 已提交
2523 2524
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2525
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2526
	unsigned long flags, loop;
2527
	struct list_head *list;
2528
	int ret = 0;
2529

K
KAMEZAWA Hiroyuki 已提交
2530 2531
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2532
	list = &mz->lists[lru];
2533

2534 2535 2536 2537 2538 2539
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2540
		spin_lock_irqsave(&zone->lru_lock, flags);
2541
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2542
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2543
			break;
2544 2545 2546 2547 2548
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
			busy = 0;
K
KAMEZAWA Hiroyuki 已提交
2549
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2550 2551
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2552
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2553

K
KAMEZAWA Hiroyuki 已提交
2554
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2555
		if (ret == -ENOMEM)
2556
			break;
2557 2558 2559 2560 2561 2562 2563

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2564
	}
K
KAMEZAWA Hiroyuki 已提交
2565

2566 2567 2568
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2569 2570 2571 2572 2573 2574
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2575
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2576
{
2577 2578 2579
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2580
	struct cgroup *cgrp = mem->css.cgroup;
2581

2582
	css_get(&mem->css);
2583 2584

	shrink = 0;
2585 2586 2587
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2588
move_account:
2589
	while (mem->res.usage > 0) {
2590
		ret = -EBUSY;
2591 2592 2593 2594
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2595
			goto out;
2596 2597
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2598
		drain_all_stock_sync();
2599
		ret = 0;
2600
		for_each_node_state(node, N_HIGH_MEMORY) {
2601
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2602
				enum lru_list l;
2603 2604
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
2605
							node, zid, l);
2606 2607 2608
					if (ret)
						break;
				}
2609
			}
2610 2611 2612 2613 2614 2615
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
2616
		cond_resched();
2617 2618 2619 2620 2621
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
2622 2623

try_to_free:
2624 2625
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2626 2627 2628
		ret = -EBUSY;
		goto out;
	}
2629 2630
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2631 2632 2633 2634
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
2635 2636 2637 2638 2639

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
2640 2641
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
2642
		if (!progress) {
2643
			nr_retries--;
2644
			/* maybe some writeback is necessary */
2645
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2646
		}
2647 2648

	}
K
KAMEZAWA Hiroyuki 已提交
2649
	lru_add_drain();
2650 2651 2652 2653 2654
	/* try move_account...there may be some *locked* pages. */
	if (mem->res.usage)
		goto move_account;
	ret = 0;
	goto out;
2655 2656
}

2657 2658 2659 2660 2661 2662
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
2681
	 * If parent's use_hierarchy is set, we can't make any modifications
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
	d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

2725
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
2726
{
2727
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2728
	u64 idx_val, val;
2729 2730 2731 2732 2733 2734
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_CACHE, &idx_val);
			val = idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_RSS, &idx_val);
			val += idx_val;
			val <<= PAGE_SHIFT;
		} else
			val = res_counter_read_u64(&mem->res, name);
2745 2746
		break;
	case _MEMSWAP:
2747 2748 2749 2750 2751 2752 2753 2754 2755
		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_CACHE, &idx_val);
			val = idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_RSS, &idx_val);
			val += idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2756
			val += idx_val;
2757 2758 2759
			val <<= PAGE_SHIFT;
		} else
			val = res_counter_read_u64(&mem->memsw, name);
2760 2761 2762 2763 2764 2765
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
2766
}
2767 2768 2769 2770
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2771 2772
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
2773
{
2774
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2775
	int type, name;
2776 2777 2778
	unsigned long long val;
	int ret;

2779 2780 2781
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
2782
	case RES_LIMIT:
2783 2784 2785 2786
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2787 2788
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
2789 2790 2791
		if (ret)
			break;
		if (type == _MEM)
2792
			ret = mem_cgroup_resize_limit(memcg, val);
2793 2794
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2795
		break;
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
2810 2811 2812 2813 2814
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
2815 2816
}

2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

2845
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2846 2847
{
	struct mem_cgroup *mem;
2848
	int type, name;
2849 2850

	mem = mem_cgroup_from_cont(cont);
2851 2852 2853
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
2854
	case RES_MAX_USAGE:
2855 2856 2857 2858
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
2859 2860
		break;
	case RES_FAILCNT:
2861 2862 2863 2864
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
2865 2866
		break;
	}
2867

2868
	return 0;
2869 2870
}

K
KAMEZAWA Hiroyuki 已提交
2871 2872 2873 2874 2875

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
2876
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
2877 2878
	MCS_PGPGIN,
	MCS_PGPGOUT,
2879
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
2890 2891
};

K
KAMEZAWA Hiroyuki 已提交
2892 2893 2894 2895 2896 2897
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
2898
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
2899 2900
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
2901
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	s->stat[MCS_RSS] += val * PAGE_SIZE;
2920 2921
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_FILE_MAPPED);
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
2922 2923 2924 2925
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
	s->stat[MCS_PGPGIN] += val;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
	s->stat[MCS_PGPGOUT] += val;
2926 2927 2928 2929
	if (do_swap_account) {
		val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

2951 2952
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
2953 2954
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
2955
	struct mcs_total_stat mystat;
2956 2957
	int i;

K
KAMEZAWA Hiroyuki 已提交
2958 2959
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
2960

2961 2962 2963
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
2964
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2965
	}
L
Lee Schermerhorn 已提交
2966

K
KAMEZAWA Hiroyuki 已提交
2967
	/* Hierarchical information */
2968 2969 2970 2971 2972 2973 2974
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
2975

K
KAMEZAWA Hiroyuki 已提交
2976 2977
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
2978 2979 2980
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
2981
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2982
	}
K
KAMEZAWA Hiroyuki 已提交
2983

K
KOSAKI Motohiro 已提交
2984
#ifdef CONFIG_DEBUG_VM
2985
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3013 3014 3015
	return 0;
}

K
KOSAKI Motohiro 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3028

K
KOSAKI Motohiro 已提交
3029 3030 3031 3032 3033 3034 3035
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3036 3037 3038

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3039 3040
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3041 3042
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3043
		return -EINVAL;
3044
	}
K
KOSAKI Motohiro 已提交
3045 3046 3047 3048 3049

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3050 3051
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3052 3053 3054
	return 0;
}

3055

B
Balbir Singh 已提交
3056 3057
static struct cftype mem_cgroup_files[] = {
	{
3058
		.name = "usage_in_bytes",
3059
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3060
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3061
	},
3062 3063
	{
		.name = "max_usage_in_bytes",
3064
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3065
		.trigger = mem_cgroup_reset,
3066 3067
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3068
	{
3069
		.name = "limit_in_bytes",
3070
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3071
		.write_string = mem_cgroup_write,
3072
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3073
	},
3074 3075 3076 3077 3078 3079
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3080 3081
	{
		.name = "failcnt",
3082
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3083
		.trigger = mem_cgroup_reset,
3084
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3085
	},
3086 3087
	{
		.name = "stat",
3088
		.read_map = mem_control_stat_show,
3089
	},
3090 3091 3092 3093
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
3094 3095 3096 3097 3098
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
3099 3100 3101 3102 3103
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
B
Balbir Singh 已提交
3104 3105
};

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

3147 3148 3149
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
3150
	struct mem_cgroup_per_zone *mz;
3151
	enum lru_list l;
3152
	int zone, tmp = node;
3153 3154 3155 3156 3157 3158 3159 3160
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
3161 3162 3163
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3164 3165
	if (!pn)
		return 1;
3166

3167 3168
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
3169 3170 3171

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
3172 3173
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
3174
		mz->usage_in_excess = 0;
3175 3176
		mz->on_tree = false;
		mz->mem = mem;
3177
	}
3178 3179 3180
	return 0;
}

3181 3182 3183 3184 3185
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

3186 3187 3188 3189 3190 3191
static int mem_cgroup_size(void)
{
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
	return sizeof(struct mem_cgroup) + cpustat_size;
}

3192 3193 3194
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
3195
	int size = mem_cgroup_size();
3196

3197 3198
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
3199
	else
3200
		mem = vmalloc(size);
3201 3202

	if (mem)
3203
		memset(mem, 0, size);
3204 3205 3206
	return mem;
}

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

3218
static void __mem_cgroup_free(struct mem_cgroup *mem)
3219
{
K
KAMEZAWA Hiroyuki 已提交
3220 3221
	int node;

3222
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
3223 3224
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
3225 3226 3227
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

3228
	if (mem_cgroup_size() < PAGE_SIZE)
3229 3230 3231 3232 3233
		kfree(mem);
	else
		vfree(mem);
}

3234 3235 3236 3237 3238 3239 3240
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

static void mem_cgroup_put(struct mem_cgroup *mem)
{
3241 3242
	if (atomic_dec_and_test(&mem->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3243
		__mem_cgroup_free(mem);
3244 3245 3246
		if (parent)
			mem_cgroup_put(parent);
	}
3247 3248
}

3249 3250 3251 3252 3253 3254 3255 3256 3257
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
3258

3259 3260 3261
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
3262
	if (!mem_cgroup_disabled() && really_do_swap_account)
3263 3264 3265 3266 3267 3268 3269 3270
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
3296
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
3297 3298
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
3299
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
3300
	long error = -ENOMEM;
3301
	int node;
B
Balbir Singh 已提交
3302

3303 3304
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
3305
		return ERR_PTR(error);
3306

3307 3308 3309
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
3310

3311
	/* root ? */
3312
	if (cont->parent == NULL) {
3313
		int cpu;
3314
		enable_swap_cgroup();
3315
		parent = NULL;
3316
		root_mem_cgroup = mem;
3317 3318
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
3319 3320 3321 3322 3323 3324
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
		hotcpu_notifier(memcg_stock_cpu_callback, 0);
3325

3326
	} else {
3327
		parent = mem_cgroup_from_cont(cont->parent);
3328 3329
		mem->use_hierarchy = parent->use_hierarchy;
	}
3330

3331 3332 3333
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
3334 3335 3336 3337 3338 3339 3340
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
3341 3342 3343 3344
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
3345
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
3346
	spin_lock_init(&mem->reclaim_param_lock);
3347

K
KOSAKI Motohiro 已提交
3348 3349
	if (parent)
		mem->swappiness = get_swappiness(parent);
3350
	atomic_set(&mem->refcnt, 1);
B
Balbir Singh 已提交
3351
	return &mem->css;
3352
free_out:
3353
	__mem_cgroup_free(mem);
3354
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
3355
	return ERR_PTR(error);
B
Balbir Singh 已提交
3356 3357
}

3358
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3359 3360 3361
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3362 3363

	return mem_cgroup_force_empty(mem, false);
3364 3365
}

B
Balbir Singh 已提交
3366 3367 3368
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3369 3370 3371
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
3372 3373 3374 3375 3376
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3377 3378 3379 3380 3381 3382 3383 3384
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
3385 3386
}

B
Balbir Singh 已提交
3387 3388 3389
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
3390 3391
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
3392 3393
{
	/*
3394 3395
	 * FIXME: It's better to move charges of this process from old
	 * memcg to new memcg. But it's just on TODO-List now.
B
Balbir Singh 已提交
3396 3397 3398
	 */
}

B
Balbir Singh 已提交
3399 3400 3401 3402
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
3403
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
3404 3405
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
3406
	.attach = mem_cgroup_move_task,
3407
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
3408
	.use_id = 1,
B
Balbir Singh 已提交
3409
};
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif