memcontrol.c 181.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/slab.h>
43
#include <linux/swap.h>
44
#include <linux/swapops.h>
45
#include <linux/spinlock.h>
46 47
#include <linux/eventfd.h>
#include <linux/sort.h>
48
#include <linux/fs.h>
49
#include <linux/seq_file.h>
50
#include <linux/vmalloc.h>
51
#include <linux/vmpressure.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
90
	"rss_huge",
91
	"mapped_file",
92
	"writeback",
93 94 95
	"swap",
};

96 97 98
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
99 100
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
101 102
	MEM_CGROUP_EVENTS_NSTATS,
};
103 104 105 106 107 108 109 110

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

111 112 113 114 115 116 117 118
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

119 120 121 122 123 124 125 126
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
127
	MEM_CGROUP_TARGET_SOFTLIMIT,
128
	MEM_CGROUP_TARGET_NUMAINFO,
129 130
	MEM_CGROUP_NTARGETS,
};
131 132 133
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
134

135
struct mem_cgroup_stat_cpu {
136
	long count[MEM_CGROUP_STAT_NSTATS];
137
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
138
	unsigned long nr_page_events;
139
	unsigned long targets[MEM_CGROUP_NTARGETS];
140 141
};

142
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
143 144 145 146
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
147
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
148 149
	unsigned long last_dead_count;

150 151 152 153
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

154 155 156 157
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
158
	struct lruvec		lruvec;
159
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
160

161 162
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

163
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
164
						/* use container_of	   */
165 166 167 168 169 170
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

171 172 173 174 175
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
176
/* For threshold */
177
struct mem_cgroup_threshold_ary {
178
	/* An array index points to threshold just below or equal to usage. */
179
	int current_threshold;
180 181 182 183 184
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
185 186 187 188 189 190 191 192 193 194 195 196

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
197 198 199 200 201
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
202

203 204
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
205

B
Balbir Singh 已提交
206 207 208 209 210 211 212
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
213 214 215
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
216 217 218 219 220 221 222
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
223

224 225 226
	/* vmpressure notifications */
	struct vmpressure vmpressure;

227 228 229 230
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
231

232 233 234 235
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
236 237 238 239
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
240
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
241 242 243

	bool		oom_lock;
	atomic_t	under_oom;
244
	atomic_t	oom_wakeups;
245

246
	int	swappiness;
247 248
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
249

250 251 252
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

253 254 255 256
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
257
	struct mem_cgroup_thresholds thresholds;
258

259
	/* thresholds for mem+swap usage. RCU-protected */
260
	struct mem_cgroup_thresholds memsw_thresholds;
261

K
KAMEZAWA Hiroyuki 已提交
262 263
	/* For oom notifier event fd */
	struct list_head oom_notify;
264

265 266 267 268
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
269
	unsigned long move_charge_at_immigrate;
270 271 272 273
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
274 275
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
276
	/*
277
	 * percpu counter.
278
	 */
279
	struct mem_cgroup_stat_cpu __percpu *stat;
280 281 282 283 284 285
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
286

M
Michal Hocko 已提交
287
	atomic_t	dead_count;
M
Michal Hocko 已提交
288
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
289 290
	struct tcp_memcontrol tcp_mem;
#endif
291 292 293 294 295 296 297 298
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
299 300 301 302 303 304 305

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
306 307 308 309 310 311 312 313
	/*
	 * Protects soft_contributed transitions.
	 * See mem_cgroup_update_soft_limit
	 */
	spinlock_t soft_lock;

	/*
	 * If true then this group has increased parents' children_in_excess
A
Andrew Morton 已提交
314
	 * when it got over the soft limit.
315 316 317 318 319 320 321
	 * When a group falls bellow the soft limit, parents' children_in_excess
	 * is decreased and soft_contributed changed to false.
	 */
	bool soft_contributed;

	/* Number of children that are in soft limit excess */
	atomic_t children_in_excess;
322

323 324
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
325 326
};

327 328 329 330 331 332
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

333 334 335
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
336
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
337
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
338 339
};

340 341 342
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
343 344 345 346 347 348

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
349 350 351 352 353 354

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

355 356 357 358 359
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

360 361 362 363 364
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

365 366
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
367 368 369 370 371
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
372 373 374 375 376 377 378 379 380
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
381 382
#endif

383 384
/* Stuffs for move charges at task migration. */
/*
385 386
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
387 388
 */
enum move_type {
389
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
390
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
391 392 393
	NR_MOVE_TYPE,
};

394 395
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
396
	spinlock_t	  lock; /* for from, to */
397 398
	struct mem_cgroup *from;
	struct mem_cgroup *to;
399
	unsigned long immigrate_flags;
400
	unsigned long precharge;
401
	unsigned long moved_charge;
402
	unsigned long moved_swap;
403 404 405
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
406
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
407 408
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
409

D
Daisuke Nishimura 已提交
410 411
static bool move_anon(void)
{
412
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
413 414
}

415 416
static bool move_file(void)
{
417
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
418 419
}

420 421 422 423
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
424
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
425

426 427
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
428
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
429
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
430
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
431 432 433
	NR_CHARGE_TYPE,
};

434
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
435 436 437 438
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
439
	_KMEM,
G
Glauber Costa 已提交
440 441
};

442 443
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
444
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
445 446
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
447

448 449 450 451 452 453 454 455
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

456 457 458 459 460 461 462
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

463 464
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
465
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
466 467
}

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

486 487 488 489 490
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
491
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
492
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
493 494 495

void sock_update_memcg(struct sock *sk)
{
496
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
497
		struct mem_cgroup *memcg;
498
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
499 500 501

		BUG_ON(!sk->sk_prot->proto_cgroup);

502 503 504 505 506 507 508 509 510 511
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
512
			css_get(&sk->sk_cgrp->memcg->css);
513 514 515
			return;
		}

G
Glauber Costa 已提交
516 517
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
518
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
519 520
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
521
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
522 523 524 525 526 527 528 529
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
530
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
531 532 533
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
534
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
535 536
	}
}
G
Glauber Costa 已提交
537 538 539 540 541 542 543 544 545

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
546

547 548 549 550 551 552 553 554 555 556 557 558
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

559
#ifdef CONFIG_MEMCG_KMEM
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
578 579
int memcg_limited_groups_array_size;

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

595 596 597 598 599 600
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
601
struct static_key memcg_kmem_enabled_key;
602
EXPORT_SYMBOL(memcg_kmem_enabled_key);
603 604 605

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
606
	if (memcg_kmem_is_active(memcg)) {
607
		static_key_slow_dec(&memcg_kmem_enabled_key);
608 609
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
610 611 612 613 614
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
615 616 617 618 619 620 621 622 623 624 625 626 627
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

628
static void drain_all_stock_async(struct mem_cgroup *memcg);
629

630
static struct mem_cgroup_per_zone *
631
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
632
{
633
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
634
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
635 636
}

637
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
638
{
639
	return &memcg->css;
640 641
}

642
static struct mem_cgroup_per_zone *
643
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
644
{
645 646
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
647

648
	return mem_cgroup_zoneinfo(memcg, nid, zid);
649 650
}

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
670
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
671
				 enum mem_cgroup_stat_index idx)
672
{
673
	long val = 0;
674 675
	int cpu;

676 677
	get_online_cpus();
	for_each_online_cpu(cpu)
678
		val += per_cpu(memcg->stat->count[idx], cpu);
679
#ifdef CONFIG_HOTPLUG_CPU
680 681 682
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
683 684
#endif
	put_online_cpus();
685 686 687
	return val;
}

688
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
689 690 691
					 bool charge)
{
	int val = (charge) ? 1 : -1;
692
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
693 694
}

695
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
696 697 698 699 700 701
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
702
		val += per_cpu(memcg->stat->events[idx], cpu);
703
#ifdef CONFIG_HOTPLUG_CPU
704 705 706
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
707 708 709 710
#endif
	return val;
}

711
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
712
					 struct page *page,
713
					 bool anon, int nr_pages)
714
{
715 716
	preempt_disable();

717 718 719 720 721 722
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
723
				nr_pages);
724
	else
725
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
726
				nr_pages);
727

728 729 730 731
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

732 733
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
734
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
735
	else {
736
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
737 738
		nr_pages = -nr_pages; /* for event */
	}
739

740
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
741

742
	preempt_enable();
743 744
}

745
unsigned long
746
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
747 748 749 750 751 752 753 754
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
755
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
756
			unsigned int lru_mask)
757 758
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
759
	enum lru_list lru;
760 761
	unsigned long ret = 0;

762
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
763

H
Hugh Dickins 已提交
764 765 766
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
767 768 769 770 771
	}
	return ret;
}

static unsigned long
772
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
773 774
			int nid, unsigned int lru_mask)
{
775 776 777
	u64 total = 0;
	int zid;

778
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
779 780
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
781

782 783
	return total;
}
784

785
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
786
			unsigned int lru_mask)
787
{
788
	int nid;
789 790
	u64 total = 0;

791
	for_each_node_state(nid, N_MEMORY)
792
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
793
	return total;
794 795
}

796 797
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
798 799 800
{
	unsigned long val, next;

801
	val = __this_cpu_read(memcg->stat->nr_page_events);
802
	next = __this_cpu_read(memcg->stat->targets[target]);
803
	/* from time_after() in jiffies.h */
804 805 806 807 808
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
809 810 811
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
812 813 814 815 816 817 818 819
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
820
	}
821
	return false;
822 823
}

824
/*
A
Andrew Morton 已提交
825
 * Called from rate-limited memcg_check_events when enough
826
 * MEM_CGROUP_TARGET_SOFTLIMIT events are accumulated and it makes sure
A
Andrew Morton 已提交
827
 * that all the parents up the hierarchy will be notified that this group
828 829
 * is in excess or that it is not in excess anymore. mmecg->soft_contributed
 * makes the transition a single action whenever the state flips from one to
A
Andrew Morton 已提交
830
 * the other.
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
 */
static void mem_cgroup_update_soft_limit(struct mem_cgroup *memcg)
{
	unsigned long long excess = res_counter_soft_limit_excess(&memcg->res);
	struct mem_cgroup *parent = memcg;
	int delta = 0;

	spin_lock(&memcg->soft_lock);
	if (excess) {
		if (!memcg->soft_contributed) {
			delta = 1;
			memcg->soft_contributed = true;
		}
	} else {
		if (memcg->soft_contributed) {
			delta = -1;
			memcg->soft_contributed = false;
		}
	}

	/*
	 * Necessary to update all ancestors when hierarchy is used
	 * because their event counter is not touched.
854 855 856 857
	 * We track children even outside the hierarchy for the root
	 * cgroup because tree walk starting at root should visit
	 * all cgroups and we want to prevent from pointless tree
	 * walk if no children is below the limit.
858 859 860
	 */
	while (delta && (parent = parent_mem_cgroup(parent)))
		atomic_add(delta, &parent->children_in_excess);
861 862
	if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
		atomic_add(delta, &root_mem_cgroup->children_in_excess);
863 864 865
	spin_unlock(&memcg->soft_lock);
}

866 867 868 869
/*
 * Check events in order.
 *
 */
870
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
871
{
872
	preempt_disable();
873
	/* threshold event is triggered in finer grain than soft limit */
874 875
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
876
		bool do_softlimit;
877
		bool do_numainfo __maybe_unused;
878

879 880
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
881 882 883 884 885 886
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

887
		mem_cgroup_threshold(memcg);
888 889
		if (unlikely(do_softlimit))
			mem_cgroup_update_soft_limit(memcg);
890
#if MAX_NUMNODES > 1
891
		if (unlikely(do_numainfo))
892
			atomic_inc(&memcg->numainfo_events);
893
#endif
894 895
	} else
		preempt_enable();
896 897
}

898
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
899
{
900 901 902 903 904 905 906 907
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

908
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
909 910
}

911
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
912
{
913
	struct mem_cgroup *memcg = NULL;
914 915 916

	if (!mm)
		return NULL;
917 918 919 920 921 922 923
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
924 925
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
926
			break;
927
	} while (!css_tryget(&memcg->css));
928
	rcu_read_unlock();
929
	return memcg;
930 931
}

932 933 934 935 936 937 938 939 940
static enum mem_cgroup_filter_t
mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root,
		mem_cgroup_iter_filter cond)
{
	if (!cond)
		return VISIT;
	return cond(memcg, root);
}

941 942 943 944 945 946 947
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
948
		struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond)
949
{
950
	struct cgroup_subsys_state *prev_css, *next_css;
951

952
	prev_css = last_visited ? &last_visited->css : NULL;
953
skip_node:
954
	next_css = css_next_descendant_pre(prev_css, &root->css);
955 956 957 958 959 960 961 962

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
963 964 965
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

966 967
		switch (mem_cgroup_filter(mem, root, cond)) {
		case SKIP:
968
			prev_css = next_css;
969
			goto skip_node;
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
		case SKIP_TREE:
			if (mem == root)
				return NULL;
			/*
			 * css_rightmost_descendant is not an optimal way to
			 * skip through a subtree (especially for imbalanced
			 * trees leaning to right) but that's what we have right
			 * now. More effective solution would be traversing
			 * right-up for first non-NULL without calling
			 * css_next_descendant_pre afterwards.
			 */
			prev_css = css_rightmost_descendant(next_css);
			goto skip_node;
		case VISIT:
			if (css_tryget(&mem->css))
				return mem;
			else {
				prev_css = next_css;
				goto skip_node;
			}
			break;
991 992 993 994 995 996
		}
	}

	return NULL;
}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1049 1050 1051 1052 1053
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1054
 * @cond: filter for visited nodes, NULL for no filter
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1067
struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
1068
				   struct mem_cgroup *prev,
1069 1070
				   struct mem_cgroup_reclaim_cookie *reclaim,
				   mem_cgroup_iter_filter cond)
K
KAMEZAWA Hiroyuki 已提交
1071
{
1072
	struct mem_cgroup *memcg = NULL;
1073
	struct mem_cgroup *last_visited = NULL;
1074

1075 1076 1077 1078
	if (mem_cgroup_disabled()) {
		/* first call must return non-NULL, second return NULL */
		return (struct mem_cgroup *)(unsigned long)!prev;
	}
1079

1080 1081
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1082

1083
	if (prev && !reclaim)
1084
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1085

1086 1087
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1088
			goto out_css_put;
1089 1090 1091
		if (mem_cgroup_filter(root, root, cond) == VISIT)
			return root;
		return NULL;
1092
	}
K
KAMEZAWA Hiroyuki 已提交
1093

1094
	rcu_read_lock();
1095
	while (!memcg) {
1096
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1097
		int uninitialized_var(seq);
1098

1099 1100 1101 1102 1103 1104 1105
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1106
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1107
				iter->last_visited = NULL;
1108 1109
				goto out_unlock;
			}
M
Michal Hocko 已提交
1110

1111
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1112
		}
K
KAMEZAWA Hiroyuki 已提交
1113

1114
		memcg = __mem_cgroup_iter_next(root, last_visited, cond);
K
KAMEZAWA Hiroyuki 已提交
1115

1116
		if (reclaim) {
1117
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1118

M
Michal Hocko 已提交
1119
			if (!memcg)
1120 1121 1122 1123
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1124

1125 1126 1127 1128 1129
		/*
		 * We have finished the whole tree walk or no group has been
		 * visited because filter told us to skip the root node.
		 */
		if (!memcg && (prev || (cond && !last_visited)))
1130
			goto out_unlock;
1131
	}
1132 1133
out_unlock:
	rcu_read_unlock();
1134 1135 1136 1137
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1138
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1139
}
K
KAMEZAWA Hiroyuki 已提交
1140

1141 1142 1143 1144 1145 1146 1147
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1148 1149 1150 1151 1152 1153
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1154

1155 1156 1157 1158 1159 1160
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1161
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1162
	     iter != NULL;				\
1163
	     iter = mem_cgroup_iter(root, iter, NULL))
1164

1165
#define for_each_mem_cgroup(iter)			\
1166
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1167
	     iter != NULL;				\
1168
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1169

1170
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1171
{
1172
	struct mem_cgroup *memcg;
1173 1174

	rcu_read_lock();
1175 1176
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1177 1178 1179 1180
		goto out;

	switch (idx) {
	case PGFAULT:
1181 1182 1183 1184
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1185 1186 1187 1188 1189 1190 1191
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1192
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1193

1194 1195 1196
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1197
 * @memcg: memcg of the wanted lruvec
1198 1199 1200 1201 1202 1203 1204 1205 1206
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1207
	struct lruvec *lruvec;
1208

1209 1210 1211 1212
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1213 1214

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1225 1226
}

K
KAMEZAWA Hiroyuki 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1240

1241
/**
1242
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1243
 * @page: the page
1244
 * @zone: zone of the page
1245
 */
1246
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1247 1248
{
	struct mem_cgroup_per_zone *mz;
1249 1250
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1251
	struct lruvec *lruvec;
1252

1253 1254 1255 1256
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1257

K
KAMEZAWA Hiroyuki 已提交
1258
	pc = lookup_page_cgroup(page);
1259
	memcg = pc->mem_cgroup;
1260 1261

	/*
1262
	 * Surreptitiously switch any uncharged offlist page to root:
1263 1264 1265 1266 1267 1268 1269
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1270
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1271 1272
		pc->mem_cgroup = memcg = root_mem_cgroup;

1273
	mz = page_cgroup_zoneinfo(memcg, page);
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1284
}
1285

1286
/**
1287 1288 1289 1290
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1291
 *
1292 1293
 * This function must be called when a page is added to or removed from an
 * lru list.
1294
 */
1295 1296
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1297 1298
{
	struct mem_cgroup_per_zone *mz;
1299
	unsigned long *lru_size;
1300 1301 1302 1303

	if (mem_cgroup_disabled())
		return;

1304 1305 1306 1307
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1308
}
1309

1310
/*
1311
 * Checks whether given mem is same or in the root_mem_cgroup's
1312 1313
 * hierarchy subtree
 */
1314 1315
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1316
{
1317 1318
	if (root_memcg == memcg)
		return true;
1319
	if (!root_memcg->use_hierarchy || !memcg)
1320
		return false;
1321 1322 1323 1324 1325 1326 1327 1328
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1329
	rcu_read_lock();
1330
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1331 1332
	rcu_read_unlock();
	return ret;
1333 1334
}

1335 1336
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1337
{
1338
	struct mem_cgroup *curr = NULL;
1339
	struct task_struct *p;
1340
	bool ret;
1341

1342
	p = find_lock_task_mm(task);
1343 1344 1345 1346 1347 1348 1349 1350 1351
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1352
		rcu_read_lock();
1353 1354 1355
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1356
		rcu_read_unlock();
1357
	}
1358
	if (!curr)
1359
		return false;
1360
	/*
1361
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1362
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1363 1364
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1365
	 */
1366
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1367
	css_put(&curr->css);
1368 1369 1370
	return ret;
}

1371
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1372
{
1373
	unsigned long inactive_ratio;
1374
	unsigned long inactive;
1375
	unsigned long active;
1376
	unsigned long gb;
1377

1378 1379
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1380

1381 1382 1383 1384 1385 1386
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1387
	return inactive * inactive_ratio < active;
1388 1389
}

1390 1391 1392
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1393
/**
1394
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1395
 * @memcg: the memory cgroup
1396
 *
1397
 * Returns the maximum amount of memory @mem can be charged with, in
1398
 * pages.
1399
 */
1400
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1401
{
1402 1403
	unsigned long long margin;

1404
	margin = res_counter_margin(&memcg->res);
1405
	if (do_swap_account)
1406
		margin = min(margin, res_counter_margin(&memcg->memsw));
1407
	return margin >> PAGE_SHIFT;
1408 1409
}

1410
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1411 1412
{
	/* root ? */
T
Tejun Heo 已提交
1413
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1414 1415
		return vm_swappiness;

1416
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1417 1418
}

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1433 1434 1435 1436

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1437
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1438
{
1439
	atomic_inc(&memcg_moving);
1440
	atomic_inc(&memcg->moving_account);
1441 1442 1443
	synchronize_rcu();
}

1444
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1445
{
1446 1447 1448 1449
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1450 1451
	if (memcg) {
		atomic_dec(&memcg_moving);
1452
		atomic_dec(&memcg->moving_account);
1453
	}
1454
}
1455

1456 1457 1458
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1459 1460
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1461 1462 1463 1464 1465 1466 1467
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1468
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1469 1470
{
	VM_BUG_ON(!rcu_read_lock_held());
1471
	return atomic_read(&memcg->moving_account) > 0;
1472
}
1473

1474
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1475
{
1476 1477
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1478
	bool ret = false;
1479 1480 1481 1482 1483 1484 1485 1486 1487
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1488

1489 1490
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1491 1492
unlock:
	spin_unlock(&mc.lock);
1493 1494 1495
	return ret;
}

1496
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1497 1498
{
	if (mc.moving_task && current != mc.moving_task) {
1499
		if (mem_cgroup_under_move(memcg)) {
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1512 1513 1514 1515
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1516
 * see mem_cgroup_stolen(), too.
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1530
#define K(x) ((x) << (PAGE_SHIFT-10))
1531
/**
1532
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1550 1551
	struct mem_cgroup *iter;
	unsigned int i;
1552

1553
	if (!p)
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1572
	pr_info("Task in %s killed", memcg_name);
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1585
	pr_cont(" as a result of limit of %s\n", memcg_name);
1586 1587
done:

1588
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1589 1590 1591
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1592
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1593 1594 1595
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1596
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1597 1598 1599
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1624 1625
}

1626 1627 1628 1629
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1630
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1631 1632
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1633 1634
	struct mem_cgroup *iter;

1635
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1636
		num++;
1637 1638 1639
	return num;
}

D
David Rientjes 已提交
1640 1641 1642
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1643
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1644 1645 1646
{
	u64 limit;

1647 1648
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1649
	/*
1650
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1651
	 */
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1666 1667
}

1668 1669
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1670 1671 1672 1673 1674 1675 1676
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1677
	/*
1678 1679 1680
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1681
	 */
1682
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1683 1684 1685 1686 1687
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1688 1689
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1690
		struct css_task_iter it;
1691 1692
		struct task_struct *task;

1693 1694
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1707
				css_task_iter_end(&it);
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1724
		css_task_iter_end(&it);
1725 1726 1727 1728 1729 1730 1731 1732 1733
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1770
#if MAX_NUMNODES > 1
1771 1772
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1773
 * @memcg: the target memcg
1774 1775 1776 1777 1778 1779 1780
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1781
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1782 1783
		int nid, bool noswap)
{
1784
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1785 1786 1787
		return true;
	if (noswap || !total_swap_pages)
		return false;
1788
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1789 1790 1791 1792
		return true;
	return false;

}
1793 1794 1795 1796 1797 1798 1799

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1800
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1801 1802
{
	int nid;
1803 1804 1805 1806
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1807
	if (!atomic_read(&memcg->numainfo_events))
1808
		return;
1809
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1810 1811 1812
		return;

	/* make a nodemask where this memcg uses memory from */
1813
	memcg->scan_nodes = node_states[N_MEMORY];
1814

1815
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1816

1817 1818
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1819
	}
1820

1821 1822
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1837
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1838 1839 1840
{
	int node;

1841 1842
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1843

1844
	node = next_node(node, memcg->scan_nodes);
1845
	if (node == MAX_NUMNODES)
1846
		node = first_node(memcg->scan_nodes);
1847 1848 1849 1850 1851 1852 1853 1854 1855
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1856
	memcg->last_scanned_node = node;
1857 1858 1859 1860
	return node;
}

#else
1861
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1862 1863 1864
{
	return 0;
}
1865

1866 1867
#endif

1868
/*
1869 1870
 * A group is eligible for the soft limit reclaim under the given root
 * hierarchy if
A
Andrew Morton 已提交
1871 1872
 *	a) it is over its soft limit
 *	b) any parent up the hierarchy is over its soft limit
1873 1874 1875
 *
 * If the given group doesn't have any children over the limit then it
 * doesn't make any sense to iterate its subtree.
1876
 */
1877 1878
enum mem_cgroup_filter_t
mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
1879
		struct mem_cgroup *root)
1880
{
1881 1882 1883 1884 1885
	struct mem_cgroup *parent;

	if (!memcg)
		memcg = root_mem_cgroup;
	parent = memcg;
1886 1887

	if (res_counter_soft_limit_excess(&memcg->res))
1888
		return VISIT;
1889 1890

	/*
1891 1892
	 * If any parent up to the root in the hierarchy is over its soft limit
	 * then we have to obey and reclaim from this group as well.
1893
	 */
A
Andrew Morton 已提交
1894
	while ((parent = parent_mem_cgroup(parent))) {
1895
		if (res_counter_soft_limit_excess(&parent->res))
1896
			return VISIT;
1897 1898
		if (parent == root)
			break;
1899
	}
1900

1901 1902
	if (!atomic_read(&memcg->children_in_excess))
		return SKIP_TREE;
1903
	return SKIP;
1904 1905
}

1906 1907
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1908 1909 1910 1911
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1912
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1913
{
1914
	struct mem_cgroup *iter, *failed = NULL;
1915

1916 1917
	spin_lock(&memcg_oom_lock);

1918
	for_each_mem_cgroup_tree(iter, memcg) {
1919
		if (iter->oom_lock) {
1920 1921 1922 1923 1924
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1925 1926
			mem_cgroup_iter_break(memcg, iter);
			break;
1927 1928
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1929
	}
K
KAMEZAWA Hiroyuki 已提交
1930

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1942 1943
		}
	}
1944 1945 1946 1947

	spin_unlock(&memcg_oom_lock);

	return !failed;
1948
}
1949

1950
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1951
{
K
KAMEZAWA Hiroyuki 已提交
1952 1953
	struct mem_cgroup *iter;

1954
	spin_lock(&memcg_oom_lock);
1955
	for_each_mem_cgroup_tree(iter, memcg)
1956
		iter->oom_lock = false;
1957
	spin_unlock(&memcg_oom_lock);
1958 1959
}

1960
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1961 1962 1963
{
	struct mem_cgroup *iter;

1964
	for_each_mem_cgroup_tree(iter, memcg)
1965 1966 1967
		atomic_inc(&iter->under_oom);
}

1968
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1969 1970 1971
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1972 1973 1974 1975 1976
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1977
	for_each_mem_cgroup_tree(iter, memcg)
1978
		atomic_add_unless(&iter->under_oom, -1, 0);
1979 1980
}

K
KAMEZAWA Hiroyuki 已提交
1981 1982
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1983
struct oom_wait_info {
1984
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1985 1986 1987 1988 1989 1990
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1991 1992
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1993 1994 1995
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1996
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1997 1998

	/*
1999
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2000 2001
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2002 2003
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2004 2005 2006 2007
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2008
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2009
{
2010
	atomic_inc(&memcg->oom_wakeups);
2011 2012
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2013 2014
}

2015
static void memcg_oom_recover(struct mem_cgroup *memcg)
2016
{
2017 2018
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2019 2020
}

K
KAMEZAWA Hiroyuki 已提交
2021
/*
2022
 * try to call OOM killer
K
KAMEZAWA Hiroyuki 已提交
2023
 */
2024
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2025
{
2026
	bool locked;
2027
	int wakeups;
K
KAMEZAWA Hiroyuki 已提交
2028

2029 2030 2031 2032
	if (!current->memcg_oom.may_oom)
		return;

	current->memcg_oom.in_memcg_oom = 1;
2033

K
KAMEZAWA Hiroyuki 已提交
2034
	/*
2035 2036 2037 2038 2039
	 * As with any blocking lock, a contender needs to start
	 * listening for wakeups before attempting the trylock,
	 * otherwise it can miss the wakeup from the unlock and sleep
	 * indefinitely.  This is just open-coded because our locking
	 * is so particular to memcg hierarchies.
K
KAMEZAWA Hiroyuki 已提交
2040
	 */
2041
	wakeups = atomic_read(&memcg->oom_wakeups);
2042 2043 2044 2045
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

2046
	if (locked)
2047
		mem_cgroup_oom_notify(memcg);
K
KAMEZAWA Hiroyuki 已提交
2048

2049 2050
	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
2051
		mem_cgroup_out_of_memory(memcg, mask, order);
2052 2053 2054 2055 2056 2057 2058
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
2059
	} else {
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
		/*
		 * A system call can just return -ENOMEM, but if this
		 * is a page fault and somebody else is handling the
		 * OOM already, we need to sleep on the OOM waitqueue
		 * for this memcg until the situation is resolved.
		 * Which can take some time because it might be
		 * handled by a userspace task.
		 *
		 * However, this is the charge context, which means
		 * that we may sit on a large call stack and hold
		 * various filesystem locks, the mmap_sem etc. and we
		 * don't want the OOM handler to deadlock on them
		 * while we sit here and wait.  Store the current OOM
		 * context in the task_struct, then return -ENOMEM.
		 * At the end of the page fault handler, with the
		 * stack unwound, pagefault_out_of_memory() will check
		 * back with us by calling
		 * mem_cgroup_oom_synchronize(), possibly putting the
		 * task to sleep.
		 */
		current->memcg_oom.oom_locked = locked;
		current->memcg_oom.wakeups = wakeups;
		css_get(&memcg->css);
		current->memcg_oom.wait_on_memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2084
	}
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
 *
 * This has to be called at the end of a page fault if the the memcg
 * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
 *
 * Memcg supports userspace OOM handling, so failed allocations must
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
 * the end of the page fault to put the task to sleep and clean up the
 * OOM state.
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
 * finalized, %false otherwise.
 */
bool mem_cgroup_oom_synchronize(void)
{
	struct oom_wait_info owait;
	struct mem_cgroup *memcg;

	/* OOM is global, do not handle */
	if (!current->memcg_oom.in_memcg_oom)
		return false;

	/*
	 * We invoked the OOM killer but there is a chance that a kill
	 * did not free up any charges.  Everybody else might already
	 * be sleeping, so restart the fault and keep the rampage
	 * going until some charges are released.
	 */
	memcg = current->memcg_oom.wait_on_memcg;
	if (!memcg)
		goto out;

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		goto out_memcg;

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2131

2132 2133 2134 2135 2136 2137 2138 2139
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	/* Only sleep if we didn't miss any wakeups since OOM */
	if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
		schedule();
	finish_wait(&memcg_oom_waitq, &owait.wait);
out_memcg:
	mem_cgroup_unmark_under_oom(memcg);
	if (current->memcg_oom.oom_locked) {
2140 2141 2142 2143 2144 2145 2146 2147
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2148 2149 2150 2151
	css_put(&memcg->css);
	current->memcg_oom.wait_on_memcg = NULL;
out:
	current->memcg_oom.in_memcg_oom = 0;
K
KAMEZAWA Hiroyuki 已提交
2152
	return true;
2153 2154
}

2155 2156 2157
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2175 2176
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2177
 */
2178

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2192
	 * need to take move_lock_mem_cgroup(). Because we already hold
2193
	 * rcu_read_lock(), any calls to move_account will be delayed until
2194
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2195
	 */
2196
	if (!mem_cgroup_stolen(memcg))
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2214
	 * should take move_lock_mem_cgroup().
2215 2216 2217 2218
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2219
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2220
				 enum mem_cgroup_stat_index idx, int val)
2221
{
2222
	struct mem_cgroup *memcg;
2223
	struct page_cgroup *pc = lookup_page_cgroup(page);
2224
	unsigned long uninitialized_var(flags);
2225

2226
	if (mem_cgroup_disabled())
2227
		return;
2228

2229
	VM_BUG_ON(!rcu_read_lock_held());
2230 2231
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2232
		return;
2233

2234
	this_cpu_add(memcg->stat->count[idx], val);
2235
}
2236

2237 2238 2239 2240
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2241
#define CHARGE_BATCH	32U
2242 2243
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2244
	unsigned int nr_pages;
2245
	struct work_struct work;
2246
	unsigned long flags;
2247
#define FLUSHING_CACHED_CHARGE	0
2248 2249
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2250
static DEFINE_MUTEX(percpu_charge_mutex);
2251

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2262
 */
2263
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2264 2265 2266 2267
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2268 2269 2270
	if (nr_pages > CHARGE_BATCH)
		return false;

2271
	stock = &get_cpu_var(memcg_stock);
2272 2273
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2287 2288 2289 2290
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2291
		if (do_swap_account)
2292 2293
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2306
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2307 2308
}

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2320 2321
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2322
 * This will be consumed by consume_stock() function, later.
2323
 */
2324
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2325 2326 2327
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2328
	if (stock->cached != memcg) { /* reset if necessary */
2329
		drain_stock(stock);
2330
		stock->cached = memcg;
2331
	}
2332
	stock->nr_pages += nr_pages;
2333 2334 2335 2336
	put_cpu_var(memcg_stock);
}

/*
2337
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2338 2339
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2340
 */
2341
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2342
{
2343
	int cpu, curcpu;
2344

2345 2346
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2347
	curcpu = get_cpu();
2348 2349
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2350
		struct mem_cgroup *memcg;
2351

2352 2353
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2354
			continue;
2355
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2356
			continue;
2357 2358 2359 2360 2361 2362
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2363
	}
2364
	put_cpu();
2365 2366 2367 2368 2369 2370

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2371
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2372 2373 2374
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2375
	put_online_cpus();
2376 2377 2378 2379 2380 2381 2382 2383
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2384
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2385
{
2386 2387 2388 2389 2390
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2391
	drain_all_stock(root_memcg, false);
2392
	mutex_unlock(&percpu_charge_mutex);
2393 2394 2395
}

/* This is a synchronous drain interface. */
2396
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2397 2398
{
	/* called when force_empty is called */
2399
	mutex_lock(&percpu_charge_mutex);
2400
	drain_all_stock(root_memcg, true);
2401
	mutex_unlock(&percpu_charge_mutex);
2402 2403
}

2404 2405 2406 2407
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2408
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2409 2410 2411
{
	int i;

2412
	spin_lock(&memcg->pcp_counter_lock);
2413
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2414
		long x = per_cpu(memcg->stat->count[i], cpu);
2415

2416 2417
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2418
	}
2419
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2420
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2421

2422 2423
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2424
	}
2425
	spin_unlock(&memcg->pcp_counter_lock);
2426 2427
}

2428
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2429 2430 2431 2432 2433
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2434
	struct mem_cgroup *iter;
2435

2436
	if (action == CPU_ONLINE)
2437 2438
		return NOTIFY_OK;

2439
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2440
		return NOTIFY_OK;
2441

2442
	for_each_mem_cgroup(iter)
2443 2444
		mem_cgroup_drain_pcp_counter(iter, cpu);

2445 2446 2447 2448 2449
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2450 2451 2452 2453 2454 2455 2456 2457 2458

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2459
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2460
				unsigned int nr_pages, unsigned int min_pages,
2461
				bool invoke_oom)
2462
{
2463
	unsigned long csize = nr_pages * PAGE_SIZE;
2464 2465 2466 2467 2468
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2469
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2470 2471 2472 2473

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2474
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2475 2476 2477
		if (likely(!ret))
			return CHARGE_OK;

2478
		res_counter_uncharge(&memcg->res, csize);
2479 2480 2481 2482
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2483 2484 2485 2486
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2487
	if (nr_pages > min_pages)
2488 2489 2490 2491 2492
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2493 2494 2495
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2496
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2497
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2498
		return CHARGE_RETRY;
2499
	/*
2500 2501 2502 2503 2504 2505 2506
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2507
	 */
2508
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2509 2510 2511 2512 2513 2514 2515 2516 2517
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2518 2519
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2520

2521
	return CHARGE_NOMEM;
2522 2523
}

2524
/*
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2544
 */
2545
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2546
				   gfp_t gfp_mask,
2547
				   unsigned int nr_pages,
2548
				   struct mem_cgroup **ptr,
2549
				   bool oom)
2550
{
2551
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2552
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2553
	struct mem_cgroup *memcg = NULL;
2554
	int ret;
2555

K
KAMEZAWA Hiroyuki 已提交
2556 2557 2558 2559 2560 2561 2562 2563
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2564

2565
	/*
2566 2567
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2568
	 * thread group leader migrates. It's possible that mm is not
2569
	 * set, if so charge the root memcg (happens for pagecache usage).
2570
	 */
2571
	if (!*ptr && !mm)
2572
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2573
again:
2574 2575 2576
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2577
			goto done;
2578
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2579
			goto done;
2580
		css_get(&memcg->css);
2581
	} else {
K
KAMEZAWA Hiroyuki 已提交
2582
		struct task_struct *p;
2583

K
KAMEZAWA Hiroyuki 已提交
2584 2585 2586
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2587
		 * Because we don't have task_lock(), "p" can exit.
2588
		 * In that case, "memcg" can point to root or p can be NULL with
2589 2590 2591 2592 2593 2594
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2595
		 */
2596
		memcg = mem_cgroup_from_task(p);
2597 2598 2599
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2600 2601 2602
			rcu_read_unlock();
			goto done;
		}
2603
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2616
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2617 2618 2619 2620 2621
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2622

2623
	do {
2624
		bool invoke_oom = oom && !nr_oom_retries;
2625

2626
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2627
		if (fatal_signal_pending(current)) {
2628
			css_put(&memcg->css);
2629
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2630
		}
2631

2632 2633
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2634 2635 2636 2637
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2638
			batch = nr_pages;
2639 2640
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2641
			goto again;
2642
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2643
			css_put(&memcg->css);
2644 2645
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2646
			if (!oom || invoke_oom) {
2647
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2648
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2649
			}
2650 2651
			nr_oom_retries--;
			break;
2652
		}
2653 2654
	} while (ret != CHARGE_OK);

2655
	if (batch > nr_pages)
2656 2657
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2658
done:
2659
	*ptr = memcg;
2660 2661
	return 0;
nomem:
2662
	*ptr = NULL;
2663
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2664
bypass:
2665 2666
	*ptr = root_mem_cgroup;
	return -EINTR;
2667
}
2668

2669 2670 2671 2672 2673
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2674
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2675
				       unsigned int nr_pages)
2676
{
2677
	if (!mem_cgroup_is_root(memcg)) {
2678 2679
		unsigned long bytes = nr_pages * PAGE_SIZE;

2680
		res_counter_uncharge(&memcg->res, bytes);
2681
		if (do_swap_account)
2682
			res_counter_uncharge(&memcg->memsw, bytes);
2683
	}
2684 2685
}

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2704 2705
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2706 2707 2708
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2720
	return mem_cgroup_from_css(css);
2721 2722
}

2723
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2724
{
2725
	struct mem_cgroup *memcg = NULL;
2726
	struct page_cgroup *pc;
2727
	unsigned short id;
2728 2729
	swp_entry_t ent;

2730 2731 2732
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2733
	lock_page_cgroup(pc);
2734
	if (PageCgroupUsed(pc)) {
2735 2736 2737
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2738
	} else if (PageSwapCache(page)) {
2739
		ent.val = page_private(page);
2740
		id = lookup_swap_cgroup_id(ent);
2741
		rcu_read_lock();
2742 2743 2744
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2745
		rcu_read_unlock();
2746
	}
2747
	unlock_page_cgroup(pc);
2748
	return memcg;
2749 2750
}

2751
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2752
				       struct page *page,
2753
				       unsigned int nr_pages,
2754 2755
				       enum charge_type ctype,
				       bool lrucare)
2756
{
2757
	struct page_cgroup *pc = lookup_page_cgroup(page);
2758
	struct zone *uninitialized_var(zone);
2759
	struct lruvec *lruvec;
2760
	bool was_on_lru = false;
2761
	bool anon;
2762

2763
	lock_page_cgroup(pc);
2764
	VM_BUG_ON(PageCgroupUsed(pc));
2765 2766 2767 2768
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2769 2770 2771 2772 2773 2774 2775 2776 2777

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2778
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2779
			ClearPageLRU(page);
2780
			del_page_from_lru_list(page, lruvec, page_lru(page));
2781 2782 2783 2784
			was_on_lru = true;
		}
	}

2785
	pc->mem_cgroup = memcg;
2786 2787 2788 2789 2790 2791
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2792
	 */
K
KAMEZAWA Hiroyuki 已提交
2793
	smp_wmb();
2794
	SetPageCgroupUsed(pc);
2795

2796 2797
	if (lrucare) {
		if (was_on_lru) {
2798
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2799 2800
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2801
			add_page_to_lru_list(page, lruvec, page_lru(page));
2802 2803 2804 2805
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2806
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2807 2808 2809 2810
		anon = true;
	else
		anon = false;

2811
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2812
	unlock_page_cgroup(pc);
2813

2814
	/*
2815
	 * "charge_statistics" updated event counter.
2816
	 */
2817
	memcg_check_events(memcg, page);
2818
}
2819

2820 2821
static DEFINE_MUTEX(set_limit_mutex);

2822 2823 2824 2825 2826 2827 2828
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2842
#ifdef CONFIG_SLABINFO
2843 2844
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2845
{
2846
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2916 2917 2918 2919 2920

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2921 2922 2923 2924 2925 2926 2927 2928
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2929
	if (memcg_kmem_test_and_clear_dead(memcg))
2930
		css_put(&memcg->css);
2931 2932
}

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3016 3017
static void kmem_cache_destroy_work_func(struct work_struct *w);

3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3029
		size += offsetof(struct memcg_cache_params, memcg_caches);
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3069 3070
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3071
{
3072
	size_t size;
3073 3074 3075 3076

	if (!memcg_kmem_enabled())
		return 0;

3077 3078
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3079
		size += memcg_limited_groups_array_size * sizeof(void *);
3080 3081
	} else
		size = sizeof(struct memcg_cache_params);
3082

3083 3084 3085 3086
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3087
	if (memcg) {
3088
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3089
		s->memcg_params->root_cache = root_cache;
3090 3091
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3092 3093 3094
	} else
		s->memcg_params->is_root_cache = true;

3095 3096 3097 3098 3099
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3124
	css_put(&memcg->css);
3125
out:
3126 3127 3128
	kfree(s->memcg_params);
}

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3160 3161 3162 3163 3164 3165 3166 3167 3168
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3190 3191 3192 3193 3194 3195 3196 3197
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3218 3219 3220 3221 3222 3223 3224
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3225 3226 3227 3228 3229 3230 3231 3232 3233
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3234

3235 3236 3237
/*
 * Called with memcg_cache_mutex held
 */
3238 3239 3240 3241
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3242
	static char *tmp_name = NULL;
3243

3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3262

3263
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3264
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3265

3266 3267 3268
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3284 3285
	if (new_cachep) {
		css_put(&memcg->css);
3286
		goto out;
3287
	}
3288 3289 3290 3291

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3292
		css_put(&memcg->css);
3293 3294 3295
		goto out;
	}

G
Glauber Costa 已提交
3296
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3348
		cancel_work_sync(&c->memcg_params->destroy);
3349 3350 3351 3352 3353
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3354 3355 3356 3357 3358 3359
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3389 3390
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3391 3392 3393 3394
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3395 3396
	if (cw == NULL) {
		css_put(&memcg->css);
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3447 3448 3449
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3450 3451 3452 3453
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3454
		goto out;
3455 3456 3457 3458 3459 3460 3461 3462

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3463 3464 3465
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3466 3467
	}

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3495 3496 3497
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3534 3535 3536
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3621 3622 3623 3624
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3625 3626
#endif /* CONFIG_MEMCG_KMEM */

3627 3628
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3629
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3630 3631
/*
 * Because tail pages are not marked as "used", set it. We're under
3632 3633 3634
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3635
 */
3636
void mem_cgroup_split_huge_fixup(struct page *head)
3637 3638
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3639
	struct page_cgroup *pc;
3640
	struct mem_cgroup *memcg;
3641
	int i;
3642

3643 3644
	if (mem_cgroup_disabled())
		return;
3645 3646

	memcg = head_pc->mem_cgroup;
3647 3648
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3649
		pc->mem_cgroup = memcg;
3650 3651 3652
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3653 3654
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3655
}
3656
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3657

3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
static inline
void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
					struct mem_cgroup *to,
					unsigned int nr_pages,
					enum mem_cgroup_stat_index idx)
{
	/* Update stat data for mem_cgroup */
	preempt_disable();
	WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
	__this_cpu_add(from->stat->count[idx], -nr_pages);
	__this_cpu_add(to->stat->count[idx], nr_pages);
	preempt_enable();
}

3672
/**
3673
 * mem_cgroup_move_account - move account of the page
3674
 * @page: the page
3675
 * @nr_pages: number of regular pages (>1 for huge pages)
3676 3677 3678 3679 3680
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3681
 * - page is not on LRU (isolate_page() is useful.)
3682
 * - compound_lock is held when nr_pages > 1
3683
 *
3684 3685
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3686
 */
3687 3688 3689 3690
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3691
				   struct mem_cgroup *to)
3692
{
3693 3694
	unsigned long flags;
	int ret;
3695
	bool anon = PageAnon(page);
3696

3697
	VM_BUG_ON(from == to);
3698
	VM_BUG_ON(PageLRU(page));
3699 3700 3701 3702 3703 3704 3705
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3706
	if (nr_pages > 1 && !PageTransHuge(page))
3707 3708 3709 3710 3711 3712 3713 3714
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3715
	move_lock_mem_cgroup(from, &flags);
3716

3717 3718 3719 3720 3721 3722 3723 3724
	if (!anon && page_mapped(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_FILE_MAPPED);

	if (PageWriteback(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_WRITEBACK);

3725
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3726

3727
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3728
	pc->mem_cgroup = to;
3729
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3730
	move_unlock_mem_cgroup(from, &flags);
3731 3732
	ret = 0;
unlock:
3733
	unlock_page_cgroup(pc);
3734 3735 3736
	/*
	 * check events
	 */
3737 3738
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3739
out:
3740 3741 3742
	return ret;
}

3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3763
 */
3764 3765
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3766
				  struct mem_cgroup *child)
3767 3768
{
	struct mem_cgroup *parent;
3769
	unsigned int nr_pages;
3770
	unsigned long uninitialized_var(flags);
3771 3772
	int ret;

3773
	VM_BUG_ON(mem_cgroup_is_root(child));
3774

3775 3776 3777 3778 3779
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3780

3781
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3782

3783 3784 3785 3786 3787 3788
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3789

3790 3791
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3792
		flags = compound_lock_irqsave(page);
3793
	}
3794

3795
	ret = mem_cgroup_move_account(page, nr_pages,
3796
				pc, child, parent);
3797 3798
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3799

3800
	if (nr_pages > 1)
3801
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3802
	putback_lru_page(page);
3803
put:
3804
	put_page(page);
3805
out:
3806 3807 3808
	return ret;
}

3809 3810 3811 3812 3813 3814 3815
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3816
				gfp_t gfp_mask, enum charge_type ctype)
3817
{
3818
	struct mem_cgroup *memcg = NULL;
3819
	unsigned int nr_pages = 1;
3820
	bool oom = true;
3821
	int ret;
A
Andrea Arcangeli 已提交
3822

A
Andrea Arcangeli 已提交
3823
	if (PageTransHuge(page)) {
3824
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3825
		VM_BUG_ON(!PageTransHuge(page));
3826 3827 3828 3829 3830
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3831
	}
3832

3833
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3834
	if (ret == -ENOMEM)
3835
		return ret;
3836
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3837 3838 3839
	return 0;
}

3840 3841
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3842
{
3843
	if (mem_cgroup_disabled())
3844
		return 0;
3845 3846 3847
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3848
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3849
					MEM_CGROUP_CHARGE_TYPE_ANON);
3850 3851
}

3852 3853 3854
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3855
 * struct page_cgroup is acquired. This refcnt will be consumed by
3856 3857
 * "commit()" or removed by "cancel()"
 */
3858 3859 3860 3861
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3862
{
3863
	struct mem_cgroup *memcg;
3864
	struct page_cgroup *pc;
3865
	int ret;
3866

3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3877 3878
	if (!do_swap_account)
		goto charge_cur_mm;
3879 3880
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3881
		goto charge_cur_mm;
3882 3883
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3884
	css_put(&memcg->css);
3885 3886
	if (ret == -EINTR)
		ret = 0;
3887
	return ret;
3888
charge_cur_mm:
3889 3890 3891 3892
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3893 3894
}

3895 3896 3897 3898 3899 3900
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3915 3916 3917
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3918 3919 3920 3921 3922 3923 3924 3925 3926
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3927
static void
3928
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3929
					enum charge_type ctype)
3930
{
3931
	if (mem_cgroup_disabled())
3932
		return;
3933
	if (!memcg)
3934
		return;
3935

3936
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3937 3938 3939
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3940 3941 3942
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3943
	 */
3944
	if (do_swap_account && PageSwapCache(page)) {
3945
		swp_entry_t ent = {.val = page_private(page)};
3946
		mem_cgroup_uncharge_swap(ent);
3947
	}
3948 3949
}

3950 3951
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3952
{
3953
	__mem_cgroup_commit_charge_swapin(page, memcg,
3954
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3955 3956
}

3957 3958
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3959
{
3960 3961 3962 3963
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3964
	if (mem_cgroup_disabled())
3965 3966 3967 3968 3969 3970 3971
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3972 3973
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3974 3975 3976 3977
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3978 3979
}

3980
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3981 3982
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3983 3984 3985
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3986

3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3998
		batch->memcg = memcg;
3999 4000
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4001
	 * In those cases, all pages freed continuously can be expected to be in
4002 4003 4004 4005 4006 4007 4008 4009
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4010
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4011 4012
		goto direct_uncharge;

4013 4014 4015 4016 4017
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4018
	if (batch->memcg != memcg)
4019 4020
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4021
	batch->nr_pages++;
4022
	if (uncharge_memsw)
4023
		batch->memsw_nr_pages++;
4024 4025
	return;
direct_uncharge:
4026
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4027
	if (uncharge_memsw)
4028 4029 4030
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4031
}
4032

4033
/*
4034
 * uncharge if !page_mapped(page)
4035
 */
4036
static struct mem_cgroup *
4037 4038
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4039
{
4040
	struct mem_cgroup *memcg = NULL;
4041 4042
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4043
	bool anon;
4044

4045
	if (mem_cgroup_disabled())
4046
		return NULL;
4047

A
Andrea Arcangeli 已提交
4048
	if (PageTransHuge(page)) {
4049
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4050 4051
		VM_BUG_ON(!PageTransHuge(page));
	}
4052
	/*
4053
	 * Check if our page_cgroup is valid
4054
	 */
4055
	pc = lookup_page_cgroup(page);
4056
	if (unlikely(!PageCgroupUsed(pc)))
4057
		return NULL;
4058

4059
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4060

4061
	memcg = pc->mem_cgroup;
4062

K
KAMEZAWA Hiroyuki 已提交
4063 4064 4065
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4066 4067
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4068
	switch (ctype) {
4069
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4070 4071 4072 4073 4074
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4075 4076
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4077
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4078
		/* See mem_cgroup_prepare_migration() */
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4100
	}
K
KAMEZAWA Hiroyuki 已提交
4101

4102
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4103

4104
	ClearPageCgroupUsed(pc);
4105 4106 4107 4108 4109 4110
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4111

4112
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4113
	/*
4114
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4115
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4116
	 */
4117
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4118
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4119
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4120
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4121
	}
4122 4123 4124 4125 4126 4127
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4128
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4129

4130
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4131 4132 4133

unlock_out:
	unlock_page_cgroup(pc);
4134
	return NULL;
4135 4136
}

4137 4138
void mem_cgroup_uncharge_page(struct page *page)
{
4139 4140 4141
	/* early check. */
	if (page_mapped(page))
		return;
4142
	VM_BUG_ON(page->mapping && !PageAnon(page));
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4155 4156
	if (PageSwapCache(page))
		return;
4157
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4158 4159 4160 4161 4162
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4163
	VM_BUG_ON(page->mapping);
4164
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4165 4166
}

4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4181 4182
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4203 4204 4205 4206 4207 4208
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4209
	memcg_oom_recover(batch->memcg);
4210 4211 4212 4213
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4214
#ifdef CONFIG_SWAP
4215
/*
4216
 * called after __delete_from_swap_cache() and drop "page" account.
4217 4218
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4219 4220
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4221 4222
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4223 4224 4225 4226 4227
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4228
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4229

K
KAMEZAWA Hiroyuki 已提交
4230 4231
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4232
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4233 4234
	 */
	if (do_swap_account && swapout && memcg)
4235
		swap_cgroup_record(ent, css_id(&memcg->css));
4236
}
4237
#endif
4238

A
Andrew Morton 已提交
4239
#ifdef CONFIG_MEMCG_SWAP
4240 4241 4242 4243 4244
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4245
{
4246
	struct mem_cgroup *memcg;
4247
	unsigned short id;
4248 4249 4250 4251

	if (!do_swap_account)
		return;

4252 4253 4254
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4255
	if (memcg) {
4256 4257 4258 4259
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4260
		if (!mem_cgroup_is_root(memcg))
4261
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4262
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4263
		css_put(&memcg->css);
4264
	}
4265
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4266
}
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4283
				struct mem_cgroup *from, struct mem_cgroup *to)
4284 4285 4286 4287 4288 4289 4290 4291
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4292
		mem_cgroup_swap_statistics(to, true);
4293
		/*
4294 4295 4296
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4297 4298 4299 4300 4301 4302
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4303
		 */
L
Li Zefan 已提交
4304
		css_get(&to->css);
4305 4306 4307 4308 4309 4310
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4311
				struct mem_cgroup *from, struct mem_cgroup *to)
4312 4313 4314
{
	return -EINVAL;
}
4315
#endif
K
KAMEZAWA Hiroyuki 已提交
4316

4317
/*
4318 4319
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4320
 */
4321 4322
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4323
{
4324
	struct mem_cgroup *memcg = NULL;
4325
	unsigned int nr_pages = 1;
4326
	struct page_cgroup *pc;
4327
	enum charge_type ctype;
4328

4329
	*memcgp = NULL;
4330

4331
	if (mem_cgroup_disabled())
4332
		return;
4333

4334 4335 4336
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4337 4338 4339
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4340 4341
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4373
	}
4374
	unlock_page_cgroup(pc);
4375 4376 4377 4378
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4379
	if (!memcg)
4380
		return;
4381

4382
	*memcgp = memcg;
4383 4384 4385 4386 4387 4388 4389
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4390
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4391
	else
4392
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4393 4394 4395 4396 4397
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4398
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4399
}
4400

4401
/* remove redundant charge if migration failed*/
4402
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4403
	struct page *oldpage, struct page *newpage, bool migration_ok)
4404
{
4405
	struct page *used, *unused;
4406
	struct page_cgroup *pc;
4407
	bool anon;
4408

4409
	if (!memcg)
4410
		return;
4411

4412
	if (!migration_ok) {
4413 4414
		used = oldpage;
		unused = newpage;
4415
	} else {
4416
		used = newpage;
4417 4418
		unused = oldpage;
	}
4419
	anon = PageAnon(used);
4420 4421 4422 4423
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4424
	css_put(&memcg->css);
4425
	/*
4426 4427 4428
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4429
	 */
4430 4431 4432 4433 4434
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4435
	/*
4436 4437 4438 4439 4440 4441
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4442
	 */
4443
	if (anon)
4444
		mem_cgroup_uncharge_page(used);
4445
}
4446

4447 4448 4449 4450 4451 4452 4453 4454
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4455
	struct mem_cgroup *memcg = NULL;
4456 4457 4458 4459 4460 4461 4462 4463 4464
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4465 4466
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4467
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4468 4469
		ClearPageCgroupUsed(pc);
	}
4470 4471
	unlock_page_cgroup(pc);

4472 4473 4474 4475 4476 4477
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4478 4479 4480 4481 4482
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4483
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4484 4485
}

4486 4487 4488 4489 4490 4491
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4492 4493 4494 4495 4496
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4516 4517
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4518 4519 4520 4521
	}
}
#endif

4522
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4523
				unsigned long long val)
4524
{
4525
	int retry_count;
4526
	u64 memswlimit, memlimit;
4527
	int ret = 0;
4528 4529
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4530
	int enlarge;
4531 4532 4533 4534 4535 4536 4537 4538 4539

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4540

4541
	enlarge = 0;
4542
	while (retry_count) {
4543 4544 4545 4546
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4547 4548 4549
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4550
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4551 4552 4553 4554 4555 4556
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4557 4558
			break;
		}
4559 4560 4561 4562 4563

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4564
		ret = res_counter_set_limit(&memcg->res, val);
4565 4566 4567 4568 4569 4570
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4571 4572 4573 4574 4575
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4576 4577
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4578 4579
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4580
		if (curusage >= oldusage)
4581 4582 4583
			retry_count--;
		else
			oldusage = curusage;
4584
	}
4585 4586
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4587

4588 4589 4590
	return ret;
}

L
Li Zefan 已提交
4591 4592
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4593
{
4594
	int retry_count;
4595
	u64 memlimit, memswlimit, oldusage, curusage;
4596 4597
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4598
	int enlarge = 0;
4599

4600
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4601
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4602
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4603 4604 4605 4606 4607 4608 4609 4610
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4611
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4612 4613 4614 4615 4616 4617 4618 4619
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4620 4621 4622
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4623
		ret = res_counter_set_limit(&memcg->memsw, val);
4624 4625 4626 4627 4628 4629
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4630 4631 4632 4633 4634
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4635 4636 4637
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4638
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4639
		/* Usage is reduced ? */
4640
		if (curusage >= oldusage)
4641
			retry_count--;
4642 4643
		else
			oldusage = curusage;
4644
	}
4645 4646
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4647 4648 4649
	return ret;
}

4650 4651 4652 4653 4654 4655 4656
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4657
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4658 4659
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4660
 */
4661
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4662
				int node, int zid, enum lru_list lru)
4663
{
4664
	struct lruvec *lruvec;
4665
	unsigned long flags;
4666
	struct list_head *list;
4667 4668
	struct page *busy;
	struct zone *zone;
4669

K
KAMEZAWA Hiroyuki 已提交
4670
	zone = &NODE_DATA(node)->node_zones[zid];
4671 4672
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4673

4674
	busy = NULL;
4675
	do {
4676
		struct page_cgroup *pc;
4677 4678
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4679
		spin_lock_irqsave(&zone->lru_lock, flags);
4680
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4681
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4682
			break;
4683
		}
4684 4685 4686
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4687
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4688
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4689 4690
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4691
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4692

4693
		pc = lookup_page_cgroup(page);
4694

4695
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4696
			/* found lock contention or "pc" is obsolete. */
4697
			busy = page;
4698 4699 4700
			cond_resched();
		} else
			busy = NULL;
4701
	} while (!list_empty(list));
4702 4703 4704
}

/*
4705 4706
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4707
 * This enables deleting this mem_cgroup.
4708 4709
 *
 * Caller is responsible for holding css reference on the memcg.
4710
 */
4711
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4712
{
4713
	int node, zid;
4714
	u64 usage;
4715

4716
	do {
4717 4718
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4719 4720
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4721
		for_each_node_state(node, N_MEMORY) {
4722
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4723 4724
				enum lru_list lru;
				for_each_lru(lru) {
4725
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4726
							node, zid, lru);
4727
				}
4728
			}
4729
		}
4730 4731
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4732
		cond_resched();
4733

4734
		/*
4735 4736 4737 4738 4739
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4740 4741 4742 4743 4744 4745
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4746 4747 4748
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4749 4750
}

4751 4752 4753 4754 4755 4756 4757
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
4758
	struct cgroup_subsys_state *pos;
4759 4760

	/* bounce at first found */
4761
	css_for_each_child(pos, &memcg->css)
4762 4763 4764 4765 4766
		return true;
	return false;
}

/*
4767 4768
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4769 4770 4771 4772 4773 4774 4775 4776 4777
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4788

4789
	/* returns EBUSY if there is a task or if we come here twice. */
4790 4791 4792
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4793 4794
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4795
	/* try to free all pages in this cgroup */
4796
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4797
		int progress;
4798

4799 4800 4801
		if (signal_pending(current))
			return -EINTR;

4802
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4803
						false);
4804
		if (!progress) {
4805
			nr_retries--;
4806
			/* maybe some writeback is necessary */
4807
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4808
		}
4809 4810

	}
K
KAMEZAWA Hiroyuki 已提交
4811
	lru_add_drain();
4812 4813 4814
	mem_cgroup_reparent_charges(memcg);

	return 0;
4815 4816
}

4817 4818
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4819
{
4820
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4821

4822 4823
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4824
	return mem_cgroup_force_empty(memcg);
4825 4826
}

4827 4828
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4829
{
4830
	return mem_cgroup_from_css(css)->use_hierarchy;
4831 4832
}

4833 4834
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4835 4836
{
	int retval = 0;
4837
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4838
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4839

4840
	mutex_lock(&memcg_create_mutex);
4841 4842 4843 4844

	if (memcg->use_hierarchy == val)
		goto out;

4845
	/*
4846
	 * If parent's use_hierarchy is set, we can't make any modifications
4847 4848 4849 4850 4851 4852
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4853
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4854
				(val == 1 || val == 0)) {
4855
		if (!__memcg_has_children(memcg))
4856
			memcg->use_hierarchy = val;
4857 4858 4859 4860
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4861 4862

out:
4863
	mutex_unlock(&memcg_create_mutex);
4864 4865 4866 4867

	return retval;
}

4868

4869
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4870
					       enum mem_cgroup_stat_index idx)
4871
{
K
KAMEZAWA Hiroyuki 已提交
4872
	struct mem_cgroup *iter;
4873
	long val = 0;
4874

4875
	/* Per-cpu values can be negative, use a signed accumulator */
4876
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4877 4878 4879 4880 4881
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4882 4883
}

4884
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4885
{
K
KAMEZAWA Hiroyuki 已提交
4886
	u64 val;
4887

4888
	if (!mem_cgroup_is_root(memcg)) {
4889
		if (!swap)
4890
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4891
		else
4892
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4893 4894
	}

4895 4896 4897 4898
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
4899 4900
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4901

K
KAMEZAWA Hiroyuki 已提交
4902
	if (swap)
4903
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4904 4905 4906 4907

	return val << PAGE_SHIFT;
}

4908 4909 4910
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4911
{
4912
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4913
	char str[64];
4914
	u64 val;
G
Glauber Costa 已提交
4915 4916
	int name, len;
	enum res_type type;
4917 4918 4919

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4920

4921 4922
	switch (type) {
	case _MEM:
4923
		if (name == RES_USAGE)
4924
			val = mem_cgroup_usage(memcg, false);
4925
		else
4926
			val = res_counter_read_u64(&memcg->res, name);
4927 4928
		break;
	case _MEMSWAP:
4929
		if (name == RES_USAGE)
4930
			val = mem_cgroup_usage(memcg, true);
4931
		else
4932
			val = res_counter_read_u64(&memcg->memsw, name);
4933
		break;
4934 4935 4936
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4937 4938 4939
	default:
		BUG();
	}
4940 4941 4942

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4943
}
4944

4945
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
4946 4947 4948
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4949
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4962
	mutex_lock(&memcg_create_mutex);
4963
	mutex_lock(&set_limit_mutex);
4964
	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
4965
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
4966 4967 4968 4969 4970 4971
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4972 4973
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
4974
			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
4975 4976
			goto out;
		}
4977 4978 4979 4980 4981 4982
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
4983 4984 4985 4986
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
4987
	mutex_unlock(&memcg_create_mutex);
4988 4989 4990 4991
#endif
	return ret;
}

4992
#ifdef CONFIG_MEMCG_KMEM
4993
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4994
{
4995
	int ret = 0;
4996 4997
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
4998 4999
		goto out;

5000
	memcg->kmem_account_flags = parent->kmem_account_flags;
5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5011 5012 5013 5014
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5015 5016 5017
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5018 5019 5020 5021
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5022
	memcg_stop_kmem_account();
5023
	ret = memcg_update_cache_sizes(memcg);
5024
	memcg_resume_kmem_account();
5025 5026 5027
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5028
}
5029
#endif /* CONFIG_MEMCG_KMEM */
5030

5031 5032 5033 5034
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5035
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5036
			    const char *buffer)
B
Balbir Singh 已提交
5037
{
5038
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5039 5040
	enum res_type type;
	int name;
5041 5042 5043
	unsigned long long val;
	int ret;

5044 5045
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5046

5047
	switch (name) {
5048
	case RES_LIMIT:
5049 5050 5051 5052
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5053 5054
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5055 5056 5057
		if (ret)
			break;
		if (type == _MEM)
5058
			ret = mem_cgroup_resize_limit(memcg, val);
5059
		else if (type == _MEMSWAP)
5060
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5061
		else if (type == _KMEM)
5062
			ret = memcg_update_kmem_limit(css, val);
5063 5064
		else
			return -EINVAL;
5065
		break;
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5080 5081 5082 5083 5084
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5085 5086
}

5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5097 5098
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5111
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5112
{
5113
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5114 5115
	int name;
	enum res_type type;
5116

5117 5118
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5119

5120
	switch (name) {
5121
	case RES_MAX_USAGE:
5122
		if (type == _MEM)
5123
			res_counter_reset_max(&memcg->res);
5124
		else if (type == _MEMSWAP)
5125
			res_counter_reset_max(&memcg->memsw);
5126 5127 5128 5129
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5130 5131
		break;
	case RES_FAILCNT:
5132
		if (type == _MEM)
5133
			res_counter_reset_failcnt(&memcg->res);
5134
		else if (type == _MEMSWAP)
5135
			res_counter_reset_failcnt(&memcg->memsw);
5136 5137 5138 5139
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5140 5141
		break;
	}
5142

5143
	return 0;
5144 5145
}

5146
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5147 5148
					struct cftype *cft)
{
5149
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5150 5151
}

5152
#ifdef CONFIG_MMU
5153
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5154 5155
					struct cftype *cft, u64 val)
{
5156
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5157 5158 5159

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5160

5161
	/*
5162 5163 5164 5165
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5166
	 */
5167
	memcg->move_charge_at_immigrate = val;
5168 5169
	return 0;
}
5170
#else
5171
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5172 5173 5174 5175 5176
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5177

5178
#ifdef CONFIG_NUMA
5179 5180
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5181 5182 5183 5184
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5185
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5186

5187
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5188
	seq_printf(m, "total=%lu", total_nr);
5189
	for_each_node_state(nid, N_MEMORY) {
5190
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5191 5192 5193 5194
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5195
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5196
	seq_printf(m, "file=%lu", file_nr);
5197
	for_each_node_state(nid, N_MEMORY) {
5198
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5199
				LRU_ALL_FILE);
5200 5201 5202 5203
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5204
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5205
	seq_printf(m, "anon=%lu", anon_nr);
5206
	for_each_node_state(nid, N_MEMORY) {
5207
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5208
				LRU_ALL_ANON);
5209 5210 5211 5212
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5213
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5214
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5215
	for_each_node_state(nid, N_MEMORY) {
5216
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5217
				BIT(LRU_UNEVICTABLE));
5218 5219 5220 5221 5222 5223 5224
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5225 5226 5227 5228 5229
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5230
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5231
				 struct seq_file *m)
5232
{
5233
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5234 5235
	struct mem_cgroup *mi;
	unsigned int i;
5236

5237
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5238
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5239
			continue;
5240 5241
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5242
	}
L
Lee Schermerhorn 已提交
5243

5244 5245 5246 5247 5248 5249 5250 5251
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5252
	/* Hierarchical information */
5253 5254
	{
		unsigned long long limit, memsw_limit;
5255
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5256
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5257
		if (do_swap_account)
5258 5259
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5260
	}
K
KOSAKI Motohiro 已提交
5261

5262 5263 5264
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5265
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5266
			continue;
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5287
	}
K
KAMEZAWA Hiroyuki 已提交
5288

K
KOSAKI Motohiro 已提交
5289 5290 5291 5292
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5293
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5294 5295 5296 5297 5298
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5299
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5300
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5301

5302 5303 5304 5305
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5306
			}
5307 5308 5309 5310
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5311 5312 5313
	}
#endif

5314 5315 5316
	return 0;
}

5317 5318
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5319
{
5320
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5321

5322
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5323 5324
}

5325 5326
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5327
{
5328
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5329
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5330

T
Tejun Heo 已提交
5331
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5332 5333
		return -EINVAL;

5334
	mutex_lock(&memcg_create_mutex);
5335

K
KOSAKI Motohiro 已提交
5336
	/* If under hierarchy, only empty-root can set this value */
5337
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5338
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5339
		return -EINVAL;
5340
	}
K
KOSAKI Motohiro 已提交
5341 5342 5343

	memcg->swappiness = val;

5344
	mutex_unlock(&memcg_create_mutex);
5345

K
KOSAKI Motohiro 已提交
5346 5347 5348
	return 0;
}

5349 5350 5351 5352 5353 5354 5355 5356
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5357
		t = rcu_dereference(memcg->thresholds.primary);
5358
	else
5359
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5360 5361 5362 5363 5364 5365 5366

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5367
	 * current_threshold points to threshold just below or equal to usage.
5368 5369 5370
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5371
	i = t->current_threshold;
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5395
	t->current_threshold = i - 1;
5396 5397 5398 5399 5400 5401
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5402 5403 5404 5405 5406 5407 5408
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5409 5410 5411 5412 5413 5414 5415
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5416 5417 5418 5419 5420 5421 5422
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5423 5424
}

5425
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5426 5427 5428
{
	struct mem_cgroup_eventfd_list *ev;

5429
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5430 5431 5432 5433
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5434
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5435
{
K
KAMEZAWA Hiroyuki 已提交
5436 5437
	struct mem_cgroup *iter;

5438
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5439
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5440 5441
}

5442
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5443
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5444
{
5445
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5446 5447
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5448
	enum res_type type = MEMFILE_TYPE(cft->private);
5449
	u64 threshold, usage;
5450
	int i, size, ret;
5451 5452 5453 5454 5455 5456

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5457

5458
	if (type == _MEM)
5459
		thresholds = &memcg->thresholds;
5460
	else if (type == _MEMSWAP)
5461
		thresholds = &memcg->memsw_thresholds;
5462 5463 5464 5465 5466 5467
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5468
	if (thresholds->primary)
5469 5470
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5471
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5472 5473

	/* Allocate memory for new array of thresholds */
5474
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5475
			GFP_KERNEL);
5476
	if (!new) {
5477 5478 5479
		ret = -ENOMEM;
		goto unlock;
	}
5480
	new->size = size;
5481 5482

	/* Copy thresholds (if any) to new array */
5483 5484
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5485
				sizeof(struct mem_cgroup_threshold));
5486 5487
	}

5488
	/* Add new threshold */
5489 5490
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5491 5492

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5493
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5494 5495 5496
			compare_thresholds, NULL);

	/* Find current threshold */
5497
	new->current_threshold = -1;
5498
	for (i = 0; i < size; i++) {
5499
		if (new->entries[i].threshold <= usage) {
5500
			/*
5501 5502
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5503 5504
			 * it here.
			 */
5505
			++new->current_threshold;
5506 5507
		} else
			break;
5508 5509
	}

5510 5511 5512 5513 5514
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5515

5516
	/* To be sure that nobody uses thresholds */
5517 5518 5519 5520 5521 5522 5523 5524
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5525
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5526
	struct cftype *cft, struct eventfd_ctx *eventfd)
5527
{
5528
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5529 5530
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5531
	enum res_type type = MEMFILE_TYPE(cft->private);
5532
	u64 usage;
5533
	int i, j, size;
5534 5535 5536

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5537
		thresholds = &memcg->thresholds;
5538
	else if (type == _MEMSWAP)
5539
		thresholds = &memcg->memsw_thresholds;
5540 5541 5542
	else
		BUG();

5543 5544 5545
	if (!thresholds->primary)
		goto unlock;

5546 5547 5548 5549 5550 5551
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5552 5553 5554
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5555 5556 5557
			size++;
	}

5558
	new = thresholds->spare;
5559

5560 5561
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5562 5563
		kfree(new);
		new = NULL;
5564
		goto swap_buffers;
5565 5566
	}

5567
	new->size = size;
5568 5569

	/* Copy thresholds and find current threshold */
5570 5571 5572
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5573 5574
			continue;

5575
		new->entries[j] = thresholds->primary->entries[i];
5576
		if (new->entries[j].threshold <= usage) {
5577
			/*
5578
			 * new->current_threshold will not be used
5579 5580 5581
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5582
			++new->current_threshold;
5583 5584 5585 5586
		}
		j++;
	}

5587
swap_buffers:
5588 5589
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5590 5591 5592 5593 5594 5595
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5596
	rcu_assign_pointer(thresholds->primary, new);
5597

5598
	/* To be sure that nobody uses thresholds */
5599
	synchronize_rcu();
5600
unlock:
5601 5602
	mutex_unlock(&memcg->thresholds_lock);
}
5603

5604
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5605 5606
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5607
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5608
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5609
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5610 5611 5612 5613 5614 5615

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5616
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5617 5618 5619 5620 5621

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5622
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5623
		eventfd_signal(eventfd, 1);
5624
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5625 5626 5627 5628

	return 0;
}

5629
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5630 5631
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5632
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5633
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5634
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5635 5636 5637

	BUG_ON(type != _OOM_TYPE);

5638
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5639

5640
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5641 5642 5643 5644 5645 5646
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5647
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5648 5649
}

5650
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5651 5652
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5653
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5654

5655
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5656

5657
	if (atomic_read(&memcg->under_oom))
5658 5659 5660 5661 5662 5663
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5664
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5665 5666
	struct cftype *cft, u64 val)
{
5667
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5668
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5669 5670

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5671
	if (!parent || !((val == 0) || (val == 1)))
5672 5673
		return -EINVAL;

5674
	mutex_lock(&memcg_create_mutex);
5675
	/* oom-kill-disable is a flag for subhierarchy. */
5676
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5677
		mutex_unlock(&memcg_create_mutex);
5678 5679
		return -EINVAL;
	}
5680
	memcg->oom_kill_disable = val;
5681
	if (!val)
5682
		memcg_oom_recover(memcg);
5683
	mutex_unlock(&memcg_create_mutex);
5684 5685 5686
	return 0;
}

A
Andrew Morton 已提交
5687
#ifdef CONFIG_MEMCG_KMEM
5688
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5689
{
5690 5691
	int ret;

5692
	memcg->kmemcg_id = -1;
5693 5694 5695
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5696

5697
	return mem_cgroup_sockets_init(memcg, ss);
5698
}
5699

5700
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5701
{
5702
	mem_cgroup_sockets_destroy(memcg);
5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5729 5730 5731 5732 5733 5734 5735

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5736
		css_put(&memcg->css);
G
Glauber Costa 已提交
5737
}
5738
#else
5739
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5740 5741 5742
{
	return 0;
}
G
Glauber Costa 已提交
5743

5744 5745 5746 5747 5748
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5749 5750
{
}
5751 5752
#endif

B
Balbir Singh 已提交
5753 5754
static struct cftype mem_cgroup_files[] = {
	{
5755
		.name = "usage_in_bytes",
5756
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5757
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5758 5759
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5760
	},
5761 5762
	{
		.name = "max_usage_in_bytes",
5763
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5764
		.trigger = mem_cgroup_reset,
5765
		.read = mem_cgroup_read,
5766
	},
B
Balbir Singh 已提交
5767
	{
5768
		.name = "limit_in_bytes",
5769
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5770
		.write_string = mem_cgroup_write,
5771
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5772
	},
5773 5774 5775 5776
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5777
		.read = mem_cgroup_read,
5778
	},
B
Balbir Singh 已提交
5779 5780
	{
		.name = "failcnt",
5781
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5782
		.trigger = mem_cgroup_reset,
5783
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5784
	},
5785 5786
	{
		.name = "stat",
5787
		.read_seq_string = memcg_stat_show,
5788
	},
5789 5790 5791 5792
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5793 5794
	{
		.name = "use_hierarchy",
5795
		.flags = CFTYPE_INSANE,
5796 5797 5798
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5799 5800 5801 5802 5803
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5804 5805 5806 5807 5808
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5809 5810
	{
		.name = "oom_control",
5811 5812
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5813 5814 5815 5816
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5817 5818 5819 5820 5821
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
5822 5823 5824
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5825
		.read_seq_string = memcg_numa_stat_show,
5826 5827
	},
#endif
5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5852 5853 5854 5855 5856 5857
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5858
#endif
5859
	{ },	/* terminate */
5860
};
5861

5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
5892
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5893 5894
{
	struct mem_cgroup_per_node *pn;
5895
	struct mem_cgroup_per_zone *mz;
5896
	int zone, tmp = node;
5897 5898 5899 5900 5901 5902 5903 5904
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5905 5906
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5907
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5908 5909
	if (!pn)
		return 1;
5910 5911 5912

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5913
		lruvec_init(&mz->lruvec);
5914
		mz->memcg = memcg;
5915
	}
5916
	memcg->nodeinfo[node] = pn;
5917 5918 5919
	return 0;
}

5920
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5921
{
5922
	kfree(memcg->nodeinfo[node]);
5923 5924
}

5925 5926
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5927
	struct mem_cgroup *memcg;
5928
	size_t size = memcg_size();
5929

5930
	/* Can be very big if nr_node_ids is very big */
5931
	if (size < PAGE_SIZE)
5932
		memcg = kzalloc(size, GFP_KERNEL);
5933
	else
5934
		memcg = vzalloc(size);
5935

5936
	if (!memcg)
5937 5938
		return NULL;

5939 5940
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5941
		goto out_free;
5942 5943
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5944 5945 5946

out_free:
	if (size < PAGE_SIZE)
5947
		kfree(memcg);
5948
	else
5949
		vfree(memcg);
5950
	return NULL;
5951 5952
}

5953
/*
5954 5955 5956 5957 5958 5959 5960 5961
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5962
 */
5963 5964

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5965
{
5966
	int node;
5967
	size_t size = memcg_size();
5968

5969 5970 5971 5972 5973 5974 5975
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5987
	disarm_static_keys(memcg);
5988 5989 5990 5991
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
5992
}
5993

5994 5995 5996
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5997
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5998
{
5999
	if (!memcg->res.parent)
6000
		return NULL;
6001
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6002
}
G
Glauber Costa 已提交
6003
EXPORT_SYMBOL(parent_mem_cgroup);
6004

L
Li Zefan 已提交
6005
static struct cgroup_subsys_state * __ref
6006
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6007
{
6008
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6009
	long error = -ENOMEM;
6010
	int node;
B
Balbir Singh 已提交
6011

6012 6013
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6014
		return ERR_PTR(error);
6015

B
Bob Liu 已提交
6016
	for_each_node(node)
6017
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6018
			goto free_out;
6019

6020
	/* root ? */
6021
	if (parent_css == NULL) {
6022
		root_mem_cgroup = memcg;
6023 6024 6025
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6026
	}
6027

6028 6029 6030 6031 6032
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6033
	vmpressure_init(&memcg->vmpressure);
6034
	spin_lock_init(&memcg->soft_lock);
6035 6036 6037 6038 6039 6040 6041 6042 6043

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6044
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6045
{
6046 6047
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6048 6049
	int error = 0;

T
Tejun Heo 已提交
6050
	if (!parent)
6051 6052
		return 0;

6053
	mutex_lock(&memcg_create_mutex);
6054 6055 6056 6057 6058 6059

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6060 6061
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6062
		res_counter_init(&memcg->kmem, &parent->kmem);
6063

6064
		/*
6065 6066
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6067
		 */
6068
	} else {
6069 6070
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6071
		res_counter_init(&memcg->kmem, NULL);
6072 6073 6074 6075 6076
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6077
		if (parent != root_mem_cgroup)
6078
			mem_cgroup_subsys.broken_hierarchy = true;
6079
	}
6080 6081

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6082
	mutex_unlock(&memcg_create_mutex);
6083
	return error;
B
Balbir Singh 已提交
6084 6085
}

M
Michal Hocko 已提交
6086 6087 6088 6089 6090 6091 6092 6093
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6094
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6095 6096 6097 6098 6099 6100

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6101
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6102 6103
}

6104
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6105
{
6106
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6107

6108 6109
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6110
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6111
	mem_cgroup_reparent_charges(memcg);
6112 6113 6114
	if (memcg->soft_contributed) {
		while ((memcg = parent_mem_cgroup(memcg)))
			atomic_dec(&memcg->children_in_excess);
6115 6116 6117

		if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
			atomic_dec(&root_mem_cgroup->children_in_excess);
6118
	}
G
Glauber Costa 已提交
6119
	mem_cgroup_destroy_all_caches(memcg);
6120
	vmpressure_cleanup(&memcg->vmpressure);
6121 6122
}

6123
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6124
{
6125
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6126

6127
	memcg_destroy_kmem(memcg);
6128
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6129 6130
}

6131
#ifdef CONFIG_MMU
6132
/* Handlers for move charge at task migration. */
6133 6134
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6135
{
6136 6137
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6138
	struct mem_cgroup *memcg = mc.to;
6139

6140
	if (mem_cgroup_is_root(memcg)) {
6141 6142 6143 6144 6145 6146 6147 6148
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6149
		 * "memcg" cannot be under rmdir() because we've already checked
6150 6151 6152 6153
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6154
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6155
			goto one_by_one;
6156
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6157
						PAGE_SIZE * count, &dummy)) {
6158
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6175 6176
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6177
		if (ret)
6178
			/* mem_cgroup_clear_mc() will do uncharge later */
6179
			return ret;
6180 6181
		mc.precharge++;
	}
6182 6183 6184 6185
	return ret;
}

/**
6186
 * get_mctgt_type - get target type of moving charge
6187 6188 6189
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6190
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6191 6192 6193 6194 6195 6196
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6197 6198 6199
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6200 6201 6202 6203 6204
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6205
	swp_entry_t	ent;
6206 6207 6208
};

enum mc_target_type {
6209
	MC_TARGET_NONE = 0,
6210
	MC_TARGET_PAGE,
6211
	MC_TARGET_SWAP,
6212 6213
};

D
Daisuke Nishimura 已提交
6214 6215
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6216
{
D
Daisuke Nishimura 已提交
6217
	struct page *page = vm_normal_page(vma, addr, ptent);
6218

D
Daisuke Nishimura 已提交
6219 6220 6221 6222
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6223
		if (!move_anon())
D
Daisuke Nishimura 已提交
6224
			return NULL;
6225 6226
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6227 6228 6229 6230 6231 6232 6233
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6234
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6235 6236 6237 6238 6239 6240 6241 6242
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6243 6244 6245 6246
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6247
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6248 6249 6250 6251 6252
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6253 6254 6255 6256 6257 6258 6259
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6260

6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6280 6281 6282 6283 6284 6285
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6286
		if (do_swap_account)
6287
			*entry = swap;
6288
		page = find_get_page(swap_address_space(swap), swap.val);
6289
	}
6290
#endif
6291 6292 6293
	return page;
}

6294
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6295 6296 6297 6298
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6299
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6300 6301 6302 6303 6304 6305
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6306 6307
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6308 6309

	if (!page && !ent.val)
6310
		return ret;
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6326 6327
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6328
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6329 6330 6331
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6332 6333 6334 6335
	}
	return ret;
}

6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6371 6372 6373 6374 6375 6376 6377 6378
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6379 6380 6381 6382
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6383
		return 0;
6384
	}
6385

6386 6387
	if (pmd_trans_unstable(pmd))
		return 0;
6388 6389
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6390
		if (get_mctgt_type(vma, addr, *pte, NULL))
6391 6392 6393 6394
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6395 6396 6397
	return 0;
}

6398 6399 6400 6401 6402
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6403
	down_read(&mm->mmap_sem);
6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6415
	up_read(&mm->mmap_sem);
6416 6417 6418 6419 6420 6421 6422 6423 6424

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6425 6426 6427 6428 6429
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6430 6431
}

6432 6433
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6434
{
6435 6436
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6437
	int i;
6438

6439
	/* we must uncharge all the leftover precharges from mc.to */
6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6451
	}
6452 6453 6454 6455 6456 6457
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6458 6459 6460

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6461 6462 6463 6464 6465 6466 6467 6468 6469

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6470
		/* we've already done css_get(mc.to) */
6471 6472
		mc.moved_swap = 0;
	}
6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6488
	spin_lock(&mc.lock);
6489 6490
	mc.from = NULL;
	mc.to = NULL;
6491
	spin_unlock(&mc.lock);
6492
	mem_cgroup_end_move(from);
6493 6494
}

6495
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6496
				 struct cgroup_taskset *tset)
6497
{
6498
	struct task_struct *p = cgroup_taskset_first(tset);
6499
	int ret = 0;
6500
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6501
	unsigned long move_charge_at_immigrate;
6502

6503 6504 6505 6506 6507 6508 6509
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6510 6511 6512
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6513
		VM_BUG_ON(from == memcg);
6514 6515 6516 6517 6518

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6519 6520 6521 6522
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6523
			VM_BUG_ON(mc.moved_charge);
6524
			VM_BUG_ON(mc.moved_swap);
6525
			mem_cgroup_start_move(from);
6526
			spin_lock(&mc.lock);
6527
			mc.from = from;
6528
			mc.to = memcg;
6529
			mc.immigrate_flags = move_charge_at_immigrate;
6530
			spin_unlock(&mc.lock);
6531
			/* We set mc.moving_task later */
6532 6533 6534 6535

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6536 6537
		}
		mmput(mm);
6538 6539 6540 6541
	}
	return ret;
}

6542
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6543
				     struct cgroup_taskset *tset)
6544
{
6545
	mem_cgroup_clear_mc();
6546 6547
}

6548 6549 6550
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6551
{
6552 6553 6554 6555
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6556 6557 6558 6559
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6560

6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6572
		if (mc.precharge < HPAGE_PMD_NR) {
6573 6574 6575 6576 6577 6578 6579 6580 6581
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6582
							pc, mc.from, mc.to)) {
6583 6584 6585 6586 6587 6588 6589 6590
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6591
		return 0;
6592 6593
	}

6594 6595
	if (pmd_trans_unstable(pmd))
		return 0;
6596 6597 6598 6599
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6600
		swp_entry_t ent;
6601 6602 6603 6604

		if (!mc.precharge)
			break;

6605
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6606 6607 6608 6609 6610
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6611
			if (!mem_cgroup_move_account(page, 1, pc,
6612
						     mc.from, mc.to)) {
6613
				mc.precharge--;
6614 6615
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6616 6617
			}
			putback_lru_page(page);
6618
put:			/* get_mctgt_type() gets the page */
6619 6620
			put_page(page);
			break;
6621 6622
		case MC_TARGET_SWAP:
			ent = target.ent;
6623
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6624
				mc.precharge--;
6625 6626 6627
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6628
			break;
6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6643
		ret = mem_cgroup_do_precharge(1);
6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6687
	up_read(&mm->mmap_sem);
6688 6689
}

6690
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6691
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6692
{
6693
	struct task_struct *p = cgroup_taskset_first(tset);
6694
	struct mm_struct *mm = get_task_mm(p);
6695 6696

	if (mm) {
6697 6698
		if (mc.to)
			mem_cgroup_move_charge(mm);
6699 6700
		mmput(mm);
	}
6701 6702
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6703
}
6704
#else	/* !CONFIG_MMU */
6705
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6706
				 struct cgroup_taskset *tset)
6707 6708 6709
{
	return 0;
}
6710
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6711
				     struct cgroup_taskset *tset)
6712 6713
{
}
6714
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6715
				 struct cgroup_taskset *tset)
6716 6717 6718
{
}
#endif
B
Balbir Singh 已提交
6719

6720 6721 6722 6723
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6724
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6725 6726 6727 6728 6729 6730
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6731 6732
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6733 6734
}

B
Balbir Singh 已提交
6735 6736 6737
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6738
	.css_alloc = mem_cgroup_css_alloc,
6739
	.css_online = mem_cgroup_css_online,
6740 6741
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6742 6743
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6744
	.attach = mem_cgroup_move_task,
6745
	.bind = mem_cgroup_bind,
6746
	.base_cftypes = mem_cgroup_files,
6747
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6748
	.use_id = 1,
B
Balbir Singh 已提交
6749
};
6750

A
Andrew Morton 已提交
6751
#ifdef CONFIG_MEMCG_SWAP
6752 6753
static int __init enable_swap_account(char *s)
{
6754
	if (!strcmp(s, "1"))
6755
		really_do_swap_account = 1;
6756
	else if (!strcmp(s, "0"))
6757 6758 6759
		really_do_swap_account = 0;
	return 1;
}
6760
__setup("swapaccount=", enable_swap_account);
6761

6762 6763
static void __init memsw_file_init(void)
{
6764 6765 6766 6767 6768 6769 6770 6771 6772
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6773
}
6774

6775
#else
6776
static void __init enable_swap_cgroup(void)
6777 6778
{
}
6779
#endif
6780 6781

/*
6782 6783 6784 6785 6786 6787
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6788 6789 6790 6791
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6792
	enable_swap_cgroup();
6793
	memcg_stock_init();
6794 6795 6796
	return 0;
}
subsys_initcall(mem_cgroup_init);