memcontrol.c 79.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
K
KAMEZAWA Hiroyuki 已提交
24
#include <linux/pagemap.h>
25
#include <linux/smp.h>
26
#include <linux/page-flags.h>
27
#include <linux/backing-dev.h>
28 29
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
30
#include <linux/limits.h>
31
#include <linux/mutex.h>
32
#include <linux/rbtree.h>
33
#include <linux/slab.h>
34 35 36
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
37
#include <linux/seq_file.h>
38
#include <linux/vmalloc.h>
39
#include <linux/mm_inline.h>
40
#include <linux/page_cgroup.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include "internal.h"
B
Balbir Singh 已提交
42

43 44
#include <asm/uaccess.h>

45 46
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
47
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
48

49
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
50
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
51 52 53 54 55 56
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

57
static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
58
#define SOFTLIMIT_EVENTS_THRESH (1000)
59

60 61 62 63 64 65 66 67
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
68 69
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
	MEM_CGROUP_STAT_MAPPED_FILE,  /* # of pages charged as file rss */
70 71
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
72
	MEM_CGROUP_STAT_EVENTS,	/* sum of pagein + pageout for internal use */
73
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
74 75 76 77 78 79 80 81 82

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
83
	struct mem_cgroup_stat_cpu cpustat[0];
84 85
};

86 87 88 89 90 91 92 93 94 95 96 97 98 99
static inline void
__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	stat->count[idx] = 0;
}

static inline s64
__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	return stat->count[idx];
}

100 101 102
/*
 * For accounting under irq disable, no need for increment preempt count.
 */
103
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
104 105
		enum mem_cgroup_stat_index idx, int val)
{
106
	stat->count[idx] += val;
107 108 109 110 111 112 113 114 115 116 117 118
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
119 120 121 122 123 124 125 126 127
static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
{
	s64 ret;

	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
	return ret;
}

128 129 130 131
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
132 133 134
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
135 136
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
137 138

	struct zone_reclaim_stat reclaim_stat;
139 140 141 142
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
143 144
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
145 146 147 148 149 150 151 152 153 154 155 156
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

B
Balbir Singh 已提交
177 178 179 180 181 182 183
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
184 185 186
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
187 188 189 190 191 192 193
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
194 195 196 197
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
198 199 200 201
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
202
	struct mem_cgroup_lru_info info;
203

K
KOSAKI Motohiro 已提交
204 205 206 207 208
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

209
	int	prev_priority;	/* for recording reclaim priority */
210 211 212

	/*
	 * While reclaiming in a hiearchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
213
	 * reclaimed from.
214
	 */
K
KAMEZAWA Hiroyuki 已提交
215
	int last_scanned_child;
216 217 218 219
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
220
	unsigned long	last_oom_jiffies;
221
	atomic_t	refcnt;
222

K
KOSAKI Motohiro 已提交
223 224
	unsigned int	swappiness;

225 226 227
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

228
	/*
229
	 * statistics. This must be placed at the end of memcg.
230 231
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
232 233
};

234 235 236 237 238 239 240
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

241 242 243
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
244
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
245
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
246
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
247
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
248 249 250
	NR_CHARGE_TYPE,
};

251 252 253 254
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
255 256
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
257

258 259 260 261 262 263 264
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

265 266 267 268 269 270 271
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
272 273
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
274

275 276
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
277
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
278

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
314
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = res_counter_soft_limit_excess(&mem->res);
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_insert_exceeded(mem, mz, mctz);
362 363 364 365 366 367 368 369 370
	spin_unlock(&mctz->lock);
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
371
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
	spin_unlock(&mctz->lock);
}

static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
{
	bool ret = false;
	int cpu;
	s64 val;
	struct mem_cgroup_stat_cpu *cpustat;

	cpu = get_cpu();
	cpustat = &mem->stat.cpustat[cpu];
	val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
	if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
		__mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
		ret = true;
	}
	put_cpu();
	return ret;
}

static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
	unsigned long long prev_usage_in_excess, new_usage_in_excess;
	bool updated_tree = false;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	mz = mem_cgroup_zoneinfo(mem, page_to_nid(page), page_zonenum(page));
	mctz = soft_limit_tree_from_page(page);

	/*
	 * We do updates in lazy mode, mem's are removed
	 * lazily from the per-zone, per-node rb tree
	 */
	prev_usage_in_excess = mz->usage_in_excess;

	new_usage_in_excess = res_counter_soft_limit_excess(&mem->res);
	if (prev_usage_in_excess) {
		mem_cgroup_remove_exceeded(mem, mz, mctz);
		updated_tree = true;
	}
	if (!new_usage_in_excess)
		goto done;
	mem_cgroup_insert_exceeded(mem, mz, mctz);

done:
	if (updated_tree) {
		spin_lock(&mctz->lock);
		mz->usage_in_excess = new_usage_in_excess;
		spin_unlock(&mctz->lock);
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

441 442 443 444 445 446 447 448 449
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
450
	struct mem_cgroup_per_zone *mz;
451 452

retry:
453
	mz = NULL;
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

483 484 485 486 487 488 489 490 491 492 493 494 495
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu = get_cpu();

	cpustat = &stat->cpustat[cpu];
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
	put_cpu();
}

496 497 498
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
499
{
500
	int val = (charge) ? 1 : -1;
501
	struct mem_cgroup_stat *stat = &mem->stat;
502
	struct mem_cgroup_stat_cpu *cpustat;
K
KAMEZAWA Hiroyuki 已提交
503
	int cpu = get_cpu();
504

K
KAMEZAWA Hiroyuki 已提交
505
	cpustat = &stat->cpustat[cpu];
506
	if (PageCgroupCache(pc))
507
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
508
	else
509
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
510 511

	if (charge)
512
		__mem_cgroup_stat_add_safe(cpustat,
513 514
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
	else
515
		__mem_cgroup_stat_add_safe(cpustat,
516
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
517
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
K
KAMEZAWA Hiroyuki 已提交
518
	put_cpu();
519 520
}

K
KAMEZAWA Hiroyuki 已提交
521
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
522
					enum lru_list idx)
523 524 525 526 527 528 529 530 531 532 533
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
534 535
}

536
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
537 538 539 540 541 542
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

543
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
544
{
545 546 547 548 549 550 551 552
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

553 554 555 556
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

557 558 559
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
560 561 562

	if (!mm)
		return NULL;
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

613 614 615 616 617
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
631

K
KAMEZAWA Hiroyuki 已提交
632 633 634 635
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
636

637
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
638 639 640
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
641
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
642
		return;
643
	VM_BUG_ON(!pc->mem_cgroup);
644 645 646 647
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
648
	mz = page_cgroup_zoneinfo(pc);
649
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
650 651 652
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
653 654
	list_del_init(&pc->lru);
	return;
655 656
}

K
KAMEZAWA Hiroyuki 已提交
657
void mem_cgroup_del_lru(struct page *page)
658
{
K
KAMEZAWA Hiroyuki 已提交
659 660
	mem_cgroup_del_lru_list(page, page_lru(page));
}
661

K
KAMEZAWA Hiroyuki 已提交
662 663 664 665
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
666

667
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
668
		return;
669

K
KAMEZAWA Hiroyuki 已提交
670
	pc = lookup_page_cgroup(page);
671 672 673 674
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
675
	smp_rmb();
676 677
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
678 679 680
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
681 682
}

K
KAMEZAWA Hiroyuki 已提交
683
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
684
{
K
KAMEZAWA Hiroyuki 已提交
685 686
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
687

688
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
689 690
		return;
	pc = lookup_page_cgroup(page);
691
	VM_BUG_ON(PageCgroupAcctLRU(pc));
692 693 694 695
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
696 697
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
698
		return;
699

K
KAMEZAWA Hiroyuki 已提交
700
	mz = page_cgroup_zoneinfo(pc);
701
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
702 703 704
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
705 706
	list_add(&pc->lru, &mz->lists[lru]);
}
707

K
KAMEZAWA Hiroyuki 已提交
708
/*
709 710 711 712 713
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
714
 */
715
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
716
{
717 718 719 720 721 722 723 724 725 726 727 728
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
729 730
}

731 732 733 734 735 736 737 738
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
739
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
740 741 742 743 744
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
745 746 747
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
748
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
749 750 751
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
752 753
}

754 755 756
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
757
	struct mem_cgroup *curr = NULL;
758 759

	task_lock(task);
760 761 762
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
763
	task_unlock(task);
764 765 766 767 768 769 770
	if (!curr)
		return 0;
	if (curr->use_hierarchy)
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
771 772 773
	return ret;
}

774 775 776 777 778
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
779 780 781 782 783 784 785
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
786 787 788 789
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
790
	spin_lock(&mem->reclaim_param_lock);
791 792
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
793
	spin_unlock(&mem->reclaim_param_lock);
794 795 796 797
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
798
	spin_lock(&mem->reclaim_param_lock);
799
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
800
	spin_unlock(&mem->reclaim_param_lock);
801 802
}

803
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
804 805 806
{
	unsigned long active;
	unsigned long inactive;
807 808
	unsigned long gb;
	unsigned long inactive_ratio;
809

K
KAMEZAWA Hiroyuki 已提交
810 811
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
812

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
840 841 842 843 844
		return 1;

	return 0;
}

845 846 847 848 849 850 851 852 853 854 855
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

856 857 858 859 860 861 862 863 864 865 866
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
887 888 889 890 891 892 893 894
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
895 896 897 898 899 900 901
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

902 903 904 905 906
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
907
					int active, int file)
908 909 910 911 912 913
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
914
	struct page_cgroup *pc, *tmp;
915 916 917
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
918
	int lru = LRU_FILE * file + active;
919
	int ret;
920

921
	BUG_ON(!mem_cont);
922
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
923
	src = &mz->lists[lru];
924

925 926
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
927
		if (scan >= nr_to_scan)
928
			break;
K
KAMEZAWA Hiroyuki 已提交
929 930

		page = pc->page;
931 932
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
933
		if (unlikely(!PageLRU(page)))
934 935
			continue;

H
Hugh Dickins 已提交
936
		scan++;
937 938 939
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
940
			list_move(&page->lru, dst);
941
			mem_cgroup_del_lru(page);
942
			nr_taken++;
943 944 945 946 947 948 949
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
950 951 952 953 954 955 956
		}
	}

	*scanned = scan;
	return nr_taken;
}

957 958 959
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

960 961 962 963 964 965 966 967 968 969 970 971
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

988 989 990 991 992 993
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

/**
 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

	if (!memcg)
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

1073
/*
K
KAMEZAWA Hiroyuki 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1116 1117
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1118 1119 1120
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1121 1122
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1123 1124
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1125
						struct zone *zone,
1126 1127
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1128
{
K
KAMEZAWA Hiroyuki 已提交
1129 1130 1131
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1132 1133
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1134 1135
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1136

1137 1138 1139 1140
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1141
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1142
		victim = mem_cgroup_select_victim(root_mem);
1143
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1144
			loop++;
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
K
KAMEZAWA Hiroyuki 已提交
1168 1169 1170
		if (!mem_cgroup_local_usage(&victim->stat)) {
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1171 1172
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1173
		/* we use swappiness of local cgroup */
1174 1175 1176 1177 1178 1179 1180
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1181
		css_put(&victim->css);
1182 1183 1184 1185 1186 1187 1188
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1189
		total += ret;
1190 1191 1192 1193
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1194
			return 1 + total;
1195
	}
K
KAMEZAWA Hiroyuki 已提交
1196
	return total;
1197 1198
}

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
{
	mem->last_oom_jiffies = jiffies;
	return 0;
}

static void record_last_oom(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
}

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
{
	struct mem_cgroup *mem;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu;
	struct page_cgroup *pc;

	if (!page_is_file_cache(page))
		return;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
	if (!mem)
		goto done;

	if (!PageCgroupUsed(pc))
		goto done;

	/*
	 * Preemption is already disabled, we don't need get_cpu()
	 */
	cpu = smp_processor_id();
	stat = &mem->stat;
	cpustat = &stat->cpustat[cpu];

	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
done:
	unlock_page_cgroup(pc);
}
1265

1266 1267 1268
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1269
 */
1270
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1271
			gfp_t gfp_mask, struct mem_cgroup **memcg,
1272
			bool oom, struct page *page)
1273
{
1274
	struct mem_cgroup *mem, *mem_over_limit, *mem_over_soft_limit;
1275
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1276
	struct res_counter *fail_res, *soft_fail_res = NULL;
1277 1278 1279 1280 1281 1282 1283

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

1284
	/*
1285 1286
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1287 1288 1289
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1290 1291 1292
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
1293
		*memcg = mem;
1294
	} else {
1295
		css_get(&mem->css);
1296
	}
1297 1298 1299
	if (unlikely(!mem))
		return 0;

1300
	VM_BUG_ON(css_is_removed(&mem->css));
1301

1302
	while (1) {
1303
		int ret = 0;
1304
		unsigned long flags = 0;
1305

1306 1307
		if (mem_cgroup_is_root(mem))
			goto done;
1308 1309
		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res,
						&soft_fail_res);
1310 1311 1312
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1313
			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
1314
							&fail_res, NULL);
1315 1316 1317
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
1318
			res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
1319
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1320 1321 1322 1323 1324 1325 1326
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1327
		if (!(gfp_mask & __GFP_WAIT))
1328
			goto nomem;
1329

1330 1331
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
						gfp_mask, flags);
1332 1333
		if (ret)
			continue;
1334 1335

		/*
1336 1337 1338 1339 1340
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1341
		 *
1342
		 */
1343 1344
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1345 1346

		if (!nr_retries--) {
1347
			if (oom) {
1348
				mutex_lock(&memcg_tasklist);
1349
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1350
				mutex_unlock(&memcg_tasklist);
1351
				record_last_oom(mem_over_limit);
1352
			}
1353
			goto nomem;
1354
		}
1355
	}
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	/*
	 * Insert just the ancestor, we should trickle down to the correct
	 * cgroup for reclaim, since the other nodes will be below their
	 * soft limit
	 */
	if (soft_fail_res) {
		mem_over_soft_limit =
			mem_cgroup_from_res_counter(soft_fail_res, res);
		if (mem_cgroup_soft_limit_check(mem_over_soft_limit))
			mem_cgroup_update_tree(mem_over_soft_limit, page);
	}
1367
done:
1368 1369 1370 1371 1372
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
1373

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1393 1394 1395
static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
{
	struct mem_cgroup *mem;
1396
	struct page_cgroup *pc;
1397
	unsigned short id;
1398 1399
	swp_entry_t ent;

1400 1401
	VM_BUG_ON(!PageLocked(page));

1402 1403 1404
	if (!PageSwapCache(page))
		return NULL;

1405
	pc = lookup_page_cgroup(page);
1406
	lock_page_cgroup(pc);
1407
	if (PageCgroupUsed(pc)) {
1408
		mem = pc->mem_cgroup;
1409 1410 1411
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
	} else {
1412
		ent.val = page_private(page);
1413 1414 1415 1416 1417 1418
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1419
	}
1420
	unlock_page_cgroup(pc);
1421 1422 1423
	return mem;
}

1424
/*
1425
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1436 1437 1438 1439

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1440 1441 1442 1443 1444 1445
		if (!mem_cgroup_is_root(mem)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
			if (do_swap_account)
				res_counter_uncharge(&mem->memsw, PAGE_SIZE,
							NULL);
		}
1446
		css_put(&mem->css);
1447
		return;
1448
	}
1449

1450
	pc->mem_cgroup = mem;
1451 1452 1453 1454 1455 1456 1457
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1458
	smp_wmb();
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1472

K
KAMEZAWA Hiroyuki 已提交
1473
	mem_cgroup_charge_statistics(mem, pc, true);
1474 1475

	unlock_page_cgroup(pc);
1476
}
1477

1478 1479 1480 1481 1482 1483 1484
/**
 * mem_cgroup_move_account - move account of the page
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1485
 * - page is not on LRU (isolate_page() is useful.)
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
 *
 * returns 0 at success,
 * returns -EBUSY when lock is busy or "pc" is unstable.
 *
 * This function does "uncharge" from old cgroup but doesn't do "charge" to
 * new cgroup. It should be done by a caller.
 */

static int mem_cgroup_move_account(struct page_cgroup *pc,
	struct mem_cgroup *from, struct mem_cgroup *to)
{
	struct mem_cgroup_per_zone *from_mz, *to_mz;
	int nid, zid;
	int ret = -EBUSY;
1500 1501 1502 1503
	struct page *page;
	int cpu;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
1504 1505

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1506
	VM_BUG_ON(PageLRU(pc->page));
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521

	nid = page_cgroup_nid(pc);
	zid = page_cgroup_zid(pc);
	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);

	if (!trylock_page_cgroup(pc))
		return ret;

	if (!PageCgroupUsed(pc))
		goto out;

	if (pc->mem_cgroup != from)
		goto out;

1522 1523
	if (!mem_cgroup_is_root(from))
		res_counter_uncharge(&from->res, PAGE_SIZE, NULL);
K
KAMEZAWA Hiroyuki 已提交
1524
	mem_cgroup_charge_statistics(from, pc, false);
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

	page = pc->page;
	if (page_is_file_cache(page) && page_mapped(page)) {
		cpu = smp_processor_id();
		/* Update mapped_file data for mem_cgroup "from" */
		stat = &from->stat;
		cpustat = &stat->cpustat[cpu];
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
						-1);

		/* Update mapped_file data for mem_cgroup "to" */
		stat = &to->stat;
		cpustat = &stat->cpustat[cpu];
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
						1);
	}

1542
	if (do_swap_account && !mem_cgroup_is_root(from))
1543
		res_counter_uncharge(&from->memsw, PAGE_SIZE, NULL);
1544 1545 1546
	css_put(&from->css);

	css_get(&to->css);
K
KAMEZAWA Hiroyuki 已提交
1547 1548 1549
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
	ret = 0;
1550 1551
out:
	unlock_page_cgroup(pc);
1552 1553 1554 1555 1556 1557
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
	 * this function is just force_empty() and it's garanteed that
	 * "to" is never removed. So, we don't check rmdir status here.
	 */
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1569
	struct page *page = pc->page;
1570 1571 1572 1573 1574 1575 1576 1577 1578
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

K
KAMEZAWA Hiroyuki 已提交
1579

1580 1581
	parent = mem_cgroup_from_cont(pcg);

K
KAMEZAWA Hiroyuki 已提交
1582

1583
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1584
	if (ret || !parent)
1585 1586
		return ret;

1587 1588 1589 1590
	if (!get_page_unless_zero(page)) {
		ret = -EBUSY;
		goto uncharge;
	}
K
KAMEZAWA Hiroyuki 已提交
1591 1592 1593 1594 1595

	ret = isolate_lru_page(page);

	if (ret)
		goto cancel;
1596 1597 1598

	ret = mem_cgroup_move_account(pc, child, parent);

K
KAMEZAWA Hiroyuki 已提交
1599 1600 1601
	putback_lru_page(page);
	if (!ret) {
		put_page(page);
1602 1603
		/* drop extra refcnt by try_charge() */
		css_put(&parent->css);
K
KAMEZAWA Hiroyuki 已提交
1604
		return 0;
1605
	}
1606

K
KAMEZAWA Hiroyuki 已提交
1607
cancel:
1608 1609 1610 1611 1612
	put_page(page);
uncharge:
	/* drop extra refcnt by try_charge() */
	css_put(&parent->css);
	/* uncharge if move fails */
1613 1614 1615 1616 1617
	if (!mem_cgroup_is_root(parent)) {
		res_counter_uncharge(&parent->res, PAGE_SIZE, NULL);
		if (do_swap_account)
			res_counter_uncharge(&parent->memsw, PAGE_SIZE, NULL);
	}
1618 1619 1620
	return ret;
}

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1642
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1643
	if (ret || !mem)
1644 1645 1646
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1647 1648 1649
	return 0;
}

1650 1651
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1652
{
1653
	if (mem_cgroup_disabled())
1654
		return 0;
1655 1656
	if (PageCompound(page))
		return 0;
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1668
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1669
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1670 1671
}

D
Daisuke Nishimura 已提交
1672 1673 1674 1675
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

1676 1677
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1678
{
1679 1680 1681
	struct mem_cgroup *mem = NULL;
	int ret;

1682
	if (mem_cgroup_disabled())
1683
		return 0;
1684 1685
	if (PageCompound(page))
		return 0;
1686 1687 1688 1689 1690 1691 1692 1693
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
1694 1695
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
1696 1697 1698 1699
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1700 1701 1702 1703 1704 1705 1706

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1707 1708
			return 0;
		}
1709
		unlock_page_cgroup(pc);
1710 1711
	}

1712
	if (unlikely(!mm && !mem))
1713
		mm = &init_mm;
1714

1715 1716
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1717
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1718

D
Daisuke Nishimura 已提交
1719 1720 1721 1722 1723 1724 1725 1726 1727
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1728 1729

	return ret;
1730 1731
}

1732 1733 1734 1735 1736 1737
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
 * struct page_cgroup is aquired. This refcnt will be cumsumed by
 * "commit()" or removed by "cancel()"
 */
1738 1739 1740 1741 1742
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
1743
	int ret;
1744

1745
	if (mem_cgroup_disabled())
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
	 * the pte, and even removed page from swap cache: return success
	 * to go on to do_swap_page()'s pte_same() test, which should fail.
	 */
	if (!PageSwapCache(page))
		return 0;
1757
	mem = try_get_mem_cgroup_from_swapcache(page);
1758 1759
	if (!mem)
		goto charge_cur_mm;
1760
	*ptr = mem;
1761
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1762 1763 1764
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
1765 1766 1767
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
1768
	return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1769 1770
}

D
Daisuke Nishimura 已提交
1771 1772 1773
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
1774 1775 1776
{
	struct page_cgroup *pc;

1777
	if (mem_cgroup_disabled())
1778 1779 1780
		return;
	if (!ptr)
		return;
1781
	cgroup_exclude_rmdir(&ptr->css);
1782
	pc = lookup_page_cgroup(page);
1783
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
1784
	__mem_cgroup_commit_charge(ptr, pc, ctype);
1785
	mem_cgroup_lru_add_after_commit_swapcache(page);
1786 1787 1788
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
1789 1790 1791
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
1792
	 */
1793
	if (do_swap_account && PageSwapCache(page)) {
1794
		swp_entry_t ent = {.val = page_private(page)};
1795
		unsigned short id;
1796
		struct mem_cgroup *memcg;
1797 1798 1799 1800

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
1801
		if (memcg) {
1802 1803 1804 1805
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
1806 1807 1808 1809
			if (!mem_cgroup_is_root(memcg))
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE,
							NULL);
			mem_cgroup_swap_statistics(memcg, false);
1810 1811
			mem_cgroup_put(memcg);
		}
1812
		rcu_read_unlock();
1813
	}
1814 1815 1816 1817 1818 1819
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
1820 1821
}

D
Daisuke Nishimura 已提交
1822 1823 1824 1825 1826 1827
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

1828 1829
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
1830
	if (mem_cgroup_disabled())
1831 1832 1833
		return;
	if (!mem)
		return;
1834 1835 1836 1837 1838
	if (!mem_cgroup_is_root(mem)) {
		res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
		if (do_swap_account)
			res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
	}
1839 1840 1841 1842
	css_put(&mem->css);
}


1843
/*
1844
 * uncharge if !page_mapped(page)
1845
 */
1846
static struct mem_cgroup *
1847
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1848
{
H
Hugh Dickins 已提交
1849
	struct page_cgroup *pc;
1850
	struct mem_cgroup *mem = NULL;
1851
	struct mem_cgroup_per_zone *mz;
1852
	bool soft_limit_excess = false;
1853

1854
	if (mem_cgroup_disabled())
1855
		return NULL;
1856

K
KAMEZAWA Hiroyuki 已提交
1857
	if (PageSwapCache(page))
1858
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
1859

1860
	/*
1861
	 * Check if our page_cgroup is valid
1862
	 */
1863 1864
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
1865
		return NULL;
1866

1867
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
1868

1869 1870
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
1871 1872 1873 1874 1875
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
1876
	case MEM_CGROUP_CHARGE_TYPE_DROP:
K
KAMEZAWA Hiroyuki 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
1889
	}
K
KAMEZAWA Hiroyuki 已提交
1890

1891 1892 1893 1894 1895 1896 1897 1898
	if (!mem_cgroup_is_root(mem)) {
		res_counter_uncharge(&mem->res, PAGE_SIZE, &soft_limit_excess);
		if (do_swap_account &&
				(ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
			res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
	}
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		mem_cgroup_swap_statistics(mem, true);
K
KAMEZAWA Hiroyuki 已提交
1899
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
1900

1901
	ClearPageCgroupUsed(pc);
1902 1903 1904 1905 1906 1907
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
1908

1909
	mz = page_cgroup_zoneinfo(pc);
1910
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
1911

1912 1913
	if (soft_limit_excess && mem_cgroup_soft_limit_check(mem))
		mem_cgroup_update_tree(mem, page);
K
KAMEZAWA Hiroyuki 已提交
1914 1915 1916
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
1917

1918
	return mem;
K
KAMEZAWA Hiroyuki 已提交
1919 1920 1921

unlock_out:
	unlock_page_cgroup(pc);
1922
	return NULL;
1923 1924
}

1925 1926
void mem_cgroup_uncharge_page(struct page *page)
{
1927 1928 1929 1930 1931
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
1932 1933 1934 1935 1936 1937
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
1938
	VM_BUG_ON(page->mapping);
1939 1940 1941
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

1942
#ifdef CONFIG_SWAP
1943
/*
1944
 * called after __delete_from_swap_cache() and drop "page" account.
1945 1946
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
1947 1948
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
1949 1950
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1951 1952 1953 1954 1955 1956
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
1957 1958

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
1959
	if (do_swap_account && swapout && memcg) {
1960
		swap_cgroup_record(ent, css_id(&memcg->css));
1961 1962
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
1963
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
1964
		css_put(&memcg->css);
1965
}
1966
#endif
1967 1968 1969 1970 1971 1972 1973

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
1974
{
1975
	struct mem_cgroup *memcg;
1976
	unsigned short id;
1977 1978 1979 1980

	if (!do_swap_account)
		return;

1981 1982 1983
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
1984
	if (memcg) {
1985 1986 1987 1988
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
1989 1990 1991
		if (!mem_cgroup_is_root(memcg))
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE, NULL);
		mem_cgroup_swap_statistics(memcg, false);
1992 1993
		mem_cgroup_put(memcg);
	}
1994
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
1995
}
1996
#endif
K
KAMEZAWA Hiroyuki 已提交
1997

1998
/*
1999 2000
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2001
 */
2002
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2003 2004
{
	struct page_cgroup *pc;
2005 2006
	struct mem_cgroup *mem = NULL;
	int ret = 0;
2007

2008
	if (mem_cgroup_disabled())
2009 2010
		return 0;

2011 2012 2013
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2014 2015 2016
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
2017
	unlock_page_cgroup(pc);
2018

2019
	if (mem) {
2020 2021
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
						page);
2022 2023
		css_put(&mem->css);
	}
2024
	*ptr = mem;
2025
	return ret;
2026
}
2027

2028
/* remove redundant charge if migration failed*/
2029 2030
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
2031
{
2032 2033 2034 2035 2036 2037
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;
2038
	cgroup_exclude_rmdir(&mem->css);
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
2056
	if (unused)
2057 2058 2059
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
2060
	/*
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
2075
	 */
2076 2077
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
2078 2079 2080 2081 2082 2083
	/*
	 * At migration, we may charge account against cgroup which has no tasks
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2084
}
2085

2086
/*
2087 2088 2089 2090 2091 2092
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2093
 */
2094
int mem_cgroup_shmem_charge_fallback(struct page *page,
2095 2096
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2097
{
2098
	struct mem_cgroup *mem = NULL;
2099
	int ret;
2100

2101
	if (mem_cgroup_disabled())
2102
		return 0;
2103

2104 2105 2106
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2107

2108
	return ret;
2109 2110
}

2111 2112
static DEFINE_MUTEX(set_limit_mutex);

2113
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2114
				unsigned long long val)
2115
{
2116
	int retry_count;
2117
	int progress;
2118
	u64 memswlimit;
2119
	int ret = 0;
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2131

2132
	while (retry_count) {
2133 2134 2135 2136
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2147 2148
			break;
		}
2149
		ret = res_counter_set_limit(&memcg->res, val);
2150 2151 2152 2153 2154 2155
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2156 2157 2158 2159 2160
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2161 2162 2163
		progress = mem_cgroup_hierarchical_reclaim(memcg, NULL,
						GFP_KERNEL,
						MEM_CGROUP_RECLAIM_SHRINK);
2164 2165 2166 2167 2168 2169
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2170
	}
2171

2172 2173 2174
	return ret;
}

L
Li Zefan 已提交
2175 2176
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2177
{
2178
	int retry_count;
2179
	u64 memlimit, oldusage, curusage;
2180 2181
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2182

2183 2184 2185
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
2204 2205 2206 2207 2208 2209
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2210 2211 2212 2213 2214
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2215
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2216 2217
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2218
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2219
		/* Usage is reduced ? */
2220
		if (curusage >= oldusage)
2221
			retry_count--;
2222 2223
		else
			oldusage = curusage;
2224 2225 2226 2227
	}
	return ret;
}

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		mz->usage_in_excess =
			res_counter_soft_limit_excess(&mz->mem->res);
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		if (mz->usage_in_excess)
			__mem_cgroup_insert_exceeded(mz->mem, mz, mctz);
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2319 2320 2321 2322
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2323
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2324
				int node, int zid, enum lru_list lru)
2325
{
K
KAMEZAWA Hiroyuki 已提交
2326 2327
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2328
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2329
	unsigned long flags, loop;
2330
	struct list_head *list;
2331
	int ret = 0;
2332

K
KAMEZAWA Hiroyuki 已提交
2333 2334
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2335
	list = &mz->lists[lru];
2336

2337 2338 2339 2340 2341 2342
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2343
		spin_lock_irqsave(&zone->lru_lock, flags);
2344
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2345
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2346
			break;
2347 2348 2349 2350 2351
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
			busy = 0;
K
KAMEZAWA Hiroyuki 已提交
2352
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2353 2354
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2355
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2356

K
KAMEZAWA Hiroyuki 已提交
2357
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2358
		if (ret == -ENOMEM)
2359
			break;
2360 2361 2362 2363 2364 2365 2366

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2367
	}
K
KAMEZAWA Hiroyuki 已提交
2368

2369 2370 2371
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2372 2373 2374 2375 2376 2377
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2378
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2379
{
2380 2381 2382
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2383
	struct cgroup *cgrp = mem->css.cgroup;
2384

2385
	css_get(&mem->css);
2386 2387

	shrink = 0;
2388 2389 2390
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2391
move_account:
2392
	while (mem->res.usage > 0) {
2393
		ret = -EBUSY;
2394 2395 2396 2397
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2398
			goto out;
2399 2400
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2401
		ret = 0;
2402
		for_each_node_state(node, N_HIGH_MEMORY) {
2403
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2404
				enum lru_list l;
2405 2406
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
2407
							node, zid, l);
2408 2409 2410
					if (ret)
						break;
				}
2411
			}
2412 2413 2414 2415 2416 2417
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
2418
		cond_resched();
2419 2420 2421 2422 2423
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
2424 2425

try_to_free:
2426 2427
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2428 2429 2430
		ret = -EBUSY;
		goto out;
	}
2431 2432
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2433 2434 2435 2436
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
2437 2438 2439 2440 2441

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
2442 2443
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
2444
		if (!progress) {
2445
			nr_retries--;
2446
			/* maybe some writeback is necessary */
2447
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2448
		}
2449 2450

	}
K
KAMEZAWA Hiroyuki 已提交
2451
	lru_add_drain();
2452 2453 2454 2455 2456
	/* try move_account...there may be some *locked* pages. */
	if (mem->res.usage)
		goto move_account;
	ret = 0;
	goto out;
2457 2458
}

2459 2460 2461 2462 2463 2464
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
	 * If parent's use_hiearchy is set, we can't make any modifications
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
	d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

2527
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
2528
{
2529
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2530
	u64 idx_val, val;
2531 2532 2533 2534 2535 2536
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_CACHE, &idx_val);
			val = idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_RSS, &idx_val);
			val += idx_val;
			val <<= PAGE_SHIFT;
		} else
			val = res_counter_read_u64(&mem->res, name);
2547 2548
		break;
	case _MEMSWAP:
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_CACHE, &idx_val);
			val = idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_RSS, &idx_val);
			val += idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
			val <<= PAGE_SHIFT;
		} else
			val = res_counter_read_u64(&mem->memsw, name);
2561 2562 2563 2564 2565 2566
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
2567
}
2568 2569 2570 2571
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2572 2573
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
2574
{
2575
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2576
	int type, name;
2577 2578 2579
	unsigned long long val;
	int ret;

2580 2581 2582
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
2583
	case RES_LIMIT:
2584 2585 2586 2587
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2588 2589
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
2590 2591 2592
		if (ret)
			break;
		if (type == _MEM)
2593
			ret = mem_cgroup_resize_limit(memcg, val);
2594 2595
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2596
		break;
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
2611 2612 2613 2614 2615
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
2616 2617
}

2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

2646
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2647 2648
{
	struct mem_cgroup *mem;
2649
	int type, name;
2650 2651

	mem = mem_cgroup_from_cont(cont);
2652 2653 2654
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
2655
	case RES_MAX_USAGE:
2656 2657 2658 2659
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
2660 2661
		break;
	case RES_FAILCNT:
2662 2663 2664 2665
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
2666 2667
		break;
	}
2668

2669
	return 0;
2670 2671
}

K
KAMEZAWA Hiroyuki 已提交
2672 2673 2674 2675 2676

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
2677
	MCS_MAPPED_FILE,
K
KAMEZAWA Hiroyuki 已提交
2678 2679
	MCS_PGPGIN,
	MCS_PGPGOUT,
2680
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
2691 2692
};

K
KAMEZAWA Hiroyuki 已提交
2693 2694 2695 2696 2697 2698
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
2699
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
2700 2701
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
2702
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	s->stat[MCS_RSS] += val * PAGE_SIZE;
2721 2722
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
	s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
2723 2724 2725 2726
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
	s->stat[MCS_PGPGIN] += val;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
	s->stat[MCS_PGPGOUT] += val;
2727 2728 2729 2730
	if (do_swap_account) {
		val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

2752 2753
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
2754 2755
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
2756
	struct mcs_total_stat mystat;
2757 2758
	int i;

K
KAMEZAWA Hiroyuki 已提交
2759 2760
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
2761

2762 2763 2764
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
2765
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2766
	}
L
Lee Schermerhorn 已提交
2767

K
KAMEZAWA Hiroyuki 已提交
2768
	/* Hierarchical information */
2769 2770 2771 2772 2773 2774 2775
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
2776

K
KAMEZAWA Hiroyuki 已提交
2777 2778
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
2779 2780 2781
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
2782
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2783
	}
K
KAMEZAWA Hiroyuki 已提交
2784

K
KOSAKI Motohiro 已提交
2785
#ifdef CONFIG_DEBUG_VM
2786
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

2814 2815 2816
	return 0;
}

K
KOSAKI Motohiro 已提交
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
2829

K
KOSAKI Motohiro 已提交
2830 2831 2832 2833 2834 2835 2836
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
2837 2838 2839

	cgroup_lock();

K
KOSAKI Motohiro 已提交
2840 2841
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
2842 2843
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
2844
		return -EINVAL;
2845
	}
K
KOSAKI Motohiro 已提交
2846 2847 2848 2849 2850

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

2851 2852
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
2853 2854 2855
	return 0;
}

2856

B
Balbir Singh 已提交
2857 2858
static struct cftype mem_cgroup_files[] = {
	{
2859
		.name = "usage_in_bytes",
2860
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2861
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2862
	},
2863 2864
	{
		.name = "max_usage_in_bytes",
2865
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2866
		.trigger = mem_cgroup_reset,
2867 2868
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
2869
	{
2870
		.name = "limit_in_bytes",
2871
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2872
		.write_string = mem_cgroup_write,
2873
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2874
	},
2875 2876 2877 2878 2879 2880
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
2881 2882
	{
		.name = "failcnt",
2883
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2884
		.trigger = mem_cgroup_reset,
2885
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2886
	},
2887 2888
	{
		.name = "stat",
2889
		.read_map = mem_control_stat_show,
2890
	},
2891 2892 2893 2894
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
2895 2896 2897 2898 2899
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
2900 2901 2902 2903 2904
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
B
Balbir Singh 已提交
2905 2906
};

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

2948 2949 2950
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
2951
	struct mem_cgroup_per_zone *mz;
2952
	enum lru_list l;
2953
	int zone, tmp = node;
2954 2955 2956 2957 2958 2959 2960 2961
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
2962 2963 2964
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2965 2966
	if (!pn)
		return 1;
2967

2968 2969
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
2970 2971 2972

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
2973 2974
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
2975
		mz->usage_in_excess = 0;
2976 2977
		mz->on_tree = false;
		mz->mem = mem;
2978
	}
2979 2980 2981
	return 0;
}

2982 2983 2984 2985 2986
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

2987 2988 2989 2990 2991 2992
static int mem_cgroup_size(void)
{
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
	return sizeof(struct mem_cgroup) + cpustat_size;
}

2993 2994 2995
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
2996
	int size = mem_cgroup_size();
2997

2998 2999
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
3000
	else
3001
		mem = vmalloc(size);
3002 3003

	if (mem)
3004
		memset(mem, 0, size);
3005 3006 3007
	return mem;
}

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

3019
static void __mem_cgroup_free(struct mem_cgroup *mem)
3020
{
K
KAMEZAWA Hiroyuki 已提交
3021 3022
	int node;

3023
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
3024 3025
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
3026 3027 3028
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

3029
	if (mem_cgroup_size() < PAGE_SIZE)
3030 3031 3032 3033 3034
		kfree(mem);
	else
		vfree(mem);
}

3035 3036 3037 3038 3039 3040 3041
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

static void mem_cgroup_put(struct mem_cgroup *mem)
{
3042 3043
	if (atomic_dec_and_test(&mem->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3044
		__mem_cgroup_free(mem);
3045 3046 3047
		if (parent)
			mem_cgroup_put(parent);
	}
3048 3049
}

3050 3051 3052 3053 3054 3055 3056 3057 3058
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
3059

3060 3061 3062
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
3063
	if (!mem_cgroup_disabled() && really_do_swap_account)
3064 3065 3066 3067 3068 3069 3070 3071
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
3097
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
3098 3099
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
3100
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
3101
	long error = -ENOMEM;
3102
	int node;
B
Balbir Singh 已提交
3103

3104 3105
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
3106
		return ERR_PTR(error);
3107

3108 3109 3110
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
3111

3112
	/* root ? */
3113
	if (cont->parent == NULL) {
3114
		enable_swap_cgroup();
3115
		parent = NULL;
3116
		root_mem_cgroup = mem;
3117 3118 3119
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;

3120
	} else {
3121
		parent = mem_cgroup_from_cont(cont->parent);
3122 3123
		mem->use_hierarchy = parent->use_hierarchy;
	}
3124

3125 3126 3127
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
3128 3129 3130 3131 3132 3133 3134
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
3135 3136 3137 3138
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
3139
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
3140
	spin_lock_init(&mem->reclaim_param_lock);
3141

K
KOSAKI Motohiro 已提交
3142 3143
	if (parent)
		mem->swappiness = get_swappiness(parent);
3144
	atomic_set(&mem->refcnt, 1);
B
Balbir Singh 已提交
3145
	return &mem->css;
3146
free_out:
3147
	__mem_cgroup_free(mem);
3148
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
3149
	return ERR_PTR(error);
B
Balbir Singh 已提交
3150 3151
}

3152
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3153 3154 3155
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3156 3157

	return mem_cgroup_force_empty(mem, false);
3158 3159
}

B
Balbir Singh 已提交
3160 3161 3162
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3163 3164 3165
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
3166 3167 3168 3169 3170
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3171 3172 3173 3174 3175 3176 3177 3178
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
3179 3180
}

B
Balbir Singh 已提交
3181 3182 3183
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
3184 3185
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
3186
{
3187
	mutex_lock(&memcg_tasklist);
B
Balbir Singh 已提交
3188
	/*
3189 3190
	 * FIXME: It's better to move charges of this process from old
	 * memcg to new memcg. But it's just on TODO-List now.
B
Balbir Singh 已提交
3191
	 */
3192
	mutex_unlock(&memcg_tasklist);
B
Balbir Singh 已提交
3193 3194
}

B
Balbir Singh 已提交
3195 3196 3197 3198
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
3199
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
3200 3201
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
3202
	.attach = mem_cgroup_move_task,
3203
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
3204
	.use_id = 1,
B
Balbir Singh 已提交
3205
};
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif