memcontrol.c 181.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/slab.h>
43
#include <linux/swap.h>
44
#include <linux/swapops.h>
45
#include <linux/spinlock.h>
46 47
#include <linux/eventfd.h>
#include <linux/sort.h>
48
#include <linux/fs.h>
49
#include <linux/seq_file.h>
50
#include <linux/vmalloc.h>
51
#include <linux/vmpressure.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
90
	"rss_huge",
91
	"mapped_file",
92
	"writeback",
93 94 95
	"swap",
};

96 97 98
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
99 100
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
101 102
	MEM_CGROUP_EVENTS_NSTATS,
};
103 104 105 106 107 108 109 110

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

111 112 113 114 115 116 117 118
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

119 120 121 122 123 124 125 126
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
127
	MEM_CGROUP_TARGET_SOFTLIMIT,
128
	MEM_CGROUP_TARGET_NUMAINFO,
129 130
	MEM_CGROUP_NTARGETS,
};
131 132 133
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
134

135
struct mem_cgroup_stat_cpu {
136
	long count[MEM_CGROUP_STAT_NSTATS];
137
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
138
	unsigned long nr_page_events;
139
	unsigned long targets[MEM_CGROUP_NTARGETS];
140 141
};

142
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
143 144 145 146
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
147
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
148 149
	unsigned long last_dead_count;

150 151 152 153
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

154 155 156 157
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
158
	struct lruvec		lruvec;
159
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
160

161 162
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

163
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
164
						/* use container_of	   */
165 166 167 168 169 170
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

171 172 173 174 175
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
176
/* For threshold */
177
struct mem_cgroup_threshold_ary {
178
	/* An array index points to threshold just below or equal to usage. */
179
	int current_threshold;
180 181 182 183 184
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
185 186 187 188 189 190 191 192 193 194 195 196

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
197 198 199 200 201
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
202

203 204
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
205

B
Balbir Singh 已提交
206 207 208 209 210 211 212
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
213 214 215
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
216 217 218 219 220 221 222
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
223

224 225 226
	/* vmpressure notifications */
	struct vmpressure vmpressure;

227 228 229 230
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
231

232 233 234 235
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
236 237 238 239
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
240
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
241 242 243

	bool		oom_lock;
	atomic_t	under_oom;
244
	atomic_t	oom_wakeups;
245

246
	int	swappiness;
247 248
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
249

250 251 252
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

253 254 255 256
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
257
	struct mem_cgroup_thresholds thresholds;
258

259
	/* thresholds for mem+swap usage. RCU-protected */
260
	struct mem_cgroup_thresholds memsw_thresholds;
261

K
KAMEZAWA Hiroyuki 已提交
262 263
	/* For oom notifier event fd */
	struct list_head oom_notify;
264

265 266 267 268
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
269
	unsigned long move_charge_at_immigrate;
270 271 272 273
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
274 275
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
276
	/*
277
	 * percpu counter.
278
	 */
279
	struct mem_cgroup_stat_cpu __percpu *stat;
280 281 282 283 284 285
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
286

M
Michal Hocko 已提交
287
	atomic_t	dead_count;
M
Michal Hocko 已提交
288
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
289 290
	struct tcp_memcontrol tcp_mem;
#endif
291 292 293 294 295 296 297 298
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
299 300 301 302 303 304 305

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
306 307 308 309 310 311 312 313
	/*
	 * Protects soft_contributed transitions.
	 * See mem_cgroup_update_soft_limit
	 */
	spinlock_t soft_lock;

	/*
	 * If true then this group has increased parents' children_in_excess
A
Andrew Morton 已提交
314
	 * when it got over the soft limit.
315 316 317 318 319 320 321
	 * When a group falls bellow the soft limit, parents' children_in_excess
	 * is decreased and soft_contributed changed to false.
	 */
	bool soft_contributed;

	/* Number of children that are in soft limit excess */
	atomic_t children_in_excess;
322

323 324
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
325 326
};

327 328 329 330 331 332
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

333 334 335
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
336
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
337
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
338 339
};

340 341 342
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
343 344 345 346 347 348

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
349 350 351 352 353 354

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

355 356 357 358 359
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

360 361 362 363 364
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

365 366
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
367 368 369 370 371
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
372 373 374 375 376 377 378 379 380
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
381 382
#endif

383 384
/* Stuffs for move charges at task migration. */
/*
385 386
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
387 388
 */
enum move_type {
389
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
390
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
391 392 393
	NR_MOVE_TYPE,
};

394 395
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
396
	spinlock_t	  lock; /* for from, to */
397 398
	struct mem_cgroup *from;
	struct mem_cgroup *to;
399
	unsigned long immigrate_flags;
400
	unsigned long precharge;
401
	unsigned long moved_charge;
402
	unsigned long moved_swap;
403 404 405
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
406
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
407 408
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
409

D
Daisuke Nishimura 已提交
410 411
static bool move_anon(void)
{
412
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
413 414
}

415 416
static bool move_file(void)
{
417
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
418 419
}

420 421 422 423
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
424
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
425

426 427
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
428
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
429
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
430
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
431 432 433
	NR_CHARGE_TYPE,
};

434
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
435 436 437 438
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
439
	_KMEM,
G
Glauber Costa 已提交
440 441
};

442 443
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
444
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
445 446
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
447

448 449 450 451 452 453 454 455
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

456 457 458 459 460 461 462
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

463 464
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
465
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
466 467
}

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

486 487 488 489 490
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

491 492 493 494 495 496
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
	/*
	 * The ID of the root cgroup is 0, but memcg treat 0 as an
	 * invalid ID, so we return (cgroup_id + 1).
	 */
	return memcg->css.cgroup->id + 1;
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

	css = css_from_id(id - 1, &mem_cgroup_subsys);
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
514
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
515
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
516 517 518

void sock_update_memcg(struct sock *sk)
{
519
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
520
		struct mem_cgroup *memcg;
521
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
522 523 524

		BUG_ON(!sk->sk_prot->proto_cgroup);

525 526 527 528 529 530 531 532 533 534
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
535
			css_get(&sk->sk_cgrp->memcg->css);
536 537 538
			return;
		}

G
Glauber Costa 已提交
539 540
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
541
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
542 543
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
544
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
545 546 547 548 549 550 551 552
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
553
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
554 555 556
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
557
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
558 559
	}
}
G
Glauber Costa 已提交
560 561 562 563 564 565 566 567 568

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
569

570 571 572 573 574 575 576 577 578 579 580 581
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

582
#ifdef CONFIG_MEMCG_KMEM
583 584
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
585 586 587 588 589
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
590 591 592 593 594 595
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
596 597
int memcg_limited_groups_array_size;

598 599 600 601 602 603
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
604
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
605 606
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
607
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
608 609 610
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
611
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
612

613 614 615 616 617 618
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
619
struct static_key memcg_kmem_enabled_key;
620
EXPORT_SYMBOL(memcg_kmem_enabled_key);
621 622 623

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
624
	if (memcg_kmem_is_active(memcg)) {
625
		static_key_slow_dec(&memcg_kmem_enabled_key);
626 627
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
628 629 630 631 632
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
633 634 635 636 637 638 639 640 641 642 643 644 645
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

646
static void drain_all_stock_async(struct mem_cgroup *memcg);
647

648
static struct mem_cgroup_per_zone *
649
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
650
{
651
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
652
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
653 654
}

655
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
656
{
657
	return &memcg->css;
658 659
}

660
static struct mem_cgroup_per_zone *
661
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
662
{
663 664
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
665

666
	return mem_cgroup_zoneinfo(memcg, nid, zid);
667 668
}

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
688
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
689
				 enum mem_cgroup_stat_index idx)
690
{
691
	long val = 0;
692 693
	int cpu;

694 695
	get_online_cpus();
	for_each_online_cpu(cpu)
696
		val += per_cpu(memcg->stat->count[idx], cpu);
697
#ifdef CONFIG_HOTPLUG_CPU
698 699 700
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
701 702
#endif
	put_online_cpus();
703 704 705
	return val;
}

706
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
707 708 709
					 bool charge)
{
	int val = (charge) ? 1 : -1;
710
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
711 712
}

713
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
714 715 716 717 718 719
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
720
		val += per_cpu(memcg->stat->events[idx], cpu);
721
#ifdef CONFIG_HOTPLUG_CPU
722 723 724
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
725 726 727 728
#endif
	return val;
}

729
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
730
					 struct page *page,
731
					 bool anon, int nr_pages)
732
{
733 734
	preempt_disable();

735 736 737 738 739 740
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
741
				nr_pages);
742
	else
743
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
744
				nr_pages);
745

746 747 748 749
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

750 751
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
752
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
753
	else {
754
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
755 756
		nr_pages = -nr_pages; /* for event */
	}
757

758
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
759

760
	preempt_enable();
761 762
}

763
unsigned long
764
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
765 766 767 768 769 770 771 772
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
773
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
774
			unsigned int lru_mask)
775 776
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
777
	enum lru_list lru;
778 779
	unsigned long ret = 0;

780
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
781

H
Hugh Dickins 已提交
782 783 784
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
785 786 787 788 789
	}
	return ret;
}

static unsigned long
790
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
791 792
			int nid, unsigned int lru_mask)
{
793 794 795
	u64 total = 0;
	int zid;

796
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
797 798
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
799

800 801
	return total;
}
802

803
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
804
			unsigned int lru_mask)
805
{
806
	int nid;
807 808
	u64 total = 0;

809
	for_each_node_state(nid, N_MEMORY)
810
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
811
	return total;
812 813
}

814 815
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
816 817 818
{
	unsigned long val, next;

819
	val = __this_cpu_read(memcg->stat->nr_page_events);
820
	next = __this_cpu_read(memcg->stat->targets[target]);
821
	/* from time_after() in jiffies.h */
822 823 824 825 826
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
827 828 829
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
830 831 832 833 834 835 836 837
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
838
	}
839
	return false;
840 841
}

842
/*
A
Andrew Morton 已提交
843
 * Called from rate-limited memcg_check_events when enough
844
 * MEM_CGROUP_TARGET_SOFTLIMIT events are accumulated and it makes sure
A
Andrew Morton 已提交
845
 * that all the parents up the hierarchy will be notified that this group
846 847
 * is in excess or that it is not in excess anymore. mmecg->soft_contributed
 * makes the transition a single action whenever the state flips from one to
A
Andrew Morton 已提交
848
 * the other.
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
 */
static void mem_cgroup_update_soft_limit(struct mem_cgroup *memcg)
{
	unsigned long long excess = res_counter_soft_limit_excess(&memcg->res);
	struct mem_cgroup *parent = memcg;
	int delta = 0;

	spin_lock(&memcg->soft_lock);
	if (excess) {
		if (!memcg->soft_contributed) {
			delta = 1;
			memcg->soft_contributed = true;
		}
	} else {
		if (memcg->soft_contributed) {
			delta = -1;
			memcg->soft_contributed = false;
		}
	}

	/*
	 * Necessary to update all ancestors when hierarchy is used
	 * because their event counter is not touched.
872 873 874 875
	 * We track children even outside the hierarchy for the root
	 * cgroup because tree walk starting at root should visit
	 * all cgroups and we want to prevent from pointless tree
	 * walk if no children is below the limit.
876 877 878
	 */
	while (delta && (parent = parent_mem_cgroup(parent)))
		atomic_add(delta, &parent->children_in_excess);
879 880
	if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
		atomic_add(delta, &root_mem_cgroup->children_in_excess);
881 882 883
	spin_unlock(&memcg->soft_lock);
}

884 885 886 887
/*
 * Check events in order.
 *
 */
888
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
889
{
890
	preempt_disable();
891
	/* threshold event is triggered in finer grain than soft limit */
892 893
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
894
		bool do_softlimit;
895
		bool do_numainfo __maybe_unused;
896

897 898
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
899 900 901 902 903 904
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

905
		mem_cgroup_threshold(memcg);
906 907
		if (unlikely(do_softlimit))
			mem_cgroup_update_soft_limit(memcg);
908
#if MAX_NUMNODES > 1
909
		if (unlikely(do_numainfo))
910
			atomic_inc(&memcg->numainfo_events);
911
#endif
912 913
	} else
		preempt_enable();
914 915
}

916
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
917
{
918 919 920 921 922 923 924 925
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

926
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
927 928
}

929
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
930
{
931
	struct mem_cgroup *memcg = NULL;
932 933 934

	if (!mm)
		return NULL;
935 936 937 938 939 940 941
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
942 943
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
944
			break;
945
	} while (!css_tryget(&memcg->css));
946
	rcu_read_unlock();
947
	return memcg;
948 949
}

950 951 952 953 954 955 956 957 958
static enum mem_cgroup_filter_t
mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root,
		mem_cgroup_iter_filter cond)
{
	if (!cond)
		return VISIT;
	return cond(memcg, root);
}

959 960 961 962 963 964 965
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
966
		struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond)
967
{
968
	struct cgroup_subsys_state *prev_css, *next_css;
969

970
	prev_css = last_visited ? &last_visited->css : NULL;
971
skip_node:
972
	next_css = css_next_descendant_pre(prev_css, &root->css);
973 974 975 976 977 978 979 980

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
981 982 983
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

984 985
		switch (mem_cgroup_filter(mem, root, cond)) {
		case SKIP:
986
			prev_css = next_css;
987
			goto skip_node;
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
		case SKIP_TREE:
			if (mem == root)
				return NULL;
			/*
			 * css_rightmost_descendant is not an optimal way to
			 * skip through a subtree (especially for imbalanced
			 * trees leaning to right) but that's what we have right
			 * now. More effective solution would be traversing
			 * right-up for first non-NULL without calling
			 * css_next_descendant_pre afterwards.
			 */
			prev_css = css_rightmost_descendant(next_css);
			goto skip_node;
		case VISIT:
			if (css_tryget(&mem->css))
				return mem;
			else {
				prev_css = next_css;
				goto skip_node;
			}
			break;
1009 1010 1011 1012 1013 1014
		}
	}

	return NULL;
}

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1067 1068 1069 1070 1071
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1072
 * @cond: filter for visited nodes, NULL for no filter
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1085
struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
1086
				   struct mem_cgroup *prev,
1087 1088
				   struct mem_cgroup_reclaim_cookie *reclaim,
				   mem_cgroup_iter_filter cond)
K
KAMEZAWA Hiroyuki 已提交
1089
{
1090
	struct mem_cgroup *memcg = NULL;
1091
	struct mem_cgroup *last_visited = NULL;
1092

1093 1094 1095 1096
	if (mem_cgroup_disabled()) {
		/* first call must return non-NULL, second return NULL */
		return (struct mem_cgroup *)(unsigned long)!prev;
	}
1097

1098 1099
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1100

1101
	if (prev && !reclaim)
1102
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1103

1104 1105
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1106
			goto out_css_put;
1107 1108 1109
		if (mem_cgroup_filter(root, root, cond) == VISIT)
			return root;
		return NULL;
1110
	}
K
KAMEZAWA Hiroyuki 已提交
1111

1112
	rcu_read_lock();
1113
	while (!memcg) {
1114
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1115
		int uninitialized_var(seq);
1116

1117 1118 1119 1120 1121 1122 1123
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1124
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1125
				iter->last_visited = NULL;
1126 1127
				goto out_unlock;
			}
M
Michal Hocko 已提交
1128

1129
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1130
		}
K
KAMEZAWA Hiroyuki 已提交
1131

1132
		memcg = __mem_cgroup_iter_next(root, last_visited, cond);
K
KAMEZAWA Hiroyuki 已提交
1133

1134
		if (reclaim) {
1135
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1136

M
Michal Hocko 已提交
1137
			if (!memcg)
1138 1139 1140 1141
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1142

1143 1144 1145 1146 1147
		/*
		 * We have finished the whole tree walk or no group has been
		 * visited because filter told us to skip the root node.
		 */
		if (!memcg && (prev || (cond && !last_visited)))
1148
			goto out_unlock;
1149
	}
1150 1151
out_unlock:
	rcu_read_unlock();
1152 1153 1154 1155
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1156
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1157
}
K
KAMEZAWA Hiroyuki 已提交
1158

1159 1160 1161 1162 1163 1164 1165
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1166 1167 1168 1169 1170 1171
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1172

1173 1174 1175 1176 1177 1178
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1179
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1180
	     iter != NULL;				\
1181
	     iter = mem_cgroup_iter(root, iter, NULL))
1182

1183
#define for_each_mem_cgroup(iter)			\
1184
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1185
	     iter != NULL;				\
1186
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1187

1188
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1189
{
1190
	struct mem_cgroup *memcg;
1191 1192

	rcu_read_lock();
1193 1194
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1195 1196 1197 1198
		goto out;

	switch (idx) {
	case PGFAULT:
1199 1200 1201 1202
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1203 1204 1205 1206 1207 1208 1209
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1210
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1211

1212 1213 1214
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1215
 * @memcg: memcg of the wanted lruvec
1216 1217 1218 1219 1220 1221 1222 1223 1224
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1225
	struct lruvec *lruvec;
1226

1227 1228 1229 1230
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1231 1232

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1243 1244
}

K
KAMEZAWA Hiroyuki 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1258

1259
/**
1260
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1261
 * @page: the page
1262
 * @zone: zone of the page
1263
 */
1264
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1265 1266
{
	struct mem_cgroup_per_zone *mz;
1267 1268
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1269
	struct lruvec *lruvec;
1270

1271 1272 1273 1274
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1275

K
KAMEZAWA Hiroyuki 已提交
1276
	pc = lookup_page_cgroup(page);
1277
	memcg = pc->mem_cgroup;
1278 1279

	/*
1280
	 * Surreptitiously switch any uncharged offlist page to root:
1281 1282 1283 1284 1285 1286 1287
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1288
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1289 1290
		pc->mem_cgroup = memcg = root_mem_cgroup;

1291
	mz = page_cgroup_zoneinfo(memcg, page);
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1302
}
1303

1304
/**
1305 1306 1307 1308
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1309
 *
1310 1311
 * This function must be called when a page is added to or removed from an
 * lru list.
1312
 */
1313 1314
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1315 1316
{
	struct mem_cgroup_per_zone *mz;
1317
	unsigned long *lru_size;
1318 1319 1320 1321

	if (mem_cgroup_disabled())
		return;

1322 1323 1324 1325
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1326
}
1327

1328
/*
1329
 * Checks whether given mem is same or in the root_mem_cgroup's
1330 1331
 * hierarchy subtree
 */
1332 1333
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1334
{
1335 1336
	if (root_memcg == memcg)
		return true;
1337
	if (!root_memcg->use_hierarchy || !memcg)
1338
		return false;
1339
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1340 1341 1342 1343 1344 1345 1346
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1347
	rcu_read_lock();
1348
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1349 1350
	rcu_read_unlock();
	return ret;
1351 1352
}

1353 1354
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1355
{
1356
	struct mem_cgroup *curr = NULL;
1357
	struct task_struct *p;
1358
	bool ret;
1359

1360
	p = find_lock_task_mm(task);
1361 1362 1363 1364 1365 1366 1367 1368 1369
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1370
		rcu_read_lock();
1371 1372 1373
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1374
		rcu_read_unlock();
1375
	}
1376
	if (!curr)
1377
		return false;
1378
	/*
1379
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1380
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1381 1382
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1383
	 */
1384
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1385
	css_put(&curr->css);
1386 1387 1388
	return ret;
}

1389
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1390
{
1391
	unsigned long inactive_ratio;
1392
	unsigned long inactive;
1393
	unsigned long active;
1394
	unsigned long gb;
1395

1396 1397
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1398

1399 1400 1401 1402 1403 1404
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1405
	return inactive * inactive_ratio < active;
1406 1407
}

1408 1409 1410
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1411
/**
1412
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1413
 * @memcg: the memory cgroup
1414
 *
1415
 * Returns the maximum amount of memory @mem can be charged with, in
1416
 * pages.
1417
 */
1418
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1419
{
1420 1421
	unsigned long long margin;

1422
	margin = res_counter_margin(&memcg->res);
1423
	if (do_swap_account)
1424
		margin = min(margin, res_counter_margin(&memcg->memsw));
1425
	return margin >> PAGE_SHIFT;
1426 1427
}

1428
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1429 1430
{
	/* root ? */
T
Tejun Heo 已提交
1431
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1432 1433
		return vm_swappiness;

1434
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1435 1436
}

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1451 1452 1453 1454

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1455
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1456
{
1457
	atomic_inc(&memcg_moving);
1458
	atomic_inc(&memcg->moving_account);
1459 1460 1461
	synchronize_rcu();
}

1462
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1463
{
1464 1465 1466 1467
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1468 1469
	if (memcg) {
		atomic_dec(&memcg_moving);
1470
		atomic_dec(&memcg->moving_account);
1471
	}
1472
}
1473

1474 1475 1476
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1477 1478
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1479 1480 1481 1482 1483 1484 1485
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1486
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1487 1488
{
	VM_BUG_ON(!rcu_read_lock_held());
1489
	return atomic_read(&memcg->moving_account) > 0;
1490
}
1491

1492
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1493
{
1494 1495
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1496
	bool ret = false;
1497 1498 1499 1500 1501 1502 1503 1504 1505
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1506

1507 1508
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1509 1510
unlock:
	spin_unlock(&mc.lock);
1511 1512 1513
	return ret;
}

1514
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1515 1516
{
	if (mc.moving_task && current != mc.moving_task) {
1517
		if (mem_cgroup_under_move(memcg)) {
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1530 1531 1532 1533
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1534
 * see mem_cgroup_stolen(), too.
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1548
#define K(x) ((x) << (PAGE_SHIFT-10))
1549
/**
1550
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1568 1569
	struct mem_cgroup *iter;
	unsigned int i;
1570

1571
	if (!p)
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1590
	pr_info("Task in %s killed", memcg_name);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1603
	pr_cont(" as a result of limit of %s\n", memcg_name);
1604 1605
done:

1606
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1607 1608 1609
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1610
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1611 1612 1613
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1614
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1615 1616 1617
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1642 1643
}

1644 1645 1646 1647
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1648
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1649 1650
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1651 1652
	struct mem_cgroup *iter;

1653
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1654
		num++;
1655 1656 1657
	return num;
}

D
David Rientjes 已提交
1658 1659 1660
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1661
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1662 1663 1664
{
	u64 limit;

1665 1666
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1667
	/*
1668
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1669
	 */
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1684 1685
}

1686 1687
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1688 1689 1690 1691 1692 1693 1694
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1695
	/*
1696 1697 1698
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1699
	 */
1700
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1701 1702 1703 1704 1705
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1706 1707
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1708
		struct css_task_iter it;
1709 1710
		struct task_struct *task;

1711 1712
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1725
				css_task_iter_end(&it);
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1742
		css_task_iter_end(&it);
1743 1744 1745 1746 1747 1748 1749 1750 1751
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1788
#if MAX_NUMNODES > 1
1789 1790
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1791
 * @memcg: the target memcg
1792 1793 1794 1795 1796 1797 1798
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1799
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1800 1801
		int nid, bool noswap)
{
1802
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1803 1804 1805
		return true;
	if (noswap || !total_swap_pages)
		return false;
1806
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1807 1808 1809 1810
		return true;
	return false;

}
1811 1812 1813 1814 1815 1816 1817

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1818
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1819 1820
{
	int nid;
1821 1822 1823 1824
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1825
	if (!atomic_read(&memcg->numainfo_events))
1826
		return;
1827
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1828 1829 1830
		return;

	/* make a nodemask where this memcg uses memory from */
1831
	memcg->scan_nodes = node_states[N_MEMORY];
1832

1833
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1834

1835 1836
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1837
	}
1838

1839 1840
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1855
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1856 1857 1858
{
	int node;

1859 1860
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1861

1862
	node = next_node(node, memcg->scan_nodes);
1863
	if (node == MAX_NUMNODES)
1864
		node = first_node(memcg->scan_nodes);
1865 1866 1867 1868 1869 1870 1871 1872 1873
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1874
	memcg->last_scanned_node = node;
1875 1876 1877 1878
	return node;
}

#else
1879
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1880 1881 1882
{
	return 0;
}
1883

1884 1885
#endif

1886
/*
1887 1888
 * A group is eligible for the soft limit reclaim under the given root
 * hierarchy if
A
Andrew Morton 已提交
1889 1890
 *	a) it is over its soft limit
 *	b) any parent up the hierarchy is over its soft limit
1891 1892 1893
 *
 * If the given group doesn't have any children over the limit then it
 * doesn't make any sense to iterate its subtree.
1894
 */
1895 1896
enum mem_cgroup_filter_t
mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
1897
		struct mem_cgroup *root)
1898
{
1899 1900 1901 1902 1903
	struct mem_cgroup *parent;

	if (!memcg)
		memcg = root_mem_cgroup;
	parent = memcg;
1904 1905

	if (res_counter_soft_limit_excess(&memcg->res))
1906
		return VISIT;
1907 1908

	/*
1909 1910
	 * If any parent up to the root in the hierarchy is over its soft limit
	 * then we have to obey and reclaim from this group as well.
1911
	 */
A
Andrew Morton 已提交
1912
	while ((parent = parent_mem_cgroup(parent))) {
1913
		if (res_counter_soft_limit_excess(&parent->res))
1914
			return VISIT;
1915 1916
		if (parent == root)
			break;
1917
	}
1918

1919 1920
	if (!atomic_read(&memcg->children_in_excess))
		return SKIP_TREE;
1921
	return SKIP;
1922 1923
}

1924 1925
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1926 1927 1928 1929
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1930
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1931
{
1932
	struct mem_cgroup *iter, *failed = NULL;
1933

1934 1935
	spin_lock(&memcg_oom_lock);

1936
	for_each_mem_cgroup_tree(iter, memcg) {
1937
		if (iter->oom_lock) {
1938 1939 1940 1941 1942
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1943 1944
			mem_cgroup_iter_break(memcg, iter);
			break;
1945 1946
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1947
	}
K
KAMEZAWA Hiroyuki 已提交
1948

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1960 1961
		}
	}
1962 1963 1964 1965

	spin_unlock(&memcg_oom_lock);

	return !failed;
1966
}
1967

1968
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1969
{
K
KAMEZAWA Hiroyuki 已提交
1970 1971
	struct mem_cgroup *iter;

1972
	spin_lock(&memcg_oom_lock);
1973
	for_each_mem_cgroup_tree(iter, memcg)
1974
		iter->oom_lock = false;
1975
	spin_unlock(&memcg_oom_lock);
1976 1977
}

1978
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1979 1980 1981
{
	struct mem_cgroup *iter;

1982
	for_each_mem_cgroup_tree(iter, memcg)
1983 1984 1985
		atomic_inc(&iter->under_oom);
}

1986
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1987 1988 1989
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1990 1991 1992 1993 1994
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1995
	for_each_mem_cgroup_tree(iter, memcg)
1996
		atomic_add_unless(&iter->under_oom, -1, 0);
1997 1998
}

K
KAMEZAWA Hiroyuki 已提交
1999 2000
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2001
struct oom_wait_info {
2002
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2003 2004 2005 2006 2007 2008
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2009 2010
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2011 2012 2013
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2014
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2015 2016

	/*
2017
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2018 2019
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2020 2021
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2022 2023 2024 2025
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2026
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2027
{
2028
	atomic_inc(&memcg->oom_wakeups);
2029 2030
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2031 2032
}

2033
static void memcg_oom_recover(struct mem_cgroup *memcg)
2034
{
2035 2036
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2037 2038
}

K
KAMEZAWA Hiroyuki 已提交
2039
/*
2040
 * try to call OOM killer
K
KAMEZAWA Hiroyuki 已提交
2041
 */
2042
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2043
{
2044
	bool locked;
2045
	int wakeups;
K
KAMEZAWA Hiroyuki 已提交
2046

2047 2048 2049 2050
	if (!current->memcg_oom.may_oom)
		return;

	current->memcg_oom.in_memcg_oom = 1;
2051

K
KAMEZAWA Hiroyuki 已提交
2052
	/*
2053 2054 2055 2056 2057
	 * As with any blocking lock, a contender needs to start
	 * listening for wakeups before attempting the trylock,
	 * otherwise it can miss the wakeup from the unlock and sleep
	 * indefinitely.  This is just open-coded because our locking
	 * is so particular to memcg hierarchies.
K
KAMEZAWA Hiroyuki 已提交
2058
	 */
2059
	wakeups = atomic_read(&memcg->oom_wakeups);
2060 2061 2062 2063
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

2064
	if (locked)
2065
		mem_cgroup_oom_notify(memcg);
K
KAMEZAWA Hiroyuki 已提交
2066

2067 2068
	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
2069
		mem_cgroup_out_of_memory(memcg, mask, order);
2070 2071 2072 2073 2074 2075 2076
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
2077
	} else {
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
		/*
		 * A system call can just return -ENOMEM, but if this
		 * is a page fault and somebody else is handling the
		 * OOM already, we need to sleep on the OOM waitqueue
		 * for this memcg until the situation is resolved.
		 * Which can take some time because it might be
		 * handled by a userspace task.
		 *
		 * However, this is the charge context, which means
		 * that we may sit on a large call stack and hold
		 * various filesystem locks, the mmap_sem etc. and we
		 * don't want the OOM handler to deadlock on them
		 * while we sit here and wait.  Store the current OOM
		 * context in the task_struct, then return -ENOMEM.
		 * At the end of the page fault handler, with the
		 * stack unwound, pagefault_out_of_memory() will check
		 * back with us by calling
		 * mem_cgroup_oom_synchronize(), possibly putting the
		 * task to sleep.
		 */
		current->memcg_oom.oom_locked = locked;
		current->memcg_oom.wakeups = wakeups;
		css_get(&memcg->css);
		current->memcg_oom.wait_on_memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2102
	}
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
 *
 * This has to be called at the end of a page fault if the the memcg
 * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
 *
 * Memcg supports userspace OOM handling, so failed allocations must
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
 * the end of the page fault to put the task to sleep and clean up the
 * OOM state.
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
 * finalized, %false otherwise.
 */
bool mem_cgroup_oom_synchronize(void)
{
	struct oom_wait_info owait;
	struct mem_cgroup *memcg;

	/* OOM is global, do not handle */
	if (!current->memcg_oom.in_memcg_oom)
		return false;

	/*
	 * We invoked the OOM killer but there is a chance that a kill
	 * did not free up any charges.  Everybody else might already
	 * be sleeping, so restart the fault and keep the rampage
	 * going until some charges are released.
	 */
	memcg = current->memcg_oom.wait_on_memcg;
	if (!memcg)
		goto out;

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		goto out_memcg;

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2149

2150 2151 2152 2153 2154 2155 2156 2157
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	/* Only sleep if we didn't miss any wakeups since OOM */
	if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
		schedule();
	finish_wait(&memcg_oom_waitq, &owait.wait);
out_memcg:
	mem_cgroup_unmark_under_oom(memcg);
	if (current->memcg_oom.oom_locked) {
2158 2159 2160 2161 2162 2163 2164 2165
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2166 2167 2168 2169
	css_put(&memcg->css);
	current->memcg_oom.wait_on_memcg = NULL;
out:
	current->memcg_oom.in_memcg_oom = 0;
K
KAMEZAWA Hiroyuki 已提交
2170
	return true;
2171 2172
}

2173 2174 2175
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2193 2194
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2195
 */
2196

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2210
	 * need to take move_lock_mem_cgroup(). Because we already hold
2211
	 * rcu_read_lock(), any calls to move_account will be delayed until
2212
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2213
	 */
2214
	if (!mem_cgroup_stolen(memcg))
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2232
	 * should take move_lock_mem_cgroup().
2233 2234 2235 2236
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2237
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2238
				 enum mem_cgroup_stat_index idx, int val)
2239
{
2240
	struct mem_cgroup *memcg;
2241
	struct page_cgroup *pc = lookup_page_cgroup(page);
2242
	unsigned long uninitialized_var(flags);
2243

2244
	if (mem_cgroup_disabled())
2245
		return;
2246

2247
	VM_BUG_ON(!rcu_read_lock_held());
2248 2249
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2250
		return;
2251

2252
	this_cpu_add(memcg->stat->count[idx], val);
2253
}
2254

2255 2256 2257 2258
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2259
#define CHARGE_BATCH	32U
2260 2261
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2262
	unsigned int nr_pages;
2263
	struct work_struct work;
2264
	unsigned long flags;
2265
#define FLUSHING_CACHED_CHARGE	0
2266 2267
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2268
static DEFINE_MUTEX(percpu_charge_mutex);
2269

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2280
 */
2281
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2282 2283 2284 2285
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2286 2287 2288
	if (nr_pages > CHARGE_BATCH)
		return false;

2289
	stock = &get_cpu_var(memcg_stock);
2290 2291
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2305 2306 2307 2308
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2309
		if (do_swap_account)
2310 2311
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2324
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2325 2326
}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2338 2339
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2340
 * This will be consumed by consume_stock() function, later.
2341
 */
2342
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2343 2344 2345
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2346
	if (stock->cached != memcg) { /* reset if necessary */
2347
		drain_stock(stock);
2348
		stock->cached = memcg;
2349
	}
2350
	stock->nr_pages += nr_pages;
2351 2352 2353 2354
	put_cpu_var(memcg_stock);
}

/*
2355
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2356 2357
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2358
 */
2359
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2360
{
2361
	int cpu, curcpu;
2362

2363 2364
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2365
	curcpu = get_cpu();
2366 2367
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2368
		struct mem_cgroup *memcg;
2369

2370 2371
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2372
			continue;
2373
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2374
			continue;
2375 2376 2377 2378 2379 2380
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2381
	}
2382
	put_cpu();
2383 2384 2385 2386 2387 2388

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2389
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2390 2391 2392
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2393
	put_online_cpus();
2394 2395 2396 2397 2398 2399 2400 2401
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2402
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2403
{
2404 2405 2406 2407 2408
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2409
	drain_all_stock(root_memcg, false);
2410
	mutex_unlock(&percpu_charge_mutex);
2411 2412 2413
}

/* This is a synchronous drain interface. */
2414
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2415 2416
{
	/* called when force_empty is called */
2417
	mutex_lock(&percpu_charge_mutex);
2418
	drain_all_stock(root_memcg, true);
2419
	mutex_unlock(&percpu_charge_mutex);
2420 2421
}

2422 2423 2424 2425
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2426
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2427 2428 2429
{
	int i;

2430
	spin_lock(&memcg->pcp_counter_lock);
2431
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2432
		long x = per_cpu(memcg->stat->count[i], cpu);
2433

2434 2435
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2436
	}
2437
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2438
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2439

2440 2441
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2442
	}
2443
	spin_unlock(&memcg->pcp_counter_lock);
2444 2445
}

2446
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2447 2448 2449 2450 2451
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2452
	struct mem_cgroup *iter;
2453

2454
	if (action == CPU_ONLINE)
2455 2456
		return NOTIFY_OK;

2457
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2458
		return NOTIFY_OK;
2459

2460
	for_each_mem_cgroup(iter)
2461 2462
		mem_cgroup_drain_pcp_counter(iter, cpu);

2463 2464 2465 2466 2467
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2468 2469 2470 2471 2472 2473 2474 2475 2476

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2477
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2478
				unsigned int nr_pages, unsigned int min_pages,
2479
				bool invoke_oom)
2480
{
2481
	unsigned long csize = nr_pages * PAGE_SIZE;
2482 2483 2484 2485 2486
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2487
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2488 2489 2490 2491

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2492
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2493 2494 2495
		if (likely(!ret))
			return CHARGE_OK;

2496
		res_counter_uncharge(&memcg->res, csize);
2497 2498 2499 2500
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2501 2502 2503 2504
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2505
	if (nr_pages > min_pages)
2506 2507 2508 2509 2510
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2511 2512 2513
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2514
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2515
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2516
		return CHARGE_RETRY;
2517
	/*
2518 2519 2520 2521 2522 2523 2524
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2525
	 */
2526
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2527 2528 2529 2530 2531 2532 2533 2534 2535
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2536 2537
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2538

2539
	return CHARGE_NOMEM;
2540 2541
}

2542
/*
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2562
 */
2563
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2564
				   gfp_t gfp_mask,
2565
				   unsigned int nr_pages,
2566
				   struct mem_cgroup **ptr,
2567
				   bool oom)
2568
{
2569
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2570
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2571
	struct mem_cgroup *memcg = NULL;
2572
	int ret;
2573

K
KAMEZAWA Hiroyuki 已提交
2574 2575 2576 2577 2578 2579 2580 2581
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2582

2583
	/*
2584 2585
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2586
	 * thread group leader migrates. It's possible that mm is not
2587
	 * set, if so charge the root memcg (happens for pagecache usage).
2588
	 */
2589
	if (!*ptr && !mm)
2590
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2591
again:
2592 2593 2594
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2595
			goto done;
2596
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2597
			goto done;
2598
		css_get(&memcg->css);
2599
	} else {
K
KAMEZAWA Hiroyuki 已提交
2600
		struct task_struct *p;
2601

K
KAMEZAWA Hiroyuki 已提交
2602 2603 2604
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2605
		 * Because we don't have task_lock(), "p" can exit.
2606
		 * In that case, "memcg" can point to root or p can be NULL with
2607 2608 2609 2610 2611 2612
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2613
		 */
2614
		memcg = mem_cgroup_from_task(p);
2615 2616 2617
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2618 2619 2620
			rcu_read_unlock();
			goto done;
		}
2621
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2634
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2635 2636 2637 2638 2639
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2640

2641
	do {
2642
		bool invoke_oom = oom && !nr_oom_retries;
2643

2644
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2645
		if (fatal_signal_pending(current)) {
2646
			css_put(&memcg->css);
2647
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2648
		}
2649

2650 2651
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2652 2653 2654 2655
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2656
			batch = nr_pages;
2657 2658
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2659
			goto again;
2660
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2661
			css_put(&memcg->css);
2662 2663
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2664
			if (!oom || invoke_oom) {
2665
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2666
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2667
			}
2668 2669
			nr_oom_retries--;
			break;
2670
		}
2671 2672
	} while (ret != CHARGE_OK);

2673
	if (batch > nr_pages)
2674 2675
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2676
done:
2677
	*ptr = memcg;
2678 2679
	return 0;
nomem:
2680
	*ptr = NULL;
2681
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2682
bypass:
2683 2684
	*ptr = root_mem_cgroup;
	return -EINTR;
2685
}
2686

2687 2688 2689 2690 2691
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2692
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2693
				       unsigned int nr_pages)
2694
{
2695
	if (!mem_cgroup_is_root(memcg)) {
2696 2697
		unsigned long bytes = nr_pages * PAGE_SIZE;

2698
		res_counter_uncharge(&memcg->res, bytes);
2699
		if (do_swap_account)
2700
			res_counter_uncharge(&memcg->memsw, bytes);
2701
	}
2702 2703
}

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2722 2723
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2724 2725 2726
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2727 2728 2729 2730 2731 2732
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2733
	return mem_cgroup_from_id(id);
2734 2735
}

2736
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2737
{
2738
	struct mem_cgroup *memcg = NULL;
2739
	struct page_cgroup *pc;
2740
	unsigned short id;
2741 2742
	swp_entry_t ent;

2743 2744 2745
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2746
	lock_page_cgroup(pc);
2747
	if (PageCgroupUsed(pc)) {
2748 2749 2750
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2751
	} else if (PageSwapCache(page)) {
2752
		ent.val = page_private(page);
2753
		id = lookup_swap_cgroup_id(ent);
2754
		rcu_read_lock();
2755 2756 2757
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2758
		rcu_read_unlock();
2759
	}
2760
	unlock_page_cgroup(pc);
2761
	return memcg;
2762 2763
}

2764
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2765
				       struct page *page,
2766
				       unsigned int nr_pages,
2767 2768
				       enum charge_type ctype,
				       bool lrucare)
2769
{
2770
	struct page_cgroup *pc = lookup_page_cgroup(page);
2771
	struct zone *uninitialized_var(zone);
2772
	struct lruvec *lruvec;
2773
	bool was_on_lru = false;
2774
	bool anon;
2775

2776
	lock_page_cgroup(pc);
2777
	VM_BUG_ON(PageCgroupUsed(pc));
2778 2779 2780 2781
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2782 2783 2784 2785 2786 2787 2788 2789 2790

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2791
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2792
			ClearPageLRU(page);
2793
			del_page_from_lru_list(page, lruvec, page_lru(page));
2794 2795 2796 2797
			was_on_lru = true;
		}
	}

2798
	pc->mem_cgroup = memcg;
2799 2800 2801 2802 2803 2804
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2805
	 */
K
KAMEZAWA Hiroyuki 已提交
2806
	smp_wmb();
2807
	SetPageCgroupUsed(pc);
2808

2809 2810
	if (lrucare) {
		if (was_on_lru) {
2811
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2812 2813
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2814
			add_page_to_lru_list(page, lruvec, page_lru(page));
2815 2816 2817 2818
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2819
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2820 2821 2822 2823
		anon = true;
	else
		anon = false;

2824
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2825
	unlock_page_cgroup(pc);
2826

2827
	/*
2828
	 * "charge_statistics" updated event counter.
2829
	 */
2830
	memcg_check_events(memcg, page);
2831
}
2832

2833 2834
static DEFINE_MUTEX(set_limit_mutex);

2835 2836 2837 2838 2839 2840 2841
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2855
#ifdef CONFIG_SLABINFO
2856 2857
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2858
{
2859
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2929 2930 2931 2932 2933

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2934 2935 2936 2937 2938 2939 2940 2941
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2942
	if (memcg_kmem_test_and_clear_dead(memcg))
2943
		css_put(&memcg->css);
2944 2945
}

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3029 3030
static void kmem_cache_destroy_work_func(struct work_struct *w);

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3042
		size += offsetof(struct memcg_cache_params, memcg_caches);
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3082 3083
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3084
{
3085
	size_t size;
3086 3087 3088 3089

	if (!memcg_kmem_enabled())
		return 0;

3090 3091
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3092
		size += memcg_limited_groups_array_size * sizeof(void *);
3093 3094
	} else
		size = sizeof(struct memcg_cache_params);
3095

3096 3097 3098 3099
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3100
	if (memcg) {
3101
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3102
		s->memcg_params->root_cache = root_cache;
3103 3104
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3105 3106 3107
	} else
		s->memcg_params->is_root_cache = true;

3108 3109 3110 3111 3112
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3137
	css_put(&memcg->css);
3138
out:
3139 3140 3141
	kfree(s->memcg_params);
}

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3173 3174 3175 3176 3177 3178 3179 3180 3181
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3203 3204 3205 3206 3207 3208 3209 3210
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3231 3232 3233 3234 3235 3236 3237
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3238 3239 3240 3241 3242 3243 3244 3245 3246
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3247

3248 3249 3250
/*
 * Called with memcg_cache_mutex held
 */
3251 3252 3253 3254
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3255
	static char *tmp_name = NULL;
3256

3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3275

3276
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3277
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3278

3279 3280 3281
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3297 3298
	if (new_cachep) {
		css_put(&memcg->css);
3299
		goto out;
3300
	}
3301 3302 3303 3304

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3305
		css_put(&memcg->css);
3306 3307 3308
		goto out;
	}

G
Glauber Costa 已提交
3309
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3361
		cancel_work_sync(&c->memcg_params->destroy);
3362 3363 3364 3365 3366
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3367 3368 3369 3370 3371 3372
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3402 3403
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3404 3405 3406 3407
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3408 3409
	if (cw == NULL) {
		css_put(&memcg->css);
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3460 3461 3462
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3463 3464 3465 3466
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3467
		goto out;
3468 3469 3470 3471 3472 3473 3474 3475

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3476 3477 3478
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3479 3480
	}

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3508 3509 3510
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3547 3548 3549
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3634 3635 3636 3637
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3638 3639
#endif /* CONFIG_MEMCG_KMEM */

3640 3641
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3642
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3643 3644
/*
 * Because tail pages are not marked as "used", set it. We're under
3645 3646 3647
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3648
 */
3649
void mem_cgroup_split_huge_fixup(struct page *head)
3650 3651
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3652
	struct page_cgroup *pc;
3653
	struct mem_cgroup *memcg;
3654
	int i;
3655

3656 3657
	if (mem_cgroup_disabled())
		return;
3658 3659

	memcg = head_pc->mem_cgroup;
3660 3661
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3662
		pc->mem_cgroup = memcg;
3663 3664 3665
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3666 3667
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3668
}
3669
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3670

3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
static inline
void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
					struct mem_cgroup *to,
					unsigned int nr_pages,
					enum mem_cgroup_stat_index idx)
{
	/* Update stat data for mem_cgroup */
	preempt_disable();
	WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
	__this_cpu_add(from->stat->count[idx], -nr_pages);
	__this_cpu_add(to->stat->count[idx], nr_pages);
	preempt_enable();
}

3685
/**
3686
 * mem_cgroup_move_account - move account of the page
3687
 * @page: the page
3688
 * @nr_pages: number of regular pages (>1 for huge pages)
3689 3690 3691 3692 3693
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3694
 * - page is not on LRU (isolate_page() is useful.)
3695
 * - compound_lock is held when nr_pages > 1
3696
 *
3697 3698
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3699
 */
3700 3701 3702 3703
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3704
				   struct mem_cgroup *to)
3705
{
3706 3707
	unsigned long flags;
	int ret;
3708
	bool anon = PageAnon(page);
3709

3710
	VM_BUG_ON(from == to);
3711
	VM_BUG_ON(PageLRU(page));
3712 3713 3714 3715 3716 3717 3718
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3719
	if (nr_pages > 1 && !PageTransHuge(page))
3720 3721 3722 3723 3724 3725 3726 3727
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3728
	move_lock_mem_cgroup(from, &flags);
3729

3730 3731 3732 3733 3734 3735 3736 3737
	if (!anon && page_mapped(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_FILE_MAPPED);

	if (PageWriteback(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_WRITEBACK);

3738
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3739

3740
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3741
	pc->mem_cgroup = to;
3742
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3743
	move_unlock_mem_cgroup(from, &flags);
3744 3745
	ret = 0;
unlock:
3746
	unlock_page_cgroup(pc);
3747 3748 3749
	/*
	 * check events
	 */
3750 3751
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3752
out:
3753 3754 3755
	return ret;
}

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3776
 */
3777 3778
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3779
				  struct mem_cgroup *child)
3780 3781
{
	struct mem_cgroup *parent;
3782
	unsigned int nr_pages;
3783
	unsigned long uninitialized_var(flags);
3784 3785
	int ret;

3786
	VM_BUG_ON(mem_cgroup_is_root(child));
3787

3788 3789 3790 3791 3792
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3793

3794
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3795

3796 3797 3798 3799 3800 3801
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3802

3803 3804
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3805
		flags = compound_lock_irqsave(page);
3806
	}
3807

3808
	ret = mem_cgroup_move_account(page, nr_pages,
3809
				pc, child, parent);
3810 3811
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3812

3813
	if (nr_pages > 1)
3814
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3815
	putback_lru_page(page);
3816
put:
3817
	put_page(page);
3818
out:
3819 3820 3821
	return ret;
}

3822 3823 3824 3825 3826 3827 3828
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3829
				gfp_t gfp_mask, enum charge_type ctype)
3830
{
3831
	struct mem_cgroup *memcg = NULL;
3832
	unsigned int nr_pages = 1;
3833
	bool oom = true;
3834
	int ret;
A
Andrea Arcangeli 已提交
3835

A
Andrea Arcangeli 已提交
3836
	if (PageTransHuge(page)) {
3837
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3838
		VM_BUG_ON(!PageTransHuge(page));
3839 3840 3841 3842 3843
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3844
	}
3845

3846
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3847
	if (ret == -ENOMEM)
3848
		return ret;
3849
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3850 3851 3852
	return 0;
}

3853 3854
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3855
{
3856
	if (mem_cgroup_disabled())
3857
		return 0;
3858 3859 3860
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3861
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3862
					MEM_CGROUP_CHARGE_TYPE_ANON);
3863 3864
}

3865 3866 3867
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3868
 * struct page_cgroup is acquired. This refcnt will be consumed by
3869 3870
 * "commit()" or removed by "cancel()"
 */
3871 3872 3873 3874
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3875
{
3876
	struct mem_cgroup *memcg;
3877
	struct page_cgroup *pc;
3878
	int ret;
3879

3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3890 3891
	if (!do_swap_account)
		goto charge_cur_mm;
3892 3893
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3894
		goto charge_cur_mm;
3895 3896
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3897
	css_put(&memcg->css);
3898 3899
	if (ret == -EINTR)
		ret = 0;
3900
	return ret;
3901
charge_cur_mm:
3902 3903 3904 3905
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3906 3907
}

3908 3909 3910 3911 3912 3913
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3928 3929 3930
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3931 3932 3933 3934 3935 3936 3937 3938 3939
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3940
static void
3941
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3942
					enum charge_type ctype)
3943
{
3944
	if (mem_cgroup_disabled())
3945
		return;
3946
	if (!memcg)
3947
		return;
3948

3949
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3950 3951 3952
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3953 3954 3955
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3956
	 */
3957
	if (do_swap_account && PageSwapCache(page)) {
3958
		swp_entry_t ent = {.val = page_private(page)};
3959
		mem_cgroup_uncharge_swap(ent);
3960
	}
3961 3962
}

3963 3964
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3965
{
3966
	__mem_cgroup_commit_charge_swapin(page, memcg,
3967
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3968 3969
}

3970 3971
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3972
{
3973 3974 3975 3976
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3977
	if (mem_cgroup_disabled())
3978 3979 3980 3981 3982 3983 3984
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3985 3986
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3987 3988 3989 3990
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3991 3992
}

3993
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3994 3995
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3996 3997 3998
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3999

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4011
		batch->memcg = memcg;
4012 4013
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4014
	 * In those cases, all pages freed continuously can be expected to be in
4015 4016 4017 4018 4019 4020 4021 4022
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4023
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4024 4025
		goto direct_uncharge;

4026 4027 4028 4029 4030
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4031
	if (batch->memcg != memcg)
4032 4033
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4034
	batch->nr_pages++;
4035
	if (uncharge_memsw)
4036
		batch->memsw_nr_pages++;
4037 4038
	return;
direct_uncharge:
4039
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4040
	if (uncharge_memsw)
4041 4042 4043
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4044
}
4045

4046
/*
4047
 * uncharge if !page_mapped(page)
4048
 */
4049
static struct mem_cgroup *
4050 4051
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4052
{
4053
	struct mem_cgroup *memcg = NULL;
4054 4055
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4056
	bool anon;
4057

4058
	if (mem_cgroup_disabled())
4059
		return NULL;
4060

A
Andrea Arcangeli 已提交
4061
	if (PageTransHuge(page)) {
4062
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4063 4064
		VM_BUG_ON(!PageTransHuge(page));
	}
4065
	/*
4066
	 * Check if our page_cgroup is valid
4067
	 */
4068
	pc = lookup_page_cgroup(page);
4069
	if (unlikely(!PageCgroupUsed(pc)))
4070
		return NULL;
4071

4072
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4073

4074
	memcg = pc->mem_cgroup;
4075

K
KAMEZAWA Hiroyuki 已提交
4076 4077 4078
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4079 4080
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4081
	switch (ctype) {
4082
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4083 4084 4085 4086 4087
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4088 4089
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4090
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4091
		/* See mem_cgroup_prepare_migration() */
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4113
	}
K
KAMEZAWA Hiroyuki 已提交
4114

4115
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4116

4117
	ClearPageCgroupUsed(pc);
4118 4119 4120 4121 4122 4123
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4124

4125
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4126
	/*
4127
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4128
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4129
	 */
4130
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4131
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4132
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4133
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4134
	}
4135 4136 4137 4138 4139 4140
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4141
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4142

4143
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4144 4145 4146

unlock_out:
	unlock_page_cgroup(pc);
4147
	return NULL;
4148 4149
}

4150 4151
void mem_cgroup_uncharge_page(struct page *page)
{
4152 4153 4154
	/* early check. */
	if (page_mapped(page))
		return;
4155
	VM_BUG_ON(page->mapping && !PageAnon(page));
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4168 4169
	if (PageSwapCache(page))
		return;
4170
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4171 4172 4173 4174 4175
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4176
	VM_BUG_ON(page->mapping);
4177
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4178 4179
}

4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4194 4195
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4216 4217 4218 4219 4220 4221
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4222
	memcg_oom_recover(batch->memcg);
4223 4224 4225 4226
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4227
#ifdef CONFIG_SWAP
4228
/*
4229
 * called after __delete_from_swap_cache() and drop "page" account.
4230 4231
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4232 4233
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4234 4235
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4236 4237 4238 4239 4240
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4241
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4242

K
KAMEZAWA Hiroyuki 已提交
4243 4244
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4245
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4246 4247
	 */
	if (do_swap_account && swapout && memcg)
L
Li Zefan 已提交
4248
		swap_cgroup_record(ent, mem_cgroup_id(memcg));
4249
}
4250
#endif
4251

A
Andrew Morton 已提交
4252
#ifdef CONFIG_MEMCG_SWAP
4253 4254 4255 4256 4257
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4258
{
4259
	struct mem_cgroup *memcg;
4260
	unsigned short id;
4261 4262 4263 4264

	if (!do_swap_account)
		return;

4265 4266 4267
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4268
	if (memcg) {
4269 4270 4271 4272
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4273
		if (!mem_cgroup_is_root(memcg))
4274
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4275
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4276
		css_put(&memcg->css);
4277
	}
4278
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4279
}
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4296
				struct mem_cgroup *from, struct mem_cgroup *to)
4297 4298 4299
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
4300 4301
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
4302 4303 4304

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4305
		mem_cgroup_swap_statistics(to, true);
4306
		/*
4307 4308 4309
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4310 4311 4312 4313 4314 4315
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4316
		 */
L
Li Zefan 已提交
4317
		css_get(&to->css);
4318 4319 4320 4321 4322 4323
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4324
				struct mem_cgroup *from, struct mem_cgroup *to)
4325 4326 4327
{
	return -EINVAL;
}
4328
#endif
K
KAMEZAWA Hiroyuki 已提交
4329

4330
/*
4331 4332
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4333
 */
4334 4335
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4336
{
4337
	struct mem_cgroup *memcg = NULL;
4338
	unsigned int nr_pages = 1;
4339
	struct page_cgroup *pc;
4340
	enum charge_type ctype;
4341

4342
	*memcgp = NULL;
4343

4344
	if (mem_cgroup_disabled())
4345
		return;
4346

4347 4348 4349
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4350 4351 4352
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4353 4354
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4386
	}
4387
	unlock_page_cgroup(pc);
4388 4389 4390 4391
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4392
	if (!memcg)
4393
		return;
4394

4395
	*memcgp = memcg;
4396 4397 4398 4399 4400 4401 4402
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4403
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4404
	else
4405
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4406 4407 4408 4409 4410
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4411
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4412
}
4413

4414
/* remove redundant charge if migration failed*/
4415
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4416
	struct page *oldpage, struct page *newpage, bool migration_ok)
4417
{
4418
	struct page *used, *unused;
4419
	struct page_cgroup *pc;
4420
	bool anon;
4421

4422
	if (!memcg)
4423
		return;
4424

4425
	if (!migration_ok) {
4426 4427
		used = oldpage;
		unused = newpage;
4428
	} else {
4429
		used = newpage;
4430 4431
		unused = oldpage;
	}
4432
	anon = PageAnon(used);
4433 4434 4435 4436
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4437
	css_put(&memcg->css);
4438
	/*
4439 4440 4441
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4442
	 */
4443 4444 4445 4446 4447
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4448
	/*
4449 4450 4451 4452 4453 4454
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4455
	 */
4456
	if (anon)
4457
		mem_cgroup_uncharge_page(used);
4458
}
4459

4460 4461 4462 4463 4464 4465 4466 4467
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4468
	struct mem_cgroup *memcg = NULL;
4469 4470 4471 4472 4473 4474 4475 4476 4477
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4478 4479
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4480
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4481 4482
		ClearPageCgroupUsed(pc);
	}
4483 4484
	unlock_page_cgroup(pc);

4485 4486 4487 4488 4489 4490
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4491 4492 4493 4494 4495
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4496
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4497 4498
}

4499 4500 4501 4502 4503 4504
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4505 4506 4507 4508 4509
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4529 4530
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4531 4532 4533 4534
	}
}
#endif

4535
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4536
				unsigned long long val)
4537
{
4538
	int retry_count;
4539
	u64 memswlimit, memlimit;
4540
	int ret = 0;
4541 4542
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4543
	int enlarge;
4544 4545 4546 4547 4548 4549 4550 4551 4552

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4553

4554
	enlarge = 0;
4555
	while (retry_count) {
4556 4557 4558 4559
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4560 4561 4562
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4563
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4564 4565 4566 4567 4568 4569
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4570 4571
			break;
		}
4572 4573 4574 4575 4576

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4577
		ret = res_counter_set_limit(&memcg->res, val);
4578 4579 4580 4581 4582 4583
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4584 4585 4586 4587 4588
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4589 4590
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4591 4592
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4593
		if (curusage >= oldusage)
4594 4595 4596
			retry_count--;
		else
			oldusage = curusage;
4597
	}
4598 4599
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4600

4601 4602 4603
	return ret;
}

L
Li Zefan 已提交
4604 4605
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4606
{
4607
	int retry_count;
4608
	u64 memlimit, memswlimit, oldusage, curusage;
4609 4610
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4611
	int enlarge = 0;
4612

4613
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4614
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4615
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4616 4617 4618 4619 4620 4621 4622 4623
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4624
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4625 4626 4627 4628 4629 4630 4631 4632
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4633 4634 4635
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4636
		ret = res_counter_set_limit(&memcg->memsw, val);
4637 4638 4639 4640 4641 4642
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4643 4644 4645 4646 4647
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4648 4649 4650
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4651
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4652
		/* Usage is reduced ? */
4653
		if (curusage >= oldusage)
4654
			retry_count--;
4655 4656
		else
			oldusage = curusage;
4657
	}
4658 4659
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4660 4661 4662
	return ret;
}

4663 4664 4665 4666 4667 4668 4669
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4670
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4671 4672
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4673
 */
4674
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4675
				int node, int zid, enum lru_list lru)
4676
{
4677
	struct lruvec *lruvec;
4678
	unsigned long flags;
4679
	struct list_head *list;
4680 4681
	struct page *busy;
	struct zone *zone;
4682

K
KAMEZAWA Hiroyuki 已提交
4683
	zone = &NODE_DATA(node)->node_zones[zid];
4684 4685
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4686

4687
	busy = NULL;
4688
	do {
4689
		struct page_cgroup *pc;
4690 4691
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4692
		spin_lock_irqsave(&zone->lru_lock, flags);
4693
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4694
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4695
			break;
4696
		}
4697 4698 4699
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4700
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4701
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4702 4703
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4704
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4705

4706
		pc = lookup_page_cgroup(page);
4707

4708
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4709
			/* found lock contention or "pc" is obsolete. */
4710
			busy = page;
4711 4712 4713
			cond_resched();
		} else
			busy = NULL;
4714
	} while (!list_empty(list));
4715 4716 4717
}

/*
4718 4719
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4720
 * This enables deleting this mem_cgroup.
4721 4722
 *
 * Caller is responsible for holding css reference on the memcg.
4723
 */
4724
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4725
{
4726
	int node, zid;
4727
	u64 usage;
4728

4729
	do {
4730 4731
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4732 4733
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4734
		for_each_node_state(node, N_MEMORY) {
4735
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4736 4737
				enum lru_list lru;
				for_each_lru(lru) {
4738
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4739
							node, zid, lru);
4740
				}
4741
			}
4742
		}
4743 4744
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4745
		cond_resched();
4746

4747
		/*
4748 4749 4750 4751 4752
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4753 4754 4755 4756 4757 4758
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4759 4760 4761
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4762 4763
}

4764 4765 4766 4767 4768 4769 4770
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
4771
	struct cgroup_subsys_state *pos;
4772 4773

	/* bounce at first found */
4774
	css_for_each_child(pos, &memcg->css)
4775 4776 4777 4778 4779
		return true;
	return false;
}

/*
4780 4781
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4782 4783 4784 4785 4786 4787 4788 4789 4790
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4801

4802
	/* returns EBUSY if there is a task or if we come here twice. */
4803 4804 4805
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4806 4807
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4808
	/* try to free all pages in this cgroup */
4809
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4810
		int progress;
4811

4812 4813 4814
		if (signal_pending(current))
			return -EINTR;

4815
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4816
						false);
4817
		if (!progress) {
4818
			nr_retries--;
4819
			/* maybe some writeback is necessary */
4820
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4821
		}
4822 4823

	}
K
KAMEZAWA Hiroyuki 已提交
4824
	lru_add_drain();
4825 4826 4827
	mem_cgroup_reparent_charges(memcg);

	return 0;
4828 4829
}

4830 4831
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4832
{
4833
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4834

4835 4836
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4837
	return mem_cgroup_force_empty(memcg);
4838 4839
}

4840 4841
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4842
{
4843
	return mem_cgroup_from_css(css)->use_hierarchy;
4844 4845
}

4846 4847
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4848 4849
{
	int retval = 0;
4850
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4851
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4852

4853
	mutex_lock(&memcg_create_mutex);
4854 4855 4856 4857

	if (memcg->use_hierarchy == val)
		goto out;

4858
	/*
4859
	 * If parent's use_hierarchy is set, we can't make any modifications
4860 4861 4862 4863 4864 4865
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4866
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4867
				(val == 1 || val == 0)) {
4868
		if (!__memcg_has_children(memcg))
4869
			memcg->use_hierarchy = val;
4870 4871 4872 4873
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4874 4875

out:
4876
	mutex_unlock(&memcg_create_mutex);
4877 4878 4879 4880

	return retval;
}

4881

4882
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4883
					       enum mem_cgroup_stat_index idx)
4884
{
K
KAMEZAWA Hiroyuki 已提交
4885
	struct mem_cgroup *iter;
4886
	long val = 0;
4887

4888
	/* Per-cpu values can be negative, use a signed accumulator */
4889
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4890 4891 4892 4893 4894
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4895 4896
}

4897
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4898
{
K
KAMEZAWA Hiroyuki 已提交
4899
	u64 val;
4900

4901
	if (!mem_cgroup_is_root(memcg)) {
4902
		if (!swap)
4903
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4904
		else
4905
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4906 4907
	}

4908 4909 4910 4911
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
4912 4913
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4914

K
KAMEZAWA Hiroyuki 已提交
4915
	if (swap)
4916
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4917 4918 4919 4920

	return val << PAGE_SHIFT;
}

4921 4922 4923
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4924
{
4925
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4926
	char str[64];
4927
	u64 val;
G
Glauber Costa 已提交
4928 4929
	int name, len;
	enum res_type type;
4930 4931 4932

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4933

4934 4935
	switch (type) {
	case _MEM:
4936
		if (name == RES_USAGE)
4937
			val = mem_cgroup_usage(memcg, false);
4938
		else
4939
			val = res_counter_read_u64(&memcg->res, name);
4940 4941
		break;
	case _MEMSWAP:
4942
		if (name == RES_USAGE)
4943
			val = mem_cgroup_usage(memcg, true);
4944
		else
4945
			val = res_counter_read_u64(&memcg->memsw, name);
4946
		break;
4947 4948 4949
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4950 4951 4952
	default:
		BUG();
	}
4953 4954 4955

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4956
}
4957

4958
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
4959 4960 4961
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4962
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4975
	mutex_lock(&memcg_create_mutex);
4976
	mutex_lock(&set_limit_mutex);
4977
	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
4978
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
4979 4980 4981 4982 4983 4984
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4985 4986
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
4987
			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
4988 4989
			goto out;
		}
4990 4991 4992 4993 4994 4995
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
4996 4997 4998 4999
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5000
	mutex_unlock(&memcg_create_mutex);
5001 5002 5003 5004
#endif
	return ret;
}

5005
#ifdef CONFIG_MEMCG_KMEM
5006
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5007
{
5008
	int ret = 0;
5009 5010
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5011 5012
		goto out;

5013
	memcg->kmem_account_flags = parent->kmem_account_flags;
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5024 5025 5026 5027
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5028 5029 5030
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5031 5032 5033 5034
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5035
	memcg_stop_kmem_account();
5036
	ret = memcg_update_cache_sizes(memcg);
5037
	memcg_resume_kmem_account();
5038 5039 5040
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5041
}
5042
#endif /* CONFIG_MEMCG_KMEM */
5043

5044 5045 5046 5047
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5048
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5049
			    const char *buffer)
B
Balbir Singh 已提交
5050
{
5051
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5052 5053
	enum res_type type;
	int name;
5054 5055 5056
	unsigned long long val;
	int ret;

5057 5058
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5059

5060
	switch (name) {
5061
	case RES_LIMIT:
5062 5063 5064 5065
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5066 5067
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5068 5069 5070
		if (ret)
			break;
		if (type == _MEM)
5071
			ret = mem_cgroup_resize_limit(memcg, val);
5072
		else if (type == _MEMSWAP)
5073
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5074
		else if (type == _KMEM)
5075
			ret = memcg_update_kmem_limit(css, val);
5076 5077
		else
			return -EINVAL;
5078
		break;
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5093 5094 5095 5096 5097
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5098 5099
}

5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5110 5111
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5124
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5125
{
5126
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5127 5128
	int name;
	enum res_type type;
5129

5130 5131
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5132

5133
	switch (name) {
5134
	case RES_MAX_USAGE:
5135
		if (type == _MEM)
5136
			res_counter_reset_max(&memcg->res);
5137
		else if (type == _MEMSWAP)
5138
			res_counter_reset_max(&memcg->memsw);
5139 5140 5141 5142
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5143 5144
		break;
	case RES_FAILCNT:
5145
		if (type == _MEM)
5146
			res_counter_reset_failcnt(&memcg->res);
5147
		else if (type == _MEMSWAP)
5148
			res_counter_reset_failcnt(&memcg->memsw);
5149 5150 5151 5152
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5153 5154
		break;
	}
5155

5156
	return 0;
5157 5158
}

5159
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5160 5161
					struct cftype *cft)
{
5162
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5163 5164
}

5165
#ifdef CONFIG_MMU
5166
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5167 5168
					struct cftype *cft, u64 val)
{
5169
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5170 5171 5172

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5173

5174
	/*
5175 5176 5177 5178
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5179
	 */
5180
	memcg->move_charge_at_immigrate = val;
5181 5182
	return 0;
}
5183
#else
5184
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5185 5186 5187 5188 5189
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5190

5191
#ifdef CONFIG_NUMA
5192 5193
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5194 5195 5196 5197
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5198
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5199

5200
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5201
	seq_printf(m, "total=%lu", total_nr);
5202
	for_each_node_state(nid, N_MEMORY) {
5203
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5204 5205 5206 5207
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5208
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5209
	seq_printf(m, "file=%lu", file_nr);
5210
	for_each_node_state(nid, N_MEMORY) {
5211
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5212
				LRU_ALL_FILE);
5213 5214 5215 5216
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5217
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5218
	seq_printf(m, "anon=%lu", anon_nr);
5219
	for_each_node_state(nid, N_MEMORY) {
5220
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5221
				LRU_ALL_ANON);
5222 5223 5224 5225
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5226
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5227
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5228
	for_each_node_state(nid, N_MEMORY) {
5229
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5230
				BIT(LRU_UNEVICTABLE));
5231 5232 5233 5234 5235 5236 5237
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5238 5239 5240 5241 5242
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5243
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5244
				 struct seq_file *m)
5245
{
5246
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5247 5248
	struct mem_cgroup *mi;
	unsigned int i;
5249

5250
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5251
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5252
			continue;
5253 5254
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5255
	}
L
Lee Schermerhorn 已提交
5256

5257 5258 5259 5260 5261 5262 5263 5264
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5265
	/* Hierarchical information */
5266 5267
	{
		unsigned long long limit, memsw_limit;
5268
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5269
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5270
		if (do_swap_account)
5271 5272
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5273
	}
K
KOSAKI Motohiro 已提交
5274

5275 5276 5277
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5278
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5279
			continue;
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5300
	}
K
KAMEZAWA Hiroyuki 已提交
5301

K
KOSAKI Motohiro 已提交
5302 5303 5304 5305
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5306
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5307 5308 5309 5310 5311
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5312
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5313
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5314

5315 5316 5317 5318
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5319
			}
5320 5321 5322 5323
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5324 5325 5326
	}
#endif

5327 5328 5329
	return 0;
}

5330 5331
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5332
{
5333
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5334

5335
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5336 5337
}

5338 5339
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5340
{
5341
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5342
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5343

T
Tejun Heo 已提交
5344
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5345 5346
		return -EINVAL;

5347
	mutex_lock(&memcg_create_mutex);
5348

K
KOSAKI Motohiro 已提交
5349
	/* If under hierarchy, only empty-root can set this value */
5350
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5351
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5352
		return -EINVAL;
5353
	}
K
KOSAKI Motohiro 已提交
5354 5355 5356

	memcg->swappiness = val;

5357
	mutex_unlock(&memcg_create_mutex);
5358

K
KOSAKI Motohiro 已提交
5359 5360 5361
	return 0;
}

5362 5363 5364 5365 5366 5367 5368 5369
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5370
		t = rcu_dereference(memcg->thresholds.primary);
5371
	else
5372
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5373 5374 5375 5376 5377 5378 5379

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5380
	 * current_threshold points to threshold just below or equal to usage.
5381 5382 5383
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5384
	i = t->current_threshold;
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5408
	t->current_threshold = i - 1;
5409 5410 5411 5412 5413 5414
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5415 5416 5417 5418 5419 5420 5421
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5422 5423 5424 5425 5426 5427 5428
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5429 5430 5431 5432 5433 5434 5435
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5436 5437
}

5438
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5439 5440 5441
{
	struct mem_cgroup_eventfd_list *ev;

5442
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5443 5444 5445 5446
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5447
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5448
{
K
KAMEZAWA Hiroyuki 已提交
5449 5450
	struct mem_cgroup *iter;

5451
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5452
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5453 5454
}

5455
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5456
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5457
{
5458
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5459 5460
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5461
	enum res_type type = MEMFILE_TYPE(cft->private);
5462
	u64 threshold, usage;
5463
	int i, size, ret;
5464 5465 5466 5467 5468 5469

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5470

5471
	if (type == _MEM)
5472
		thresholds = &memcg->thresholds;
5473
	else if (type == _MEMSWAP)
5474
		thresholds = &memcg->memsw_thresholds;
5475 5476 5477 5478 5479 5480
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5481
	if (thresholds->primary)
5482 5483
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5484
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5485 5486

	/* Allocate memory for new array of thresholds */
5487
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5488
			GFP_KERNEL);
5489
	if (!new) {
5490 5491 5492
		ret = -ENOMEM;
		goto unlock;
	}
5493
	new->size = size;
5494 5495

	/* Copy thresholds (if any) to new array */
5496 5497
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5498
				sizeof(struct mem_cgroup_threshold));
5499 5500
	}

5501
	/* Add new threshold */
5502 5503
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5504 5505

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5506
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5507 5508 5509
			compare_thresholds, NULL);

	/* Find current threshold */
5510
	new->current_threshold = -1;
5511
	for (i = 0; i < size; i++) {
5512
		if (new->entries[i].threshold <= usage) {
5513
			/*
5514 5515
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5516 5517
			 * it here.
			 */
5518
			++new->current_threshold;
5519 5520
		} else
			break;
5521 5522
	}

5523 5524 5525 5526 5527
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5528

5529
	/* To be sure that nobody uses thresholds */
5530 5531 5532 5533 5534 5535 5536 5537
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5538
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5539
	struct cftype *cft, struct eventfd_ctx *eventfd)
5540
{
5541
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5542 5543
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5544
	enum res_type type = MEMFILE_TYPE(cft->private);
5545
	u64 usage;
5546
	int i, j, size;
5547 5548 5549

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5550
		thresholds = &memcg->thresholds;
5551
	else if (type == _MEMSWAP)
5552
		thresholds = &memcg->memsw_thresholds;
5553 5554 5555
	else
		BUG();

5556 5557 5558
	if (!thresholds->primary)
		goto unlock;

5559 5560 5561 5562 5563 5564
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5565 5566 5567
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5568 5569 5570
			size++;
	}

5571
	new = thresholds->spare;
5572

5573 5574
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5575 5576
		kfree(new);
		new = NULL;
5577
		goto swap_buffers;
5578 5579
	}

5580
	new->size = size;
5581 5582

	/* Copy thresholds and find current threshold */
5583 5584 5585
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5586 5587
			continue;

5588
		new->entries[j] = thresholds->primary->entries[i];
5589
		if (new->entries[j].threshold <= usage) {
5590
			/*
5591
			 * new->current_threshold will not be used
5592 5593 5594
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5595
			++new->current_threshold;
5596 5597 5598 5599
		}
		j++;
	}

5600
swap_buffers:
5601 5602
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5603 5604 5605 5606 5607 5608
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5609
	rcu_assign_pointer(thresholds->primary, new);
5610

5611
	/* To be sure that nobody uses thresholds */
5612
	synchronize_rcu();
5613
unlock:
5614 5615
	mutex_unlock(&memcg->thresholds_lock);
}
5616

5617
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5618 5619
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5620
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5621
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5622
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5623 5624 5625 5626 5627 5628

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5629
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5630 5631 5632 5633 5634

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5635
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5636
		eventfd_signal(eventfd, 1);
5637
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5638 5639 5640 5641

	return 0;
}

5642
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5643 5644
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5645
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5646
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5647
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5648 5649 5650

	BUG_ON(type != _OOM_TYPE);

5651
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5652

5653
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5654 5655 5656 5657 5658 5659
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5660
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5661 5662
}

5663
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5664 5665
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5666
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5667

5668
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5669

5670
	if (atomic_read(&memcg->under_oom))
5671 5672 5673 5674 5675 5676
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5677
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5678 5679
	struct cftype *cft, u64 val)
{
5680
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5681
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5682 5683

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5684
	if (!parent || !((val == 0) || (val == 1)))
5685 5686
		return -EINVAL;

5687
	mutex_lock(&memcg_create_mutex);
5688
	/* oom-kill-disable is a flag for subhierarchy. */
5689
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5690
		mutex_unlock(&memcg_create_mutex);
5691 5692
		return -EINVAL;
	}
5693
	memcg->oom_kill_disable = val;
5694
	if (!val)
5695
		memcg_oom_recover(memcg);
5696
	mutex_unlock(&memcg_create_mutex);
5697 5698 5699
	return 0;
}

A
Andrew Morton 已提交
5700
#ifdef CONFIG_MEMCG_KMEM
5701
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5702
{
5703 5704
	int ret;

5705
	memcg->kmemcg_id = -1;
5706 5707 5708
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5709

5710
	return mem_cgroup_sockets_init(memcg, ss);
5711
}
5712

5713
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5714
{
5715
	mem_cgroup_sockets_destroy(memcg);
5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5742 5743 5744 5745 5746 5747 5748

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5749
		css_put(&memcg->css);
G
Glauber Costa 已提交
5750
}
5751
#else
5752
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5753 5754 5755
{
	return 0;
}
G
Glauber Costa 已提交
5756

5757 5758 5759 5760 5761
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5762 5763
{
}
5764 5765
#endif

B
Balbir Singh 已提交
5766 5767
static struct cftype mem_cgroup_files[] = {
	{
5768
		.name = "usage_in_bytes",
5769
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5770
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5771 5772
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5773
	},
5774 5775
	{
		.name = "max_usage_in_bytes",
5776
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5777
		.trigger = mem_cgroup_reset,
5778
		.read = mem_cgroup_read,
5779
	},
B
Balbir Singh 已提交
5780
	{
5781
		.name = "limit_in_bytes",
5782
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5783
		.write_string = mem_cgroup_write,
5784
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5785
	},
5786 5787 5788 5789
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5790
		.read = mem_cgroup_read,
5791
	},
B
Balbir Singh 已提交
5792 5793
	{
		.name = "failcnt",
5794
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5795
		.trigger = mem_cgroup_reset,
5796
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5797
	},
5798 5799
	{
		.name = "stat",
5800
		.read_seq_string = memcg_stat_show,
5801
	},
5802 5803 5804 5805
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5806 5807
	{
		.name = "use_hierarchy",
5808
		.flags = CFTYPE_INSANE,
5809 5810 5811
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5812 5813 5814 5815 5816
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5817 5818 5819 5820 5821
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5822 5823
	{
		.name = "oom_control",
5824 5825
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5826 5827 5828 5829
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5830 5831 5832 5833 5834
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
5835 5836 5837
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5838
		.read_seq_string = memcg_numa_stat_show,
5839 5840
	},
#endif
5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5865 5866 5867 5868 5869 5870
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5871
#endif
5872
	{ },	/* terminate */
5873
};
5874

5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
5905
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5906 5907
{
	struct mem_cgroup_per_node *pn;
5908
	struct mem_cgroup_per_zone *mz;
5909
	int zone, tmp = node;
5910 5911 5912 5913 5914 5915 5916 5917
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5918 5919
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5920
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5921 5922
	if (!pn)
		return 1;
5923 5924 5925

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5926
		lruvec_init(&mz->lruvec);
5927
		mz->memcg = memcg;
5928
	}
5929
	memcg->nodeinfo[node] = pn;
5930 5931 5932
	return 0;
}

5933
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5934
{
5935
	kfree(memcg->nodeinfo[node]);
5936 5937
}

5938 5939
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5940
	struct mem_cgroup *memcg;
5941
	size_t size = memcg_size();
5942

5943
	/* Can be very big if nr_node_ids is very big */
5944
	if (size < PAGE_SIZE)
5945
		memcg = kzalloc(size, GFP_KERNEL);
5946
	else
5947
		memcg = vzalloc(size);
5948

5949
	if (!memcg)
5950 5951
		return NULL;

5952 5953
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5954
		goto out_free;
5955 5956
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5957 5958 5959

out_free:
	if (size < PAGE_SIZE)
5960
		kfree(memcg);
5961
	else
5962
		vfree(memcg);
5963
	return NULL;
5964 5965
}

5966
/*
5967 5968 5969 5970 5971 5972 5973 5974
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5975
 */
5976 5977

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5978
{
5979
	int node;
5980
	size_t size = memcg_size();
5981

5982 5983 5984 5985 5986
	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5998
	disarm_static_keys(memcg);
5999 6000 6001 6002
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6003
}
6004

6005 6006 6007
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6008
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6009
{
6010
	if (!memcg->res.parent)
6011
		return NULL;
6012
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6013
}
G
Glauber Costa 已提交
6014
EXPORT_SYMBOL(parent_mem_cgroup);
6015

L
Li Zefan 已提交
6016
static struct cgroup_subsys_state * __ref
6017
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6018
{
6019
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6020
	long error = -ENOMEM;
6021
	int node;
B
Balbir Singh 已提交
6022

6023 6024
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6025
		return ERR_PTR(error);
6026

B
Bob Liu 已提交
6027
	for_each_node(node)
6028
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6029
			goto free_out;
6030

6031
	/* root ? */
6032
	if (parent_css == NULL) {
6033
		root_mem_cgroup = memcg;
6034 6035 6036
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6037
	}
6038

6039 6040 6041 6042 6043
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6044
	vmpressure_init(&memcg->vmpressure);
6045
	spin_lock_init(&memcg->soft_lock);
6046 6047 6048 6049 6050 6051 6052 6053 6054

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6055
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6056
{
6057 6058
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6059 6060
	int error = 0;

6061 6062 6063
	if (css->cgroup->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;

T
Tejun Heo 已提交
6064
	if (!parent)
6065 6066
		return 0;

6067
	mutex_lock(&memcg_create_mutex);
6068 6069 6070 6071 6072 6073

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6074 6075
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6076
		res_counter_init(&memcg->kmem, &parent->kmem);
6077

6078
		/*
6079 6080
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6081
		 */
6082
	} else {
6083 6084
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6085
		res_counter_init(&memcg->kmem, NULL);
6086 6087 6088 6089 6090
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6091
		if (parent != root_mem_cgroup)
6092
			mem_cgroup_subsys.broken_hierarchy = true;
6093
	}
6094 6095

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6096
	mutex_unlock(&memcg_create_mutex);
6097
	return error;
B
Balbir Singh 已提交
6098 6099
}

M
Michal Hocko 已提交
6100 6101 6102 6103 6104 6105 6106 6107
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6108
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6109 6110 6111 6112 6113 6114

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6115
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6116 6117
}

6118
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6119
{
6120
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6121

6122 6123
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6124
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6125
	mem_cgroup_reparent_charges(memcg);
6126 6127 6128
	if (memcg->soft_contributed) {
		while ((memcg = parent_mem_cgroup(memcg)))
			atomic_dec(&memcg->children_in_excess);
6129 6130 6131

		if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
			atomic_dec(&root_mem_cgroup->children_in_excess);
6132
	}
G
Glauber Costa 已提交
6133
	mem_cgroup_destroy_all_caches(memcg);
6134
	vmpressure_cleanup(&memcg->vmpressure);
6135 6136
}

6137
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6138
{
6139
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6140

6141
	memcg_destroy_kmem(memcg);
6142
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6143 6144
}

6145
#ifdef CONFIG_MMU
6146
/* Handlers for move charge at task migration. */
6147 6148
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6149
{
6150 6151
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6152
	struct mem_cgroup *memcg = mc.to;
6153

6154
	if (mem_cgroup_is_root(memcg)) {
6155 6156 6157 6158 6159 6160 6161 6162
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6163
		 * "memcg" cannot be under rmdir() because we've already checked
6164 6165 6166 6167
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6168
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6169
			goto one_by_one;
6170
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6171
						PAGE_SIZE * count, &dummy)) {
6172
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6189 6190
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6191
		if (ret)
6192
			/* mem_cgroup_clear_mc() will do uncharge later */
6193
			return ret;
6194 6195
		mc.precharge++;
	}
6196 6197 6198 6199
	return ret;
}

/**
6200
 * get_mctgt_type - get target type of moving charge
6201 6202 6203
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6204
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6205 6206 6207 6208 6209 6210
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6211 6212 6213
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6214 6215 6216 6217 6218
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6219
	swp_entry_t	ent;
6220 6221 6222
};

enum mc_target_type {
6223
	MC_TARGET_NONE = 0,
6224
	MC_TARGET_PAGE,
6225
	MC_TARGET_SWAP,
6226 6227
};

D
Daisuke Nishimura 已提交
6228 6229
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6230
{
D
Daisuke Nishimura 已提交
6231
	struct page *page = vm_normal_page(vma, addr, ptent);
6232

D
Daisuke Nishimura 已提交
6233 6234 6235 6236
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6237
		if (!move_anon())
D
Daisuke Nishimura 已提交
6238
			return NULL;
6239 6240
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6241 6242 6243 6244 6245 6246 6247
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6248
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6249 6250 6251 6252 6253 6254 6255 6256
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6257 6258 6259 6260
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6261
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6262 6263 6264 6265 6266
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6267 6268 6269 6270 6271 6272 6273
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6274

6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6294 6295 6296 6297 6298 6299
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6300
		if (do_swap_account)
6301
			*entry = swap;
6302
		page = find_get_page(swap_address_space(swap), swap.val);
6303
	}
6304
#endif
6305 6306 6307
	return page;
}

6308
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6309 6310 6311 6312
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6313
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6314 6315 6316 6317 6318 6319
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6320 6321
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6322 6323

	if (!page && !ent.val)
6324
		return ret;
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6340 6341
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
6342
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6343 6344 6345
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6346 6347 6348 6349
	}
	return ret;
}

6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6385 6386 6387 6388 6389 6390 6391 6392
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6393 6394 6395 6396
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6397
		return 0;
6398
	}
6399

6400 6401
	if (pmd_trans_unstable(pmd))
		return 0;
6402 6403
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6404
		if (get_mctgt_type(vma, addr, *pte, NULL))
6405 6406 6407 6408
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6409 6410 6411
	return 0;
}

6412 6413 6414 6415 6416
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6417
	down_read(&mm->mmap_sem);
6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6429
	up_read(&mm->mmap_sem);
6430 6431 6432 6433 6434 6435 6436 6437 6438

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6439 6440 6441 6442 6443
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6444 6445
}

6446 6447
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6448
{
6449 6450
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6451
	int i;
6452

6453
	/* we must uncharge all the leftover precharges from mc.to */
6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6465
	}
6466 6467 6468 6469 6470 6471
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6472 6473 6474

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6475 6476 6477 6478 6479 6480 6481 6482 6483

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6484
		/* we've already done css_get(mc.to) */
6485 6486
		mc.moved_swap = 0;
	}
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6502
	spin_lock(&mc.lock);
6503 6504
	mc.from = NULL;
	mc.to = NULL;
6505
	spin_unlock(&mc.lock);
6506
	mem_cgroup_end_move(from);
6507 6508
}

6509
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6510
				 struct cgroup_taskset *tset)
6511
{
6512
	struct task_struct *p = cgroup_taskset_first(tset);
6513
	int ret = 0;
6514
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6515
	unsigned long move_charge_at_immigrate;
6516

6517 6518 6519 6520 6521 6522 6523
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6524 6525 6526
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6527
		VM_BUG_ON(from == memcg);
6528 6529 6530 6531 6532

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6533 6534 6535 6536
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6537
			VM_BUG_ON(mc.moved_charge);
6538
			VM_BUG_ON(mc.moved_swap);
6539
			mem_cgroup_start_move(from);
6540
			spin_lock(&mc.lock);
6541
			mc.from = from;
6542
			mc.to = memcg;
6543
			mc.immigrate_flags = move_charge_at_immigrate;
6544
			spin_unlock(&mc.lock);
6545
			/* We set mc.moving_task later */
6546 6547 6548 6549

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6550 6551
		}
		mmput(mm);
6552 6553 6554 6555
	}
	return ret;
}

6556
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6557
				     struct cgroup_taskset *tset)
6558
{
6559
	mem_cgroup_clear_mc();
6560 6561
}

6562 6563 6564
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6565
{
6566 6567 6568 6569
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6570 6571 6572 6573
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6574

6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6586
		if (mc.precharge < HPAGE_PMD_NR) {
6587 6588 6589 6590 6591 6592 6593 6594 6595
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6596
							pc, mc.from, mc.to)) {
6597 6598 6599 6600 6601 6602 6603 6604
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6605
		return 0;
6606 6607
	}

6608 6609
	if (pmd_trans_unstable(pmd))
		return 0;
6610 6611 6612 6613
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6614
		swp_entry_t ent;
6615 6616 6617 6618

		if (!mc.precharge)
			break;

6619
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6620 6621 6622 6623 6624
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6625
			if (!mem_cgroup_move_account(page, 1, pc,
6626
						     mc.from, mc.to)) {
6627
				mc.precharge--;
6628 6629
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6630 6631
			}
			putback_lru_page(page);
6632
put:			/* get_mctgt_type() gets the page */
6633 6634
			put_page(page);
			break;
6635 6636
		case MC_TARGET_SWAP:
			ent = target.ent;
6637
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6638
				mc.precharge--;
6639 6640 6641
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6642
			break;
6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6657
		ret = mem_cgroup_do_precharge(1);
6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6701
	up_read(&mm->mmap_sem);
6702 6703
}

6704
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6705
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6706
{
6707
	struct task_struct *p = cgroup_taskset_first(tset);
6708
	struct mm_struct *mm = get_task_mm(p);
6709 6710

	if (mm) {
6711 6712
		if (mc.to)
			mem_cgroup_move_charge(mm);
6713 6714
		mmput(mm);
	}
6715 6716
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6717
}
6718
#else	/* !CONFIG_MMU */
6719
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6720
				 struct cgroup_taskset *tset)
6721 6722 6723
{
	return 0;
}
6724
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6725
				     struct cgroup_taskset *tset)
6726 6727
{
}
6728
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6729
				 struct cgroup_taskset *tset)
6730 6731 6732
{
}
#endif
B
Balbir Singh 已提交
6733

6734 6735 6736 6737
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6738
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6739 6740 6741 6742 6743 6744
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6745 6746
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6747 6748
}

B
Balbir Singh 已提交
6749 6750 6751
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6752
	.css_alloc = mem_cgroup_css_alloc,
6753
	.css_online = mem_cgroup_css_online,
6754 6755
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6756 6757
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6758
	.attach = mem_cgroup_move_task,
6759
	.bind = mem_cgroup_bind,
6760
	.base_cftypes = mem_cgroup_files,
6761
	.early_init = 0,
B
Balbir Singh 已提交
6762
};
6763

A
Andrew Morton 已提交
6764
#ifdef CONFIG_MEMCG_SWAP
6765 6766
static int __init enable_swap_account(char *s)
{
6767
	if (!strcmp(s, "1"))
6768
		really_do_swap_account = 1;
6769
	else if (!strcmp(s, "0"))
6770 6771 6772
		really_do_swap_account = 0;
	return 1;
}
6773
__setup("swapaccount=", enable_swap_account);
6774

6775 6776
static void __init memsw_file_init(void)
{
6777 6778 6779 6780 6781 6782 6783 6784 6785
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6786
}
6787

6788
#else
6789
static void __init enable_swap_cgroup(void)
6790 6791
{
}
6792
#endif
6793 6794

/*
6795 6796 6797 6798 6799 6800
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6801 6802 6803 6804
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6805
	enable_swap_cgroup();
6806
	memcg_stock_init();
6807 6808 6809
	return 0;
}
subsys_initcall(mem_cgroup_init);