memcontrol.c 178.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/slab.h>
43
#include <linux/swap.h>
44
#include <linux/swapops.h>
45
#include <linux/spinlock.h>
46 47
#include <linux/eventfd.h>
#include <linux/sort.h>
48
#include <linux/fs.h>
49
#include <linux/seq_file.h>
50
#include <linux/vmalloc.h>
51
#include <linux/vmpressure.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
94 95 96 97 98
	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
99 100 101
	MEM_CGROUP_STAT_NSTATS,
};

102 103 104
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
105
	"rss_huge",
106 107 108 109
	"mapped_file",
	"swap",
};

110 111 112
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
113 114
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
115 116
	MEM_CGROUP_EVENTS_NSTATS,
};
117 118 119 120 121 122 123 124

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

125 126 127 128 129 130 131 132
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

133 134 135 136 137 138 139 140
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
141
	MEM_CGROUP_TARGET_SOFTLIMIT,
142
	MEM_CGROUP_TARGET_NUMAINFO,
143 144
	MEM_CGROUP_NTARGETS,
};
145 146 147
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
148

149
struct mem_cgroup_stat_cpu {
150
	long count[MEM_CGROUP_STAT_NSTATS];
151
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
152
	unsigned long nr_page_events;
153
	unsigned long targets[MEM_CGROUP_NTARGETS];
154 155
};

156
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
157 158 159 160
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
161
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
162 163
	unsigned long last_dead_count;

164 165 166 167
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

168 169 170 171
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
172
	struct lruvec		lruvec;
173
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
174

175 176
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

177
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
178
						/* use container_of	   */
179 180 181 182 183 184
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

185 186 187 188 189
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
190
/* For threshold */
191
struct mem_cgroup_threshold_ary {
192
	/* An array index points to threshold just below or equal to usage. */
193
	int current_threshold;
194 195 196 197 198
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
199 200 201 202 203 204 205 206 207 208 209 210

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
211 212 213 214 215
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
216

217 218
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
219

B
Balbir Singh 已提交
220 221 222 223 224 225 226
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
227 228 229
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
230 231 232 233 234 235 236
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
237

238 239 240
	/* vmpressure notifications */
	struct vmpressure vmpressure;

241 242 243 244
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
245

246 247 248 249
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
250 251 252 253
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
254
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
255 256 257 258

	bool		oom_lock;
	atomic_t	under_oom;

259
	int	swappiness;
260 261
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
262

263 264 265
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

266 267 268 269
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
270
	struct mem_cgroup_thresholds thresholds;
271

272
	/* thresholds for mem+swap usage. RCU-protected */
273
	struct mem_cgroup_thresholds memsw_thresholds;
274

K
KAMEZAWA Hiroyuki 已提交
275 276
	/* For oom notifier event fd */
	struct list_head oom_notify;
277

278 279 280 281 282
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
283 284 285 286
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
287 288
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
289
	/*
290
	 * percpu counter.
291
	 */
292
	struct mem_cgroup_stat_cpu __percpu *stat;
293 294 295 296 297 298
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
299

M
Michal Hocko 已提交
300
	atomic_t	dead_count;
M
Michal Hocko 已提交
301
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
302 303
	struct tcp_memcontrol tcp_mem;
#endif
304 305 306 307 308 309 310 311
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
312 313 314 315 316 317 318

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	/*
	 * Protects soft_contributed transitions.
	 * See mem_cgroup_update_soft_limit
	 */
	spinlock_t soft_lock;

	/*
	 * If true then this group has increased parents' children_in_excess
         * when it got over the soft limit.
	 * When a group falls bellow the soft limit, parents' children_in_excess
	 * is decreased and soft_contributed changed to false.
	 */
	bool soft_contributed;

	/* Number of children that are in soft limit excess */
	atomic_t children_in_excess;
335

336 337
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
338 339
};

340 341 342 343 344 345
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

346 347 348
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
349
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
350
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
351 352
};

353 354 355
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
356 357 358 359 360 361

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
362 363 364 365 366 367

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

368 369 370 371 372
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

373 374 375 376 377
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

378 379
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
380 381 382 383 384
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
385 386 387 388 389 390 391 392 393
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
394 395
#endif

396 397
/* Stuffs for move charges at task migration. */
/*
398 399
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
400 401
 */
enum move_type {
402
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
403
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
404 405 406
	NR_MOVE_TYPE,
};

407 408
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
409
	spinlock_t	  lock; /* for from, to */
410 411
	struct mem_cgroup *from;
	struct mem_cgroup *to;
412
	unsigned long immigrate_flags;
413
	unsigned long precharge;
414
	unsigned long moved_charge;
415
	unsigned long moved_swap;
416 417 418
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
419
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
420 421
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
422

D
Daisuke Nishimura 已提交
423 424
static bool move_anon(void)
{
425
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
426 427
}

428 429
static bool move_file(void)
{
430
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
431 432
}

433 434 435 436
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
437
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
438

439 440
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
441
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
442
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
443
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
444 445 446
	NR_CHARGE_TYPE,
};

447
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
448 449 450 451
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
452
	_KMEM,
G
Glauber Costa 已提交
453 454
};

455 456
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
457
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
458 459
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
460

461 462 463 464 465 466 467 468
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

469 470 471 472 473 474 475
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

476 477
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
478
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
479 480
}

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

499 500 501 502 503
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
504
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
505
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
506 507 508

void sock_update_memcg(struct sock *sk)
{
509
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
510
		struct mem_cgroup *memcg;
511
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
512 513 514

		BUG_ON(!sk->sk_prot->proto_cgroup);

515 516 517 518 519 520 521 522 523 524
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
525
			css_get(&sk->sk_cgrp->memcg->css);
526 527 528
			return;
		}

G
Glauber Costa 已提交
529 530
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
531
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
532 533
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
534
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
535 536 537 538 539 540 541 542
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
543
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
544 545 546
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
547
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
548 549
	}
}
G
Glauber Costa 已提交
550 551 552 553 554 555 556 557 558

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
559

560 561 562 563 564 565 566 567 568 569 570 571
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

572
#ifdef CONFIG_MEMCG_KMEM
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
591 592
int memcg_limited_groups_array_size;

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

608 609 610 611 612 613
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
614
struct static_key memcg_kmem_enabled_key;
615
EXPORT_SYMBOL(memcg_kmem_enabled_key);
616 617 618

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
619
	if (memcg_kmem_is_active(memcg)) {
620
		static_key_slow_dec(&memcg_kmem_enabled_key);
621 622
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
623 624 625 626 627
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
628 629 630 631 632 633 634 635 636 637 638 639 640
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

641
static void drain_all_stock_async(struct mem_cgroup *memcg);
642

643
static struct mem_cgroup_per_zone *
644
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
645
{
646
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
647
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
648 649
}

650
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
651
{
652
	return &memcg->css;
653 654
}

655
static struct mem_cgroup_per_zone *
656
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
657
{
658 659
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
660

661
	return mem_cgroup_zoneinfo(memcg, nid, zid);
662 663
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
683
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
684
				 enum mem_cgroup_stat_index idx)
685
{
686
	long val = 0;
687 688
	int cpu;

689 690
	get_online_cpus();
	for_each_online_cpu(cpu)
691
		val += per_cpu(memcg->stat->count[idx], cpu);
692
#ifdef CONFIG_HOTPLUG_CPU
693 694 695
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
696 697
#endif
	put_online_cpus();
698 699 700
	return val;
}

701
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
702 703 704
					 bool charge)
{
	int val = (charge) ? 1 : -1;
705
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
706 707
}

708
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
709 710 711 712 713 714
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
715
		val += per_cpu(memcg->stat->events[idx], cpu);
716
#ifdef CONFIG_HOTPLUG_CPU
717 718 719
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
720 721 722 723
#endif
	return val;
}

724
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
725
					 struct page *page,
726
					 bool anon, int nr_pages)
727
{
728 729
	preempt_disable();

730 731 732 733 734 735
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
736
				nr_pages);
737
	else
738
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
739
				nr_pages);
740

741 742 743 744
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

745 746
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
747
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
748
	else {
749
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
750 751
		nr_pages = -nr_pages; /* for event */
	}
752

753
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
754

755
	preempt_enable();
756 757
}

758
unsigned long
759
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
760 761 762 763 764 765 766 767
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
768
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
769
			unsigned int lru_mask)
770 771
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
772
	enum lru_list lru;
773 774
	unsigned long ret = 0;

775
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
776

H
Hugh Dickins 已提交
777 778 779
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
780 781 782 783 784
	}
	return ret;
}

static unsigned long
785
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
786 787
			int nid, unsigned int lru_mask)
{
788 789 790
	u64 total = 0;
	int zid;

791
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
792 793
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
794

795 796
	return total;
}
797

798
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
799
			unsigned int lru_mask)
800
{
801
	int nid;
802 803
	u64 total = 0;

804
	for_each_node_state(nid, N_MEMORY)
805
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
806
	return total;
807 808
}

809 810
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
811 812 813
{
	unsigned long val, next;

814
	val = __this_cpu_read(memcg->stat->nr_page_events);
815
	next = __this_cpu_read(memcg->stat->targets[target]);
816
	/* from time_after() in jiffies.h */
817 818 819 820 821
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
822 823 824
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
825 826 827 828 829 830 831 832
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
833
	}
834
	return false;
835 836
}

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
/*
 * Called from rate-limitted memcg_check_events when enough
 * MEM_CGROUP_TARGET_SOFTLIMIT events are accumulated and it makes sure
 * that all the parents up the hierarchy will be noticed that this group
 * is in excess or that it is not in excess anymore. mmecg->soft_contributed
 * makes the transition a single action whenever the state flips from one to
 * other.
 */
static void mem_cgroup_update_soft_limit(struct mem_cgroup *memcg)
{
	unsigned long long excess = res_counter_soft_limit_excess(&memcg->res);
	struct mem_cgroup *parent = memcg;
	int delta = 0;

	spin_lock(&memcg->soft_lock);
	if (excess) {
		if (!memcg->soft_contributed) {
			delta = 1;
			memcg->soft_contributed = true;
		}
	} else {
		if (memcg->soft_contributed) {
			delta = -1;
			memcg->soft_contributed = false;
		}
	}

	/*
	 * Necessary to update all ancestors when hierarchy is used
	 * because their event counter is not touched.
	 */
	while (delta && (parent = parent_mem_cgroup(parent)))
		atomic_add(delta, &parent->children_in_excess);
	spin_unlock(&memcg->soft_lock);
}

873 874 875 876
/*
 * Check events in order.
 *
 */
877
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
878
{
879
	preempt_disable();
880
	/* threshold event is triggered in finer grain than soft limit */
881 882
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
883
		bool do_softlimit;
884
		bool do_numainfo __maybe_unused;
885

886 887
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
888 889 890 891 892 893
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

894
		mem_cgroup_threshold(memcg);
895 896
		if (unlikely(do_softlimit))
			mem_cgroup_update_soft_limit(memcg);
897
#if MAX_NUMNODES > 1
898
		if (unlikely(do_numainfo))
899
			atomic_inc(&memcg->numainfo_events);
900
#endif
901 902
	} else
		preempt_enable();
903 904
}

905
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
906
{
907 908 909 910 911 912 913 914
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

915
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
916 917
}

918
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
919
{
920
	struct mem_cgroup *memcg = NULL;
921 922 923

	if (!mm)
		return NULL;
924 925 926 927 928 929 930
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
931 932
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
933
			break;
934
	} while (!css_tryget(&memcg->css));
935
	rcu_read_unlock();
936
	return memcg;
937 938
}

939 940 941 942 943 944 945 946 947
static enum mem_cgroup_filter_t
mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root,
		mem_cgroup_iter_filter cond)
{
	if (!cond)
		return VISIT;
	return cond(memcg, root);
}

948 949 950 951 952 953 954
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
955
		struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond)
956
{
957
	struct cgroup_subsys_state *prev_css, *next_css;
958

959
	prev_css = last_visited ? &last_visited->css : NULL;
960
skip_node:
961
	next_css = css_next_descendant_pre(prev_css, &root->css);
962 963 964 965 966 967 968 969

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
970 971 972
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

973 974
		switch (mem_cgroup_filter(mem, root, cond)) {
		case SKIP:
975
			prev_css = next_css;
976
			goto skip_node;
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
		case SKIP_TREE:
			if (mem == root)
				return NULL;
			/*
			 * css_rightmost_descendant is not an optimal way to
			 * skip through a subtree (especially for imbalanced
			 * trees leaning to right) but that's what we have right
			 * now. More effective solution would be traversing
			 * right-up for first non-NULL without calling
			 * css_next_descendant_pre afterwards.
			 */
			prev_css = css_rightmost_descendant(next_css);
			goto skip_node;
		case VISIT:
			if (css_tryget(&mem->css))
				return mem;
			else {
				prev_css = next_css;
				goto skip_node;
			}
			break;
998 999 1000 1001 1002 1003
		}
	}

	return NULL;
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1056 1057 1058 1059 1060
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1061
 * @cond: filter for visited nodes, NULL for no filter
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1074
struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
1075
				   struct mem_cgroup *prev,
1076 1077
				   struct mem_cgroup_reclaim_cookie *reclaim,
				   mem_cgroup_iter_filter cond)
K
KAMEZAWA Hiroyuki 已提交
1078
{
1079
	struct mem_cgroup *memcg = NULL;
1080
	struct mem_cgroup *last_visited = NULL;
1081

1082 1083 1084 1085
	if (mem_cgroup_disabled()) {
		/* first call must return non-NULL, second return NULL */
		return (struct mem_cgroup *)(unsigned long)!prev;
	}
1086

1087 1088
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1089

1090
	if (prev && !reclaim)
1091
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1092

1093 1094
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1095
			goto out_css_put;
1096 1097 1098
		if (mem_cgroup_filter(root, root, cond) == VISIT)
			return root;
		return NULL;
1099
	}
K
KAMEZAWA Hiroyuki 已提交
1100

1101
	rcu_read_lock();
1102
	while (!memcg) {
1103
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1104
		int uninitialized_var(seq);
1105

1106 1107 1108 1109 1110 1111 1112
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1113
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1114
				iter->last_visited = NULL;
1115 1116
				goto out_unlock;
			}
M
Michal Hocko 已提交
1117

1118
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1119
		}
K
KAMEZAWA Hiroyuki 已提交
1120

1121
		memcg = __mem_cgroup_iter_next(root, last_visited, cond);
K
KAMEZAWA Hiroyuki 已提交
1122

1123
		if (reclaim) {
1124
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1125

M
Michal Hocko 已提交
1126
			if (!memcg)
1127 1128 1129 1130
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1131

1132 1133 1134 1135 1136
		/*
		 * We have finished the whole tree walk or no group has been
		 * visited because filter told us to skip the root node.
		 */
		if (!memcg && (prev || (cond && !last_visited)))
1137
			goto out_unlock;
1138
	}
1139 1140
out_unlock:
	rcu_read_unlock();
1141 1142 1143 1144
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1145
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1146
}
K
KAMEZAWA Hiroyuki 已提交
1147

1148 1149 1150 1151 1152 1153 1154
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1155 1156 1157 1158 1159 1160
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1161

1162 1163 1164 1165 1166 1167
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1168
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1169
	     iter != NULL;				\
1170
	     iter = mem_cgroup_iter(root, iter, NULL))
1171

1172
#define for_each_mem_cgroup(iter)			\
1173
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1174
	     iter != NULL;				\
1175
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1176

1177
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1178
{
1179
	struct mem_cgroup *memcg;
1180 1181

	rcu_read_lock();
1182 1183
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1184 1185 1186 1187
		goto out;

	switch (idx) {
	case PGFAULT:
1188 1189 1190 1191
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1192 1193 1194 1195 1196 1197 1198
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1199
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1200

1201 1202 1203
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1204
 * @memcg: memcg of the wanted lruvec
1205 1206 1207 1208 1209 1210 1211 1212 1213
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1214
	struct lruvec *lruvec;
1215

1216 1217 1218 1219
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1220 1221

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1232 1233
}

K
KAMEZAWA Hiroyuki 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1247

1248
/**
1249
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1250
 * @page: the page
1251
 * @zone: zone of the page
1252
 */
1253
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1254 1255
{
	struct mem_cgroup_per_zone *mz;
1256 1257
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1258
	struct lruvec *lruvec;
1259

1260 1261 1262 1263
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1264

K
KAMEZAWA Hiroyuki 已提交
1265
	pc = lookup_page_cgroup(page);
1266
	memcg = pc->mem_cgroup;
1267 1268

	/*
1269
	 * Surreptitiously switch any uncharged offlist page to root:
1270 1271 1272 1273 1274 1275 1276
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1277
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1278 1279
		pc->mem_cgroup = memcg = root_mem_cgroup;

1280
	mz = page_cgroup_zoneinfo(memcg, page);
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1291
}
1292

1293
/**
1294 1295 1296 1297
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1298
 *
1299 1300
 * This function must be called when a page is added to or removed from an
 * lru list.
1301
 */
1302 1303
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1304 1305
{
	struct mem_cgroup_per_zone *mz;
1306
	unsigned long *lru_size;
1307 1308 1309 1310

	if (mem_cgroup_disabled())
		return;

1311 1312 1313 1314
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1315
}
1316

1317
/*
1318
 * Checks whether given mem is same or in the root_mem_cgroup's
1319 1320
 * hierarchy subtree
 */
1321 1322
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1323
{
1324 1325
	if (root_memcg == memcg)
		return true;
1326
	if (!root_memcg->use_hierarchy || !memcg)
1327
		return false;
1328 1329 1330 1331 1332 1333 1334 1335
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1336
	rcu_read_lock();
1337
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1338 1339
	rcu_read_unlock();
	return ret;
1340 1341
}

1342 1343
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1344
{
1345
	struct mem_cgroup *curr = NULL;
1346
	struct task_struct *p;
1347
	bool ret;
1348

1349
	p = find_lock_task_mm(task);
1350 1351 1352 1353 1354 1355 1356 1357 1358
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1359
		rcu_read_lock();
1360 1361 1362
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1363
		rcu_read_unlock();
1364
	}
1365
	if (!curr)
1366
		return false;
1367
	/*
1368
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1369
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1370 1371
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1372
	 */
1373
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1374
	css_put(&curr->css);
1375 1376 1377
	return ret;
}

1378
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1379
{
1380
	unsigned long inactive_ratio;
1381
	unsigned long inactive;
1382
	unsigned long active;
1383
	unsigned long gb;
1384

1385 1386
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1387

1388 1389 1390 1391 1392 1393
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1394
	return inactive * inactive_ratio < active;
1395 1396
}

1397 1398 1399
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1400
/**
1401
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1402
 * @memcg: the memory cgroup
1403
 *
1404
 * Returns the maximum amount of memory @mem can be charged with, in
1405
 * pages.
1406
 */
1407
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1408
{
1409 1410
	unsigned long long margin;

1411
	margin = res_counter_margin(&memcg->res);
1412
	if (do_swap_account)
1413
		margin = min(margin, res_counter_margin(&memcg->memsw));
1414
	return margin >> PAGE_SHIFT;
1415 1416
}

1417
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1418 1419
{
	/* root ? */
T
Tejun Heo 已提交
1420
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1421 1422
		return vm_swappiness;

1423
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1424 1425
}

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1440 1441 1442 1443

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1444
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1445
{
1446
	atomic_inc(&memcg_moving);
1447
	atomic_inc(&memcg->moving_account);
1448 1449 1450
	synchronize_rcu();
}

1451
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1452
{
1453 1454 1455 1456
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1457 1458
	if (memcg) {
		atomic_dec(&memcg_moving);
1459
		atomic_dec(&memcg->moving_account);
1460
	}
1461
}
1462

1463 1464 1465
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1466 1467
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1468 1469 1470 1471 1472 1473 1474
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1475
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1476 1477
{
	VM_BUG_ON(!rcu_read_lock_held());
1478
	return atomic_read(&memcg->moving_account) > 0;
1479
}
1480

1481
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1482
{
1483 1484
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1485
	bool ret = false;
1486 1487 1488 1489 1490 1491 1492 1493 1494
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1495

1496 1497
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1498 1499
unlock:
	spin_unlock(&mc.lock);
1500 1501 1502
	return ret;
}

1503
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1504 1505
{
	if (mc.moving_task && current != mc.moving_task) {
1506
		if (mem_cgroup_under_move(memcg)) {
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1519 1520 1521 1522
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1523
 * see mem_cgroup_stolen(), too.
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1537
#define K(x) ((x) << (PAGE_SHIFT-10))
1538
/**
1539
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1557 1558
	struct mem_cgroup *iter;
	unsigned int i;
1559

1560
	if (!p)
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1579
	pr_info("Task in %s killed", memcg_name);
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1592
	pr_cont(" as a result of limit of %s\n", memcg_name);
1593 1594
done:

1595
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1596 1597 1598
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1599
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1600 1601 1602
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1603
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1604 1605 1606
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1631 1632
}

1633 1634 1635 1636
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1637
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1638 1639
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1640 1641
	struct mem_cgroup *iter;

1642
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1643
		num++;
1644 1645 1646
	return num;
}

D
David Rientjes 已提交
1647 1648 1649
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1650
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1651 1652 1653
{
	u64 limit;

1654 1655
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1656
	/*
1657
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1658
	 */
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1673 1674
}

1675 1676
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1677 1678 1679 1680 1681 1682 1683
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1684
	/*
1685 1686 1687
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1688
	 */
1689
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1690 1691 1692 1693 1694
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1695 1696
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1697
		struct css_task_iter it;
1698 1699
		struct task_struct *task;

1700 1701
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1714
				css_task_iter_end(&it);
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1731
		css_task_iter_end(&it);
1732 1733 1734 1735 1736 1737 1738 1739 1740
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1777
#if MAX_NUMNODES > 1
1778 1779
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1780
 * @memcg: the target memcg
1781 1782 1783 1784 1785 1786 1787
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1788
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1789 1790
		int nid, bool noswap)
{
1791
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1792 1793 1794
		return true;
	if (noswap || !total_swap_pages)
		return false;
1795
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1796 1797 1798 1799
		return true;
	return false;

}
1800 1801 1802 1803 1804 1805 1806

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1807
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1808 1809
{
	int nid;
1810 1811 1812 1813
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1814
	if (!atomic_read(&memcg->numainfo_events))
1815
		return;
1816
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1817 1818 1819
		return;

	/* make a nodemask where this memcg uses memory from */
1820
	memcg->scan_nodes = node_states[N_MEMORY];
1821

1822
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1823

1824 1825
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1826
	}
1827

1828 1829
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1844
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1845 1846 1847
{
	int node;

1848 1849
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1850

1851
	node = next_node(node, memcg->scan_nodes);
1852
	if (node == MAX_NUMNODES)
1853
		node = first_node(memcg->scan_nodes);
1854 1855 1856 1857 1858 1859 1860 1861 1862
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1863
	memcg->last_scanned_node = node;
1864 1865 1866 1867
	return node;
}

#else
1868
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1869 1870 1871
{
	return 0;
}
1872

1873 1874
#endif

1875
/*
1876 1877 1878
 * A group is eligible for the soft limit reclaim under the given root
 * hierarchy if
 * 	a) it is over its soft limit
1879
 * 	b) any parent up the hierarchy is over its soft limit
1880 1881 1882
 *
 * If the given group doesn't have any children over the limit then it
 * doesn't make any sense to iterate its subtree.
1883
 */
1884 1885
enum mem_cgroup_filter_t
mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
1886
		struct mem_cgroup *root)
1887
{
1888 1889 1890 1891 1892
	struct mem_cgroup *parent;

	if (!memcg)
		memcg = root_mem_cgroup;
	parent = memcg;
1893 1894

	if (res_counter_soft_limit_excess(&memcg->res))
1895
		return VISIT;
1896 1897

	/*
1898 1899
	 * If any parent up to the root in the hierarchy is over its soft limit
	 * then we have to obey and reclaim from this group as well.
1900 1901 1902
	 */
	while((parent = parent_mem_cgroup(parent))) {
		if (res_counter_soft_limit_excess(&parent->res))
1903
			return VISIT;
1904 1905
		if (parent == root)
			break;
1906
	}
1907

1908 1909
	if (!atomic_read(&memcg->children_in_excess))
		return SKIP_TREE;
1910
	return SKIP;
1911 1912
}

K
KAMEZAWA Hiroyuki 已提交
1913 1914 1915
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1916
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1917
 */
1918
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1919
{
1920
	struct mem_cgroup *iter, *failed = NULL;
1921

1922
	for_each_mem_cgroup_tree(iter, memcg) {
1923
		if (iter->oom_lock) {
1924 1925 1926 1927 1928
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1929 1930
			mem_cgroup_iter_break(memcg, iter);
			break;
1931 1932
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1933
	}
K
KAMEZAWA Hiroyuki 已提交
1934

1935
	if (!failed)
1936
		return true;
1937 1938 1939 1940 1941

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1942
	for_each_mem_cgroup_tree(iter, memcg) {
1943
		if (iter == failed) {
1944 1945
			mem_cgroup_iter_break(memcg, iter);
			break;
1946 1947 1948
		}
		iter->oom_lock = false;
	}
1949
	return false;
1950
}
1951

1952
/*
1953
 * Has to be called with memcg_oom_lock
1954
 */
1955
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1956
{
K
KAMEZAWA Hiroyuki 已提交
1957 1958
	struct mem_cgroup *iter;

1959
	for_each_mem_cgroup_tree(iter, memcg)
1960 1961 1962 1963
		iter->oom_lock = false;
	return 0;
}

1964
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1965 1966 1967
{
	struct mem_cgroup *iter;

1968
	for_each_mem_cgroup_tree(iter, memcg)
1969 1970 1971
		atomic_inc(&iter->under_oom);
}

1972
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1973 1974 1975
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1976 1977 1978 1979 1980
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1981
	for_each_mem_cgroup_tree(iter, memcg)
1982
		atomic_add_unless(&iter->under_oom, -1, 0);
1983 1984
}

1985
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1986 1987
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1988
struct oom_wait_info {
1989
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1990 1991 1992 1993 1994 1995
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1996 1997
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1998 1999 2000
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2001
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2002 2003

	/*
2004
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2005 2006
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2007 2008
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2009 2010 2011 2012
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2013
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2014
{
2015 2016
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2017 2018
}

2019
static void memcg_oom_recover(struct mem_cgroup *memcg)
2020
{
2021 2022
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2023 2024
}

K
KAMEZAWA Hiroyuki 已提交
2025 2026 2027
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2028 2029
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2030
{
K
KAMEZAWA Hiroyuki 已提交
2031
	struct oom_wait_info owait;
2032
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2033

2034
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2035 2036 2037 2038
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2039
	need_to_kill = true;
2040
	mem_cgroup_mark_under_oom(memcg);
2041

2042
	/* At first, try to OOM lock hierarchy under memcg.*/
2043
	spin_lock(&memcg_oom_lock);
2044
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2045 2046 2047 2048 2049
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2050
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2051
	if (!locked || memcg->oom_kill_disable)
2052 2053
		need_to_kill = false;
	if (locked)
2054
		mem_cgroup_oom_notify(memcg);
2055
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2056

2057 2058
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2059
		mem_cgroup_out_of_memory(memcg, mask, order);
2060
	} else {
K
KAMEZAWA Hiroyuki 已提交
2061
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2062
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2063
	}
2064
	spin_lock(&memcg_oom_lock);
2065
	if (locked)
2066 2067
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2068
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2069

2070
	mem_cgroup_unmark_under_oom(memcg);
2071

K
KAMEZAWA Hiroyuki 已提交
2072 2073 2074
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2075
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2076
	return true;
2077 2078
}

2079 2080 2081
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2099 2100
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2101
 */
2102

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2116
	 * need to take move_lock_mem_cgroup(). Because we already hold
2117
	 * rcu_read_lock(), any calls to move_account will be delayed until
2118
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2119
	 */
2120
	if (!mem_cgroup_stolen(memcg))
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2138
	 * should take move_lock_mem_cgroup().
2139 2140 2141 2142
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2143 2144
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2145
{
2146
	struct mem_cgroup *memcg;
2147
	struct page_cgroup *pc = lookup_page_cgroup(page);
2148
	unsigned long uninitialized_var(flags);
2149

2150
	if (mem_cgroup_disabled())
2151
		return;
2152

2153 2154
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2155
		return;
2156 2157

	switch (idx) {
2158 2159
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2160 2161 2162
		break;
	default:
		BUG();
2163
	}
2164

2165
	this_cpu_add(memcg->stat->count[idx], val);
2166
}
2167

2168 2169 2170 2171
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2172
#define CHARGE_BATCH	32U
2173 2174
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2175
	unsigned int nr_pages;
2176
	struct work_struct work;
2177
	unsigned long flags;
2178
#define FLUSHING_CACHED_CHARGE	0
2179 2180
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2181
static DEFINE_MUTEX(percpu_charge_mutex);
2182

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2193
 */
2194
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2195 2196 2197 2198
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2199 2200 2201
	if (nr_pages > CHARGE_BATCH)
		return false;

2202
	stock = &get_cpu_var(memcg_stock);
2203 2204
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2218 2219 2220 2221
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2222
		if (do_swap_account)
2223 2224
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2237
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2238 2239
}

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2251 2252
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2253
 * This will be consumed by consume_stock() function, later.
2254
 */
2255
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2256 2257 2258
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2259
	if (stock->cached != memcg) { /* reset if necessary */
2260
		drain_stock(stock);
2261
		stock->cached = memcg;
2262
	}
2263
	stock->nr_pages += nr_pages;
2264 2265 2266 2267
	put_cpu_var(memcg_stock);
}

/*
2268
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2269 2270
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2271
 */
2272
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2273
{
2274
	int cpu, curcpu;
2275

2276 2277
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2278
	curcpu = get_cpu();
2279 2280
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2281
		struct mem_cgroup *memcg;
2282

2283 2284
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2285
			continue;
2286
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2287
			continue;
2288 2289 2290 2291 2292 2293
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2294
	}
2295
	put_cpu();
2296 2297 2298 2299 2300 2301

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2302
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2303 2304 2305
			flush_work(&stock->work);
	}
out:
2306
 	put_online_cpus();
2307 2308 2309 2310 2311 2312 2313 2314
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2315
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2316
{
2317 2318 2319 2320 2321
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2322
	drain_all_stock(root_memcg, false);
2323
	mutex_unlock(&percpu_charge_mutex);
2324 2325 2326
}

/* This is a synchronous drain interface. */
2327
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2328 2329
{
	/* called when force_empty is called */
2330
	mutex_lock(&percpu_charge_mutex);
2331
	drain_all_stock(root_memcg, true);
2332
	mutex_unlock(&percpu_charge_mutex);
2333 2334
}

2335 2336 2337 2338
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2339
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2340 2341 2342
{
	int i;

2343
	spin_lock(&memcg->pcp_counter_lock);
2344
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2345
		long x = per_cpu(memcg->stat->count[i], cpu);
2346

2347 2348
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2349
	}
2350
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2351
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2352

2353 2354
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2355
	}
2356
	spin_unlock(&memcg->pcp_counter_lock);
2357 2358
}

2359
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2360 2361 2362 2363 2364
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2365
	struct mem_cgroup *iter;
2366

2367
	if (action == CPU_ONLINE)
2368 2369
		return NOTIFY_OK;

2370
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2371
		return NOTIFY_OK;
2372

2373
	for_each_mem_cgroup(iter)
2374 2375
		mem_cgroup_drain_pcp_counter(iter, cpu);

2376 2377 2378 2379 2380
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2391
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2392 2393
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2394
{
2395
	unsigned long csize = nr_pages * PAGE_SIZE;
2396 2397 2398 2399 2400
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2401
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2402 2403 2404 2405

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2406
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2407 2408 2409
		if (likely(!ret))
			return CHARGE_OK;

2410
		res_counter_uncharge(&memcg->res, csize);
2411 2412 2413 2414
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2415 2416 2417 2418
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2419
	if (nr_pages > min_pages)
2420 2421 2422 2423 2424
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2425 2426 2427
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2428
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2429
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2430
		return CHARGE_RETRY;
2431
	/*
2432 2433 2434 2435 2436 2437 2438
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2439
	 */
2440
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2454
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2455 2456 2457 2458 2459
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2460
/*
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2480
 */
2481
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2482
				   gfp_t gfp_mask,
2483
				   unsigned int nr_pages,
2484
				   struct mem_cgroup **ptr,
2485
				   bool oom)
2486
{
2487
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2488
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2489
	struct mem_cgroup *memcg = NULL;
2490
	int ret;
2491

K
KAMEZAWA Hiroyuki 已提交
2492 2493 2494 2495 2496 2497 2498 2499
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2500

2501
	/*
2502 2503
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2504
	 * thread group leader migrates. It's possible that mm is not
2505
	 * set, if so charge the root memcg (happens for pagecache usage).
2506
	 */
2507
	if (!*ptr && !mm)
2508
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2509
again:
2510 2511 2512
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2513
			goto done;
2514
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2515
			goto done;
2516
		css_get(&memcg->css);
2517
	} else {
K
KAMEZAWA Hiroyuki 已提交
2518
		struct task_struct *p;
2519

K
KAMEZAWA Hiroyuki 已提交
2520 2521 2522
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2523
		 * Because we don't have task_lock(), "p" can exit.
2524
		 * In that case, "memcg" can point to root or p can be NULL with
2525 2526 2527 2528 2529 2530
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2531
		 */
2532
		memcg = mem_cgroup_from_task(p);
2533 2534 2535
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2536 2537 2538
			rcu_read_unlock();
			goto done;
		}
2539
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2552
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2553 2554 2555 2556 2557
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2558

2559 2560
	do {
		bool oom_check;
2561

2562
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2563
		if (fatal_signal_pending(current)) {
2564
			css_put(&memcg->css);
2565
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2566
		}
2567

2568 2569 2570 2571
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2572
		}
2573

2574 2575
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2576 2577 2578 2579
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2580
			batch = nr_pages;
2581 2582
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2583
			goto again;
2584
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2585
			css_put(&memcg->css);
2586 2587
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2588
			if (!oom) {
2589
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2590
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2591
			}
2592 2593 2594 2595
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2596
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2597
			goto bypass;
2598
		}
2599 2600
	} while (ret != CHARGE_OK);

2601
	if (batch > nr_pages)
2602 2603
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2604
done:
2605
	*ptr = memcg;
2606 2607
	return 0;
nomem:
2608
	*ptr = NULL;
2609
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2610
bypass:
2611 2612
	*ptr = root_mem_cgroup;
	return -EINTR;
2613
}
2614

2615 2616 2617 2618 2619
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2620
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2621
				       unsigned int nr_pages)
2622
{
2623
	if (!mem_cgroup_is_root(memcg)) {
2624 2625
		unsigned long bytes = nr_pages * PAGE_SIZE;

2626
		res_counter_uncharge(&memcg->res, bytes);
2627
		if (do_swap_account)
2628
			res_counter_uncharge(&memcg->memsw, bytes);
2629
	}
2630 2631
}

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2650 2651
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2652 2653 2654
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2666
	return mem_cgroup_from_css(css);
2667 2668
}

2669
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2670
{
2671
	struct mem_cgroup *memcg = NULL;
2672
	struct page_cgroup *pc;
2673
	unsigned short id;
2674 2675
	swp_entry_t ent;

2676 2677 2678
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2679
	lock_page_cgroup(pc);
2680
	if (PageCgroupUsed(pc)) {
2681 2682 2683
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2684
	} else if (PageSwapCache(page)) {
2685
		ent.val = page_private(page);
2686
		id = lookup_swap_cgroup_id(ent);
2687
		rcu_read_lock();
2688 2689 2690
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2691
		rcu_read_unlock();
2692
	}
2693
	unlock_page_cgroup(pc);
2694
	return memcg;
2695 2696
}

2697
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2698
				       struct page *page,
2699
				       unsigned int nr_pages,
2700 2701
				       enum charge_type ctype,
				       bool lrucare)
2702
{
2703
	struct page_cgroup *pc = lookup_page_cgroup(page);
2704
	struct zone *uninitialized_var(zone);
2705
	struct lruvec *lruvec;
2706
	bool was_on_lru = false;
2707
	bool anon;
2708

2709
	lock_page_cgroup(pc);
2710
	VM_BUG_ON(PageCgroupUsed(pc));
2711 2712 2713 2714
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2715 2716 2717 2718 2719 2720 2721 2722 2723

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2724
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2725
			ClearPageLRU(page);
2726
			del_page_from_lru_list(page, lruvec, page_lru(page));
2727 2728 2729 2730
			was_on_lru = true;
		}
	}

2731
	pc->mem_cgroup = memcg;
2732 2733 2734 2735 2736 2737 2738
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2739
	smp_wmb();
2740
	SetPageCgroupUsed(pc);
2741

2742 2743
	if (lrucare) {
		if (was_on_lru) {
2744
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2745 2746
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2747
			add_page_to_lru_list(page, lruvec, page_lru(page));
2748 2749 2750 2751
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2752
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2753 2754 2755 2756
		anon = true;
	else
		anon = false;

2757
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2758
	unlock_page_cgroup(pc);
2759

2760
	/*
2761
	 * "charge_statistics" updated event counter.
2762
	 */
2763
	memcg_check_events(memcg, page);
2764
}
2765

2766 2767
static DEFINE_MUTEX(set_limit_mutex);

2768 2769 2770 2771 2772 2773 2774
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2788
#ifdef CONFIG_SLABINFO
2789 2790
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2791
{
2792
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2862 2863 2864 2865 2866

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2867 2868 2869 2870 2871 2872 2873 2874
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2875
	if (memcg_kmem_test_and_clear_dead(memcg))
2876
		css_put(&memcg->css);
2877 2878
}

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

2962 2963
static void kmem_cache_destroy_work_func(struct work_struct *w);

2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
2975
		size += offsetof(struct memcg_cache_params, memcg_caches);
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3015 3016
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3017
{
3018
	size_t size;
3019 3020 3021 3022

	if (!memcg_kmem_enabled())
		return 0;

3023 3024
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3025
		size += memcg_limited_groups_array_size * sizeof(void *);
3026 3027
	} else
		size = sizeof(struct memcg_cache_params);
3028

3029 3030 3031 3032
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3033
	if (memcg) {
3034
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3035
		s->memcg_params->root_cache = root_cache;
3036 3037
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3038 3039 3040
	} else
		s->memcg_params->is_root_cache = true;

3041 3042 3043 3044 3045
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3070
	css_put(&memcg->css);
3071
out:
3072 3073 3074
	kfree(s->memcg_params);
}

3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3106 3107 3108 3109 3110 3111 3112 3113 3114
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3136 3137 3138 3139 3140 3141 3142 3143
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3164 3165 3166 3167 3168 3169 3170
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3171 3172 3173 3174 3175 3176 3177 3178 3179
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3180

3181 3182 3183
/*
 * Called with memcg_cache_mutex held
 */
3184 3185 3186 3187
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3188
	static char *tmp_name = NULL;
3189

3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3208

3209
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3210
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3211

3212 3213 3214
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3230 3231
	if (new_cachep) {
		css_put(&memcg->css);
3232
		goto out;
3233
	}
3234 3235 3236 3237

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3238
		css_put(&memcg->css);
3239 3240 3241
		goto out;
	}

G
Glauber Costa 已提交
3242
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3294
		cancel_work_sync(&c->memcg_params->destroy);
3295 3296 3297 3298 3299
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3300 3301 3302 3303 3304 3305
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3335 3336
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3337 3338 3339 3340
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3341 3342
	if (cw == NULL) {
		css_put(&memcg->css);
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3393 3394 3395
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3396 3397 3398 3399
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3400
		goto out;
3401 3402 3403 3404 3405 3406 3407 3408

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3409 3410 3411
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3412 3413
	}

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3441 3442 3443
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
	 * 	memcg_stop_kmem_account();
	 * 	kmalloc(<large_number>)
	 * 	memcg_resume_kmem_account();
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3567 3568 3569 3570
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3571 3572
#endif /* CONFIG_MEMCG_KMEM */

3573 3574
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3575
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3576 3577
/*
 * Because tail pages are not marked as "used", set it. We're under
3578 3579 3580
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3581
 */
3582
void mem_cgroup_split_huge_fixup(struct page *head)
3583 3584
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3585
	struct page_cgroup *pc;
3586
	struct mem_cgroup *memcg;
3587
	int i;
3588

3589 3590
	if (mem_cgroup_disabled())
		return;
3591 3592

	memcg = head_pc->mem_cgroup;
3593 3594
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3595
		pc->mem_cgroup = memcg;
3596 3597 3598
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3599 3600
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3601
}
3602
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3603

3604
/**
3605
 * mem_cgroup_move_account - move account of the page
3606
 * @page: the page
3607
 * @nr_pages: number of regular pages (>1 for huge pages)
3608 3609 3610 3611 3612
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3613
 * - page is not on LRU (isolate_page() is useful.)
3614
 * - compound_lock is held when nr_pages > 1
3615
 *
3616 3617
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3618
 */
3619 3620 3621 3622
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3623
				   struct mem_cgroup *to)
3624
{
3625 3626
	unsigned long flags;
	int ret;
3627
	bool anon = PageAnon(page);
3628

3629
	VM_BUG_ON(from == to);
3630
	VM_BUG_ON(PageLRU(page));
3631 3632 3633 3634 3635 3636 3637
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3638
	if (nr_pages > 1 && !PageTransHuge(page))
3639 3640 3641 3642 3643 3644 3645 3646
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3647
	move_lock_mem_cgroup(from, &flags);
3648

3649
	if (!anon && page_mapped(page)) {
3650 3651 3652 3653 3654
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3655
	}
3656
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3657

3658
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3659
	pc->mem_cgroup = to;
3660
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3661
	move_unlock_mem_cgroup(from, &flags);
3662 3663
	ret = 0;
unlock:
3664
	unlock_page_cgroup(pc);
3665 3666 3667
	/*
	 * check events
	 */
3668 3669
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3670
out:
3671 3672 3673
	return ret;
}

3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3694
 */
3695 3696
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3697
				  struct mem_cgroup *child)
3698 3699
{
	struct mem_cgroup *parent;
3700
	unsigned int nr_pages;
3701
	unsigned long uninitialized_var(flags);
3702 3703
	int ret;

3704
	VM_BUG_ON(mem_cgroup_is_root(child));
3705

3706 3707 3708 3709 3710
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3711

3712
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3713

3714 3715 3716 3717 3718 3719
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3720

3721 3722
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3723
		flags = compound_lock_irqsave(page);
3724
	}
3725

3726
	ret = mem_cgroup_move_account(page, nr_pages,
3727
				pc, child, parent);
3728 3729
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3730

3731
	if (nr_pages > 1)
3732
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3733
	putback_lru_page(page);
3734
put:
3735
	put_page(page);
3736
out:
3737 3738 3739
	return ret;
}

3740 3741 3742 3743 3744 3745 3746
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3747
				gfp_t gfp_mask, enum charge_type ctype)
3748
{
3749
	struct mem_cgroup *memcg = NULL;
3750
	unsigned int nr_pages = 1;
3751
	bool oom = true;
3752
	int ret;
A
Andrea Arcangeli 已提交
3753

A
Andrea Arcangeli 已提交
3754
	if (PageTransHuge(page)) {
3755
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3756
		VM_BUG_ON(!PageTransHuge(page));
3757 3758 3759 3760 3761
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3762
	}
3763

3764
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3765
	if (ret == -ENOMEM)
3766
		return ret;
3767
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3768 3769 3770
	return 0;
}

3771 3772
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3773
{
3774
	if (mem_cgroup_disabled())
3775
		return 0;
3776 3777 3778
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3779
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3780
					MEM_CGROUP_CHARGE_TYPE_ANON);
3781 3782
}

3783 3784 3785
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3786
 * struct page_cgroup is acquired. This refcnt will be consumed by
3787 3788
 * "commit()" or removed by "cancel()"
 */
3789 3790 3791 3792
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3793
{
3794
	struct mem_cgroup *memcg;
3795
	struct page_cgroup *pc;
3796
	int ret;
3797

3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3808 3809
	if (!do_swap_account)
		goto charge_cur_mm;
3810 3811
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3812
		goto charge_cur_mm;
3813 3814
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3815
	css_put(&memcg->css);
3816 3817
	if (ret == -EINTR)
		ret = 0;
3818
	return ret;
3819
charge_cur_mm:
3820 3821 3822 3823
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3824 3825
}

3826 3827 3828 3829 3830 3831
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3846 3847 3848
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3849 3850 3851 3852 3853 3854 3855 3856 3857
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3858
static void
3859
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3860
					enum charge_type ctype)
3861
{
3862
	if (mem_cgroup_disabled())
3863
		return;
3864
	if (!memcg)
3865
		return;
3866

3867
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3868 3869 3870
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3871 3872 3873
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3874
	 */
3875
	if (do_swap_account && PageSwapCache(page)) {
3876
		swp_entry_t ent = {.val = page_private(page)};
3877
		mem_cgroup_uncharge_swap(ent);
3878
	}
3879 3880
}

3881 3882
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3883
{
3884
	__mem_cgroup_commit_charge_swapin(page, memcg,
3885
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3886 3887
}

3888 3889
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3890
{
3891 3892 3893 3894
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3895
	if (mem_cgroup_disabled())
3896 3897 3898 3899 3900 3901 3902
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3903 3904
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3905 3906 3907 3908
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3909 3910
}

3911
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3912 3913
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3914 3915 3916
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3917

3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3929
		batch->memcg = memcg;
3930 3931
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3932
	 * In those cases, all pages freed continuously can be expected to be in
3933 3934 3935 3936 3937 3938 3939 3940
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3941
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3942 3943
		goto direct_uncharge;

3944 3945 3946 3947 3948
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3949
	if (batch->memcg != memcg)
3950 3951
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3952
	batch->nr_pages++;
3953
	if (uncharge_memsw)
3954
		batch->memsw_nr_pages++;
3955 3956
	return;
direct_uncharge:
3957
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3958
	if (uncharge_memsw)
3959 3960 3961
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3962
}
3963

3964
/*
3965
 * uncharge if !page_mapped(page)
3966
 */
3967
static struct mem_cgroup *
3968 3969
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3970
{
3971
	struct mem_cgroup *memcg = NULL;
3972 3973
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3974
	bool anon;
3975

3976
	if (mem_cgroup_disabled())
3977
		return NULL;
3978

A
Andrea Arcangeli 已提交
3979
	if (PageTransHuge(page)) {
3980
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3981 3982
		VM_BUG_ON(!PageTransHuge(page));
	}
3983
	/*
3984
	 * Check if our page_cgroup is valid
3985
	 */
3986
	pc = lookup_page_cgroup(page);
3987
	if (unlikely(!PageCgroupUsed(pc)))
3988
		return NULL;
3989

3990
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3991

3992
	memcg = pc->mem_cgroup;
3993

K
KAMEZAWA Hiroyuki 已提交
3994 3995 3996
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3997 3998
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3999
	switch (ctype) {
4000
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4001 4002 4003 4004 4005
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4006 4007
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4008
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4009
		/* See mem_cgroup_prepare_migration() */
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4031
	}
K
KAMEZAWA Hiroyuki 已提交
4032

4033
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4034

4035
	ClearPageCgroupUsed(pc);
4036 4037 4038 4039 4040 4041
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4042

4043
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4044
	/*
4045
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4046
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4047
	 */
4048
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4049
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4050
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4051
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4052
	}
4053 4054 4055 4056 4057 4058
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4059
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4060

4061
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4062 4063 4064

unlock_out:
	unlock_page_cgroup(pc);
4065
	return NULL;
4066 4067
}

4068 4069
void mem_cgroup_uncharge_page(struct page *page)
{
4070 4071 4072
	/* early check. */
	if (page_mapped(page))
		return;
4073
	VM_BUG_ON(page->mapping && !PageAnon(page));
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4086 4087
	if (PageSwapCache(page))
		return;
4088
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4089 4090 4091 4092 4093
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4094
	VM_BUG_ON(page->mapping);
4095
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4096 4097
}

4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4112 4113
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4134 4135 4136 4137 4138 4139
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4140
	memcg_oom_recover(batch->memcg);
4141 4142 4143 4144
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4145
#ifdef CONFIG_SWAP
4146
/*
4147
 * called after __delete_from_swap_cache() and drop "page" account.
4148 4149
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4150 4151
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4152 4153
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4154 4155 4156 4157 4158
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4159
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4160

K
KAMEZAWA Hiroyuki 已提交
4161 4162
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4163
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4164 4165
	 */
	if (do_swap_account && swapout && memcg)
4166
		swap_cgroup_record(ent, css_id(&memcg->css));
4167
}
4168
#endif
4169

A
Andrew Morton 已提交
4170
#ifdef CONFIG_MEMCG_SWAP
4171 4172 4173 4174 4175
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4176
{
4177
	struct mem_cgroup *memcg;
4178
	unsigned short id;
4179 4180 4181 4182

	if (!do_swap_account)
		return;

4183 4184 4185
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4186
	if (memcg) {
4187 4188 4189 4190
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4191
		if (!mem_cgroup_is_root(memcg))
4192
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4193
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4194
		css_put(&memcg->css);
4195
	}
4196
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4197
}
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4214
				struct mem_cgroup *from, struct mem_cgroup *to)
4215 4216 4217 4218 4219 4220 4221 4222
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4223
		mem_cgroup_swap_statistics(to, true);
4224
		/*
4225 4226 4227
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4228 4229 4230 4231 4232 4233
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4234
		 */
L
Li Zefan 已提交
4235
		css_get(&to->css);
4236 4237 4238 4239 4240 4241
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4242
				struct mem_cgroup *from, struct mem_cgroup *to)
4243 4244 4245
{
	return -EINVAL;
}
4246
#endif
K
KAMEZAWA Hiroyuki 已提交
4247

4248
/*
4249 4250
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4251
 */
4252 4253
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4254
{
4255
	struct mem_cgroup *memcg = NULL;
4256
	unsigned int nr_pages = 1;
4257
	struct page_cgroup *pc;
4258
	enum charge_type ctype;
4259

4260
	*memcgp = NULL;
4261

4262
	if (mem_cgroup_disabled())
4263
		return;
4264

4265 4266 4267
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4268 4269 4270
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4271 4272
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4304
	}
4305
	unlock_page_cgroup(pc);
4306 4307 4308 4309
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4310
	if (!memcg)
4311
		return;
4312

4313
	*memcgp = memcg;
4314 4315 4316 4317 4318 4319 4320
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4321
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4322
	else
4323
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4324 4325 4326 4327 4328
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4329
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4330
}
4331

4332
/* remove redundant charge if migration failed*/
4333
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4334
	struct page *oldpage, struct page *newpage, bool migration_ok)
4335
{
4336
	struct page *used, *unused;
4337
	struct page_cgroup *pc;
4338
	bool anon;
4339

4340
	if (!memcg)
4341
		return;
4342

4343
	if (!migration_ok) {
4344 4345
		used = oldpage;
		unused = newpage;
4346
	} else {
4347
		used = newpage;
4348 4349
		unused = oldpage;
	}
4350
	anon = PageAnon(used);
4351 4352 4353 4354
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4355
	css_put(&memcg->css);
4356
	/*
4357 4358 4359
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4360
	 */
4361 4362 4363 4364 4365
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4366
	/*
4367 4368 4369 4370 4371 4372
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4373
	 */
4374
	if (anon)
4375
		mem_cgroup_uncharge_page(used);
4376
}
4377

4378 4379 4380 4381 4382 4383 4384 4385
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4386
	struct mem_cgroup *memcg = NULL;
4387 4388 4389 4390 4391 4392 4393 4394 4395
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4396 4397
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4398
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4399 4400
		ClearPageCgroupUsed(pc);
	}
4401 4402
	unlock_page_cgroup(pc);

4403 4404 4405 4406 4407 4408
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4409 4410 4411 4412 4413
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4414
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4415 4416
}

4417 4418 4419 4420 4421 4422
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4423 4424 4425 4426 4427
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4447 4448
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4449 4450 4451 4452
	}
}
#endif

4453
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4454
				unsigned long long val)
4455
{
4456
	int retry_count;
4457
	u64 memswlimit, memlimit;
4458
	int ret = 0;
4459 4460
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4461
	int enlarge;
4462 4463 4464 4465 4466 4467 4468 4469 4470

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4471

4472
	enlarge = 0;
4473
	while (retry_count) {
4474 4475 4476 4477
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4478 4479 4480
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4481
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4482 4483 4484 4485 4486 4487
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4488 4489
			break;
		}
4490 4491 4492 4493 4494

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4495
		ret = res_counter_set_limit(&memcg->res, val);
4496 4497 4498 4499 4500 4501
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4502 4503 4504 4505 4506
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4507 4508
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4509 4510 4511 4512 4513 4514
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4515
	}
4516 4517
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4518

4519 4520 4521
	return ret;
}

L
Li Zefan 已提交
4522 4523
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4524
{
4525
	int retry_count;
4526
	u64 memlimit, memswlimit, oldusage, curusage;
4527 4528
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4529
	int enlarge = 0;
4530

4531 4532 4533
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4534 4535 4536 4537 4538 4539 4540 4541
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4542
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4543 4544 4545 4546 4547 4548 4549 4550
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4551 4552 4553
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4554
		ret = res_counter_set_limit(&memcg->memsw, val);
4555 4556 4557 4558 4559 4560
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4561 4562 4563 4564 4565
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4566 4567 4568
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4569
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4570
		/* Usage is reduced ? */
4571
		if (curusage >= oldusage)
4572
			retry_count--;
4573 4574
		else
			oldusage = curusage;
4575
	}
4576 4577
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4578 4579 4580
	return ret;
}

4581 4582 4583 4584 4585 4586 4587
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4588
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4589 4590
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4591
 */
4592
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4593
				int node, int zid, enum lru_list lru)
4594
{
4595
	struct lruvec *lruvec;
4596
	unsigned long flags;
4597
	struct list_head *list;
4598 4599
	struct page *busy;
	struct zone *zone;
4600

K
KAMEZAWA Hiroyuki 已提交
4601
	zone = &NODE_DATA(node)->node_zones[zid];
4602 4603
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4604

4605
	busy = NULL;
4606
	do {
4607
		struct page_cgroup *pc;
4608 4609
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4610
		spin_lock_irqsave(&zone->lru_lock, flags);
4611
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4612
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4613
			break;
4614
		}
4615 4616 4617
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4618
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4619
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4620 4621
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4622
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4623

4624
		pc = lookup_page_cgroup(page);
4625

4626
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4627
			/* found lock contention or "pc" is obsolete. */
4628
			busy = page;
4629 4630 4631
			cond_resched();
		} else
			busy = NULL;
4632
	} while (!list_empty(list));
4633 4634 4635
}

/*
4636 4637
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4638
 * This enables deleting this mem_cgroup.
4639 4640
 *
 * Caller is responsible for holding css reference on the memcg.
4641
 */
4642
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4643
{
4644
	int node, zid;
4645
	u64 usage;
4646

4647
	do {
4648 4649
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4650 4651
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4652
		for_each_node_state(node, N_MEMORY) {
4653
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4654 4655
				enum lru_list lru;
				for_each_lru(lru) {
4656
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4657
							node, zid, lru);
4658
				}
4659
			}
4660
		}
4661 4662
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4663
		cond_resched();
4664

4665
		/*
4666 4667 4668 4669 4670
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4671 4672 4673 4674 4675 4676
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4677 4678 4679
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4680 4681
}

4682 4683 4684 4685 4686 4687 4688
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
4689
	struct cgroup_subsys_state *pos;
4690 4691

	/* bounce at first found */
4692
	css_for_each_child(pos, &memcg->css)
4693 4694 4695 4696 4697
		return true;
	return false;
}

/*
4698 4699
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4700 4701 4702 4703 4704 4705 4706 4707 4708
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4719

4720
	/* returns EBUSY if there is a task or if we come here twice. */
4721 4722 4723
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4724 4725
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4726
	/* try to free all pages in this cgroup */
4727
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4728
		int progress;
4729

4730 4731 4732
		if (signal_pending(current))
			return -EINTR;

4733
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4734
						false);
4735
		if (!progress) {
4736
			nr_retries--;
4737
			/* maybe some writeback is necessary */
4738
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4739
		}
4740 4741

	}
K
KAMEZAWA Hiroyuki 已提交
4742
	lru_add_drain();
4743 4744 4745
	mem_cgroup_reparent_charges(memcg);

	return 0;
4746 4747
}

4748 4749
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4750
{
4751
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4752

4753 4754
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4755
	return mem_cgroup_force_empty(memcg);
4756 4757
}

4758 4759
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4760
{
4761
	return mem_cgroup_from_css(css)->use_hierarchy;
4762 4763
}

4764 4765
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4766 4767
{
	int retval = 0;
4768
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4769
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4770

4771
	mutex_lock(&memcg_create_mutex);
4772 4773 4774 4775

	if (memcg->use_hierarchy == val)
		goto out;

4776
	/*
4777
	 * If parent's use_hierarchy is set, we can't make any modifications
4778 4779 4780 4781 4782 4783
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4784
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4785
				(val == 1 || val == 0)) {
4786
		if (!__memcg_has_children(memcg))
4787
			memcg->use_hierarchy = val;
4788 4789 4790 4791
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4792 4793

out:
4794
	mutex_unlock(&memcg_create_mutex);
4795 4796 4797 4798

	return retval;
}

4799

4800
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4801
					       enum mem_cgroup_stat_index idx)
4802
{
K
KAMEZAWA Hiroyuki 已提交
4803
	struct mem_cgroup *iter;
4804
	long val = 0;
4805

4806
	/* Per-cpu values can be negative, use a signed accumulator */
4807
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4808 4809 4810 4811 4812
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4813 4814
}

4815
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4816
{
K
KAMEZAWA Hiroyuki 已提交
4817
	u64 val;
4818

4819
	if (!mem_cgroup_is_root(memcg)) {
4820
		if (!swap)
4821
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4822
		else
4823
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4824 4825
	}

4826 4827 4828 4829
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
4830 4831
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4832

K
KAMEZAWA Hiroyuki 已提交
4833
	if (swap)
4834
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4835 4836 4837 4838

	return val << PAGE_SHIFT;
}

4839 4840 4841
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4842
{
4843
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4844
	char str[64];
4845
	u64 val;
G
Glauber Costa 已提交
4846 4847
	int name, len;
	enum res_type type;
4848 4849 4850

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4851

4852 4853
	switch (type) {
	case _MEM:
4854
		if (name == RES_USAGE)
4855
			val = mem_cgroup_usage(memcg, false);
4856
		else
4857
			val = res_counter_read_u64(&memcg->res, name);
4858 4859
		break;
	case _MEMSWAP:
4860
		if (name == RES_USAGE)
4861
			val = mem_cgroup_usage(memcg, true);
4862
		else
4863
			val = res_counter_read_u64(&memcg->memsw, name);
4864
		break;
4865 4866 4867
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4868 4869 4870
	default:
		BUG();
	}
4871 4872 4873

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4874
}
4875

4876
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
4877 4878 4879
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4880
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4893
	mutex_lock(&memcg_create_mutex);
4894 4895
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
4896
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
4897 4898 4899 4900 4901 4902
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4903 4904 4905 4906 4907
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
4908 4909 4910 4911 4912 4913
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
4914 4915 4916 4917
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
4918
	mutex_unlock(&memcg_create_mutex);
4919 4920 4921 4922
#endif
	return ret;
}

4923
#ifdef CONFIG_MEMCG_KMEM
4924
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4925
{
4926
	int ret = 0;
4927 4928
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
4929 4930
		goto out;

4931
	memcg->kmem_account_flags = parent->kmem_account_flags;
4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
4942 4943 4944 4945
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
4946 4947 4948
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
4949 4950 4951 4952
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
4953
	memcg_stop_kmem_account();
4954
	ret = memcg_update_cache_sizes(memcg);
4955
	memcg_resume_kmem_account();
4956 4957 4958
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
4959
}
4960
#endif /* CONFIG_MEMCG_KMEM */
4961

4962 4963 4964 4965
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4966
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
4967
			    const char *buffer)
B
Balbir Singh 已提交
4968
{
4969
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
4970 4971
	enum res_type type;
	int name;
4972 4973 4974
	unsigned long long val;
	int ret;

4975 4976
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4977

4978
	switch (name) {
4979
	case RES_LIMIT:
4980 4981 4982 4983
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4984 4985
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4986 4987 4988
		if (ret)
			break;
		if (type == _MEM)
4989
			ret = mem_cgroup_resize_limit(memcg, val);
4990
		else if (type == _MEMSWAP)
4991
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4992
		else if (type == _KMEM)
4993
			ret = memcg_update_kmem_limit(css, val);
4994 4995
		else
			return -EINVAL;
4996
		break;
4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5011 5012 5013 5014 5015
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5016 5017
}

5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5028 5029
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5042
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5043
{
5044
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5045 5046
	int name;
	enum res_type type;
5047

5048 5049
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5050

5051
	switch (name) {
5052
	case RES_MAX_USAGE:
5053
		if (type == _MEM)
5054
			res_counter_reset_max(&memcg->res);
5055
		else if (type == _MEMSWAP)
5056
			res_counter_reset_max(&memcg->memsw);
5057 5058 5059 5060
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5061 5062
		break;
	case RES_FAILCNT:
5063
		if (type == _MEM)
5064
			res_counter_reset_failcnt(&memcg->res);
5065
		else if (type == _MEMSWAP)
5066
			res_counter_reset_failcnt(&memcg->memsw);
5067 5068 5069 5070
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5071 5072
		break;
	}
5073

5074
	return 0;
5075 5076
}

5077
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5078 5079
					struct cftype *cft)
{
5080
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5081 5082
}

5083
#ifdef CONFIG_MMU
5084
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5085 5086
					struct cftype *cft, u64 val)
{
5087
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5088 5089 5090

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5091

5092
	/*
5093 5094 5095 5096
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5097
	 */
5098
	memcg->move_charge_at_immigrate = val;
5099 5100
	return 0;
}
5101
#else
5102
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5103 5104 5105 5106 5107
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5108

5109
#ifdef CONFIG_NUMA
5110 5111
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5112 5113 5114 5115
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5116
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5117

5118
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5119
	seq_printf(m, "total=%lu", total_nr);
5120
	for_each_node_state(nid, N_MEMORY) {
5121
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5122 5123 5124 5125
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5126
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5127
	seq_printf(m, "file=%lu", file_nr);
5128
	for_each_node_state(nid, N_MEMORY) {
5129
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5130
				LRU_ALL_FILE);
5131 5132 5133 5134
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5135
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5136
	seq_printf(m, "anon=%lu", anon_nr);
5137
	for_each_node_state(nid, N_MEMORY) {
5138
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5139
				LRU_ALL_ANON);
5140 5141 5142 5143
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5144
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5145
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5146
	for_each_node_state(nid, N_MEMORY) {
5147
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5148
				BIT(LRU_UNEVICTABLE));
5149 5150 5151 5152 5153 5154 5155
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5156 5157 5158 5159 5160
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5161
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5162
				 struct seq_file *m)
5163
{
5164
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5165 5166
	struct mem_cgroup *mi;
	unsigned int i;
5167

5168
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5169
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5170
			continue;
5171 5172
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5173
	}
L
Lee Schermerhorn 已提交
5174

5175 5176 5177 5178 5179 5180 5181 5182
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5183
	/* Hierarchical information */
5184 5185
	{
		unsigned long long limit, memsw_limit;
5186
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5187
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5188
		if (do_swap_account)
5189 5190
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5191
	}
K
KOSAKI Motohiro 已提交
5192

5193 5194 5195
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5196
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5197
			continue;
5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5218
	}
K
KAMEZAWA Hiroyuki 已提交
5219

K
KOSAKI Motohiro 已提交
5220 5221 5222 5223
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5224
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5225 5226 5227 5228 5229
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5230
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5231
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5232

5233 5234 5235 5236
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5237
			}
5238 5239 5240 5241
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5242 5243 5244
	}
#endif

5245 5246 5247
	return 0;
}

5248 5249
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5250
{
5251
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5252

5253
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5254 5255
}

5256 5257
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5258
{
5259
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5260
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5261

T
Tejun Heo 已提交
5262
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5263 5264
		return -EINVAL;

5265
	mutex_lock(&memcg_create_mutex);
5266

K
KOSAKI Motohiro 已提交
5267
	/* If under hierarchy, only empty-root can set this value */
5268
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5269
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5270
		return -EINVAL;
5271
	}
K
KOSAKI Motohiro 已提交
5272 5273 5274

	memcg->swappiness = val;

5275
	mutex_unlock(&memcg_create_mutex);
5276

K
KOSAKI Motohiro 已提交
5277 5278 5279
	return 0;
}

5280 5281 5282 5283 5284 5285 5286 5287
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5288
		t = rcu_dereference(memcg->thresholds.primary);
5289
	else
5290
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5291 5292 5293 5294 5295 5296 5297

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5298
	 * current_threshold points to threshold just below or equal to usage.
5299 5300 5301
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5302
	i = t->current_threshold;
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5326
	t->current_threshold = i - 1;
5327 5328 5329 5330 5331 5332
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5333 5334 5335 5336 5337 5338 5339
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5340 5341 5342 5343 5344 5345 5346
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5347 5348 5349 5350 5351 5352 5353
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5354 5355
}

5356
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5357 5358 5359
{
	struct mem_cgroup_eventfd_list *ev;

5360
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5361 5362 5363 5364
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5365
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5366
{
K
KAMEZAWA Hiroyuki 已提交
5367 5368
	struct mem_cgroup *iter;

5369
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5370
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5371 5372
}

5373
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5374
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5375
{
5376
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5377 5378
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5379
	enum res_type type = MEMFILE_TYPE(cft->private);
5380
	u64 threshold, usage;
5381
	int i, size, ret;
5382 5383 5384 5385 5386 5387

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5388

5389
	if (type == _MEM)
5390
		thresholds = &memcg->thresholds;
5391
	else if (type == _MEMSWAP)
5392
		thresholds = &memcg->memsw_thresholds;
5393 5394 5395 5396 5397 5398
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5399
	if (thresholds->primary)
5400 5401
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5402
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5403 5404

	/* Allocate memory for new array of thresholds */
5405
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5406
			GFP_KERNEL);
5407
	if (!new) {
5408 5409 5410
		ret = -ENOMEM;
		goto unlock;
	}
5411
	new->size = size;
5412 5413

	/* Copy thresholds (if any) to new array */
5414 5415
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5416
				sizeof(struct mem_cgroup_threshold));
5417 5418
	}

5419
	/* Add new threshold */
5420 5421
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5422 5423

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5424
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5425 5426 5427
			compare_thresholds, NULL);

	/* Find current threshold */
5428
	new->current_threshold = -1;
5429
	for (i = 0; i < size; i++) {
5430
		if (new->entries[i].threshold <= usage) {
5431
			/*
5432 5433
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5434 5435
			 * it here.
			 */
5436
			++new->current_threshold;
5437 5438
		} else
			break;
5439 5440
	}

5441 5442 5443 5444 5445
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5446

5447
	/* To be sure that nobody uses thresholds */
5448 5449 5450 5451 5452 5453 5454 5455
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5456
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5457
	struct cftype *cft, struct eventfd_ctx *eventfd)
5458
{
5459
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5460 5461
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5462
	enum res_type type = MEMFILE_TYPE(cft->private);
5463
	u64 usage;
5464
	int i, j, size;
5465 5466 5467

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5468
		thresholds = &memcg->thresholds;
5469
	else if (type == _MEMSWAP)
5470
		thresholds = &memcg->memsw_thresholds;
5471 5472 5473
	else
		BUG();

5474 5475 5476
	if (!thresholds->primary)
		goto unlock;

5477 5478 5479 5480 5481 5482
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5483 5484 5485
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5486 5487 5488
			size++;
	}

5489
	new = thresholds->spare;
5490

5491 5492
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5493 5494
		kfree(new);
		new = NULL;
5495
		goto swap_buffers;
5496 5497
	}

5498
	new->size = size;
5499 5500

	/* Copy thresholds and find current threshold */
5501 5502 5503
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5504 5505
			continue;

5506
		new->entries[j] = thresholds->primary->entries[i];
5507
		if (new->entries[j].threshold <= usage) {
5508
			/*
5509
			 * new->current_threshold will not be used
5510 5511 5512
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5513
			++new->current_threshold;
5514 5515 5516 5517
		}
		j++;
	}

5518
swap_buffers:
5519 5520
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5521 5522 5523 5524 5525 5526
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5527
	rcu_assign_pointer(thresholds->primary, new);
5528

5529
	/* To be sure that nobody uses thresholds */
5530
	synchronize_rcu();
5531
unlock:
5532 5533
	mutex_unlock(&memcg->thresholds_lock);
}
5534

5535
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5536 5537
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5538
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5539
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5540
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5541 5542 5543 5544 5545 5546

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5547
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5548 5549 5550 5551 5552

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5553
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5554
		eventfd_signal(eventfd, 1);
5555
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5556 5557 5558 5559

	return 0;
}

5560
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5561 5562
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5563
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5564
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5565
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5566 5567 5568

	BUG_ON(type != _OOM_TYPE);

5569
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5570

5571
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5572 5573 5574 5575 5576 5577
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5578
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5579 5580
}

5581
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5582 5583
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5584
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5585

5586
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5587

5588
	if (atomic_read(&memcg->under_oom))
5589 5590 5591 5592 5593 5594
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5595
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5596 5597
	struct cftype *cft, u64 val)
{
5598
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5599
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5600 5601

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5602
	if (!parent || !((val == 0) || (val == 1)))
5603 5604
		return -EINVAL;

5605
	mutex_lock(&memcg_create_mutex);
5606
	/* oom-kill-disable is a flag for subhierarchy. */
5607
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5608
		mutex_unlock(&memcg_create_mutex);
5609 5610
		return -EINVAL;
	}
5611
	memcg->oom_kill_disable = val;
5612
	if (!val)
5613
		memcg_oom_recover(memcg);
5614
	mutex_unlock(&memcg_create_mutex);
5615 5616 5617
	return 0;
}

A
Andrew Morton 已提交
5618
#ifdef CONFIG_MEMCG_KMEM
5619
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5620
{
5621 5622
	int ret;

5623
	memcg->kmemcg_id = -1;
5624 5625 5626
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5627

5628
	return mem_cgroup_sockets_init(memcg, ss);
5629
}
5630

5631
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5632
{
5633
	mem_cgroup_sockets_destroy(memcg);
5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5660 5661 5662 5663 5664 5665 5666

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5667
		css_put(&memcg->css);
G
Glauber Costa 已提交
5668
}
5669
#else
5670
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5671 5672 5673
{
	return 0;
}
G
Glauber Costa 已提交
5674

5675 5676 5677 5678 5679
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5680 5681
{
}
5682 5683
#endif

B
Balbir Singh 已提交
5684 5685
static struct cftype mem_cgroup_files[] = {
	{
5686
		.name = "usage_in_bytes",
5687
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5688
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5689 5690
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5691
	},
5692 5693
	{
		.name = "max_usage_in_bytes",
5694
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5695
		.trigger = mem_cgroup_reset,
5696
		.read = mem_cgroup_read,
5697
	},
B
Balbir Singh 已提交
5698
	{
5699
		.name = "limit_in_bytes",
5700
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5701
		.write_string = mem_cgroup_write,
5702
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5703
	},
5704 5705 5706 5707
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5708
		.read = mem_cgroup_read,
5709
	},
B
Balbir Singh 已提交
5710 5711
	{
		.name = "failcnt",
5712
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5713
		.trigger = mem_cgroup_reset,
5714
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5715
	},
5716 5717
	{
		.name = "stat",
5718
		.read_seq_string = memcg_stat_show,
5719
	},
5720 5721 5722 5723
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5724 5725
	{
		.name = "use_hierarchy",
5726
		.flags = CFTYPE_INSANE,
5727 5728 5729
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5730 5731 5732 5733 5734
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5735 5736 5737 5738 5739
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5740 5741
	{
		.name = "oom_control",
5742 5743
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5744 5745 5746 5747
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5748 5749 5750 5751 5752
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
5753 5754 5755
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5756
		.read_seq_string = memcg_numa_stat_show,
5757 5758
	},
#endif
5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5783 5784 5785 5786 5787 5788
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5789
#endif
5790
	{ },	/* terminate */
5791
};
5792

5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
5823
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5824 5825
{
	struct mem_cgroup_per_node *pn;
5826
	struct mem_cgroup_per_zone *mz;
5827
	int zone, tmp = node;
5828 5829 5830 5831 5832 5833 5834 5835
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5836 5837
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5838
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5839 5840
	if (!pn)
		return 1;
5841 5842 5843

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5844
		lruvec_init(&mz->lruvec);
5845
		mz->memcg = memcg;
5846
	}
5847
	memcg->nodeinfo[node] = pn;
5848 5849 5850
	return 0;
}

5851
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5852
{
5853
	kfree(memcg->nodeinfo[node]);
5854 5855
}

5856 5857
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5858
	struct mem_cgroup *memcg;
5859
	size_t size = memcg_size();
5860

5861
	/* Can be very big if nr_node_ids is very big */
5862
	if (size < PAGE_SIZE)
5863
		memcg = kzalloc(size, GFP_KERNEL);
5864
	else
5865
		memcg = vzalloc(size);
5866

5867
	if (!memcg)
5868 5869
		return NULL;

5870 5871
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5872
		goto out_free;
5873 5874
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5875 5876 5877

out_free:
	if (size < PAGE_SIZE)
5878
		kfree(memcg);
5879
	else
5880
		vfree(memcg);
5881
	return NULL;
5882 5883
}

5884
/*
5885 5886 5887 5888 5889 5890 5891 5892
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5893
 */
5894 5895

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5896
{
5897
	int node;
5898
	size_t size = memcg_size();
5899

5900 5901 5902 5903 5904 5905 5906
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5918
	disarm_static_keys(memcg);
5919 5920 5921 5922
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
5923
}
5924

5925 5926 5927
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5928
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5929
{
5930
	if (!memcg->res.parent)
5931
		return NULL;
5932
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5933
}
G
Glauber Costa 已提交
5934
EXPORT_SYMBOL(parent_mem_cgroup);
5935

L
Li Zefan 已提交
5936
static struct cgroup_subsys_state * __ref
5937
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
5938
{
5939
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5940
	long error = -ENOMEM;
5941
	int node;
B
Balbir Singh 已提交
5942

5943 5944
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5945
		return ERR_PTR(error);
5946

B
Bob Liu 已提交
5947
	for_each_node(node)
5948
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5949
			goto free_out;
5950

5951
	/* root ? */
5952
	if (parent_css == NULL) {
5953
		root_mem_cgroup = memcg;
5954 5955 5956
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
5957
	}
5958

5959 5960 5961 5962 5963
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5964
	vmpressure_init(&memcg->vmpressure);
5965
	spin_lock_init(&memcg->soft_lock);
5966 5967 5968 5969 5970 5971 5972 5973 5974

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
5975
mem_cgroup_css_online(struct cgroup_subsys_state *css)
5976
{
5977 5978
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
5979 5980
	int error = 0;

T
Tejun Heo 已提交
5981
	if (!parent)
5982 5983
		return 0;

5984
	mutex_lock(&memcg_create_mutex);
5985 5986 5987 5988 5989 5990

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
5991 5992
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5993
		res_counter_init(&memcg->kmem, &parent->kmem);
5994

5995
		/*
5996 5997
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
5998
		 */
5999
	} else {
6000 6001
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6002
		res_counter_init(&memcg->kmem, NULL);
6003 6004 6005 6006 6007
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6008
		if (parent != root_mem_cgroup)
6009
			mem_cgroup_subsys.broken_hierarchy = true;
6010
	}
6011 6012

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6013
	mutex_unlock(&memcg_create_mutex);
6014
	return error;
B
Balbir Singh 已提交
6015 6016
}

M
Michal Hocko 已提交
6017 6018 6019 6020 6021 6022 6023 6024
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6025
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6026 6027 6028 6029 6030 6031

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6032
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6033 6034
}

6035
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6036
{
6037
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6038

6039 6040
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6041
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6042
	mem_cgroup_reparent_charges(memcg);
6043 6044 6045 6046
	if (memcg->soft_contributed) {
		while ((memcg = parent_mem_cgroup(memcg)))
			atomic_dec(&memcg->children_in_excess);
	}
G
Glauber Costa 已提交
6047
	mem_cgroup_destroy_all_caches(memcg);
6048
	vmpressure_cleanup(&memcg->vmpressure);
6049 6050
}

6051
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6052
{
6053
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6054

6055
	memcg_destroy_kmem(memcg);
6056
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6057 6058
}

6059
#ifdef CONFIG_MMU
6060
/* Handlers for move charge at task migration. */
6061 6062
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6063
{
6064 6065
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6066
	struct mem_cgroup *memcg = mc.to;
6067

6068
	if (mem_cgroup_is_root(memcg)) {
6069 6070 6071 6072 6073 6074 6075 6076
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6077
		 * "memcg" cannot be under rmdir() because we've already checked
6078 6079 6080 6081
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6082
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6083
			goto one_by_one;
6084
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6085
						PAGE_SIZE * count, &dummy)) {
6086
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6103 6104
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6105
		if (ret)
6106
			/* mem_cgroup_clear_mc() will do uncharge later */
6107
			return ret;
6108 6109
		mc.precharge++;
	}
6110 6111 6112 6113
	return ret;
}

/**
6114
 * get_mctgt_type - get target type of moving charge
6115 6116 6117
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6118
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6119 6120 6121 6122 6123 6124
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6125 6126 6127
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6128 6129 6130 6131 6132
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6133
	swp_entry_t	ent;
6134 6135 6136
};

enum mc_target_type {
6137
	MC_TARGET_NONE = 0,
6138
	MC_TARGET_PAGE,
6139
	MC_TARGET_SWAP,
6140 6141
};

D
Daisuke Nishimura 已提交
6142 6143
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6144
{
D
Daisuke Nishimura 已提交
6145
	struct page *page = vm_normal_page(vma, addr, ptent);
6146

D
Daisuke Nishimura 已提交
6147 6148 6149 6150
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6151
		if (!move_anon())
D
Daisuke Nishimura 已提交
6152
			return NULL;
6153 6154
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6155 6156 6157 6158 6159 6160 6161
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6162
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6163 6164 6165 6166 6167 6168 6169 6170
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6171 6172 6173 6174
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6175
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6176 6177 6178 6179 6180
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6181 6182 6183 6184 6185 6186 6187
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6188

6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6208 6209 6210 6211 6212 6213
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6214
		if (do_swap_account)
6215
			*entry = swap;
6216
		page = find_get_page(swap_address_space(swap), swap.val);
6217
	}
6218
#endif
6219 6220 6221
	return page;
}

6222
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6223 6224 6225 6226
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6227
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6228 6229 6230 6231 6232 6233
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6234 6235
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6236 6237

	if (!page && !ent.val)
6238
		return ret;
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6254 6255
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6256
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6257 6258 6259
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6260 6261 6262 6263
	}
	return ret;
}

6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6299 6300 6301 6302 6303 6304 6305 6306
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6307 6308 6309 6310
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6311
		return 0;
6312
	}
6313

6314 6315
	if (pmd_trans_unstable(pmd))
		return 0;
6316 6317
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6318
		if (get_mctgt_type(vma, addr, *pte, NULL))
6319 6320 6321 6322
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6323 6324 6325
	return 0;
}

6326 6327 6328 6329 6330
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6331
	down_read(&mm->mmap_sem);
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6343
	up_read(&mm->mmap_sem);
6344 6345 6346 6347 6348 6349 6350 6351 6352

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6353 6354 6355 6356 6357
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6358 6359
}

6360 6361
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6362
{
6363 6364
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6365
	int i;
6366

6367
	/* we must uncharge all the leftover precharges from mc.to */
6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6379
	}
6380 6381 6382 6383 6384 6385
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6386 6387 6388

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6389 6390 6391 6392 6393 6394 6395 6396 6397

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6398
		/* we've already done css_get(mc.to) */
6399 6400
		mc.moved_swap = 0;
	}
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6416
	spin_lock(&mc.lock);
6417 6418
	mc.from = NULL;
	mc.to = NULL;
6419
	spin_unlock(&mc.lock);
6420
	mem_cgroup_end_move(from);
6421 6422
}

6423
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6424
				 struct cgroup_taskset *tset)
6425
{
6426
	struct task_struct *p = cgroup_taskset_first(tset);
6427
	int ret = 0;
6428
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6429
	unsigned long move_charge_at_immigrate;
6430

6431 6432 6433 6434 6435 6436 6437
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6438 6439 6440
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6441
		VM_BUG_ON(from == memcg);
6442 6443 6444 6445 6446

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6447 6448 6449 6450
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6451
			VM_BUG_ON(mc.moved_charge);
6452
			VM_BUG_ON(mc.moved_swap);
6453
			mem_cgroup_start_move(from);
6454
			spin_lock(&mc.lock);
6455
			mc.from = from;
6456
			mc.to = memcg;
6457
			mc.immigrate_flags = move_charge_at_immigrate;
6458
			spin_unlock(&mc.lock);
6459
			/* We set mc.moving_task later */
6460 6461 6462 6463

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6464 6465
		}
		mmput(mm);
6466 6467 6468 6469
	}
	return ret;
}

6470
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6471
				     struct cgroup_taskset *tset)
6472
{
6473
	mem_cgroup_clear_mc();
6474 6475
}

6476 6477 6478
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6479
{
6480 6481 6482 6483
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6484 6485 6486 6487
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6488

6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6500
		if (mc.precharge < HPAGE_PMD_NR) {
6501 6502 6503 6504 6505 6506 6507 6508 6509
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6510
							pc, mc.from, mc.to)) {
6511 6512 6513 6514 6515 6516 6517 6518
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6519
		return 0;
6520 6521
	}

6522 6523
	if (pmd_trans_unstable(pmd))
		return 0;
6524 6525 6526 6527
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6528
		swp_entry_t ent;
6529 6530 6531 6532

		if (!mc.precharge)
			break;

6533
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6534 6535 6536 6537 6538
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6539
			if (!mem_cgroup_move_account(page, 1, pc,
6540
						     mc.from, mc.to)) {
6541
				mc.precharge--;
6542 6543
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6544 6545
			}
			putback_lru_page(page);
6546
put:			/* get_mctgt_type() gets the page */
6547 6548
			put_page(page);
			break;
6549 6550
		case MC_TARGET_SWAP:
			ent = target.ent;
6551
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6552
				mc.precharge--;
6553 6554 6555
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6556
			break;
6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6571
		ret = mem_cgroup_do_precharge(1);
6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6615
	up_read(&mm->mmap_sem);
6616 6617
}

6618
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6619
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6620
{
6621
	struct task_struct *p = cgroup_taskset_first(tset);
6622
	struct mm_struct *mm = get_task_mm(p);
6623 6624

	if (mm) {
6625 6626
		if (mc.to)
			mem_cgroup_move_charge(mm);
6627 6628
		mmput(mm);
	}
6629 6630
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6631
}
6632
#else	/* !CONFIG_MMU */
6633
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6634
				 struct cgroup_taskset *tset)
6635 6636 6637
{
	return 0;
}
6638
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6639
				     struct cgroup_taskset *tset)
6640 6641
{
}
6642
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6643
				 struct cgroup_taskset *tset)
6644 6645 6646
{
}
#endif
B
Balbir Singh 已提交
6647

6648 6649 6650 6651
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6652
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6653 6654 6655 6656 6657 6658
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6659 6660
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6661 6662
}

B
Balbir Singh 已提交
6663 6664 6665
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6666
	.css_alloc = mem_cgroup_css_alloc,
6667
	.css_online = mem_cgroup_css_online,
6668 6669
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6670 6671
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6672
	.attach = mem_cgroup_move_task,
6673
	.bind = mem_cgroup_bind,
6674
	.base_cftypes = mem_cgroup_files,
6675
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6676
	.use_id = 1,
B
Balbir Singh 已提交
6677
};
6678

A
Andrew Morton 已提交
6679
#ifdef CONFIG_MEMCG_SWAP
6680 6681
static int __init enable_swap_account(char *s)
{
6682
	if (!strcmp(s, "1"))
6683
		really_do_swap_account = 1;
6684
	else if (!strcmp(s, "0"))
6685 6686 6687
		really_do_swap_account = 0;
	return 1;
}
6688
__setup("swapaccount=", enable_swap_account);
6689

6690 6691
static void __init memsw_file_init(void)
{
6692 6693 6694 6695 6696 6697 6698 6699 6700
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6701
}
6702

6703
#else
6704
static void __init enable_swap_cgroup(void)
6705 6706
{
}
6707
#endif
6708 6709

/*
6710 6711 6712 6713 6714 6715
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6716 6717 6718 6719
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6720
	enable_swap_cgroup();
6721
	memcg_stock_init();
6722 6723 6724
	return 0;
}
subsys_initcall(mem_cgroup_init);