memcontrol.c 178.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/slab.h>
43
#include <linux/swap.h>
44
#include <linux/swapops.h>
45
#include <linux/spinlock.h>
46 47
#include <linux/eventfd.h>
#include <linux/sort.h>
48
#include <linux/fs.h>
49
#include <linux/seq_file.h>
50
#include <linux/vmalloc.h>
51
#include <linux/vmpressure.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
94 95 96 97 98
	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
99 100 101
	MEM_CGROUP_STAT_NSTATS,
};

102 103 104
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
105
	"rss_huge",
106 107 108 109
	"mapped_file",
	"swap",
};

110 111 112
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
113 114
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
115 116
	MEM_CGROUP_EVENTS_NSTATS,
};
117 118 119 120 121 122 123 124

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

125 126 127 128 129 130 131 132
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

133 134 135 136 137 138 139 140
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
141
	MEM_CGROUP_TARGET_SOFTLIMIT,
142
	MEM_CGROUP_TARGET_NUMAINFO,
143 144
	MEM_CGROUP_NTARGETS,
};
145 146 147
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
148

149
struct mem_cgroup_stat_cpu {
150
	long count[MEM_CGROUP_STAT_NSTATS];
151
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
152
	unsigned long nr_page_events;
153
	unsigned long targets[MEM_CGROUP_NTARGETS];
154 155
};

156
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
157 158 159 160
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
161
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
162 163
	unsigned long last_dead_count;

164 165 166 167
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

168 169 170 171
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
172
	struct lruvec		lruvec;
173
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
174

175 176
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

177
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
178
						/* use container_of	   */
179 180 181 182 183 184
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

185 186 187 188 189
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
190
/* For threshold */
191
struct mem_cgroup_threshold_ary {
192
	/* An array index points to threshold just below or equal to usage. */
193
	int current_threshold;
194 195 196 197 198
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
199 200 201 202 203 204 205 206 207 208 209 210

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
211 212 213 214 215
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
216

217 218
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
219

B
Balbir Singh 已提交
220 221 222 223 224 225 226
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
227 228 229
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
230 231 232 233 234 235 236
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
237

238 239 240
	/* vmpressure notifications */
	struct vmpressure vmpressure;

241 242 243 244
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
245

246 247 248 249
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
250 251 252 253
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
254
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
255 256 257 258

	bool		oom_lock;
	atomic_t	under_oom;

259
	int	swappiness;
260 261
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
262

263 264 265
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

266 267 268 269
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
270
	struct mem_cgroup_thresholds thresholds;
271

272
	/* thresholds for mem+swap usage. RCU-protected */
273
	struct mem_cgroup_thresholds memsw_thresholds;
274

K
KAMEZAWA Hiroyuki 已提交
275 276
	/* For oom notifier event fd */
	struct list_head oom_notify;
277

278 279 280 281 282
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
283 284 285 286
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
287 288
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
289
	/*
290
	 * percpu counter.
291
	 */
292
	struct mem_cgroup_stat_cpu __percpu *stat;
293 294 295 296 297 298
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
299

M
Michal Hocko 已提交
300
	atomic_t	dead_count;
M
Michal Hocko 已提交
301
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
302 303
	struct tcp_memcontrol tcp_mem;
#endif
304 305 306 307 308 309 310 311
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
312 313 314 315 316 317 318

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	/*
	 * Protects soft_contributed transitions.
	 * See mem_cgroup_update_soft_limit
	 */
	spinlock_t soft_lock;

	/*
	 * If true then this group has increased parents' children_in_excess
         * when it got over the soft limit.
	 * When a group falls bellow the soft limit, parents' children_in_excess
	 * is decreased and soft_contributed changed to false.
	 */
	bool soft_contributed;

	/* Number of children that are in soft limit excess */
	atomic_t children_in_excess;
335

336 337
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
338 339
};

340 341 342 343 344 345
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

346 347 348
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
349
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
350
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
351 352
};

353 354 355
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
356 357 358 359 360 361

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
362 363 364 365 366 367

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

368 369 370 371 372
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

373 374 375 376 377
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

378 379
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
380 381 382 383 384
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
385 386 387 388 389 390 391 392 393
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
394 395
#endif

396 397
/* Stuffs for move charges at task migration. */
/*
398 399
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
400 401
 */
enum move_type {
402
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
403
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
404 405 406
	NR_MOVE_TYPE,
};

407 408
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
409
	spinlock_t	  lock; /* for from, to */
410 411
	struct mem_cgroup *from;
	struct mem_cgroup *to;
412
	unsigned long immigrate_flags;
413
	unsigned long precharge;
414
	unsigned long moved_charge;
415
	unsigned long moved_swap;
416 417 418
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
419
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
420 421
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
422

D
Daisuke Nishimura 已提交
423 424
static bool move_anon(void)
{
425
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
426 427
}

428 429
static bool move_file(void)
{
430
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
431 432
}

433 434 435 436
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
437
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
438

439 440
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
441
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
442
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
443
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
444 445 446
	NR_CHARGE_TYPE,
};

447
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
448 449 450 451
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
452
	_KMEM,
G
Glauber Costa 已提交
453 454
};

455 456
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
457
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
458 459
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
460

461 462 463 464 465 466 467 468
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

469 470 471 472 473 474 475
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

476 477
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
478
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
479 480
}

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

499 500 501 502 503
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
504
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
505
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
506 507 508

void sock_update_memcg(struct sock *sk)
{
509
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
510
		struct mem_cgroup *memcg;
511
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
512 513 514

		BUG_ON(!sk->sk_prot->proto_cgroup);

515 516 517 518 519 520 521 522 523 524
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
525
			css_get(&sk->sk_cgrp->memcg->css);
526 527 528
			return;
		}

G
Glauber Costa 已提交
529 530
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
531
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
532 533
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
534
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
535 536 537 538 539 540 541 542
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
543
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
544 545 546
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
547
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
548 549
	}
}
G
Glauber Costa 已提交
550 551 552 553 554 555 556 557 558

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
559

560 561 562 563 564 565 566 567 568 569 570 571
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

572
#ifdef CONFIG_MEMCG_KMEM
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
591 592
int memcg_limited_groups_array_size;

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

608 609 610 611 612 613
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
614
struct static_key memcg_kmem_enabled_key;
615
EXPORT_SYMBOL(memcg_kmem_enabled_key);
616 617 618

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
619
	if (memcg_kmem_is_active(memcg)) {
620
		static_key_slow_dec(&memcg_kmem_enabled_key);
621 622
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
623 624 625 626 627
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
628 629 630 631 632 633 634 635 636 637 638 639 640
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

641
static void drain_all_stock_async(struct mem_cgroup *memcg);
642

643
static struct mem_cgroup_per_zone *
644
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
645
{
646
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
647
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
648 649
}

650
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
651
{
652
	return &memcg->css;
653 654
}

655
static struct mem_cgroup_per_zone *
656
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
657
{
658 659
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
660

661
	return mem_cgroup_zoneinfo(memcg, nid, zid);
662 663
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
683
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
684
				 enum mem_cgroup_stat_index idx)
685
{
686
	long val = 0;
687 688
	int cpu;

689 690
	get_online_cpus();
	for_each_online_cpu(cpu)
691
		val += per_cpu(memcg->stat->count[idx], cpu);
692
#ifdef CONFIG_HOTPLUG_CPU
693 694 695
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
696 697
#endif
	put_online_cpus();
698 699 700
	return val;
}

701
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
702 703 704
					 bool charge)
{
	int val = (charge) ? 1 : -1;
705
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
706 707
}

708
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
709 710 711 712 713 714
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
715
		val += per_cpu(memcg->stat->events[idx], cpu);
716
#ifdef CONFIG_HOTPLUG_CPU
717 718 719
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
720 721 722 723
#endif
	return val;
}

724
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
725
					 struct page *page,
726
					 bool anon, int nr_pages)
727
{
728 729
	preempt_disable();

730 731 732 733 734 735
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
736
				nr_pages);
737
	else
738
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
739
				nr_pages);
740

741 742 743 744
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

745 746
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
747
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
748
	else {
749
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
750 751
		nr_pages = -nr_pages; /* for event */
	}
752

753
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
754

755
	preempt_enable();
756 757
}

758
unsigned long
759
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
760 761 762 763 764 765 766 767
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
768
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
769
			unsigned int lru_mask)
770 771
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
772
	enum lru_list lru;
773 774
	unsigned long ret = 0;

775
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
776

H
Hugh Dickins 已提交
777 778 779
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
780 781 782 783 784
	}
	return ret;
}

static unsigned long
785
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
786 787
			int nid, unsigned int lru_mask)
{
788 789 790
	u64 total = 0;
	int zid;

791
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
792 793
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
794

795 796
	return total;
}
797

798
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
799
			unsigned int lru_mask)
800
{
801
	int nid;
802 803
	u64 total = 0;

804
	for_each_node_state(nid, N_MEMORY)
805
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
806
	return total;
807 808
}

809 810
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
811 812 813
{
	unsigned long val, next;

814
	val = __this_cpu_read(memcg->stat->nr_page_events);
815
	next = __this_cpu_read(memcg->stat->targets[target]);
816
	/* from time_after() in jiffies.h */
817 818 819 820 821
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
822 823 824
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
825 826 827 828 829 830 831 832
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
833
	}
834
	return false;
835 836
}

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
/*
 * Called from rate-limitted memcg_check_events when enough
 * MEM_CGROUP_TARGET_SOFTLIMIT events are accumulated and it makes sure
 * that all the parents up the hierarchy will be noticed that this group
 * is in excess or that it is not in excess anymore. mmecg->soft_contributed
 * makes the transition a single action whenever the state flips from one to
 * other.
 */
static void mem_cgroup_update_soft_limit(struct mem_cgroup *memcg)
{
	unsigned long long excess = res_counter_soft_limit_excess(&memcg->res);
	struct mem_cgroup *parent = memcg;
	int delta = 0;

	spin_lock(&memcg->soft_lock);
	if (excess) {
		if (!memcg->soft_contributed) {
			delta = 1;
			memcg->soft_contributed = true;
		}
	} else {
		if (memcg->soft_contributed) {
			delta = -1;
			memcg->soft_contributed = false;
		}
	}

	/*
	 * Necessary to update all ancestors when hierarchy is used
	 * because their event counter is not touched.
	 */
	while (delta && (parent = parent_mem_cgroup(parent)))
		atomic_add(delta, &parent->children_in_excess);
	spin_unlock(&memcg->soft_lock);
}

873 874 875 876
/*
 * Check events in order.
 *
 */
877
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
878
{
879
	preempt_disable();
880
	/* threshold event is triggered in finer grain than soft limit */
881 882
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
883
		bool do_softlimit;
884
		bool do_numainfo __maybe_unused;
885

886 887
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
888 889 890 891 892 893
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

894
		mem_cgroup_threshold(memcg);
895 896
		if (unlikely(do_softlimit))
			mem_cgroup_update_soft_limit(memcg);
897
#if MAX_NUMNODES > 1
898
		if (unlikely(do_numainfo))
899
			atomic_inc(&memcg->numainfo_events);
900
#endif
901 902
	} else
		preempt_enable();
903 904
}

905
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
906
{
907 908 909 910 911 912 913 914
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

915
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
916 917
}

918
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
919
{
920
	struct mem_cgroup *memcg = NULL;
921 922 923

	if (!mm)
		return NULL;
924 925 926 927 928 929 930
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
931 932
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
933
			break;
934
	} while (!css_tryget(&memcg->css));
935
	rcu_read_unlock();
936
	return memcg;
937 938
}

939 940 941 942 943 944 945 946 947
static enum mem_cgroup_filter_t
mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root,
		mem_cgroup_iter_filter cond)
{
	if (!cond)
		return VISIT;
	return cond(memcg, root);
}

948 949 950 951 952 953 954
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
955
		struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond)
956
{
957
	struct cgroup_subsys_state *prev_css, *next_css;
958

959
	prev_css = last_visited ? &last_visited->css : NULL;
960
skip_node:
961
	next_css = css_next_descendant_pre(prev_css, &root->css);
962 963 964 965 966 967 968 969

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
970 971 972
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

973 974
		switch (mem_cgroup_filter(mem, root, cond)) {
		case SKIP:
975
			prev_css = next_css;
976
			goto skip_node;
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
		case SKIP_TREE:
			if (mem == root)
				return NULL;
			/*
			 * css_rightmost_descendant is not an optimal way to
			 * skip through a subtree (especially for imbalanced
			 * trees leaning to right) but that's what we have right
			 * now. More effective solution would be traversing
			 * right-up for first non-NULL without calling
			 * css_next_descendant_pre afterwards.
			 */
			prev_css = css_rightmost_descendant(next_css);
			goto skip_node;
		case VISIT:
			if (css_tryget(&mem->css))
				return mem;
			else {
				prev_css = next_css;
				goto skip_node;
			}
			break;
998 999 1000 1001 1002 1003
		}
	}

	return NULL;
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1056 1057 1058 1059 1060
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1061
 * @cond: filter for visited nodes, NULL for no filter
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1074
struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
1075
				   struct mem_cgroup *prev,
1076 1077
				   struct mem_cgroup_reclaim_cookie *reclaim,
				   mem_cgroup_iter_filter cond)
K
KAMEZAWA Hiroyuki 已提交
1078
{
1079
	struct mem_cgroup *memcg = NULL;
1080
	struct mem_cgroup *last_visited = NULL;
1081

1082 1083 1084 1085
	if (mem_cgroup_disabled()) {
		/* first call must return non-NULL, second return NULL */
		return (struct mem_cgroup *)(unsigned long)!prev;
	}
1086

1087 1088
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1089

1090
	if (prev && !reclaim)
1091
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1092

1093 1094
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1095
			goto out_css_put;
1096 1097 1098
		if (mem_cgroup_filter(root, root, cond) == VISIT)
			return root;
		return NULL;
1099
	}
K
KAMEZAWA Hiroyuki 已提交
1100

1101
	rcu_read_lock();
1102
	while (!memcg) {
1103
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1104
		int uninitialized_var(seq);
1105

1106 1107 1108 1109 1110 1111 1112
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1113
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1114
				iter->last_visited = NULL;
1115 1116
				goto out_unlock;
			}
M
Michal Hocko 已提交
1117

1118
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1119
		}
K
KAMEZAWA Hiroyuki 已提交
1120

1121
		memcg = __mem_cgroup_iter_next(root, last_visited, cond);
K
KAMEZAWA Hiroyuki 已提交
1122

1123
		if (reclaim) {
1124
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1125

M
Michal Hocko 已提交
1126
			if (!memcg)
1127 1128 1129 1130
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1131

1132 1133 1134 1135 1136
		/*
		 * We have finished the whole tree walk or no group has been
		 * visited because filter told us to skip the root node.
		 */
		if (!memcg && (prev || (cond && !last_visited)))
1137
			goto out_unlock;
1138
	}
1139 1140
out_unlock:
	rcu_read_unlock();
1141 1142 1143 1144
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1145
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1146
}
K
KAMEZAWA Hiroyuki 已提交
1147

1148 1149 1150 1151 1152 1153 1154
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1155 1156 1157 1158 1159 1160
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1161

1162 1163 1164 1165 1166 1167
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1168
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1169
	     iter != NULL;				\
1170
	     iter = mem_cgroup_iter(root, iter, NULL))
1171

1172
#define for_each_mem_cgroup(iter)			\
1173
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1174
	     iter != NULL;				\
1175
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1176

1177
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1178
{
1179
	struct mem_cgroup *memcg;
1180 1181

	rcu_read_lock();
1182 1183
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1184 1185 1186 1187
		goto out;

	switch (idx) {
	case PGFAULT:
1188 1189 1190 1191
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1192 1193 1194 1195 1196 1197 1198
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1199
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1200

1201 1202 1203
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1204
 * @memcg: memcg of the wanted lruvec
1205 1206 1207 1208 1209 1210 1211 1212 1213
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1214
	struct lruvec *lruvec;
1215

1216 1217 1218 1219
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1220 1221

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1232 1233
}

K
KAMEZAWA Hiroyuki 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1247

1248
/**
1249
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1250
 * @page: the page
1251
 * @zone: zone of the page
1252
 */
1253
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1254 1255
{
	struct mem_cgroup_per_zone *mz;
1256 1257
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1258
	struct lruvec *lruvec;
1259

1260 1261 1262 1263
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1264

K
KAMEZAWA Hiroyuki 已提交
1265
	pc = lookup_page_cgroup(page);
1266
	memcg = pc->mem_cgroup;
1267 1268

	/*
1269
	 * Surreptitiously switch any uncharged offlist page to root:
1270 1271 1272 1273 1274 1275 1276
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1277
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1278 1279
		pc->mem_cgroup = memcg = root_mem_cgroup;

1280
	mz = page_cgroup_zoneinfo(memcg, page);
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1291
}
1292

1293
/**
1294 1295 1296 1297
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1298
 *
1299 1300
 * This function must be called when a page is added to or removed from an
 * lru list.
1301
 */
1302 1303
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1304 1305
{
	struct mem_cgroup_per_zone *mz;
1306
	unsigned long *lru_size;
1307 1308 1309 1310

	if (mem_cgroup_disabled())
		return;

1311 1312 1313 1314
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1315
}
1316

1317
/*
1318
 * Checks whether given mem is same or in the root_mem_cgroup's
1319 1320
 * hierarchy subtree
 */
1321 1322
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1323
{
1324 1325
	if (root_memcg == memcg)
		return true;
1326
	if (!root_memcg->use_hierarchy || !memcg)
1327
		return false;
1328 1329 1330 1331 1332 1333 1334 1335
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1336
	rcu_read_lock();
1337
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1338 1339
	rcu_read_unlock();
	return ret;
1340 1341
}

1342 1343
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1344
{
1345
	struct mem_cgroup *curr = NULL;
1346
	struct task_struct *p;
1347
	bool ret;
1348

1349
	p = find_lock_task_mm(task);
1350 1351 1352 1353 1354 1355 1356 1357 1358
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1359
		rcu_read_lock();
1360 1361 1362
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1363
		rcu_read_unlock();
1364
	}
1365
	if (!curr)
1366
		return false;
1367
	/*
1368
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1369
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1370 1371
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1372
	 */
1373
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1374
	css_put(&curr->css);
1375 1376 1377
	return ret;
}

1378
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1379
{
1380
	unsigned long inactive_ratio;
1381
	unsigned long inactive;
1382
	unsigned long active;
1383
	unsigned long gb;
1384

1385 1386
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1387

1388 1389 1390 1391 1392 1393
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1394
	return inactive * inactive_ratio < active;
1395 1396
}

1397 1398 1399
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1400
/**
1401
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1402
 * @memcg: the memory cgroup
1403
 *
1404
 * Returns the maximum amount of memory @mem can be charged with, in
1405
 * pages.
1406
 */
1407
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1408
{
1409 1410
	unsigned long long margin;

1411
	margin = res_counter_margin(&memcg->res);
1412
	if (do_swap_account)
1413
		margin = min(margin, res_counter_margin(&memcg->memsw));
1414
	return margin >> PAGE_SHIFT;
1415 1416
}

1417
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1418 1419
{
	/* root ? */
T
Tejun Heo 已提交
1420
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1421 1422
		return vm_swappiness;

1423
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1424 1425
}

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1440 1441 1442 1443

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1444
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1445
{
1446
	atomic_inc(&memcg_moving);
1447
	atomic_inc(&memcg->moving_account);
1448 1449 1450
	synchronize_rcu();
}

1451
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1452
{
1453 1454 1455 1456
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1457 1458
	if (memcg) {
		atomic_dec(&memcg_moving);
1459
		atomic_dec(&memcg->moving_account);
1460
	}
1461
}
1462

1463 1464 1465
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1466 1467
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1468 1469 1470 1471 1472 1473 1474
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1475
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1476 1477
{
	VM_BUG_ON(!rcu_read_lock_held());
1478
	return atomic_read(&memcg->moving_account) > 0;
1479
}
1480

1481
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1482
{
1483 1484
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1485
	bool ret = false;
1486 1487 1488 1489 1490 1491 1492 1493 1494
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1495

1496 1497
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1498 1499
unlock:
	spin_unlock(&mc.lock);
1500 1501 1502
	return ret;
}

1503
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1504 1505
{
	if (mc.moving_task && current != mc.moving_task) {
1506
		if (mem_cgroup_under_move(memcg)) {
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1519 1520 1521 1522
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1523
 * see mem_cgroup_stolen(), too.
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1537
#define K(x) ((x) << (PAGE_SHIFT-10))
1538
/**
1539
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1557 1558
	struct mem_cgroup *iter;
	unsigned int i;
1559

1560
	if (!p)
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1579
	pr_info("Task in %s killed", memcg_name);
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1592
	pr_cont(" as a result of limit of %s\n", memcg_name);
1593 1594
done:

1595
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1596 1597 1598
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1599
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1600 1601 1602
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1603
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1604 1605 1606
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1631 1632
}

1633 1634 1635 1636
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1637
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1638 1639
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1640 1641
	struct mem_cgroup *iter;

1642
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1643
		num++;
1644 1645 1646
	return num;
}

D
David Rientjes 已提交
1647 1648 1649
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1650
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1651 1652 1653
{
	u64 limit;

1654 1655
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1656
	/*
1657
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1658
	 */
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1673 1674
}

1675 1676
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1677 1678 1679 1680 1681 1682 1683
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1684
	/*
1685 1686 1687
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1688
	 */
1689
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1690 1691 1692 1693 1694
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1695 1696
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1697
		struct css_task_iter it;
1698 1699
		struct task_struct *task;

1700 1701
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1714
				css_task_iter_end(&it);
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1731
		css_task_iter_end(&it);
1732 1733 1734 1735 1736 1737 1738 1739 1740
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1777
#if MAX_NUMNODES > 1
1778 1779
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1780
 * @memcg: the target memcg
1781 1782 1783 1784 1785 1786 1787
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1788
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1789 1790
		int nid, bool noswap)
{
1791
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1792 1793 1794
		return true;
	if (noswap || !total_swap_pages)
		return false;
1795
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1796 1797 1798 1799
		return true;
	return false;

}
1800 1801 1802 1803 1804 1805 1806

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1807
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1808 1809
{
	int nid;
1810 1811 1812 1813
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1814
	if (!atomic_read(&memcg->numainfo_events))
1815
		return;
1816
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1817 1818 1819
		return;

	/* make a nodemask where this memcg uses memory from */
1820
	memcg->scan_nodes = node_states[N_MEMORY];
1821

1822
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1823

1824 1825
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1826
	}
1827

1828 1829
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1844
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1845 1846 1847
{
	int node;

1848 1849
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1850

1851
	node = next_node(node, memcg->scan_nodes);
1852
	if (node == MAX_NUMNODES)
1853
		node = first_node(memcg->scan_nodes);
1854 1855 1856 1857 1858 1859 1860 1861 1862
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1863
	memcg->last_scanned_node = node;
1864 1865 1866 1867
	return node;
}

#else
1868
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1869 1870 1871
{
	return 0;
}
1872

1873 1874
#endif

1875
/*
1876 1877 1878
 * A group is eligible for the soft limit reclaim under the given root
 * hierarchy if
 * 	a) it is over its soft limit
1879
 * 	b) any parent up the hierarchy is over its soft limit
1880 1881 1882
 *
 * If the given group doesn't have any children over the limit then it
 * doesn't make any sense to iterate its subtree.
1883
 */
1884 1885
enum mem_cgroup_filter_t
mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
1886
		struct mem_cgroup *root)
1887 1888 1889 1890
{
	struct mem_cgroup *parent = memcg;

	if (res_counter_soft_limit_excess(&memcg->res))
1891
		return VISIT;
1892 1893

	/*
1894 1895
	 * If any parent up to the root in the hierarchy is over its soft limit
	 * then we have to obey and reclaim from this group as well.
1896 1897 1898
	 */
	while((parent = parent_mem_cgroup(parent))) {
		if (res_counter_soft_limit_excess(&parent->res))
1899
			return VISIT;
1900 1901
		if (parent == root)
			break;
1902
	}
1903

1904 1905
	if (!atomic_read(&memcg->children_in_excess))
		return SKIP_TREE;
1906
	return SKIP;
1907 1908
}

K
KAMEZAWA Hiroyuki 已提交
1909 1910 1911
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1912
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1913
 */
1914
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1915
{
1916
	struct mem_cgroup *iter, *failed = NULL;
1917

1918
	for_each_mem_cgroup_tree(iter, memcg) {
1919
		if (iter->oom_lock) {
1920 1921 1922 1923 1924
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1925 1926
			mem_cgroup_iter_break(memcg, iter);
			break;
1927 1928
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1929
	}
K
KAMEZAWA Hiroyuki 已提交
1930

1931
	if (!failed)
1932
		return true;
1933 1934 1935 1936 1937

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1938
	for_each_mem_cgroup_tree(iter, memcg) {
1939
		if (iter == failed) {
1940 1941
			mem_cgroup_iter_break(memcg, iter);
			break;
1942 1943 1944
		}
		iter->oom_lock = false;
	}
1945
	return false;
1946
}
1947

1948
/*
1949
 * Has to be called with memcg_oom_lock
1950
 */
1951
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1952
{
K
KAMEZAWA Hiroyuki 已提交
1953 1954
	struct mem_cgroup *iter;

1955
	for_each_mem_cgroup_tree(iter, memcg)
1956 1957 1958 1959
		iter->oom_lock = false;
	return 0;
}

1960
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1961 1962 1963
{
	struct mem_cgroup *iter;

1964
	for_each_mem_cgroup_tree(iter, memcg)
1965 1966 1967
		atomic_inc(&iter->under_oom);
}

1968
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1969 1970 1971
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1972 1973 1974 1975 1976
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1977
	for_each_mem_cgroup_tree(iter, memcg)
1978
		atomic_add_unless(&iter->under_oom, -1, 0);
1979 1980
}

1981
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1982 1983
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1984
struct oom_wait_info {
1985
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1986 1987 1988 1989 1990 1991
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1992 1993
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1994 1995 1996
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1997
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1998 1999

	/*
2000
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2001 2002
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2003 2004
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2005 2006 2007 2008
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2009
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2010
{
2011 2012
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2013 2014
}

2015
static void memcg_oom_recover(struct mem_cgroup *memcg)
2016
{
2017 2018
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2019 2020
}

K
KAMEZAWA Hiroyuki 已提交
2021 2022 2023
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2024 2025
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2026
{
K
KAMEZAWA Hiroyuki 已提交
2027
	struct oom_wait_info owait;
2028
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2029

2030
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2031 2032 2033 2034
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2035
	need_to_kill = true;
2036
	mem_cgroup_mark_under_oom(memcg);
2037

2038
	/* At first, try to OOM lock hierarchy under memcg.*/
2039
	spin_lock(&memcg_oom_lock);
2040
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2041 2042 2043 2044 2045
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2046
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2047
	if (!locked || memcg->oom_kill_disable)
2048 2049
		need_to_kill = false;
	if (locked)
2050
		mem_cgroup_oom_notify(memcg);
2051
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2052

2053 2054
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2055
		mem_cgroup_out_of_memory(memcg, mask, order);
2056
	} else {
K
KAMEZAWA Hiroyuki 已提交
2057
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2058
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2059
	}
2060
	spin_lock(&memcg_oom_lock);
2061
	if (locked)
2062 2063
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2064
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2065

2066
	mem_cgroup_unmark_under_oom(memcg);
2067

K
KAMEZAWA Hiroyuki 已提交
2068 2069 2070
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2071
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2072
	return true;
2073 2074
}

2075 2076 2077
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2095 2096
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2097
 */
2098

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2112
	 * need to take move_lock_mem_cgroup(). Because we already hold
2113
	 * rcu_read_lock(), any calls to move_account will be delayed until
2114
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2115
	 */
2116
	if (!mem_cgroup_stolen(memcg))
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2134
	 * should take move_lock_mem_cgroup().
2135 2136 2137 2138
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2139 2140
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2141
{
2142
	struct mem_cgroup *memcg;
2143
	struct page_cgroup *pc = lookup_page_cgroup(page);
2144
	unsigned long uninitialized_var(flags);
2145

2146
	if (mem_cgroup_disabled())
2147
		return;
2148

2149 2150
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2151
		return;
2152 2153

	switch (idx) {
2154 2155
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2156 2157 2158
		break;
	default:
		BUG();
2159
	}
2160

2161
	this_cpu_add(memcg->stat->count[idx], val);
2162
}
2163

2164 2165 2166 2167
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2168
#define CHARGE_BATCH	32U
2169 2170
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2171
	unsigned int nr_pages;
2172
	struct work_struct work;
2173
	unsigned long flags;
2174
#define FLUSHING_CACHED_CHARGE	0
2175 2176
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2177
static DEFINE_MUTEX(percpu_charge_mutex);
2178

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2189
 */
2190
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2191 2192 2193 2194
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2195 2196 2197
	if (nr_pages > CHARGE_BATCH)
		return false;

2198
	stock = &get_cpu_var(memcg_stock);
2199 2200
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2214 2215 2216 2217
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2218
		if (do_swap_account)
2219 2220
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2233
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2234 2235
}

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2247 2248
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2249
 * This will be consumed by consume_stock() function, later.
2250
 */
2251
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2252 2253 2254
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2255
	if (stock->cached != memcg) { /* reset if necessary */
2256
		drain_stock(stock);
2257
		stock->cached = memcg;
2258
	}
2259
	stock->nr_pages += nr_pages;
2260 2261 2262 2263
	put_cpu_var(memcg_stock);
}

/*
2264
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2265 2266
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2267
 */
2268
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2269
{
2270
	int cpu, curcpu;
2271

2272 2273
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2274
	curcpu = get_cpu();
2275 2276
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2277
		struct mem_cgroup *memcg;
2278

2279 2280
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2281
			continue;
2282
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2283
			continue;
2284 2285 2286 2287 2288 2289
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2290
	}
2291
	put_cpu();
2292 2293 2294 2295 2296 2297

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2298
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2299 2300 2301
			flush_work(&stock->work);
	}
out:
2302
 	put_online_cpus();
2303 2304 2305 2306 2307 2308 2309 2310
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2311
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2312
{
2313 2314 2315 2316 2317
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2318
	drain_all_stock(root_memcg, false);
2319
	mutex_unlock(&percpu_charge_mutex);
2320 2321 2322
}

/* This is a synchronous drain interface. */
2323
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2324 2325
{
	/* called when force_empty is called */
2326
	mutex_lock(&percpu_charge_mutex);
2327
	drain_all_stock(root_memcg, true);
2328
	mutex_unlock(&percpu_charge_mutex);
2329 2330
}

2331 2332 2333 2334
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2335
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2336 2337 2338
{
	int i;

2339
	spin_lock(&memcg->pcp_counter_lock);
2340
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2341
		long x = per_cpu(memcg->stat->count[i], cpu);
2342

2343 2344
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2345
	}
2346
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2347
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2348

2349 2350
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2351
	}
2352
	spin_unlock(&memcg->pcp_counter_lock);
2353 2354
}

2355
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2356 2357 2358 2359 2360
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2361
	struct mem_cgroup *iter;
2362

2363
	if (action == CPU_ONLINE)
2364 2365
		return NOTIFY_OK;

2366
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2367
		return NOTIFY_OK;
2368

2369
	for_each_mem_cgroup(iter)
2370 2371
		mem_cgroup_drain_pcp_counter(iter, cpu);

2372 2373 2374 2375 2376
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2387
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2388 2389
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2390
{
2391
	unsigned long csize = nr_pages * PAGE_SIZE;
2392 2393 2394 2395 2396
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2397
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2398 2399 2400 2401

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2402
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2403 2404 2405
		if (likely(!ret))
			return CHARGE_OK;

2406
		res_counter_uncharge(&memcg->res, csize);
2407 2408 2409 2410
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2411 2412 2413 2414
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2415
	if (nr_pages > min_pages)
2416 2417 2418 2419 2420
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2421 2422 2423
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2424
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2425
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2426
		return CHARGE_RETRY;
2427
	/*
2428 2429 2430 2431 2432 2433 2434
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2435
	 */
2436
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2450
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2451 2452 2453 2454 2455
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2456
/*
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2476
 */
2477
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2478
				   gfp_t gfp_mask,
2479
				   unsigned int nr_pages,
2480
				   struct mem_cgroup **ptr,
2481
				   bool oom)
2482
{
2483
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2484
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2485
	struct mem_cgroup *memcg = NULL;
2486
	int ret;
2487

K
KAMEZAWA Hiroyuki 已提交
2488 2489 2490 2491 2492 2493 2494 2495
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2496

2497
	/*
2498 2499
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2500
	 * thread group leader migrates. It's possible that mm is not
2501
	 * set, if so charge the root memcg (happens for pagecache usage).
2502
	 */
2503
	if (!*ptr && !mm)
2504
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2505
again:
2506 2507 2508
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2509
			goto done;
2510
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2511
			goto done;
2512
		css_get(&memcg->css);
2513
	} else {
K
KAMEZAWA Hiroyuki 已提交
2514
		struct task_struct *p;
2515

K
KAMEZAWA Hiroyuki 已提交
2516 2517 2518
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2519
		 * Because we don't have task_lock(), "p" can exit.
2520
		 * In that case, "memcg" can point to root or p can be NULL with
2521 2522 2523 2524 2525 2526
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2527
		 */
2528
		memcg = mem_cgroup_from_task(p);
2529 2530 2531
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2532 2533 2534
			rcu_read_unlock();
			goto done;
		}
2535
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2548
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2549 2550 2551 2552 2553
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2554

2555 2556
	do {
		bool oom_check;
2557

2558
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2559
		if (fatal_signal_pending(current)) {
2560
			css_put(&memcg->css);
2561
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2562
		}
2563

2564 2565 2566 2567
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2568
		}
2569

2570 2571
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2572 2573 2574 2575
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2576
			batch = nr_pages;
2577 2578
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2579
			goto again;
2580
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2581
			css_put(&memcg->css);
2582 2583
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2584
			if (!oom) {
2585
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2586
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2587
			}
2588 2589 2590 2591
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2592
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2593
			goto bypass;
2594
		}
2595 2596
	} while (ret != CHARGE_OK);

2597
	if (batch > nr_pages)
2598 2599
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2600
done:
2601
	*ptr = memcg;
2602 2603
	return 0;
nomem:
2604
	*ptr = NULL;
2605
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2606
bypass:
2607 2608
	*ptr = root_mem_cgroup;
	return -EINTR;
2609
}
2610

2611 2612 2613 2614 2615
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2616
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2617
				       unsigned int nr_pages)
2618
{
2619
	if (!mem_cgroup_is_root(memcg)) {
2620 2621
		unsigned long bytes = nr_pages * PAGE_SIZE;

2622
		res_counter_uncharge(&memcg->res, bytes);
2623
		if (do_swap_account)
2624
			res_counter_uncharge(&memcg->memsw, bytes);
2625
	}
2626 2627
}

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2646 2647
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2648 2649 2650
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2662
	return mem_cgroup_from_css(css);
2663 2664
}

2665
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2666
{
2667
	struct mem_cgroup *memcg = NULL;
2668
	struct page_cgroup *pc;
2669
	unsigned short id;
2670 2671
	swp_entry_t ent;

2672 2673 2674
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2675
	lock_page_cgroup(pc);
2676
	if (PageCgroupUsed(pc)) {
2677 2678 2679
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2680
	} else if (PageSwapCache(page)) {
2681
		ent.val = page_private(page);
2682
		id = lookup_swap_cgroup_id(ent);
2683
		rcu_read_lock();
2684 2685 2686
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2687
		rcu_read_unlock();
2688
	}
2689
	unlock_page_cgroup(pc);
2690
	return memcg;
2691 2692
}

2693
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2694
				       struct page *page,
2695
				       unsigned int nr_pages,
2696 2697
				       enum charge_type ctype,
				       bool lrucare)
2698
{
2699
	struct page_cgroup *pc = lookup_page_cgroup(page);
2700
	struct zone *uninitialized_var(zone);
2701
	struct lruvec *lruvec;
2702
	bool was_on_lru = false;
2703
	bool anon;
2704

2705
	lock_page_cgroup(pc);
2706
	VM_BUG_ON(PageCgroupUsed(pc));
2707 2708 2709 2710
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2711 2712 2713 2714 2715 2716 2717 2718 2719

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2720
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2721
			ClearPageLRU(page);
2722
			del_page_from_lru_list(page, lruvec, page_lru(page));
2723 2724 2725 2726
			was_on_lru = true;
		}
	}

2727
	pc->mem_cgroup = memcg;
2728 2729 2730 2731 2732 2733 2734
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2735
	smp_wmb();
2736
	SetPageCgroupUsed(pc);
2737

2738 2739
	if (lrucare) {
		if (was_on_lru) {
2740
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2741 2742
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2743
			add_page_to_lru_list(page, lruvec, page_lru(page));
2744 2745 2746 2747
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2748
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2749 2750 2751 2752
		anon = true;
	else
		anon = false;

2753
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2754
	unlock_page_cgroup(pc);
2755

2756
	/*
2757
	 * "charge_statistics" updated event counter.
2758
	 */
2759
	memcg_check_events(memcg, page);
2760
}
2761

2762 2763
static DEFINE_MUTEX(set_limit_mutex);

2764 2765 2766 2767 2768 2769 2770
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2784
#ifdef CONFIG_SLABINFO
2785 2786
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2787
{
2788
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2858 2859 2860 2861 2862

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2863 2864 2865 2866 2867 2868 2869 2870
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2871
	if (memcg_kmem_test_and_clear_dead(memcg))
2872
		css_put(&memcg->css);
2873 2874
}

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

2958 2959
static void kmem_cache_destroy_work_func(struct work_struct *w);

2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
2971
		size += offsetof(struct memcg_cache_params, memcg_caches);
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3011 3012
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3013
{
3014
	size_t size;
3015 3016 3017 3018

	if (!memcg_kmem_enabled())
		return 0;

3019 3020
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3021
		size += memcg_limited_groups_array_size * sizeof(void *);
3022 3023
	} else
		size = sizeof(struct memcg_cache_params);
3024

3025 3026 3027 3028
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3029
	if (memcg) {
3030
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3031
		s->memcg_params->root_cache = root_cache;
3032 3033
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3034 3035 3036
	} else
		s->memcg_params->is_root_cache = true;

3037 3038 3039 3040 3041
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3066
	css_put(&memcg->css);
3067
out:
3068 3069 3070
	kfree(s->memcg_params);
}

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3102 3103 3104 3105 3106 3107 3108 3109 3110
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3132 3133 3134 3135 3136 3137 3138 3139
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3160 3161 3162 3163 3164 3165 3166
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3167 3168 3169 3170 3171 3172 3173 3174 3175
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3176

3177 3178 3179
/*
 * Called with memcg_cache_mutex held
 */
3180 3181 3182 3183
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3184
	static char *tmp_name = NULL;
3185

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3204

3205
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3206
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3207

3208 3209 3210
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3226 3227
	if (new_cachep) {
		css_put(&memcg->css);
3228
		goto out;
3229
	}
3230 3231 3232 3233

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3234
		css_put(&memcg->css);
3235 3236 3237
		goto out;
	}

G
Glauber Costa 已提交
3238
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3290
		cancel_work_sync(&c->memcg_params->destroy);
3291 3292 3293 3294 3295
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3296 3297 3298 3299 3300 3301
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3331 3332
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3333 3334 3335 3336
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3337 3338
	if (cw == NULL) {
		css_put(&memcg->css);
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3389 3390 3391
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3392 3393 3394 3395
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3396
		goto out;
3397 3398 3399 3400 3401 3402 3403 3404

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3405 3406 3407
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3408 3409
	}

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3437 3438 3439
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
	 * 	memcg_stop_kmem_account();
	 * 	kmalloc(<large_number>)
	 * 	memcg_resume_kmem_account();
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3563 3564 3565 3566
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3567 3568
#endif /* CONFIG_MEMCG_KMEM */

3569 3570
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3571
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3572 3573
/*
 * Because tail pages are not marked as "used", set it. We're under
3574 3575 3576
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3577
 */
3578
void mem_cgroup_split_huge_fixup(struct page *head)
3579 3580
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3581
	struct page_cgroup *pc;
3582
	struct mem_cgroup *memcg;
3583
	int i;
3584

3585 3586
	if (mem_cgroup_disabled())
		return;
3587 3588

	memcg = head_pc->mem_cgroup;
3589 3590
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3591
		pc->mem_cgroup = memcg;
3592 3593 3594
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3595 3596
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3597
}
3598
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3599

3600
/**
3601
 * mem_cgroup_move_account - move account of the page
3602
 * @page: the page
3603
 * @nr_pages: number of regular pages (>1 for huge pages)
3604 3605 3606 3607 3608
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3609
 * - page is not on LRU (isolate_page() is useful.)
3610
 * - compound_lock is held when nr_pages > 1
3611
 *
3612 3613
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3614
 */
3615 3616 3617 3618
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3619
				   struct mem_cgroup *to)
3620
{
3621 3622
	unsigned long flags;
	int ret;
3623
	bool anon = PageAnon(page);
3624

3625
	VM_BUG_ON(from == to);
3626
	VM_BUG_ON(PageLRU(page));
3627 3628 3629 3630 3631 3632 3633
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3634
	if (nr_pages > 1 && !PageTransHuge(page))
3635 3636 3637 3638 3639 3640 3641 3642
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3643
	move_lock_mem_cgroup(from, &flags);
3644

3645
	if (!anon && page_mapped(page)) {
3646 3647 3648 3649 3650
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3651
	}
3652
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3653

3654
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3655
	pc->mem_cgroup = to;
3656
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3657
	move_unlock_mem_cgroup(from, &flags);
3658 3659
	ret = 0;
unlock:
3660
	unlock_page_cgroup(pc);
3661 3662 3663
	/*
	 * check events
	 */
3664 3665
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3666
out:
3667 3668 3669
	return ret;
}

3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3690
 */
3691 3692
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3693
				  struct mem_cgroup *child)
3694 3695
{
	struct mem_cgroup *parent;
3696
	unsigned int nr_pages;
3697
	unsigned long uninitialized_var(flags);
3698 3699
	int ret;

3700
	VM_BUG_ON(mem_cgroup_is_root(child));
3701

3702 3703 3704 3705 3706
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3707

3708
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3709

3710 3711 3712 3713 3714 3715
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3716

3717 3718
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3719
		flags = compound_lock_irqsave(page);
3720
	}
3721

3722
	ret = mem_cgroup_move_account(page, nr_pages,
3723
				pc, child, parent);
3724 3725
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3726

3727
	if (nr_pages > 1)
3728
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3729
	putback_lru_page(page);
3730
put:
3731
	put_page(page);
3732
out:
3733 3734 3735
	return ret;
}

3736 3737 3738 3739 3740 3741 3742
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3743
				gfp_t gfp_mask, enum charge_type ctype)
3744
{
3745
	struct mem_cgroup *memcg = NULL;
3746
	unsigned int nr_pages = 1;
3747
	bool oom = true;
3748
	int ret;
A
Andrea Arcangeli 已提交
3749

A
Andrea Arcangeli 已提交
3750
	if (PageTransHuge(page)) {
3751
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3752
		VM_BUG_ON(!PageTransHuge(page));
3753 3754 3755 3756 3757
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3758
	}
3759

3760
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3761
	if (ret == -ENOMEM)
3762
		return ret;
3763
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3764 3765 3766
	return 0;
}

3767 3768
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3769
{
3770
	if (mem_cgroup_disabled())
3771
		return 0;
3772 3773 3774
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3775
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3776
					MEM_CGROUP_CHARGE_TYPE_ANON);
3777 3778
}

3779 3780 3781
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3782
 * struct page_cgroup is acquired. This refcnt will be consumed by
3783 3784
 * "commit()" or removed by "cancel()"
 */
3785 3786 3787 3788
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3789
{
3790
	struct mem_cgroup *memcg;
3791
	struct page_cgroup *pc;
3792
	int ret;
3793

3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3804 3805
	if (!do_swap_account)
		goto charge_cur_mm;
3806 3807
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3808
		goto charge_cur_mm;
3809 3810
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3811
	css_put(&memcg->css);
3812 3813
	if (ret == -EINTR)
		ret = 0;
3814
	return ret;
3815
charge_cur_mm:
3816 3817 3818 3819
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3820 3821
}

3822 3823 3824 3825 3826 3827
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3842 3843 3844
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3845 3846 3847 3848 3849 3850 3851 3852 3853
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3854
static void
3855
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3856
					enum charge_type ctype)
3857
{
3858
	if (mem_cgroup_disabled())
3859
		return;
3860
	if (!memcg)
3861
		return;
3862

3863
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3864 3865 3866
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3867 3868 3869
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3870
	 */
3871
	if (do_swap_account && PageSwapCache(page)) {
3872
		swp_entry_t ent = {.val = page_private(page)};
3873
		mem_cgroup_uncharge_swap(ent);
3874
	}
3875 3876
}

3877 3878
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3879
{
3880
	__mem_cgroup_commit_charge_swapin(page, memcg,
3881
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3882 3883
}

3884 3885
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3886
{
3887 3888 3889 3890
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3891
	if (mem_cgroup_disabled())
3892 3893 3894 3895 3896 3897 3898
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3899 3900
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3901 3902 3903 3904
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3905 3906
}

3907
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3908 3909
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3910 3911 3912
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3913

3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3925
		batch->memcg = memcg;
3926 3927
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3928
	 * In those cases, all pages freed continuously can be expected to be in
3929 3930 3931 3932 3933 3934 3935 3936
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3937
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3938 3939
		goto direct_uncharge;

3940 3941 3942 3943 3944
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3945
	if (batch->memcg != memcg)
3946 3947
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3948
	batch->nr_pages++;
3949
	if (uncharge_memsw)
3950
		batch->memsw_nr_pages++;
3951 3952
	return;
direct_uncharge:
3953
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3954
	if (uncharge_memsw)
3955 3956 3957
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3958
}
3959

3960
/*
3961
 * uncharge if !page_mapped(page)
3962
 */
3963
static struct mem_cgroup *
3964 3965
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3966
{
3967
	struct mem_cgroup *memcg = NULL;
3968 3969
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3970
	bool anon;
3971

3972
	if (mem_cgroup_disabled())
3973
		return NULL;
3974

A
Andrea Arcangeli 已提交
3975
	if (PageTransHuge(page)) {
3976
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3977 3978
		VM_BUG_ON(!PageTransHuge(page));
	}
3979
	/*
3980
	 * Check if our page_cgroup is valid
3981
	 */
3982
	pc = lookup_page_cgroup(page);
3983
	if (unlikely(!PageCgroupUsed(pc)))
3984
		return NULL;
3985

3986
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3987

3988
	memcg = pc->mem_cgroup;
3989

K
KAMEZAWA Hiroyuki 已提交
3990 3991 3992
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3993 3994
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3995
	switch (ctype) {
3996
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3997 3998 3999 4000 4001
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4002 4003
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4004
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4005
		/* See mem_cgroup_prepare_migration() */
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4027
	}
K
KAMEZAWA Hiroyuki 已提交
4028

4029
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4030

4031
	ClearPageCgroupUsed(pc);
4032 4033 4034 4035 4036 4037
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4038

4039
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4040
	/*
4041
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4042
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4043
	 */
4044
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4045
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4046
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4047
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4048
	}
4049 4050 4051 4052 4053 4054
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4055
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4056

4057
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4058 4059 4060

unlock_out:
	unlock_page_cgroup(pc);
4061
	return NULL;
4062 4063
}

4064 4065
void mem_cgroup_uncharge_page(struct page *page)
{
4066 4067 4068
	/* early check. */
	if (page_mapped(page))
		return;
4069
	VM_BUG_ON(page->mapping && !PageAnon(page));
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4082 4083
	if (PageSwapCache(page))
		return;
4084
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4085 4086 4087 4088 4089
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4090
	VM_BUG_ON(page->mapping);
4091
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4092 4093
}

4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4108 4109
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4130 4131 4132 4133 4134 4135
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4136
	memcg_oom_recover(batch->memcg);
4137 4138 4139 4140
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4141
#ifdef CONFIG_SWAP
4142
/*
4143
 * called after __delete_from_swap_cache() and drop "page" account.
4144 4145
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4146 4147
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4148 4149
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4150 4151 4152 4153 4154
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4155
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4156

K
KAMEZAWA Hiroyuki 已提交
4157 4158
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4159
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4160 4161
	 */
	if (do_swap_account && swapout && memcg)
4162
		swap_cgroup_record(ent, css_id(&memcg->css));
4163
}
4164
#endif
4165

A
Andrew Morton 已提交
4166
#ifdef CONFIG_MEMCG_SWAP
4167 4168 4169 4170 4171
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4172
{
4173
	struct mem_cgroup *memcg;
4174
	unsigned short id;
4175 4176 4177 4178

	if (!do_swap_account)
		return;

4179 4180 4181
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4182
	if (memcg) {
4183 4184 4185 4186
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4187
		if (!mem_cgroup_is_root(memcg))
4188
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4189
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4190
		css_put(&memcg->css);
4191
	}
4192
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4193
}
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4210
				struct mem_cgroup *from, struct mem_cgroup *to)
4211 4212 4213 4214 4215 4216 4217 4218
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4219
		mem_cgroup_swap_statistics(to, true);
4220
		/*
4221 4222 4223
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4224 4225 4226 4227 4228 4229
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4230
		 */
L
Li Zefan 已提交
4231
		css_get(&to->css);
4232 4233 4234 4235 4236 4237
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4238
				struct mem_cgroup *from, struct mem_cgroup *to)
4239 4240 4241
{
	return -EINVAL;
}
4242
#endif
K
KAMEZAWA Hiroyuki 已提交
4243

4244
/*
4245 4246
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4247
 */
4248 4249
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4250
{
4251
	struct mem_cgroup *memcg = NULL;
4252
	unsigned int nr_pages = 1;
4253
	struct page_cgroup *pc;
4254
	enum charge_type ctype;
4255

4256
	*memcgp = NULL;
4257

4258
	if (mem_cgroup_disabled())
4259
		return;
4260

4261 4262 4263
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4264 4265 4266
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4267 4268
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4300
	}
4301
	unlock_page_cgroup(pc);
4302 4303 4304 4305
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4306
	if (!memcg)
4307
		return;
4308

4309
	*memcgp = memcg;
4310 4311 4312 4313 4314 4315 4316
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4317
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4318
	else
4319
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4320 4321 4322 4323 4324
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4325
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4326
}
4327

4328
/* remove redundant charge if migration failed*/
4329
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4330
	struct page *oldpage, struct page *newpage, bool migration_ok)
4331
{
4332
	struct page *used, *unused;
4333
	struct page_cgroup *pc;
4334
	bool anon;
4335

4336
	if (!memcg)
4337
		return;
4338

4339
	if (!migration_ok) {
4340 4341
		used = oldpage;
		unused = newpage;
4342
	} else {
4343
		used = newpage;
4344 4345
		unused = oldpage;
	}
4346
	anon = PageAnon(used);
4347 4348 4349 4350
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4351
	css_put(&memcg->css);
4352
	/*
4353 4354 4355
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4356
	 */
4357 4358 4359 4360 4361
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4362
	/*
4363 4364 4365 4366 4367 4368
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4369
	 */
4370
	if (anon)
4371
		mem_cgroup_uncharge_page(used);
4372
}
4373

4374 4375 4376 4377 4378 4379 4380 4381
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4382
	struct mem_cgroup *memcg = NULL;
4383 4384 4385 4386 4387 4388 4389 4390 4391
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4392 4393
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4394
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4395 4396
		ClearPageCgroupUsed(pc);
	}
4397 4398
	unlock_page_cgroup(pc);

4399 4400 4401 4402 4403 4404
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4405 4406 4407 4408 4409
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4410
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4411 4412
}

4413 4414 4415 4416 4417 4418
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4419 4420 4421 4422 4423
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4443 4444
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4445 4446 4447 4448
	}
}
#endif

4449
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4450
				unsigned long long val)
4451
{
4452
	int retry_count;
4453
	u64 memswlimit, memlimit;
4454
	int ret = 0;
4455 4456
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4457
	int enlarge;
4458 4459 4460 4461 4462 4463 4464 4465 4466

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4467

4468
	enlarge = 0;
4469
	while (retry_count) {
4470 4471 4472 4473
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4474 4475 4476
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4477
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4478 4479 4480 4481 4482 4483
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4484 4485
			break;
		}
4486 4487 4488 4489 4490

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4491
		ret = res_counter_set_limit(&memcg->res, val);
4492 4493 4494 4495 4496 4497
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4498 4499 4500 4501 4502
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4503 4504
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4505 4506 4507 4508 4509 4510
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4511
	}
4512 4513
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4514

4515 4516 4517
	return ret;
}

L
Li Zefan 已提交
4518 4519
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4520
{
4521
	int retry_count;
4522
	u64 memlimit, memswlimit, oldusage, curusage;
4523 4524
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4525
	int enlarge = 0;
4526

4527 4528 4529
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4530 4531 4532 4533 4534 4535 4536 4537
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4538
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4539 4540 4541 4542 4543 4544 4545 4546
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4547 4548 4549
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4550
		ret = res_counter_set_limit(&memcg->memsw, val);
4551 4552 4553 4554 4555 4556
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4557 4558 4559 4560 4561
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4562 4563 4564
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4565
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4566
		/* Usage is reduced ? */
4567
		if (curusage >= oldusage)
4568
			retry_count--;
4569 4570
		else
			oldusage = curusage;
4571
	}
4572 4573
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4574 4575 4576
	return ret;
}

4577 4578 4579 4580 4581 4582 4583
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4584
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4585 4586
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4587
 */
4588
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4589
				int node, int zid, enum lru_list lru)
4590
{
4591
	struct lruvec *lruvec;
4592
	unsigned long flags;
4593
	struct list_head *list;
4594 4595
	struct page *busy;
	struct zone *zone;
4596

K
KAMEZAWA Hiroyuki 已提交
4597
	zone = &NODE_DATA(node)->node_zones[zid];
4598 4599
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4600

4601
	busy = NULL;
4602
	do {
4603
		struct page_cgroup *pc;
4604 4605
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4606
		spin_lock_irqsave(&zone->lru_lock, flags);
4607
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4608
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4609
			break;
4610
		}
4611 4612 4613
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4614
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4615
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4616 4617
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4618
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4619

4620
		pc = lookup_page_cgroup(page);
4621

4622
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4623
			/* found lock contention or "pc" is obsolete. */
4624
			busy = page;
4625 4626 4627
			cond_resched();
		} else
			busy = NULL;
4628
	} while (!list_empty(list));
4629 4630 4631
}

/*
4632 4633
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4634
 * This enables deleting this mem_cgroup.
4635 4636
 *
 * Caller is responsible for holding css reference on the memcg.
4637
 */
4638
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4639
{
4640
	int node, zid;
4641
	u64 usage;
4642

4643
	do {
4644 4645
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4646 4647
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4648
		for_each_node_state(node, N_MEMORY) {
4649
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4650 4651
				enum lru_list lru;
				for_each_lru(lru) {
4652
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4653
							node, zid, lru);
4654
				}
4655
			}
4656
		}
4657 4658
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4659
		cond_resched();
4660

4661
		/*
4662 4663 4664 4665 4666
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4667 4668 4669 4670 4671 4672
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4673 4674 4675
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4676 4677
}

4678 4679 4680 4681 4682 4683 4684
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
4685
	struct cgroup_subsys_state *pos;
4686 4687

	/* bounce at first found */
4688
	css_for_each_child(pos, &memcg->css)
4689 4690 4691 4692 4693
		return true;
	return false;
}

/*
4694 4695
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4696 4697 4698 4699 4700 4701 4702 4703 4704
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4715

4716
	/* returns EBUSY if there is a task or if we come here twice. */
4717 4718 4719
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4720 4721
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4722
	/* try to free all pages in this cgroup */
4723
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4724
		int progress;
4725

4726 4727 4728
		if (signal_pending(current))
			return -EINTR;

4729
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4730
						false);
4731
		if (!progress) {
4732
			nr_retries--;
4733
			/* maybe some writeback is necessary */
4734
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4735
		}
4736 4737

	}
K
KAMEZAWA Hiroyuki 已提交
4738
	lru_add_drain();
4739 4740 4741
	mem_cgroup_reparent_charges(memcg);

	return 0;
4742 4743
}

4744 4745
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4746
{
4747
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4748

4749 4750
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4751
	return mem_cgroup_force_empty(memcg);
4752 4753
}

4754 4755
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4756
{
4757
	return mem_cgroup_from_css(css)->use_hierarchy;
4758 4759
}

4760 4761
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4762 4763
{
	int retval = 0;
4764
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4765
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4766

4767
	mutex_lock(&memcg_create_mutex);
4768 4769 4770 4771

	if (memcg->use_hierarchy == val)
		goto out;

4772
	/*
4773
	 * If parent's use_hierarchy is set, we can't make any modifications
4774 4775 4776 4777 4778 4779
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4780
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4781
				(val == 1 || val == 0)) {
4782
		if (!__memcg_has_children(memcg))
4783
			memcg->use_hierarchy = val;
4784 4785 4786 4787
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4788 4789

out:
4790
	mutex_unlock(&memcg_create_mutex);
4791 4792 4793 4794

	return retval;
}

4795

4796
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4797
					       enum mem_cgroup_stat_index idx)
4798
{
K
KAMEZAWA Hiroyuki 已提交
4799
	struct mem_cgroup *iter;
4800
	long val = 0;
4801

4802
	/* Per-cpu values can be negative, use a signed accumulator */
4803
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4804 4805 4806 4807 4808
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4809 4810
}

4811
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4812
{
K
KAMEZAWA Hiroyuki 已提交
4813
	u64 val;
4814

4815
	if (!mem_cgroup_is_root(memcg)) {
4816
		if (!swap)
4817
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4818
		else
4819
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4820 4821
	}

4822 4823 4824 4825
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
4826 4827
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4828

K
KAMEZAWA Hiroyuki 已提交
4829
	if (swap)
4830
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4831 4832 4833 4834

	return val << PAGE_SHIFT;
}

4835 4836 4837
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4838
{
4839
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4840
	char str[64];
4841
	u64 val;
G
Glauber Costa 已提交
4842 4843
	int name, len;
	enum res_type type;
4844 4845 4846

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4847

4848 4849
	switch (type) {
	case _MEM:
4850
		if (name == RES_USAGE)
4851
			val = mem_cgroup_usage(memcg, false);
4852
		else
4853
			val = res_counter_read_u64(&memcg->res, name);
4854 4855
		break;
	case _MEMSWAP:
4856
		if (name == RES_USAGE)
4857
			val = mem_cgroup_usage(memcg, true);
4858
		else
4859
			val = res_counter_read_u64(&memcg->memsw, name);
4860
		break;
4861 4862 4863
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4864 4865 4866
	default:
		BUG();
	}
4867 4868 4869

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4870
}
4871

4872
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
4873 4874 4875
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4876
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4889
	mutex_lock(&memcg_create_mutex);
4890 4891
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
4892
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
4893 4894 4895 4896 4897 4898
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4899 4900 4901 4902 4903
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
4904 4905 4906 4907 4908 4909
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
4910 4911 4912 4913
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
4914
	mutex_unlock(&memcg_create_mutex);
4915 4916 4917 4918
#endif
	return ret;
}

4919
#ifdef CONFIG_MEMCG_KMEM
4920
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4921
{
4922
	int ret = 0;
4923 4924
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
4925 4926
		goto out;

4927
	memcg->kmem_account_flags = parent->kmem_account_flags;
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
4938 4939 4940 4941
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
4942 4943 4944
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
4945 4946 4947 4948
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
4949
	memcg_stop_kmem_account();
4950
	ret = memcg_update_cache_sizes(memcg);
4951
	memcg_resume_kmem_account();
4952 4953 4954
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
4955
}
4956
#endif /* CONFIG_MEMCG_KMEM */
4957

4958 4959 4960 4961
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4962
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
4963
			    const char *buffer)
B
Balbir Singh 已提交
4964
{
4965
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
4966 4967
	enum res_type type;
	int name;
4968 4969 4970
	unsigned long long val;
	int ret;

4971 4972
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4973

4974
	switch (name) {
4975
	case RES_LIMIT:
4976 4977 4978 4979
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4980 4981
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4982 4983 4984
		if (ret)
			break;
		if (type == _MEM)
4985
			ret = mem_cgroup_resize_limit(memcg, val);
4986
		else if (type == _MEMSWAP)
4987
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4988
		else if (type == _KMEM)
4989
			ret = memcg_update_kmem_limit(css, val);
4990 4991
		else
			return -EINVAL;
4992
		break;
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5007 5008 5009 5010 5011
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5012 5013
}

5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5024 5025
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5038
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5039
{
5040
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5041 5042
	int name;
	enum res_type type;
5043

5044 5045
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5046

5047
	switch (name) {
5048
	case RES_MAX_USAGE:
5049
		if (type == _MEM)
5050
			res_counter_reset_max(&memcg->res);
5051
		else if (type == _MEMSWAP)
5052
			res_counter_reset_max(&memcg->memsw);
5053 5054 5055 5056
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5057 5058
		break;
	case RES_FAILCNT:
5059
		if (type == _MEM)
5060
			res_counter_reset_failcnt(&memcg->res);
5061
		else if (type == _MEMSWAP)
5062
			res_counter_reset_failcnt(&memcg->memsw);
5063 5064 5065 5066
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5067 5068
		break;
	}
5069

5070
	return 0;
5071 5072
}

5073
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5074 5075
					struct cftype *cft)
{
5076
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5077 5078
}

5079
#ifdef CONFIG_MMU
5080
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5081 5082
					struct cftype *cft, u64 val)
{
5083
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5084 5085 5086

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5087

5088
	/*
5089 5090 5091 5092
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5093
	 */
5094
	memcg->move_charge_at_immigrate = val;
5095 5096
	return 0;
}
5097
#else
5098
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5099 5100 5101 5102 5103
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5104

5105
#ifdef CONFIG_NUMA
5106 5107
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5108 5109 5110 5111
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5112
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5113

5114
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5115
	seq_printf(m, "total=%lu", total_nr);
5116
	for_each_node_state(nid, N_MEMORY) {
5117
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5118 5119 5120 5121
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5122
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5123
	seq_printf(m, "file=%lu", file_nr);
5124
	for_each_node_state(nid, N_MEMORY) {
5125
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5126
				LRU_ALL_FILE);
5127 5128 5129 5130
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5131
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5132
	seq_printf(m, "anon=%lu", anon_nr);
5133
	for_each_node_state(nid, N_MEMORY) {
5134
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5135
				LRU_ALL_ANON);
5136 5137 5138 5139
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5140
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5141
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5142
	for_each_node_state(nid, N_MEMORY) {
5143
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5144
				BIT(LRU_UNEVICTABLE));
5145 5146 5147 5148 5149 5150 5151
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5152 5153 5154 5155 5156
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5157
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5158
				 struct seq_file *m)
5159
{
5160
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5161 5162
	struct mem_cgroup *mi;
	unsigned int i;
5163

5164
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5165
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5166
			continue;
5167 5168
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5169
	}
L
Lee Schermerhorn 已提交
5170

5171 5172 5173 5174 5175 5176 5177 5178
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5179
	/* Hierarchical information */
5180 5181
	{
		unsigned long long limit, memsw_limit;
5182
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5183
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5184
		if (do_swap_account)
5185 5186
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5187
	}
K
KOSAKI Motohiro 已提交
5188

5189 5190 5191
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5192
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5193
			continue;
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5214
	}
K
KAMEZAWA Hiroyuki 已提交
5215

K
KOSAKI Motohiro 已提交
5216 5217 5218 5219
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5220
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5221 5222 5223 5224 5225
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5226
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5227
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5228

5229 5230 5231 5232
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5233
			}
5234 5235 5236 5237
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5238 5239 5240
	}
#endif

5241 5242 5243
	return 0;
}

5244 5245
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5246
{
5247
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5248

5249
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5250 5251
}

5252 5253
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5254
{
5255
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5256
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5257

T
Tejun Heo 已提交
5258
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5259 5260
		return -EINVAL;

5261
	mutex_lock(&memcg_create_mutex);
5262

K
KOSAKI Motohiro 已提交
5263
	/* If under hierarchy, only empty-root can set this value */
5264
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5265
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5266
		return -EINVAL;
5267
	}
K
KOSAKI Motohiro 已提交
5268 5269 5270

	memcg->swappiness = val;

5271
	mutex_unlock(&memcg_create_mutex);
5272

K
KOSAKI Motohiro 已提交
5273 5274 5275
	return 0;
}

5276 5277 5278 5279 5280 5281 5282 5283
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5284
		t = rcu_dereference(memcg->thresholds.primary);
5285
	else
5286
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5287 5288 5289 5290 5291 5292 5293

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5294
	 * current_threshold points to threshold just below or equal to usage.
5295 5296 5297
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5298
	i = t->current_threshold;
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5322
	t->current_threshold = i - 1;
5323 5324 5325 5326 5327 5328
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5329 5330 5331 5332 5333 5334 5335
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5336 5337 5338 5339 5340 5341 5342
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5343 5344 5345 5346 5347 5348 5349
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5350 5351
}

5352
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5353 5354 5355
{
	struct mem_cgroup_eventfd_list *ev;

5356
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5357 5358 5359 5360
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5361
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5362
{
K
KAMEZAWA Hiroyuki 已提交
5363 5364
	struct mem_cgroup *iter;

5365
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5366
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5367 5368
}

5369
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5370
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5371
{
5372
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5373 5374
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5375
	enum res_type type = MEMFILE_TYPE(cft->private);
5376
	u64 threshold, usage;
5377
	int i, size, ret;
5378 5379 5380 5381 5382 5383

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5384

5385
	if (type == _MEM)
5386
		thresholds = &memcg->thresholds;
5387
	else if (type == _MEMSWAP)
5388
		thresholds = &memcg->memsw_thresholds;
5389 5390 5391 5392 5393 5394
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5395
	if (thresholds->primary)
5396 5397
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5398
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5399 5400

	/* Allocate memory for new array of thresholds */
5401
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5402
			GFP_KERNEL);
5403
	if (!new) {
5404 5405 5406
		ret = -ENOMEM;
		goto unlock;
	}
5407
	new->size = size;
5408 5409

	/* Copy thresholds (if any) to new array */
5410 5411
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5412
				sizeof(struct mem_cgroup_threshold));
5413 5414
	}

5415
	/* Add new threshold */
5416 5417
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5418 5419

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5420
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5421 5422 5423
			compare_thresholds, NULL);

	/* Find current threshold */
5424
	new->current_threshold = -1;
5425
	for (i = 0; i < size; i++) {
5426
		if (new->entries[i].threshold <= usage) {
5427
			/*
5428 5429
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5430 5431
			 * it here.
			 */
5432
			++new->current_threshold;
5433 5434
		} else
			break;
5435 5436
	}

5437 5438 5439 5440 5441
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5442

5443
	/* To be sure that nobody uses thresholds */
5444 5445 5446 5447 5448 5449 5450 5451
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5452
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5453
	struct cftype *cft, struct eventfd_ctx *eventfd)
5454
{
5455
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5456 5457
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5458
	enum res_type type = MEMFILE_TYPE(cft->private);
5459
	u64 usage;
5460
	int i, j, size;
5461 5462 5463

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5464
		thresholds = &memcg->thresholds;
5465
	else if (type == _MEMSWAP)
5466
		thresholds = &memcg->memsw_thresholds;
5467 5468 5469
	else
		BUG();

5470 5471 5472
	if (!thresholds->primary)
		goto unlock;

5473 5474 5475 5476 5477 5478
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5479 5480 5481
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5482 5483 5484
			size++;
	}

5485
	new = thresholds->spare;
5486

5487 5488
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5489 5490
		kfree(new);
		new = NULL;
5491
		goto swap_buffers;
5492 5493
	}

5494
	new->size = size;
5495 5496

	/* Copy thresholds and find current threshold */
5497 5498 5499
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5500 5501
			continue;

5502
		new->entries[j] = thresholds->primary->entries[i];
5503
		if (new->entries[j].threshold <= usage) {
5504
			/*
5505
			 * new->current_threshold will not be used
5506 5507 5508
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5509
			++new->current_threshold;
5510 5511 5512 5513
		}
		j++;
	}

5514
swap_buffers:
5515 5516
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5517 5518 5519 5520 5521 5522
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5523
	rcu_assign_pointer(thresholds->primary, new);
5524

5525
	/* To be sure that nobody uses thresholds */
5526
	synchronize_rcu();
5527
unlock:
5528 5529
	mutex_unlock(&memcg->thresholds_lock);
}
5530

5531
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5532 5533
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5534
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5535
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5536
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5537 5538 5539 5540 5541 5542

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5543
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5544 5545 5546 5547 5548

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5549
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5550
		eventfd_signal(eventfd, 1);
5551
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5552 5553 5554 5555

	return 0;
}

5556
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5557 5558
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5559
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5560
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5561
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5562 5563 5564

	BUG_ON(type != _OOM_TYPE);

5565
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5566

5567
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5568 5569 5570 5571 5572 5573
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5574
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5575 5576
}

5577
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5578 5579
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5580
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5581

5582
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5583

5584
	if (atomic_read(&memcg->under_oom))
5585 5586 5587 5588 5589 5590
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5591
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5592 5593
	struct cftype *cft, u64 val)
{
5594
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5595
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5596 5597

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5598
	if (!parent || !((val == 0) || (val == 1)))
5599 5600
		return -EINVAL;

5601
	mutex_lock(&memcg_create_mutex);
5602
	/* oom-kill-disable is a flag for subhierarchy. */
5603
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5604
		mutex_unlock(&memcg_create_mutex);
5605 5606
		return -EINVAL;
	}
5607
	memcg->oom_kill_disable = val;
5608
	if (!val)
5609
		memcg_oom_recover(memcg);
5610
	mutex_unlock(&memcg_create_mutex);
5611 5612 5613
	return 0;
}

A
Andrew Morton 已提交
5614
#ifdef CONFIG_MEMCG_KMEM
5615
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5616
{
5617 5618
	int ret;

5619
	memcg->kmemcg_id = -1;
5620 5621 5622
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5623

5624
	return mem_cgroup_sockets_init(memcg, ss);
5625
}
5626

5627
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5628
{
5629
	mem_cgroup_sockets_destroy(memcg);
5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5656 5657 5658 5659 5660 5661 5662

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5663
		css_put(&memcg->css);
G
Glauber Costa 已提交
5664
}
5665
#else
5666
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5667 5668 5669
{
	return 0;
}
G
Glauber Costa 已提交
5670

5671 5672 5673 5674 5675
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5676 5677
{
}
5678 5679
#endif

B
Balbir Singh 已提交
5680 5681
static struct cftype mem_cgroup_files[] = {
	{
5682
		.name = "usage_in_bytes",
5683
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5684
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5685 5686
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5687
	},
5688 5689
	{
		.name = "max_usage_in_bytes",
5690
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5691
		.trigger = mem_cgroup_reset,
5692
		.read = mem_cgroup_read,
5693
	},
B
Balbir Singh 已提交
5694
	{
5695
		.name = "limit_in_bytes",
5696
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5697
		.write_string = mem_cgroup_write,
5698
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5699
	},
5700 5701 5702 5703
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5704
		.read = mem_cgroup_read,
5705
	},
B
Balbir Singh 已提交
5706 5707
	{
		.name = "failcnt",
5708
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5709
		.trigger = mem_cgroup_reset,
5710
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5711
	},
5712 5713
	{
		.name = "stat",
5714
		.read_seq_string = memcg_stat_show,
5715
	},
5716 5717 5718 5719
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5720 5721
	{
		.name = "use_hierarchy",
5722
		.flags = CFTYPE_INSANE,
5723 5724 5725
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5726 5727 5728 5729 5730
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5731 5732 5733 5734 5735
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5736 5737
	{
		.name = "oom_control",
5738 5739
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5740 5741 5742 5743
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5744 5745 5746 5747 5748
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
5749 5750 5751
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5752
		.read_seq_string = memcg_numa_stat_show,
5753 5754
	},
#endif
5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5779 5780 5781 5782 5783 5784
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5785
#endif
5786
	{ },	/* terminate */
5787
};
5788

5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
5819
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5820 5821
{
	struct mem_cgroup_per_node *pn;
5822
	struct mem_cgroup_per_zone *mz;
5823
	int zone, tmp = node;
5824 5825 5826 5827 5828 5829 5830 5831
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5832 5833
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5834
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5835 5836
	if (!pn)
		return 1;
5837 5838 5839

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5840
		lruvec_init(&mz->lruvec);
5841
		mz->memcg = memcg;
5842
	}
5843
	memcg->nodeinfo[node] = pn;
5844 5845 5846
	return 0;
}

5847
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5848
{
5849
	kfree(memcg->nodeinfo[node]);
5850 5851
}

5852 5853
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5854
	struct mem_cgroup *memcg;
5855
	size_t size = memcg_size();
5856

5857
	/* Can be very big if nr_node_ids is very big */
5858
	if (size < PAGE_SIZE)
5859
		memcg = kzalloc(size, GFP_KERNEL);
5860
	else
5861
		memcg = vzalloc(size);
5862

5863
	if (!memcg)
5864 5865
		return NULL;

5866 5867
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5868
		goto out_free;
5869 5870
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5871 5872 5873

out_free:
	if (size < PAGE_SIZE)
5874
		kfree(memcg);
5875
	else
5876
		vfree(memcg);
5877
	return NULL;
5878 5879
}

5880
/*
5881 5882 5883 5884 5885 5886 5887 5888
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5889
 */
5890 5891

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5892
{
5893
	int node;
5894
	size_t size = memcg_size();
5895

5896 5897 5898 5899 5900 5901 5902
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5914
	disarm_static_keys(memcg);
5915 5916 5917 5918
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
5919
}
5920

5921 5922 5923
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5924
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5925
{
5926
	if (!memcg->res.parent)
5927
		return NULL;
5928
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5929
}
G
Glauber Costa 已提交
5930
EXPORT_SYMBOL(parent_mem_cgroup);
5931

L
Li Zefan 已提交
5932
static struct cgroup_subsys_state * __ref
5933
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
5934
{
5935
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5936
	long error = -ENOMEM;
5937
	int node;
B
Balbir Singh 已提交
5938

5939 5940
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5941
		return ERR_PTR(error);
5942

B
Bob Liu 已提交
5943
	for_each_node(node)
5944
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5945
			goto free_out;
5946

5947
	/* root ? */
5948
	if (parent_css == NULL) {
5949
		root_mem_cgroup = memcg;
5950 5951 5952
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
5953
	}
5954

5955 5956 5957 5958 5959
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5960
	vmpressure_init(&memcg->vmpressure);
5961
	spin_lock_init(&memcg->soft_lock);
5962 5963 5964 5965 5966 5967 5968 5969 5970

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
5971
mem_cgroup_css_online(struct cgroup_subsys_state *css)
5972
{
5973 5974
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
5975 5976
	int error = 0;

T
Tejun Heo 已提交
5977
	if (!parent)
5978 5979
		return 0;

5980
	mutex_lock(&memcg_create_mutex);
5981 5982 5983 5984 5985 5986

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
5987 5988
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5989
		res_counter_init(&memcg->kmem, &parent->kmem);
5990

5991
		/*
5992 5993
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
5994
		 */
5995
	} else {
5996 5997
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5998
		res_counter_init(&memcg->kmem, NULL);
5999 6000 6001 6002 6003
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6004
		if (parent != root_mem_cgroup)
6005
			mem_cgroup_subsys.broken_hierarchy = true;
6006
	}
6007 6008

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6009
	mutex_unlock(&memcg_create_mutex);
6010
	return error;
B
Balbir Singh 已提交
6011 6012
}

M
Michal Hocko 已提交
6013 6014 6015 6016 6017 6018 6019 6020
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6021
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6022 6023 6024 6025 6026 6027

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6028
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6029 6030
}

6031
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6032
{
6033
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6034

6035 6036
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6037
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6038
	mem_cgroup_reparent_charges(memcg);
6039 6040 6041 6042
	if (memcg->soft_contributed) {
		while ((memcg = parent_mem_cgroup(memcg)))
			atomic_dec(&memcg->children_in_excess);
	}
G
Glauber Costa 已提交
6043
	mem_cgroup_destroy_all_caches(memcg);
6044
	vmpressure_cleanup(&memcg->vmpressure);
6045 6046
}

6047
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6048
{
6049
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6050

6051
	memcg_destroy_kmem(memcg);
6052
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6053 6054
}

6055
#ifdef CONFIG_MMU
6056
/* Handlers for move charge at task migration. */
6057 6058
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6059
{
6060 6061
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6062
	struct mem_cgroup *memcg = mc.to;
6063

6064
	if (mem_cgroup_is_root(memcg)) {
6065 6066 6067 6068 6069 6070 6071 6072
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6073
		 * "memcg" cannot be under rmdir() because we've already checked
6074 6075 6076 6077
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6078
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6079
			goto one_by_one;
6080
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6081
						PAGE_SIZE * count, &dummy)) {
6082
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6099 6100
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6101
		if (ret)
6102
			/* mem_cgroup_clear_mc() will do uncharge later */
6103
			return ret;
6104 6105
		mc.precharge++;
	}
6106 6107 6108 6109
	return ret;
}

/**
6110
 * get_mctgt_type - get target type of moving charge
6111 6112 6113
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6114
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6115 6116 6117 6118 6119 6120
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6121 6122 6123
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6124 6125 6126 6127 6128
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6129
	swp_entry_t	ent;
6130 6131 6132
};

enum mc_target_type {
6133
	MC_TARGET_NONE = 0,
6134
	MC_TARGET_PAGE,
6135
	MC_TARGET_SWAP,
6136 6137
};

D
Daisuke Nishimura 已提交
6138 6139
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6140
{
D
Daisuke Nishimura 已提交
6141
	struct page *page = vm_normal_page(vma, addr, ptent);
6142

D
Daisuke Nishimura 已提交
6143 6144 6145 6146
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6147
		if (!move_anon())
D
Daisuke Nishimura 已提交
6148
			return NULL;
6149 6150
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6151 6152 6153 6154 6155 6156 6157
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6158
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6159 6160 6161 6162 6163 6164 6165 6166
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6167 6168 6169 6170
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6171
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6172 6173 6174 6175 6176
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6177 6178 6179 6180 6181 6182 6183
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6184

6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6204 6205 6206 6207 6208 6209
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6210
		if (do_swap_account)
6211
			*entry = swap;
6212
		page = find_get_page(swap_address_space(swap), swap.val);
6213
	}
6214
#endif
6215 6216 6217
	return page;
}

6218
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6219 6220 6221 6222
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6223
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6224 6225 6226 6227 6228 6229
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6230 6231
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6232 6233

	if (!page && !ent.val)
6234
		return ret;
6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6250 6251
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6252
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6253 6254 6255
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6256 6257 6258 6259
	}
	return ret;
}

6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6295 6296 6297 6298 6299 6300 6301 6302
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6303 6304 6305 6306
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6307
		return 0;
6308
	}
6309

6310 6311
	if (pmd_trans_unstable(pmd))
		return 0;
6312 6313
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6314
		if (get_mctgt_type(vma, addr, *pte, NULL))
6315 6316 6317 6318
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6319 6320 6321
	return 0;
}

6322 6323 6324 6325 6326
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6327
	down_read(&mm->mmap_sem);
6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6339
	up_read(&mm->mmap_sem);
6340 6341 6342 6343 6344 6345 6346 6347 6348

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6349 6350 6351 6352 6353
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6354 6355
}

6356 6357
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6358
{
6359 6360
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6361
	int i;
6362

6363
	/* we must uncharge all the leftover precharges from mc.to */
6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6375
	}
6376 6377 6378 6379 6380 6381
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6382 6383 6384

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6385 6386 6387 6388 6389 6390 6391 6392 6393

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6394
		/* we've already done css_get(mc.to) */
6395 6396
		mc.moved_swap = 0;
	}
6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6412
	spin_lock(&mc.lock);
6413 6414
	mc.from = NULL;
	mc.to = NULL;
6415
	spin_unlock(&mc.lock);
6416
	mem_cgroup_end_move(from);
6417 6418
}

6419
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6420
				 struct cgroup_taskset *tset)
6421
{
6422
	struct task_struct *p = cgroup_taskset_first(tset);
6423
	int ret = 0;
6424
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6425
	unsigned long move_charge_at_immigrate;
6426

6427 6428 6429 6430 6431 6432 6433
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6434 6435 6436
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6437
		VM_BUG_ON(from == memcg);
6438 6439 6440 6441 6442

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6443 6444 6445 6446
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6447
			VM_BUG_ON(mc.moved_charge);
6448
			VM_BUG_ON(mc.moved_swap);
6449
			mem_cgroup_start_move(from);
6450
			spin_lock(&mc.lock);
6451
			mc.from = from;
6452
			mc.to = memcg;
6453
			mc.immigrate_flags = move_charge_at_immigrate;
6454
			spin_unlock(&mc.lock);
6455
			/* We set mc.moving_task later */
6456 6457 6458 6459

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6460 6461
		}
		mmput(mm);
6462 6463 6464 6465
	}
	return ret;
}

6466
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6467
				     struct cgroup_taskset *tset)
6468
{
6469
	mem_cgroup_clear_mc();
6470 6471
}

6472 6473 6474
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6475
{
6476 6477 6478 6479
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6480 6481 6482 6483
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6484

6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6496
		if (mc.precharge < HPAGE_PMD_NR) {
6497 6498 6499 6500 6501 6502 6503 6504 6505
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6506
							pc, mc.from, mc.to)) {
6507 6508 6509 6510 6511 6512 6513 6514
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6515
		return 0;
6516 6517
	}

6518 6519
	if (pmd_trans_unstable(pmd))
		return 0;
6520 6521 6522 6523
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6524
		swp_entry_t ent;
6525 6526 6527 6528

		if (!mc.precharge)
			break;

6529
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6530 6531 6532 6533 6534
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6535
			if (!mem_cgroup_move_account(page, 1, pc,
6536
						     mc.from, mc.to)) {
6537
				mc.precharge--;
6538 6539
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6540 6541
			}
			putback_lru_page(page);
6542
put:			/* get_mctgt_type() gets the page */
6543 6544
			put_page(page);
			break;
6545 6546
		case MC_TARGET_SWAP:
			ent = target.ent;
6547
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6548
				mc.precharge--;
6549 6550 6551
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6552
			break;
6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6567
		ret = mem_cgroup_do_precharge(1);
6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6611
	up_read(&mm->mmap_sem);
6612 6613
}

6614
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6615
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6616
{
6617
	struct task_struct *p = cgroup_taskset_first(tset);
6618
	struct mm_struct *mm = get_task_mm(p);
6619 6620

	if (mm) {
6621 6622
		if (mc.to)
			mem_cgroup_move_charge(mm);
6623 6624
		mmput(mm);
	}
6625 6626
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6627
}
6628
#else	/* !CONFIG_MMU */
6629
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6630
				 struct cgroup_taskset *tset)
6631 6632 6633
{
	return 0;
}
6634
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6635
				     struct cgroup_taskset *tset)
6636 6637
{
}
6638
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6639
				 struct cgroup_taskset *tset)
6640 6641 6642
{
}
#endif
B
Balbir Singh 已提交
6643

6644 6645 6646 6647
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6648
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6649 6650 6651 6652 6653 6654
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6655 6656
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6657 6658
}

B
Balbir Singh 已提交
6659 6660 6661
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6662
	.css_alloc = mem_cgroup_css_alloc,
6663
	.css_online = mem_cgroup_css_online,
6664 6665
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6666 6667
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6668
	.attach = mem_cgroup_move_task,
6669
	.bind = mem_cgroup_bind,
6670
	.base_cftypes = mem_cgroup_files,
6671
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6672
	.use_id = 1,
B
Balbir Singh 已提交
6673
};
6674

A
Andrew Morton 已提交
6675
#ifdef CONFIG_MEMCG_SWAP
6676 6677
static int __init enable_swap_account(char *s)
{
6678
	if (!strcmp(s, "1"))
6679
		really_do_swap_account = 1;
6680
	else if (!strcmp(s, "0"))
6681 6682 6683
		really_do_swap_account = 0;
	return 1;
}
6684
__setup("swapaccount=", enable_swap_account);
6685

6686 6687
static void __init memsw_file_init(void)
{
6688 6689 6690 6691 6692 6693 6694 6695 6696
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6697
}
6698

6699
#else
6700
static void __init enable_swap_cgroup(void)
6701 6702
{
}
6703
#endif
6704 6705

/*
6706 6707 6708 6709 6710 6711
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6712 6713 6714 6715
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6716
	enable_swap_cgroup();
6717
	memcg_stock_init();
6718 6719 6720
	return 0;
}
subsys_initcall(mem_cgroup_init);