memcontrol.c 185.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
57
#include "internal.h"
G
Glauber Costa 已提交
58
#include <net/sock.h>
M
Michal Hocko 已提交
59
#include <net/ip.h>
G
Glauber Costa 已提交
60
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
61

62 63
#include <asm/uaccess.h>

64 65
#include <trace/events/vmscan.h>

66
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 68
EXPORT_SYMBOL(mem_cgroup_subsys);

69
#define MEM_CGROUP_RECLAIM_RETRIES	5
70
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
71

A
Andrew Morton 已提交
72
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
73
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74
int do_swap_account __read_mostly;
75 76

/* for remember boot option*/
A
Andrew Morton 已提交
77
#ifdef CONFIG_MEMCG_SWAP_ENABLED
78 79 80 81 82
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

83
#else
84
#define do_swap_account		0
85 86 87
#endif


88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
95 96 97 98 99
	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
100 101 102
	MEM_CGROUP_STAT_NSTATS,
};

103 104 105
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
106
	"rss_huge",
107 108 109 110
	"mapped_file",
	"swap",
};

111 112 113
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
114 115
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
116 117
	MEM_CGROUP_EVENTS_NSTATS,
};
118 119 120 121 122 123 124 125

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

126 127 128 129 130 131 132 133
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

134 135 136 137 138 139 140 141 142
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
143
	MEM_CGROUP_TARGET_NUMAINFO,
144 145
	MEM_CGROUP_NTARGETS,
};
146 147 148
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
149

150
struct mem_cgroup_stat_cpu {
151
	long count[MEM_CGROUP_STAT_NSTATS];
152
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153
	unsigned long nr_page_events;
154
	unsigned long targets[MEM_CGROUP_NTARGETS];
155 156
};

157
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
158 159 160 161
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
162
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
163 164
	unsigned long last_dead_count;

165 166 167 168
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

169 170 171 172
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
173
	struct lruvec		lruvec;
174
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
175

176 177
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

178 179 180 181
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
182
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
183
						/* use container_of	   */
184 185 186 187 188 189
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

210 211 212 213 214
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
215
/* For threshold */
216
struct mem_cgroup_threshold_ary {
217
	/* An array index points to threshold just below or equal to usage. */
218
	int current_threshold;
219 220 221 222 223
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
224 225 226 227 228 229 230 231 232 233 234 235

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
236 237 238 239 240
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
241

242 243
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
244

B
Balbir Singh 已提交
245 246 247 248 249 250 251
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
252 253 254
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
255 256 257 258 259 260 261
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
262

263 264 265
	/* vmpressure notifications */
	struct vmpressure vmpressure;

266 267 268 269
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
270

271 272 273 274
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
275 276 277 278
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
279
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
280 281 282 283

	bool		oom_lock;
	atomic_t	under_oom;

284
	int	swappiness;
285 286
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
287

288 289 290
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

291 292 293 294
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
295
	struct mem_cgroup_thresholds thresholds;
296

297
	/* thresholds for mem+swap usage. RCU-protected */
298
	struct mem_cgroup_thresholds memsw_thresholds;
299

K
KAMEZAWA Hiroyuki 已提交
300 301
	/* For oom notifier event fd */
	struct list_head oom_notify;
302

303 304 305 306 307
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
308 309 310 311
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
312 313
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
314
	/*
315
	 * percpu counter.
316
	 */
317
	struct mem_cgroup_stat_cpu __percpu *stat;
318 319 320 321 322 323
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
324

M
Michal Hocko 已提交
325
	atomic_t	dead_count;
M
Michal Hocko 已提交
326
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
327 328
	struct tcp_memcontrol tcp_mem;
#endif
329 330 331 332 333 334 335 336
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
337 338 339 340 341 342 343

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
344

345 346
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
347 348
};

349 350 351 352 353 354
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

355 356 357
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
358
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
359
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
360 361
};

362 363 364
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
365 366 367 368 369 370

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
371 372 373 374 375 376

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

377 378 379 380 381
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

382 383 384 385 386
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

387 388
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
389 390 391 392 393
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
394 395 396 397 398 399 400 401 402
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
403 404
#endif

405 406
/* Stuffs for move charges at task migration. */
/*
407 408
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
409 410
 */
enum move_type {
411
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
412
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
413 414 415
	NR_MOVE_TYPE,
};

416 417
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
418
	spinlock_t	  lock; /* for from, to */
419 420
	struct mem_cgroup *from;
	struct mem_cgroup *to;
421
	unsigned long immigrate_flags;
422
	unsigned long precharge;
423
	unsigned long moved_charge;
424
	unsigned long moved_swap;
425 426 427
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
428
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
429 430
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
431

D
Daisuke Nishimura 已提交
432 433
static bool move_anon(void)
{
434
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
435 436
}

437 438
static bool move_file(void)
{
439
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
440 441
}

442 443 444 445
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
446 447
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
448

449 450
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
451
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
452
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
453
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
454 455 456
	NR_CHARGE_TYPE,
};

457
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
458 459 460 461
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
462
	_KMEM,
G
Glauber Costa 已提交
463 464
};

465 466
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
467
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
468 469
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
470

471 472 473 474 475 476 477 478
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

479 480 481 482 483 484 485
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

486 487
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
488
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
489 490
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

509 510 511 512 513
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
514
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
515
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
516 517 518

void sock_update_memcg(struct sock *sk)
{
519
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
520
		struct mem_cgroup *memcg;
521
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
522 523 524

		BUG_ON(!sk->sk_prot->proto_cgroup);

525 526 527 528 529 530 531 532 533 534
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
535
			css_get(&sk->sk_cgrp->memcg->css);
536 537 538
			return;
		}

G
Glauber Costa 已提交
539 540
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
541
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
542 543
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
544
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
545 546 547 548 549 550 551 552
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
553
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
554 555 556
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
557
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
558 559
	}
}
G
Glauber Costa 已提交
560 561 562 563 564 565 566 567 568

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
569

570 571 572 573 574 575 576 577 578 579 580 581
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

582
#ifdef CONFIG_MEMCG_KMEM
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
601 602
int memcg_limited_groups_array_size;

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

618 619 620 621 622 623
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
624
struct static_key memcg_kmem_enabled_key;
625
EXPORT_SYMBOL(memcg_kmem_enabled_key);
626 627 628

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
629
	if (memcg_kmem_is_active(memcg)) {
630
		static_key_slow_dec(&memcg_kmem_enabled_key);
631 632
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
633 634 635 636 637
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
638 639 640 641 642 643 644 645 646 647 648 649 650
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

651
static void drain_all_stock_async(struct mem_cgroup *memcg);
652

653
static struct mem_cgroup_per_zone *
654
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
655
{
656
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
657
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 659
}

660
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
661
{
662
	return &memcg->css;
663 664
}

665
static struct mem_cgroup_per_zone *
666
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
667
{
668 669
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
670

671
	return mem_cgroup_zoneinfo(memcg, nid, zid);
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
690
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
691
				struct mem_cgroup_per_zone *mz,
692 693
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
694 695 696 697 698 699 700 701
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

702 703 704
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
721 722 723
}

static void
724
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
725 726 727 728 729 730 731 732 733
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

734
static void
735
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
736 737 738 739
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
740
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
741 742 743 744
	spin_unlock(&mctz->lock);
}


745
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
746
{
747
	unsigned long long excess;
748 749
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
750 751
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
752 753 754
	mctz = soft_limit_tree_from_page(page);

	/*
755 756
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
757
	 */
758 759 760
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
761 762 763 764
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
765
		if (excess || mz->on_tree) {
766 767 768
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
769
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
770
			/*
771 772
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
773
			 */
774
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
775 776
			spin_unlock(&mctz->lock);
		}
777 778 779
	}
}

780
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
781 782 783 784 785
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
786
	for_each_node(node) {
787
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
788
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
789
			mctz = soft_limit_tree_node_zone(node, zone);
790
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
791 792 793 794
		}
	}
}

795 796 797 798
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
799
	struct mem_cgroup_per_zone *mz;
800 801

retry:
802
	mz = NULL;
803 804 805 806 807 808 809 810 811 812
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
813 814 815
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
851
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
852
				 enum mem_cgroup_stat_index idx)
853
{
854
	long val = 0;
855 856
	int cpu;

857 858
	get_online_cpus();
	for_each_online_cpu(cpu)
859
		val += per_cpu(memcg->stat->count[idx], cpu);
860
#ifdef CONFIG_HOTPLUG_CPU
861 862 863
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
864 865
#endif
	put_online_cpus();
866 867 868
	return val;
}

869
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
870 871 872
					 bool charge)
{
	int val = (charge) ? 1 : -1;
873
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
874 875
}

876
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
877 878 879 880 881 882
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
883
		val += per_cpu(memcg->stat->events[idx], cpu);
884
#ifdef CONFIG_HOTPLUG_CPU
885 886 887
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
888 889 890 891
#endif
	return val;
}

892
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
893
					 struct page *page,
894
					 bool anon, int nr_pages)
895
{
896 897
	preempt_disable();

898 899 900 901 902 903
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
904
				nr_pages);
905
	else
906
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
907
				nr_pages);
908

909 910 911 912
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

913 914
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
915
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
916
	else {
917
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
918 919
		nr_pages = -nr_pages; /* for event */
	}
920

921
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
922

923
	preempt_enable();
924 925
}

926
unsigned long
927
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
928 929 930 931 932 933 934 935
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
936
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
937
			unsigned int lru_mask)
938 939
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
940
	enum lru_list lru;
941 942
	unsigned long ret = 0;

943
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
944

H
Hugh Dickins 已提交
945 946 947
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
948 949 950 951 952
	}
	return ret;
}

static unsigned long
953
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
954 955
			int nid, unsigned int lru_mask)
{
956 957 958
	u64 total = 0;
	int zid;

959
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
960 961
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
962

963 964
	return total;
}
965

966
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
967
			unsigned int lru_mask)
968
{
969
	int nid;
970 971
	u64 total = 0;

972
	for_each_node_state(nid, N_MEMORY)
973
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
974
	return total;
975 976
}

977 978
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
979 980 981
{
	unsigned long val, next;

982
	val = __this_cpu_read(memcg->stat->nr_page_events);
983
	next = __this_cpu_read(memcg->stat->targets[target]);
984
	/* from time_after() in jiffies.h */
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1001
	}
1002
	return false;
1003 1004 1005 1006 1007 1008
}

/*
 * Check events in order.
 *
 */
1009
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1010
{
1011
	preempt_disable();
1012
	/* threshold event is triggered in finer grain than soft limit */
1013 1014
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1015 1016
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
1017 1018 1019 1020 1021 1022 1023 1024 1025

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1026
		mem_cgroup_threshold(memcg);
1027
		if (unlikely(do_softlimit))
1028
			mem_cgroup_update_tree(memcg, page);
1029
#if MAX_NUMNODES > 1
1030
		if (unlikely(do_numainfo))
1031
			atomic_inc(&memcg->numainfo_events);
1032
#endif
1033 1034
	} else
		preempt_enable();
1035 1036
}

1037
static inline struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
1038
{
1039
	return mem_cgroup_from_css(cgroup_css(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1040 1041
}

1042
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1043
{
1044 1045 1046 1047 1048 1049 1050 1051
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1052
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1053 1054
}

1055
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1056
{
1057
	struct mem_cgroup *memcg = NULL;
1058 1059 1060

	if (!mm)
		return NULL;
1061 1062 1063 1064 1065 1066 1067
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1068 1069
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1070
			break;
1071
	} while (!css_tryget(&memcg->css));
1072
	rcu_read_unlock();
1073
	return memcg;
1074 1075
}

1076 1077 1078 1079 1080 1081 1082 1083 1084
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
		struct mem_cgroup *last_visited)
{
1085
	struct cgroup_subsys_state *prev_css, *next_css;
1086 1087 1088 1089 1090 1091 1092 1093

	/*
	 * Root is not visited by cgroup iterators so it needs an
	 * explicit visit.
	 */
	if (!last_visited)
		return root;

1094
	prev_css = (last_visited == root) ? NULL : &last_visited->css;
1095
skip_node:
1096
	next_css = css_next_descendant_pre(prev_css, &root->css);
1097 1098 1099 1100 1101 1102 1103 1104

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
1105 1106 1107
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

1108 1109 1110
		if (css_tryget(&mem->css))
			return mem;
		else {
1111
			prev_css = next_css;
1112 1113 1114 1115 1116 1117 1118
			goto skip_node;
		}
	}

	return NULL;
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1191
{
1192
	struct mem_cgroup *memcg = NULL;
1193
	struct mem_cgroup *last_visited = NULL;
1194

1195 1196 1197
	if (mem_cgroup_disabled())
		return NULL;

1198 1199
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1200

1201
	if (prev && !reclaim)
1202
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1203

1204 1205
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1206
			goto out_css_put;
1207 1208
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1209

1210
	rcu_read_lock();
1211
	while (!memcg) {
1212
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1213
		int uninitialized_var(seq);
1214

1215 1216 1217 1218 1219 1220 1221
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1222
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1223
				iter->last_visited = NULL;
1224 1225
				goto out_unlock;
			}
M
Michal Hocko 已提交
1226

1227
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1228
		}
K
KAMEZAWA Hiroyuki 已提交
1229

1230
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1231

1232
		if (reclaim) {
1233
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1234

M
Michal Hocko 已提交
1235
			if (!memcg)
1236 1237 1238 1239
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1240

M
Michal Hocko 已提交
1241
		if (prev && !memcg)
1242
			goto out_unlock;
1243
	}
1244 1245
out_unlock:
	rcu_read_unlock();
1246 1247 1248 1249
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1250
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1251
}
K
KAMEZAWA Hiroyuki 已提交
1252

1253 1254 1255 1256 1257 1258 1259
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1260 1261 1262 1263 1264 1265
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1266

1267 1268 1269 1270 1271 1272
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1273
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1274
	     iter != NULL;				\
1275
	     iter = mem_cgroup_iter(root, iter, NULL))
1276

1277
#define for_each_mem_cgroup(iter)			\
1278
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1279
	     iter != NULL;				\
1280
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1281

1282
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1283
{
1284
	struct mem_cgroup *memcg;
1285 1286

	rcu_read_lock();
1287 1288
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1289 1290 1291 1292
		goto out;

	switch (idx) {
	case PGFAULT:
1293 1294 1295 1296
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1297 1298 1299 1300 1301 1302 1303
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1304
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1305

1306 1307 1308
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1309
 * @memcg: memcg of the wanted lruvec
1310 1311 1312 1313 1314 1315 1316 1317 1318
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1319
	struct lruvec *lruvec;
1320

1321 1322 1323 1324
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1325 1326

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1337 1338
}

K
KAMEZAWA Hiroyuki 已提交
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1352

1353
/**
1354
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1355
 * @page: the page
1356
 * @zone: zone of the page
1357
 */
1358
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1359 1360
{
	struct mem_cgroup_per_zone *mz;
1361 1362
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1363
	struct lruvec *lruvec;
1364

1365 1366 1367 1368
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1369

K
KAMEZAWA Hiroyuki 已提交
1370
	pc = lookup_page_cgroup(page);
1371
	memcg = pc->mem_cgroup;
1372 1373

	/*
1374
	 * Surreptitiously switch any uncharged offlist page to root:
1375 1376 1377 1378 1379 1380 1381
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1382
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1383 1384
		pc->mem_cgroup = memcg = root_mem_cgroup;

1385
	mz = page_cgroup_zoneinfo(memcg, page);
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1396
}
1397

1398
/**
1399 1400 1401 1402
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1403
 *
1404 1405
 * This function must be called when a page is added to or removed from an
 * lru list.
1406
 */
1407 1408
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1409 1410
{
	struct mem_cgroup_per_zone *mz;
1411
	unsigned long *lru_size;
1412 1413 1414 1415

	if (mem_cgroup_disabled())
		return;

1416 1417 1418 1419
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1420
}
1421

1422
/*
1423
 * Checks whether given mem is same or in the root_mem_cgroup's
1424 1425
 * hierarchy subtree
 */
1426 1427
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1428
{
1429 1430
	if (root_memcg == memcg)
		return true;
1431
	if (!root_memcg->use_hierarchy || !memcg)
1432
		return false;
1433 1434 1435 1436 1437 1438 1439 1440
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1441
	rcu_read_lock();
1442
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1443 1444
	rcu_read_unlock();
	return ret;
1445 1446
}

1447 1448
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1449
{
1450
	struct mem_cgroup *curr = NULL;
1451
	struct task_struct *p;
1452
	bool ret;
1453

1454
	p = find_lock_task_mm(task);
1455 1456 1457 1458 1459 1460 1461 1462 1463
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1464
		rcu_read_lock();
1465 1466 1467
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1468
		rcu_read_unlock();
1469
	}
1470
	if (!curr)
1471
		return false;
1472
	/*
1473
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1474
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1475 1476
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1477
	 */
1478
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1479
	css_put(&curr->css);
1480 1481 1482
	return ret;
}

1483
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1484
{
1485
	unsigned long inactive_ratio;
1486
	unsigned long inactive;
1487
	unsigned long active;
1488
	unsigned long gb;
1489

1490 1491
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1492

1493 1494 1495 1496 1497 1498
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1499
	return inactive * inactive_ratio < active;
1500 1501
}

1502 1503 1504
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1505
/**
1506
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1507
 * @memcg: the memory cgroup
1508
 *
1509
 * Returns the maximum amount of memory @mem can be charged with, in
1510
 * pages.
1511
 */
1512
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1513
{
1514 1515
	unsigned long long margin;

1516
	margin = res_counter_margin(&memcg->res);
1517
	if (do_swap_account)
1518
		margin = min(margin, res_counter_margin(&memcg->memsw));
1519
	return margin >> PAGE_SHIFT;
1520 1521
}

1522
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1523 1524
{
	/* root ? */
T
Tejun Heo 已提交
1525
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1526 1527
		return vm_swappiness;

1528
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1529 1530
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1545 1546 1547 1548

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1549
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1550
{
1551
	atomic_inc(&memcg_moving);
1552
	atomic_inc(&memcg->moving_account);
1553 1554 1555
	synchronize_rcu();
}

1556
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1557
{
1558 1559 1560 1561
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1562 1563
	if (memcg) {
		atomic_dec(&memcg_moving);
1564
		atomic_dec(&memcg->moving_account);
1565
	}
1566
}
1567

1568 1569 1570
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1571 1572
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1573 1574 1575 1576 1577 1578 1579
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1580
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1581 1582
{
	VM_BUG_ON(!rcu_read_lock_held());
1583
	return atomic_read(&memcg->moving_account) > 0;
1584
}
1585

1586
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1587
{
1588 1589
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1590
	bool ret = false;
1591 1592 1593 1594 1595 1596 1597 1598 1599
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1600

1601 1602
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1603 1604
unlock:
	spin_unlock(&mc.lock);
1605 1606 1607
	return ret;
}

1608
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1609 1610
{
	if (mc.moving_task && current != mc.moving_task) {
1611
		if (mem_cgroup_under_move(memcg)) {
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1624 1625 1626 1627
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1628
 * see mem_cgroup_stolen(), too.
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1642
#define K(x) ((x) << (PAGE_SHIFT-10))
1643
/**
1644
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1662 1663
	struct mem_cgroup *iter;
	unsigned int i;
1664

1665
	if (!p)
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1684
	pr_info("Task in %s killed", memcg_name);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1697
	pr_cont(" as a result of limit of %s\n", memcg_name);
1698 1699
done:

1700
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1701 1702 1703
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1704
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1705 1706 1707
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1708
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1709 1710 1711
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1736 1737
}

1738 1739 1740 1741
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1742
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1743 1744
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1745 1746
	struct mem_cgroup *iter;

1747
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1748
		num++;
1749 1750 1751
	return num;
}

D
David Rientjes 已提交
1752 1753 1754
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1755
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1756 1757 1758
{
	u64 limit;

1759 1760
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1761
	/*
1762
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1763
	 */
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1778 1779
}

1780 1781
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1782 1783 1784 1785 1786 1787 1788
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1789
	/*
1790 1791 1792
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1793
	 */
1794
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1795 1796 1797 1798 1799
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1800 1801
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1802
		struct css_task_iter it;
1803 1804
		struct task_struct *task;

1805 1806
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1819
				css_task_iter_end(&it);
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1836
		css_task_iter_end(&it);
1837 1838 1839 1840 1841 1842 1843 1844 1845
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1882 1883
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1884
 * @memcg: the target memcg
1885 1886 1887 1888 1889 1890 1891
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1892
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1893 1894
		int nid, bool noswap)
{
1895
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1896 1897 1898
		return true;
	if (noswap || !total_swap_pages)
		return false;
1899
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1900 1901 1902 1903
		return true;
	return false;

}
1904 1905 1906 1907 1908 1909 1910 1911
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1912
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1913 1914
{
	int nid;
1915 1916 1917 1918
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1919
	if (!atomic_read(&memcg->numainfo_events))
1920
		return;
1921
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1922 1923 1924
		return;

	/* make a nodemask where this memcg uses memory from */
1925
	memcg->scan_nodes = node_states[N_MEMORY];
1926

1927
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1928

1929 1930
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1931
	}
1932

1933 1934
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1949
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1950 1951 1952
{
	int node;

1953 1954
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1955

1956
	node = next_node(node, memcg->scan_nodes);
1957
	if (node == MAX_NUMNODES)
1958
		node = first_node(memcg->scan_nodes);
1959 1960 1961 1962 1963 1964 1965 1966 1967
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1968
	memcg->last_scanned_node = node;
1969 1970 1971
	return node;
}

1972 1973 1974 1975 1976 1977
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1978
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1979 1980 1981 1982 1983 1984 1985
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1986 1987
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1988
		     nid < MAX_NUMNODES;
1989
		     nid = next_node(nid, memcg->scan_nodes)) {
1990

1991
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1992 1993 1994 1995 1996 1997
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1998
	for_each_node_state(nid, N_MEMORY) {
1999
		if (node_isset(nid, memcg->scan_nodes))
2000
			continue;
2001
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2002 2003 2004 2005 2006
			return true;
	}
	return false;
}

2007
#else
2008
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2009 2010 2011
{
	return 0;
}
2012

2013
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2014
{
2015
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2016
}
2017 2018
#endif

2019 2020 2021 2022
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
2023
{
2024
	struct mem_cgroup *victim = NULL;
2025
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
2026
	int loop = 0;
2027
	unsigned long excess;
2028
	unsigned long nr_scanned;
2029 2030 2031 2032
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
2033

2034
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
2035

2036
	while (1) {
2037
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2038
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
2039
			loop++;
2040 2041 2042 2043 2044 2045
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
2046
				if (!total)
2047 2048
					break;
				/*
L
Lucas De Marchi 已提交
2049
				 * We want to do more targeted reclaim.
2050 2051 2052 2053 2054
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
2055
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2056 2057
					break;
			}
2058
			continue;
2059
		}
2060
		if (!mem_cgroup_reclaimable(victim, false))
2061
			continue;
2062 2063 2064 2065
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
2066
			break;
2067
	}
2068
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
2069
	return total;
2070 2071
}

K
KAMEZAWA Hiroyuki 已提交
2072 2073 2074
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
2075
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
2076
 */
2077
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2078
{
2079
	struct mem_cgroup *iter, *failed = NULL;
2080

2081
	for_each_mem_cgroup_tree(iter, memcg) {
2082
		if (iter->oom_lock) {
2083 2084 2085 2086 2087
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2088 2089
			mem_cgroup_iter_break(memcg, iter);
			break;
2090 2091
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2092
	}
K
KAMEZAWA Hiroyuki 已提交
2093

2094
	if (!failed)
2095
		return true;
2096 2097 2098 2099 2100

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
2101
	for_each_mem_cgroup_tree(iter, memcg) {
2102
		if (iter == failed) {
2103 2104
			mem_cgroup_iter_break(memcg, iter);
			break;
2105 2106 2107
		}
		iter->oom_lock = false;
	}
2108
	return false;
2109
}
2110

2111
/*
2112
 * Has to be called with memcg_oom_lock
2113
 */
2114
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2115
{
K
KAMEZAWA Hiroyuki 已提交
2116 2117
	struct mem_cgroup *iter;

2118
	for_each_mem_cgroup_tree(iter, memcg)
2119 2120 2121 2122
		iter->oom_lock = false;
	return 0;
}

2123
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2124 2125 2126
{
	struct mem_cgroup *iter;

2127
	for_each_mem_cgroup_tree(iter, memcg)
2128 2129 2130
		atomic_inc(&iter->under_oom);
}

2131
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2132 2133 2134
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2135 2136 2137 2138 2139
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2140
	for_each_mem_cgroup_tree(iter, memcg)
2141
		atomic_add_unless(&iter->under_oom, -1, 0);
2142 2143
}

2144
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2145 2146
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2147
struct oom_wait_info {
2148
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2149 2150 2151 2152 2153 2154
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2155 2156
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2157 2158 2159
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2160
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2161 2162

	/*
2163
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2164 2165
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2166 2167
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2168 2169 2170 2171
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2172
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2173
{
2174 2175
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2176 2177
}

2178
static void memcg_oom_recover(struct mem_cgroup *memcg)
2179
{
2180 2181
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2182 2183
}

K
KAMEZAWA Hiroyuki 已提交
2184 2185 2186
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2187 2188
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2189
{
K
KAMEZAWA Hiroyuki 已提交
2190
	struct oom_wait_info owait;
2191
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2192

2193
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2194 2195 2196 2197
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2198
	need_to_kill = true;
2199
	mem_cgroup_mark_under_oom(memcg);
2200

2201
	/* At first, try to OOM lock hierarchy under memcg.*/
2202
	spin_lock(&memcg_oom_lock);
2203
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2204 2205 2206 2207 2208
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2209
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2210
	if (!locked || memcg->oom_kill_disable)
2211 2212
		need_to_kill = false;
	if (locked)
2213
		mem_cgroup_oom_notify(memcg);
2214
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2215

2216 2217
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2218
		mem_cgroup_out_of_memory(memcg, mask, order);
2219
	} else {
K
KAMEZAWA Hiroyuki 已提交
2220
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2221
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2222
	}
2223
	spin_lock(&memcg_oom_lock);
2224
	if (locked)
2225 2226
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2227
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2228

2229
	mem_cgroup_unmark_under_oom(memcg);
2230

K
KAMEZAWA Hiroyuki 已提交
2231 2232 2233
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2234
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2235
	return true;
2236 2237
}

2238 2239 2240
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2258 2259
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2260
 */
2261

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2275
	 * need to take move_lock_mem_cgroup(). Because we already hold
2276
	 * rcu_read_lock(), any calls to move_account will be delayed until
2277
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2278
	 */
2279
	if (!mem_cgroup_stolen(memcg))
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2297
	 * should take move_lock_mem_cgroup().
2298 2299 2300 2301
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2302 2303
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2304
{
2305
	struct mem_cgroup *memcg;
2306
	struct page_cgroup *pc = lookup_page_cgroup(page);
2307
	unsigned long uninitialized_var(flags);
2308

2309
	if (mem_cgroup_disabled())
2310
		return;
2311

2312 2313
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2314
		return;
2315 2316

	switch (idx) {
2317 2318
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2319 2320 2321
		break;
	default:
		BUG();
2322
	}
2323

2324
	this_cpu_add(memcg->stat->count[idx], val);
2325
}
2326

2327 2328 2329 2330
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2331
#define CHARGE_BATCH	32U
2332 2333
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2334
	unsigned int nr_pages;
2335
	struct work_struct work;
2336
	unsigned long flags;
2337
#define FLUSHING_CACHED_CHARGE	0
2338 2339
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2340
static DEFINE_MUTEX(percpu_charge_mutex);
2341

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2352
 */
2353
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2354 2355 2356 2357
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2358 2359 2360
	if (nr_pages > CHARGE_BATCH)
		return false;

2361
	stock = &get_cpu_var(memcg_stock);
2362 2363
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2377 2378 2379 2380
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2381
		if (do_swap_account)
2382 2383
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2396
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2397 2398
}

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2410 2411
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2412
 * This will be consumed by consume_stock() function, later.
2413
 */
2414
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2415 2416 2417
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2418
	if (stock->cached != memcg) { /* reset if necessary */
2419
		drain_stock(stock);
2420
		stock->cached = memcg;
2421
	}
2422
	stock->nr_pages += nr_pages;
2423 2424 2425 2426
	put_cpu_var(memcg_stock);
}

/*
2427
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2428 2429
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2430
 */
2431
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2432
{
2433
	int cpu, curcpu;
2434

2435 2436
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2437
	curcpu = get_cpu();
2438 2439
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2440
		struct mem_cgroup *memcg;
2441

2442 2443
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2444
			continue;
2445
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2446
			continue;
2447 2448 2449 2450 2451 2452
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2453
	}
2454
	put_cpu();
2455 2456 2457 2458 2459 2460

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2461
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2462 2463 2464
			flush_work(&stock->work);
	}
out:
2465
 	put_online_cpus();
2466 2467 2468 2469 2470 2471 2472 2473
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2474
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2475
{
2476 2477 2478 2479 2480
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2481
	drain_all_stock(root_memcg, false);
2482
	mutex_unlock(&percpu_charge_mutex);
2483 2484 2485
}

/* This is a synchronous drain interface. */
2486
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2487 2488
{
	/* called when force_empty is called */
2489
	mutex_lock(&percpu_charge_mutex);
2490
	drain_all_stock(root_memcg, true);
2491
	mutex_unlock(&percpu_charge_mutex);
2492 2493
}

2494 2495 2496 2497
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2498
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2499 2500 2501
{
	int i;

2502
	spin_lock(&memcg->pcp_counter_lock);
2503
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2504
		long x = per_cpu(memcg->stat->count[i], cpu);
2505

2506 2507
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2508
	}
2509
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2510
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2511

2512 2513
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2514
	}
2515
	spin_unlock(&memcg->pcp_counter_lock);
2516 2517 2518
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2519 2520 2521 2522 2523
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2524
	struct mem_cgroup *iter;
2525

2526
	if (action == CPU_ONLINE)
2527 2528
		return NOTIFY_OK;

2529
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2530
		return NOTIFY_OK;
2531

2532
	for_each_mem_cgroup(iter)
2533 2534
		mem_cgroup_drain_pcp_counter(iter, cpu);

2535 2536 2537 2538 2539
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2550
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2551 2552
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2553
{
2554
	unsigned long csize = nr_pages * PAGE_SIZE;
2555 2556 2557 2558 2559
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2560
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2561 2562 2563 2564

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2565
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2566 2567 2568
		if (likely(!ret))
			return CHARGE_OK;

2569
		res_counter_uncharge(&memcg->res, csize);
2570 2571 2572 2573
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2574 2575 2576 2577
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2578
	if (nr_pages > min_pages)
2579 2580 2581 2582 2583
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2584 2585 2586
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2587
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2588
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2589
		return CHARGE_RETRY;
2590
	/*
2591 2592 2593 2594 2595 2596 2597
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2598
	 */
2599
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2613
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2614 2615 2616 2617 2618
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2619
/*
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2639
 */
2640
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2641
				   gfp_t gfp_mask,
2642
				   unsigned int nr_pages,
2643
				   struct mem_cgroup **ptr,
2644
				   bool oom)
2645
{
2646
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2647
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2648
	struct mem_cgroup *memcg = NULL;
2649
	int ret;
2650

K
KAMEZAWA Hiroyuki 已提交
2651 2652 2653 2654 2655 2656 2657 2658
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2659

2660
	/*
2661 2662
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2663
	 * thread group leader migrates. It's possible that mm is not
2664
	 * set, if so charge the root memcg (happens for pagecache usage).
2665
	 */
2666
	if (!*ptr && !mm)
2667
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2668
again:
2669 2670 2671
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2672
			goto done;
2673
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2674
			goto done;
2675
		css_get(&memcg->css);
2676
	} else {
K
KAMEZAWA Hiroyuki 已提交
2677
		struct task_struct *p;
2678

K
KAMEZAWA Hiroyuki 已提交
2679 2680 2681
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2682
		 * Because we don't have task_lock(), "p" can exit.
2683
		 * In that case, "memcg" can point to root or p can be NULL with
2684 2685 2686 2687 2688 2689
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2690
		 */
2691
		memcg = mem_cgroup_from_task(p);
2692 2693 2694
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2695 2696 2697
			rcu_read_unlock();
			goto done;
		}
2698
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2711
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2712 2713 2714 2715 2716
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2717

2718 2719
	do {
		bool oom_check;
2720

2721
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2722
		if (fatal_signal_pending(current)) {
2723
			css_put(&memcg->css);
2724
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2725
		}
2726

2727 2728 2729 2730
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2731
		}
2732

2733 2734
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2735 2736 2737 2738
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2739
			batch = nr_pages;
2740 2741
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2742
			goto again;
2743
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2744
			css_put(&memcg->css);
2745 2746
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2747
			if (!oom) {
2748
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2749
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2750
			}
2751 2752 2753 2754
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2755
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2756
			goto bypass;
2757
		}
2758 2759
	} while (ret != CHARGE_OK);

2760
	if (batch > nr_pages)
2761 2762
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2763
done:
2764
	*ptr = memcg;
2765 2766
	return 0;
nomem:
2767
	*ptr = NULL;
2768
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2769
bypass:
2770 2771
	*ptr = root_mem_cgroup;
	return -EINTR;
2772
}
2773

2774 2775 2776 2777 2778
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2779
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2780
				       unsigned int nr_pages)
2781
{
2782
	if (!mem_cgroup_is_root(memcg)) {
2783 2784
		unsigned long bytes = nr_pages * PAGE_SIZE;

2785
		res_counter_uncharge(&memcg->res, bytes);
2786
		if (do_swap_account)
2787
			res_counter_uncharge(&memcg->memsw, bytes);
2788
	}
2789 2790
}

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2809 2810
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2811 2812 2813
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2825
	return mem_cgroup_from_css(css);
2826 2827
}

2828
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2829
{
2830
	struct mem_cgroup *memcg = NULL;
2831
	struct page_cgroup *pc;
2832
	unsigned short id;
2833 2834
	swp_entry_t ent;

2835 2836 2837
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2838
	lock_page_cgroup(pc);
2839
	if (PageCgroupUsed(pc)) {
2840 2841 2842
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2843
	} else if (PageSwapCache(page)) {
2844
		ent.val = page_private(page);
2845
		id = lookup_swap_cgroup_id(ent);
2846
		rcu_read_lock();
2847 2848 2849
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2850
		rcu_read_unlock();
2851
	}
2852
	unlock_page_cgroup(pc);
2853
	return memcg;
2854 2855
}

2856
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2857
				       struct page *page,
2858
				       unsigned int nr_pages,
2859 2860
				       enum charge_type ctype,
				       bool lrucare)
2861
{
2862
	struct page_cgroup *pc = lookup_page_cgroup(page);
2863
	struct zone *uninitialized_var(zone);
2864
	struct lruvec *lruvec;
2865
	bool was_on_lru = false;
2866
	bool anon;
2867

2868
	lock_page_cgroup(pc);
2869
	VM_BUG_ON(PageCgroupUsed(pc));
2870 2871 2872 2873
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2874 2875 2876 2877 2878 2879 2880 2881 2882

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2883
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2884
			ClearPageLRU(page);
2885
			del_page_from_lru_list(page, lruvec, page_lru(page));
2886 2887 2888 2889
			was_on_lru = true;
		}
	}

2890
	pc->mem_cgroup = memcg;
2891 2892 2893 2894 2895 2896 2897
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2898
	smp_wmb();
2899
	SetPageCgroupUsed(pc);
2900

2901 2902
	if (lrucare) {
		if (was_on_lru) {
2903
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2904 2905
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2906
			add_page_to_lru_list(page, lruvec, page_lru(page));
2907 2908 2909 2910
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2911
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2912 2913 2914 2915
		anon = true;
	else
		anon = false;

2916
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2917
	unlock_page_cgroup(pc);
2918

2919 2920 2921 2922 2923
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2924
	memcg_check_events(memcg, page);
2925
}
2926

2927 2928
static DEFINE_MUTEX(set_limit_mutex);

2929 2930 2931 2932 2933 2934 2935
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2949
#ifdef CONFIG_SLABINFO
2950 2951
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2952
{
2953
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3023 3024 3025 3026 3027

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3028 3029 3030 3031 3032 3033 3034 3035
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3036
	if (memcg_kmem_test_and_clear_dead(memcg))
3037
		css_put(&memcg->css);
3038 3039
}

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3123 3124
static void kmem_cache_destroy_work_func(struct work_struct *w);

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3176 3177
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3178 3179 3180 3181 3182 3183
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3184 3185 3186
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3187 3188 3189 3190
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

3191 3192
	INIT_WORK(&s->memcg_params->destroy,
			kmem_cache_destroy_work_func);
G
Glauber Costa 已提交
3193
	if (memcg) {
3194
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3195
		s->memcg_params->root_cache = root_cache;
3196 3197 3198
	} else
		s->memcg_params->is_root_cache = true;

3199 3200 3201 3202 3203
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3228
	css_put(&memcg->css);
3229
out:
3230 3231 3232
	kfree(s->memcg_params);
}

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3264 3265 3266 3267 3268 3269 3270 3271 3272
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3294 3295 3296 3297 3298 3299 3300 3301
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3322 3323 3324 3325 3326 3327 3328
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3329 3330 3331 3332 3333 3334 3335 3336 3337
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3338

3339 3340 3341
/*
 * Called with memcg_cache_mutex held
 */
3342 3343 3344 3345
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3346
	static char *tmp_name = NULL;
3347

3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3366

3367
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3368
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3369

3370 3371 3372
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3388 3389
	if (new_cachep) {
		css_put(&memcg->css);
3390
		goto out;
3391
	}
3392 3393 3394 3395

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3396
		css_put(&memcg->css);
3397 3398 3399
		goto out;
	}

G
Glauber Costa 已提交
3400
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3452
		cancel_work_sync(&c->memcg_params->destroy);
3453 3454 3455 3456 3457
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3458 3459 3460 3461 3462 3463
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3493 3494
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3495 3496 3497 3498
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3499 3500
	if (cw == NULL) {
		css_put(&memcg->css);
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3551 3552 3553
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3554 3555 3556 3557
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3558
		goto out;
3559 3560 3561 3562 3563 3564 3565 3566

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3567 3568 3569
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3570 3571
	}

3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3599 3600 3601
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
	 * 	memcg_stop_kmem_account();
	 * 	kmalloc(<large_number>)
	 * 	memcg_resume_kmem_account();
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3725 3726 3727 3728
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3729 3730
#endif /* CONFIG_MEMCG_KMEM */

3731 3732
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3733
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3734 3735
/*
 * Because tail pages are not marked as "used", set it. We're under
3736 3737 3738
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3739
 */
3740
void mem_cgroup_split_huge_fixup(struct page *head)
3741 3742
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3743
	struct page_cgroup *pc;
3744
	struct mem_cgroup *memcg;
3745
	int i;
3746

3747 3748
	if (mem_cgroup_disabled())
		return;
3749 3750

	memcg = head_pc->mem_cgroup;
3751 3752
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3753
		pc->mem_cgroup = memcg;
3754 3755 3756
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3757 3758
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3759
}
3760
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3761

3762
/**
3763
 * mem_cgroup_move_account - move account of the page
3764
 * @page: the page
3765
 * @nr_pages: number of regular pages (>1 for huge pages)
3766 3767 3768 3769 3770
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3771
 * - page is not on LRU (isolate_page() is useful.)
3772
 * - compound_lock is held when nr_pages > 1
3773
 *
3774 3775
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3776
 */
3777 3778 3779 3780
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3781
				   struct mem_cgroup *to)
3782
{
3783 3784
	unsigned long flags;
	int ret;
3785
	bool anon = PageAnon(page);
3786

3787
	VM_BUG_ON(from == to);
3788
	VM_BUG_ON(PageLRU(page));
3789 3790 3791 3792 3793 3794 3795
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3796
	if (nr_pages > 1 && !PageTransHuge(page))
3797 3798 3799 3800 3801 3802 3803 3804
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3805
	move_lock_mem_cgroup(from, &flags);
3806

3807
	if (!anon && page_mapped(page)) {
3808 3809 3810 3811 3812
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3813
	}
3814
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3815

3816
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3817
	pc->mem_cgroup = to;
3818
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3819
	move_unlock_mem_cgroup(from, &flags);
3820 3821
	ret = 0;
unlock:
3822
	unlock_page_cgroup(pc);
3823 3824 3825
	/*
	 * check events
	 */
3826 3827
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3828
out:
3829 3830 3831
	return ret;
}

3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3852
 */
3853 3854
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3855
				  struct mem_cgroup *child)
3856 3857
{
	struct mem_cgroup *parent;
3858
	unsigned int nr_pages;
3859
	unsigned long uninitialized_var(flags);
3860 3861
	int ret;

3862
	VM_BUG_ON(mem_cgroup_is_root(child));
3863

3864 3865 3866 3867 3868
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3869

3870
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3871

3872 3873 3874 3875 3876 3877
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3878

3879 3880
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3881
		flags = compound_lock_irqsave(page);
3882
	}
3883

3884
	ret = mem_cgroup_move_account(page, nr_pages,
3885
				pc, child, parent);
3886 3887
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3888

3889
	if (nr_pages > 1)
3890
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3891
	putback_lru_page(page);
3892
put:
3893
	put_page(page);
3894
out:
3895 3896 3897
	return ret;
}

3898 3899 3900 3901 3902 3903 3904
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3905
				gfp_t gfp_mask, enum charge_type ctype)
3906
{
3907
	struct mem_cgroup *memcg = NULL;
3908
	unsigned int nr_pages = 1;
3909
	bool oom = true;
3910
	int ret;
A
Andrea Arcangeli 已提交
3911

A
Andrea Arcangeli 已提交
3912
	if (PageTransHuge(page)) {
3913
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3914
		VM_BUG_ON(!PageTransHuge(page));
3915 3916 3917 3918 3919
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3920
	}
3921

3922
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3923
	if (ret == -ENOMEM)
3924
		return ret;
3925
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3926 3927 3928
	return 0;
}

3929 3930
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3931
{
3932
	if (mem_cgroup_disabled())
3933
		return 0;
3934 3935 3936
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3937
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3938
					MEM_CGROUP_CHARGE_TYPE_ANON);
3939 3940
}

3941 3942 3943
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3944
 * struct page_cgroup is acquired. This refcnt will be consumed by
3945 3946
 * "commit()" or removed by "cancel()"
 */
3947 3948 3949 3950
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3951
{
3952
	struct mem_cgroup *memcg;
3953
	struct page_cgroup *pc;
3954
	int ret;
3955

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3966 3967
	if (!do_swap_account)
		goto charge_cur_mm;
3968 3969
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3970
		goto charge_cur_mm;
3971 3972
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3973
	css_put(&memcg->css);
3974 3975
	if (ret == -EINTR)
		ret = 0;
3976
	return ret;
3977
charge_cur_mm:
3978 3979 3980 3981
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3982 3983
}

3984 3985 3986 3987 3988 3989
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
4004 4005 4006
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4007 4008 4009 4010 4011 4012 4013 4014 4015
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4016
static void
4017
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4018
					enum charge_type ctype)
4019
{
4020
	if (mem_cgroup_disabled())
4021
		return;
4022
	if (!memcg)
4023
		return;
4024

4025
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4026 4027 4028
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4029 4030 4031
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4032
	 */
4033
	if (do_swap_account && PageSwapCache(page)) {
4034
		swp_entry_t ent = {.val = page_private(page)};
4035
		mem_cgroup_uncharge_swap(ent);
4036
	}
4037 4038
}

4039 4040
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4041
{
4042
	__mem_cgroup_commit_charge_swapin(page, memcg,
4043
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4044 4045
}

4046 4047
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4048
{
4049 4050 4051 4052
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4053
	if (mem_cgroup_disabled())
4054 4055 4056 4057 4058 4059 4060
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4061 4062
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4063 4064 4065 4066
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4067 4068
}

4069
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4070 4071
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4072 4073 4074
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4075

4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4087
		batch->memcg = memcg;
4088 4089
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4090
	 * In those cases, all pages freed continuously can be expected to be in
4091 4092 4093 4094 4095 4096 4097 4098
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4099
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4100 4101
		goto direct_uncharge;

4102 4103 4104 4105 4106
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4107
	if (batch->memcg != memcg)
4108 4109
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4110
	batch->nr_pages++;
4111
	if (uncharge_memsw)
4112
		batch->memsw_nr_pages++;
4113 4114
	return;
direct_uncharge:
4115
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4116
	if (uncharge_memsw)
4117 4118 4119
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4120
}
4121

4122
/*
4123
 * uncharge if !page_mapped(page)
4124
 */
4125
static struct mem_cgroup *
4126 4127
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4128
{
4129
	struct mem_cgroup *memcg = NULL;
4130 4131
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4132
	bool anon;
4133

4134
	if (mem_cgroup_disabled())
4135
		return NULL;
4136

A
Andrea Arcangeli 已提交
4137
	if (PageTransHuge(page)) {
4138
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4139 4140
		VM_BUG_ON(!PageTransHuge(page));
	}
4141
	/*
4142
	 * Check if our page_cgroup is valid
4143
	 */
4144
	pc = lookup_page_cgroup(page);
4145
	if (unlikely(!PageCgroupUsed(pc)))
4146
		return NULL;
4147

4148
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4149

4150
	memcg = pc->mem_cgroup;
4151

K
KAMEZAWA Hiroyuki 已提交
4152 4153 4154
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4155 4156
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4157
	switch (ctype) {
4158
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4159 4160 4161 4162 4163
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4164 4165
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4166
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4167
		/* See mem_cgroup_prepare_migration() */
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4189
	}
K
KAMEZAWA Hiroyuki 已提交
4190

4191
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4192

4193
	ClearPageCgroupUsed(pc);
4194 4195 4196 4197 4198 4199
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4200

4201
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4202
	/*
4203
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4204
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4205
	 */
4206
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4207
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4208
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4209
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4210
	}
4211 4212 4213 4214 4215 4216
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4217
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4218

4219
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4220 4221 4222

unlock_out:
	unlock_page_cgroup(pc);
4223
	return NULL;
4224 4225
}

4226 4227
void mem_cgroup_uncharge_page(struct page *page)
{
4228 4229 4230
	/* early check. */
	if (page_mapped(page))
		return;
4231
	VM_BUG_ON(page->mapping && !PageAnon(page));
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4244 4245
	if (PageSwapCache(page))
		return;
4246
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4247 4248 4249 4250 4251
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4252
	VM_BUG_ON(page->mapping);
4253
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4254 4255
}

4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4270 4271
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4292 4293 4294 4295 4296 4297
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4298
	memcg_oom_recover(batch->memcg);
4299 4300 4301 4302
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4303
#ifdef CONFIG_SWAP
4304
/*
4305
 * called after __delete_from_swap_cache() and drop "page" account.
4306 4307
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4308 4309
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4310 4311
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4312 4313 4314 4315 4316
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4317
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4318

K
KAMEZAWA Hiroyuki 已提交
4319 4320
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4321
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4322 4323
	 */
	if (do_swap_account && swapout && memcg)
4324
		swap_cgroup_record(ent, css_id(&memcg->css));
4325
}
4326
#endif
4327

A
Andrew Morton 已提交
4328
#ifdef CONFIG_MEMCG_SWAP
4329 4330 4331 4332 4333
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4334
{
4335
	struct mem_cgroup *memcg;
4336
	unsigned short id;
4337 4338 4339 4340

	if (!do_swap_account)
		return;

4341 4342 4343
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4344
	if (memcg) {
4345 4346 4347 4348
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4349
		if (!mem_cgroup_is_root(memcg))
4350
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4351
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4352
		css_put(&memcg->css);
4353
	}
4354
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4355
}
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4372
				struct mem_cgroup *from, struct mem_cgroup *to)
4373 4374 4375 4376 4377 4378 4379 4380
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4381
		mem_cgroup_swap_statistics(to, true);
4382
		/*
4383 4384 4385
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4386 4387 4388 4389 4390 4391
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4392
		 */
L
Li Zefan 已提交
4393
		css_get(&to->css);
4394 4395 4396 4397 4398 4399
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4400
				struct mem_cgroup *from, struct mem_cgroup *to)
4401 4402 4403
{
	return -EINVAL;
}
4404
#endif
K
KAMEZAWA Hiroyuki 已提交
4405

4406
/*
4407 4408
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4409
 */
4410 4411
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4412
{
4413
	struct mem_cgroup *memcg = NULL;
4414
	unsigned int nr_pages = 1;
4415
	struct page_cgroup *pc;
4416
	enum charge_type ctype;
4417

4418
	*memcgp = NULL;
4419

4420
	if (mem_cgroup_disabled())
4421
		return;
4422

4423 4424 4425
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4426 4427 4428
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4429 4430
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4462
	}
4463
	unlock_page_cgroup(pc);
4464 4465 4466 4467
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4468
	if (!memcg)
4469
		return;
4470

4471
	*memcgp = memcg;
4472 4473 4474 4475 4476 4477 4478
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4479
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4480
	else
4481
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4482 4483 4484 4485 4486
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4487
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4488
}
4489

4490
/* remove redundant charge if migration failed*/
4491
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4492
	struct page *oldpage, struct page *newpage, bool migration_ok)
4493
{
4494
	struct page *used, *unused;
4495
	struct page_cgroup *pc;
4496
	bool anon;
4497

4498
	if (!memcg)
4499
		return;
4500

4501
	if (!migration_ok) {
4502 4503
		used = oldpage;
		unused = newpage;
4504
	} else {
4505
		used = newpage;
4506 4507
		unused = oldpage;
	}
4508
	anon = PageAnon(used);
4509 4510 4511 4512
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4513
	css_put(&memcg->css);
4514
	/*
4515 4516 4517
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4518
	 */
4519 4520 4521 4522 4523
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4524
	/*
4525 4526 4527 4528 4529 4530
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4531
	 */
4532
	if (anon)
4533
		mem_cgroup_uncharge_page(used);
4534
}
4535

4536 4537 4538 4539 4540 4541 4542 4543
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4544
	struct mem_cgroup *memcg = NULL;
4545 4546 4547 4548 4549 4550 4551 4552 4553
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4554 4555
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4556
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4557 4558
		ClearPageCgroupUsed(pc);
	}
4559 4560
	unlock_page_cgroup(pc);

4561 4562 4563 4564 4565 4566
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4567 4568 4569 4570 4571
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4572
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4573 4574
}

4575 4576 4577 4578 4579 4580
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4581 4582 4583 4584 4585
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4605 4606
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4607 4608 4609 4610
	}
}
#endif

4611
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4612
				unsigned long long val)
4613
{
4614
	int retry_count;
4615
	u64 memswlimit, memlimit;
4616
	int ret = 0;
4617 4618
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4619
	int enlarge;
4620 4621 4622 4623 4624 4625 4626 4627 4628

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4629

4630
	enlarge = 0;
4631
	while (retry_count) {
4632 4633 4634 4635
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4636 4637 4638
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4639
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4640 4641 4642 4643 4644 4645
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4646 4647
			break;
		}
4648 4649 4650 4651 4652

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4653
		ret = res_counter_set_limit(&memcg->res, val);
4654 4655 4656 4657 4658 4659
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4660 4661 4662 4663 4664
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4665 4666
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4667 4668 4669 4670 4671 4672
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4673
	}
4674 4675
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4676

4677 4678 4679
	return ret;
}

L
Li Zefan 已提交
4680 4681
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4682
{
4683
	int retry_count;
4684
	u64 memlimit, memswlimit, oldusage, curusage;
4685 4686
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4687
	int enlarge = 0;
4688

4689 4690 4691
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4692 4693 4694 4695 4696 4697 4698 4699
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4700
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4701 4702 4703 4704 4705 4706 4707 4708
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4709 4710 4711
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4712
		ret = res_counter_set_limit(&memcg->memsw, val);
4713 4714 4715 4716 4717 4718
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4719 4720 4721 4722 4723
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4724 4725 4726
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4727
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4728
		/* Usage is reduced ? */
4729
		if (curusage >= oldusage)
4730
			retry_count--;
4731 4732
		else
			oldusage = curusage;
4733
	}
4734 4735
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4736 4737 4738
	return ret;
}

4739
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4740 4741
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4742 4743 4744 4745 4746 4747
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4748
	unsigned long long excess;
4749
	unsigned long nr_scanned;
4750 4751 4752 4753

	if (order > 0)
		return 0;

4754
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4768
		nr_scanned = 0;
4769
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4770
						    gfp_mask, &nr_scanned);
4771
		nr_reclaimed += reclaimed;
4772
		*total_scanned += nr_scanned;
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4795
				if (next_mz == mz)
4796
					css_put(&next_mz->memcg->css);
4797
				else /* next_mz == NULL or other memcg */
4798 4799 4800
					break;
			} while (1);
		}
4801 4802
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4803 4804 4805 4806 4807 4808 4809 4810
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4811
		/* If excess == 0, no tree ops */
4812
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4813
		spin_unlock(&mctz->lock);
4814
		css_put(&mz->memcg->css);
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4827
		css_put(&next_mz->memcg->css);
4828 4829 4830
	return nr_reclaimed;
}

4831 4832 4833 4834 4835 4836 4837
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4838
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4839 4840
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4841
 */
4842
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4843
				int node, int zid, enum lru_list lru)
4844
{
4845
	struct lruvec *lruvec;
4846
	unsigned long flags;
4847
	struct list_head *list;
4848 4849
	struct page *busy;
	struct zone *zone;
4850

K
KAMEZAWA Hiroyuki 已提交
4851
	zone = &NODE_DATA(node)->node_zones[zid];
4852 4853
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4854

4855
	busy = NULL;
4856
	do {
4857
		struct page_cgroup *pc;
4858 4859
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4860
		spin_lock_irqsave(&zone->lru_lock, flags);
4861
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4862
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4863
			break;
4864
		}
4865 4866 4867
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4868
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4869
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4870 4871
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4872
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4873

4874
		pc = lookup_page_cgroup(page);
4875

4876
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4877
			/* found lock contention or "pc" is obsolete. */
4878
			busy = page;
4879 4880 4881
			cond_resched();
		} else
			busy = NULL;
4882
	} while (!list_empty(list));
4883 4884 4885
}

/*
4886 4887
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4888
 * This enables deleting this mem_cgroup.
4889 4890
 *
 * Caller is responsible for holding css reference on the memcg.
4891
 */
4892
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4893
{
4894
	int node, zid;
4895
	u64 usage;
4896

4897
	do {
4898 4899
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4900 4901
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4902
		for_each_node_state(node, N_MEMORY) {
4903
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4904 4905
				enum lru_list lru;
				for_each_lru(lru) {
4906
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4907
							node, zid, lru);
4908
				}
4909
			}
4910
		}
4911 4912
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4913
		cond_resched();
4914

4915
		/*
4916 4917 4918 4919 4920
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4921 4922 4923 4924 4925 4926
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4927 4928 4929
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4930 4931
}

4932 4933 4934 4935 4936 4937 4938
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
4939
	struct cgroup_subsys_state *pos;
4940 4941

	/* bounce at first found */
4942
	css_for_each_child(pos, &memcg->css)
4943 4944 4945 4946 4947
		return true;
	return false;
}

/*
4948 4949
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4950 4951 4952 4953 4954 4955 4956 4957 4958
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4969

4970
	/* returns EBUSY if there is a task or if we come here twice. */
4971 4972 4973
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4974 4975
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4976
	/* try to free all pages in this cgroup */
4977
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4978
		int progress;
4979

4980 4981 4982
		if (signal_pending(current))
			return -EINTR;

4983
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4984
						false);
4985
		if (!progress) {
4986
			nr_retries--;
4987
			/* maybe some writeback is necessary */
4988
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4989
		}
4990 4991

	}
K
KAMEZAWA Hiroyuki 已提交
4992
	lru_add_drain();
4993 4994 4995
	mem_cgroup_reparent_charges(memcg);

	return 0;
4996 4997
}

4998 4999
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
5000
{
5001
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5002 5003
	int ret;

5004 5005
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
5006 5007 5008 5009 5010
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
5011 5012 5013
}


5014 5015
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
5016
{
5017
	return mem_cgroup_from_css(css)->use_hierarchy;
5018 5019
}

5020 5021
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
5022 5023
{
	int retval = 0;
5024
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5025
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5026

5027
	mutex_lock(&memcg_create_mutex);
5028 5029 5030 5031

	if (memcg->use_hierarchy == val)
		goto out;

5032
	/*
5033
	 * If parent's use_hierarchy is set, we can't make any modifications
5034 5035 5036 5037 5038 5039
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5040
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5041
				(val == 1 || val == 0)) {
5042
		if (!__memcg_has_children(memcg))
5043
			memcg->use_hierarchy = val;
5044 5045 5046 5047
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5048 5049

out:
5050
	mutex_unlock(&memcg_create_mutex);
5051 5052 5053 5054

	return retval;
}

5055

5056
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5057
					       enum mem_cgroup_stat_index idx)
5058
{
K
KAMEZAWA Hiroyuki 已提交
5059
	struct mem_cgroup *iter;
5060
	long val = 0;
5061

5062
	/* Per-cpu values can be negative, use a signed accumulator */
5063
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5064 5065 5066 5067 5068
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5069 5070
}

5071
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5072
{
K
KAMEZAWA Hiroyuki 已提交
5073
	u64 val;
5074

5075
	if (!mem_cgroup_is_root(memcg)) {
5076
		if (!swap)
5077
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5078
		else
5079
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5080 5081
	}

5082 5083 5084 5085
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5086 5087
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5088

K
KAMEZAWA Hiroyuki 已提交
5089
	if (swap)
5090
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5091 5092 5093 5094

	return val << PAGE_SHIFT;
}

5095 5096 5097
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5098
{
5099
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5100
	char str[64];
5101
	u64 val;
G
Glauber Costa 已提交
5102 5103
	int name, len;
	enum res_type type;
5104 5105 5106

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5107

5108 5109
	switch (type) {
	case _MEM:
5110
		if (name == RES_USAGE)
5111
			val = mem_cgroup_usage(memcg, false);
5112
		else
5113
			val = res_counter_read_u64(&memcg->res, name);
5114 5115
		break;
	case _MEMSWAP:
5116
		if (name == RES_USAGE)
5117
			val = mem_cgroup_usage(memcg, true);
5118
		else
5119
			val = res_counter_read_u64(&memcg->memsw, name);
5120
		break;
5121 5122 5123
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5124 5125 5126
	default:
		BUG();
	}
5127 5128 5129

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5130
}
5131

5132
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5133 5134 5135
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
5136
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5149
	mutex_lock(&memcg_create_mutex);
5150 5151
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5152
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5153 5154 5155 5156 5157 5158
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5159 5160 5161 5162 5163
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
5164 5165 5166 5167 5168 5169
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
5170 5171 5172 5173
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5174
	mutex_unlock(&memcg_create_mutex);
5175 5176 5177 5178
#endif
	return ret;
}

5179
#ifdef CONFIG_MEMCG_KMEM
5180
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5181
{
5182
	int ret = 0;
5183 5184
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5185 5186
		goto out;

5187
	memcg->kmem_account_flags = parent->kmem_account_flags;
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5198 5199 5200 5201
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5202 5203 5204
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5205 5206 5207 5208
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5209
	memcg_stop_kmem_account();
5210
	ret = memcg_update_cache_sizes(memcg);
5211
	memcg_resume_kmem_account();
5212 5213 5214
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5215
}
5216
#endif /* CONFIG_MEMCG_KMEM */
5217

5218 5219 5220 5221
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5222
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5223
			    const char *buffer)
B
Balbir Singh 已提交
5224
{
5225
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5226 5227
	enum res_type type;
	int name;
5228 5229 5230
	unsigned long long val;
	int ret;

5231 5232
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5233

5234
	switch (name) {
5235
	case RES_LIMIT:
5236 5237 5238 5239
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5240 5241
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5242 5243 5244
		if (ret)
			break;
		if (type == _MEM)
5245
			ret = mem_cgroup_resize_limit(memcg, val);
5246
		else if (type == _MEMSWAP)
5247
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5248
		else if (type == _KMEM)
5249
			ret = memcg_update_kmem_limit(css, val);
5250 5251
		else
			return -EINVAL;
5252
		break;
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5267 5268 5269 5270 5271
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5272 5273
}

5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5284 5285
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5298
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5299
{
5300
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5301 5302
	int name;
	enum res_type type;
5303

5304 5305
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5306

5307
	switch (name) {
5308
	case RES_MAX_USAGE:
5309
		if (type == _MEM)
5310
			res_counter_reset_max(&memcg->res);
5311
		else if (type == _MEMSWAP)
5312
			res_counter_reset_max(&memcg->memsw);
5313 5314 5315 5316
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5317 5318
		break;
	case RES_FAILCNT:
5319
		if (type == _MEM)
5320
			res_counter_reset_failcnt(&memcg->res);
5321
		else if (type == _MEMSWAP)
5322
			res_counter_reset_failcnt(&memcg->memsw);
5323 5324 5325 5326
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5327 5328
		break;
	}
5329

5330
	return 0;
5331 5332
}

5333
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5334 5335
					struct cftype *cft)
{
5336
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5337 5338
}

5339
#ifdef CONFIG_MMU
5340
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5341 5342
					struct cftype *cft, u64 val)
{
5343
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5344 5345 5346

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5347

5348
	/*
5349 5350 5351 5352
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5353
	 */
5354
	memcg->move_charge_at_immigrate = val;
5355 5356
	return 0;
}
5357
#else
5358
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5359 5360 5361 5362 5363
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5364

5365
#ifdef CONFIG_NUMA
5366 5367
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5368 5369 5370 5371
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5372
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5373

5374
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5375
	seq_printf(m, "total=%lu", total_nr);
5376
	for_each_node_state(nid, N_MEMORY) {
5377
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5378 5379 5380 5381
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5382
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5383
	seq_printf(m, "file=%lu", file_nr);
5384
	for_each_node_state(nid, N_MEMORY) {
5385
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5386
				LRU_ALL_FILE);
5387 5388 5389 5390
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5391
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5392
	seq_printf(m, "anon=%lu", anon_nr);
5393
	for_each_node_state(nid, N_MEMORY) {
5394
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5395
				LRU_ALL_ANON);
5396 5397 5398 5399
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5400
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5401
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5402
	for_each_node_state(nid, N_MEMORY) {
5403
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5404
				BIT(LRU_UNEVICTABLE));
5405 5406 5407 5408 5409 5410 5411
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5412 5413 5414 5415 5416
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5417
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5418
				 struct seq_file *m)
5419
{
5420
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5421 5422
	struct mem_cgroup *mi;
	unsigned int i;
5423

5424
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5425
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5426
			continue;
5427 5428
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5429
	}
L
Lee Schermerhorn 已提交
5430

5431 5432 5433 5434 5435 5436 5437 5438
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5439
	/* Hierarchical information */
5440 5441
	{
		unsigned long long limit, memsw_limit;
5442
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5443
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5444
		if (do_swap_account)
5445 5446
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5447
	}
K
KOSAKI Motohiro 已提交
5448

5449 5450 5451
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5452
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5453
			continue;
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5474
	}
K
KAMEZAWA Hiroyuki 已提交
5475

K
KOSAKI Motohiro 已提交
5476 5477 5478 5479
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5480
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5481 5482 5483 5484 5485
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5486
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5487
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5488

5489 5490 5491 5492
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5493
			}
5494 5495 5496 5497
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5498 5499 5500
	}
#endif

5501 5502 5503
	return 0;
}

5504 5505
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5506
{
5507
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5508

5509
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5510 5511
}

5512 5513
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5514
{
5515
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5516
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5517

T
Tejun Heo 已提交
5518
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5519 5520
		return -EINVAL;

5521
	mutex_lock(&memcg_create_mutex);
5522

K
KOSAKI Motohiro 已提交
5523
	/* If under hierarchy, only empty-root can set this value */
5524
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5525
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5526
		return -EINVAL;
5527
	}
K
KOSAKI Motohiro 已提交
5528 5529 5530

	memcg->swappiness = val;

5531
	mutex_unlock(&memcg_create_mutex);
5532

K
KOSAKI Motohiro 已提交
5533 5534 5535
	return 0;
}

5536 5537 5538 5539 5540 5541 5542 5543
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5544
		t = rcu_dereference(memcg->thresholds.primary);
5545
	else
5546
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5547 5548 5549 5550 5551 5552 5553

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5554
	 * current_threshold points to threshold just below or equal to usage.
5555 5556 5557
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5558
	i = t->current_threshold;
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5582
	t->current_threshold = i - 1;
5583 5584 5585 5586 5587 5588
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5589 5590 5591 5592 5593 5594 5595
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5606
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5607 5608 5609
{
	struct mem_cgroup_eventfd_list *ev;

5610
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5611 5612 5613 5614
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5615
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5616
{
K
KAMEZAWA Hiroyuki 已提交
5617 5618
	struct mem_cgroup *iter;

5619
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5620
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5621 5622 5623 5624
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5625 5626
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5627 5628
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5629
	enum res_type type = MEMFILE_TYPE(cft->private);
5630
	u64 threshold, usage;
5631
	int i, size, ret;
5632 5633 5634 5635 5636 5637

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5638

5639
	if (type == _MEM)
5640
		thresholds = &memcg->thresholds;
5641
	else if (type == _MEMSWAP)
5642
		thresholds = &memcg->memsw_thresholds;
5643 5644 5645 5646 5647 5648
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5649
	if (thresholds->primary)
5650 5651
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5652
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5653 5654

	/* Allocate memory for new array of thresholds */
5655
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5656
			GFP_KERNEL);
5657
	if (!new) {
5658 5659 5660
		ret = -ENOMEM;
		goto unlock;
	}
5661
	new->size = size;
5662 5663

	/* Copy thresholds (if any) to new array */
5664 5665
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5666
				sizeof(struct mem_cgroup_threshold));
5667 5668
	}

5669
	/* Add new threshold */
5670 5671
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5672 5673

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5674
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5675 5676 5677
			compare_thresholds, NULL);

	/* Find current threshold */
5678
	new->current_threshold = -1;
5679
	for (i = 0; i < size; i++) {
5680
		if (new->entries[i].threshold <= usage) {
5681
			/*
5682 5683
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5684 5685
			 * it here.
			 */
5686
			++new->current_threshold;
5687 5688
		} else
			break;
5689 5690
	}

5691 5692 5693 5694 5695
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5696

5697
	/* To be sure that nobody uses thresholds */
5698 5699 5700 5701 5702 5703 5704 5705
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5706
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5707
	struct cftype *cft, struct eventfd_ctx *eventfd)
5708 5709
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5710 5711
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5712
	enum res_type type = MEMFILE_TYPE(cft->private);
5713
	u64 usage;
5714
	int i, j, size;
5715 5716 5717

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5718
		thresholds = &memcg->thresholds;
5719
	else if (type == _MEMSWAP)
5720
		thresholds = &memcg->memsw_thresholds;
5721 5722 5723
	else
		BUG();

5724 5725 5726
	if (!thresholds->primary)
		goto unlock;

5727 5728 5729 5730 5731 5732
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5733 5734 5735
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5736 5737 5738
			size++;
	}

5739
	new = thresholds->spare;
5740

5741 5742
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5743 5744
		kfree(new);
		new = NULL;
5745
		goto swap_buffers;
5746 5747
	}

5748
	new->size = size;
5749 5750

	/* Copy thresholds and find current threshold */
5751 5752 5753
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5754 5755
			continue;

5756
		new->entries[j] = thresholds->primary->entries[i];
5757
		if (new->entries[j].threshold <= usage) {
5758
			/*
5759
			 * new->current_threshold will not be used
5760 5761 5762
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5763
			++new->current_threshold;
5764 5765 5766 5767
		}
		j++;
	}

5768
swap_buffers:
5769 5770
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5771 5772 5773 5774 5775 5776
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5777
	rcu_assign_pointer(thresholds->primary, new);
5778

5779
	/* To be sure that nobody uses thresholds */
5780
	synchronize_rcu();
5781
unlock:
5782 5783
	mutex_unlock(&memcg->thresholds_lock);
}
5784

K
KAMEZAWA Hiroyuki 已提交
5785 5786 5787 5788 5789
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5790
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5791 5792 5793 5794 5795 5796

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5797
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5798 5799 5800 5801 5802

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5803
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5804
		eventfd_signal(eventfd, 1);
5805
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5806 5807 5808 5809

	return 0;
}

5810
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5811 5812
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5813
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5814
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5815
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5816 5817 5818

	BUG_ON(type != _OOM_TYPE);

5819
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5820

5821
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5822 5823 5824 5825 5826 5827
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5828
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5829 5830
}

5831
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5832 5833
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5834
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5835

5836
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5837

5838
	if (atomic_read(&memcg->under_oom))
5839 5840 5841 5842 5843 5844
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5845
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5846 5847
	struct cftype *cft, u64 val)
{
5848
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5849
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5850 5851

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5852
	if (!parent || !((val == 0) || (val == 1)))
5853 5854
		return -EINVAL;

5855
	mutex_lock(&memcg_create_mutex);
5856
	/* oom-kill-disable is a flag for subhierarchy. */
5857
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5858
		mutex_unlock(&memcg_create_mutex);
5859 5860
		return -EINVAL;
	}
5861
	memcg->oom_kill_disable = val;
5862
	if (!val)
5863
		memcg_oom_recover(memcg);
5864
	mutex_unlock(&memcg_create_mutex);
5865 5866 5867
	return 0;
}

A
Andrew Morton 已提交
5868
#ifdef CONFIG_MEMCG_KMEM
5869
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5870
{
5871 5872
	int ret;

5873
	memcg->kmemcg_id = -1;
5874 5875 5876
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5877

5878
	return mem_cgroup_sockets_init(memcg, ss);
5879
}
5880

5881
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5882
{
5883
	mem_cgroup_sockets_destroy(memcg);
5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5910 5911 5912 5913 5914 5915 5916

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5917
		css_put(&memcg->css);
G
Glauber Costa 已提交
5918
}
5919
#else
5920
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5921 5922 5923
{
	return 0;
}
G
Glauber Costa 已提交
5924

5925 5926 5927 5928 5929
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5930 5931
{
}
5932 5933
#endif

B
Balbir Singh 已提交
5934 5935
static struct cftype mem_cgroup_files[] = {
	{
5936
		.name = "usage_in_bytes",
5937
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5938
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5939 5940
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5941
	},
5942 5943
	{
		.name = "max_usage_in_bytes",
5944
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5945
		.trigger = mem_cgroup_reset,
5946
		.read = mem_cgroup_read,
5947
	},
B
Balbir Singh 已提交
5948
	{
5949
		.name = "limit_in_bytes",
5950
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5951
		.write_string = mem_cgroup_write,
5952
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5953
	},
5954 5955 5956 5957
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5958
		.read = mem_cgroup_read,
5959
	},
B
Balbir Singh 已提交
5960 5961
	{
		.name = "failcnt",
5962
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5963
		.trigger = mem_cgroup_reset,
5964
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5965
	},
5966 5967
	{
		.name = "stat",
5968
		.read_seq_string = memcg_stat_show,
5969
	},
5970 5971 5972 5973
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5974 5975
	{
		.name = "use_hierarchy",
5976
		.flags = CFTYPE_INSANE,
5977 5978 5979
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5980 5981 5982 5983 5984
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5985 5986 5987 5988 5989
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5990 5991
	{
		.name = "oom_control",
5992 5993
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5994 5995 5996 5997
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5998 5999 6000 6001 6002
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
6003 6004 6005
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6006
		.read_seq_string = memcg_numa_stat_show,
6007 6008
	},
#endif
6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
6033 6034 6035 6036 6037 6038
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
6039
#endif
6040
	{ },	/* terminate */
6041
};
6042

6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
6073
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6074 6075
{
	struct mem_cgroup_per_node *pn;
6076
	struct mem_cgroup_per_zone *mz;
6077
	int zone, tmp = node;
6078 6079 6080 6081 6082 6083 6084 6085
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6086 6087
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6088
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6089 6090
	if (!pn)
		return 1;
6091 6092 6093

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6094
		lruvec_init(&mz->lruvec);
6095
		mz->usage_in_excess = 0;
6096
		mz->on_tree = false;
6097
		mz->memcg = memcg;
6098
	}
6099
	memcg->nodeinfo[node] = pn;
6100 6101 6102
	return 0;
}

6103
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6104
{
6105
	kfree(memcg->nodeinfo[node]);
6106 6107
}

6108 6109
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6110
	struct mem_cgroup *memcg;
6111
	size_t size = memcg_size();
6112

6113
	/* Can be very big if nr_node_ids is very big */
6114
	if (size < PAGE_SIZE)
6115
		memcg = kzalloc(size, GFP_KERNEL);
6116
	else
6117
		memcg = vzalloc(size);
6118

6119
	if (!memcg)
6120 6121
		return NULL;

6122 6123
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6124
		goto out_free;
6125 6126
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6127 6128 6129

out_free:
	if (size < PAGE_SIZE)
6130
		kfree(memcg);
6131
	else
6132
		vfree(memcg);
6133
	return NULL;
6134 6135
}

6136
/*
6137 6138 6139 6140 6141 6142 6143 6144
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6145
 */
6146 6147

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6148
{
6149
	int node;
6150
	size_t size = memcg_size();
6151

6152 6153 6154 6155 6156 6157 6158 6159
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6171
	disarm_static_keys(memcg);
6172 6173 6174 6175
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6176
}
6177

6178 6179 6180
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6181
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6182
{
6183
	if (!memcg->res.parent)
6184
		return NULL;
6185
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6186
}
G
Glauber Costa 已提交
6187
EXPORT_SYMBOL(parent_mem_cgroup);
6188

6189
static void __init mem_cgroup_soft_limit_tree_init(void)
6190 6191 6192 6193 6194
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6195
	for_each_node(node) {
6196 6197 6198 6199
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6200
		BUG_ON(!rtpn);
6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6212
static struct cgroup_subsys_state * __ref
6213
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6214
{
6215
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6216
	long error = -ENOMEM;
6217
	int node;
B
Balbir Singh 已提交
6218

6219 6220
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6221
		return ERR_PTR(error);
6222

B
Bob Liu 已提交
6223
	for_each_node(node)
6224
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6225
			goto free_out;
6226

6227
	/* root ? */
6228
	if (parent_css == NULL) {
6229
		root_mem_cgroup = memcg;
6230 6231 6232
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6233
	}
6234

6235 6236 6237 6238 6239
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6240
	vmpressure_init(&memcg->vmpressure);
6241 6242 6243 6244 6245 6246 6247 6248 6249

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6250
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6251
{
6252 6253
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6254 6255
	int error = 0;

T
Tejun Heo 已提交
6256
	if (!parent)
6257 6258
		return 0;

6259
	mutex_lock(&memcg_create_mutex);
6260 6261 6262 6263 6264 6265

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6266 6267
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6268
		res_counter_init(&memcg->kmem, &parent->kmem);
6269

6270
		/*
6271 6272
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6273
		 */
6274
	} else {
6275 6276
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6277
		res_counter_init(&memcg->kmem, NULL);
6278 6279 6280 6281 6282
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6283
		if (parent != root_mem_cgroup)
6284
			mem_cgroup_subsys.broken_hierarchy = true;
6285
	}
6286 6287

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6288
	mutex_unlock(&memcg_create_mutex);
6289
	return error;
B
Balbir Singh 已提交
6290 6291
}

M
Michal Hocko 已提交
6292 6293 6294 6295 6296 6297 6298 6299
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6300
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6301 6302 6303 6304 6305 6306

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6307
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6308 6309
}

6310
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6311
{
6312
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6313

6314 6315
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6316
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6317
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6318
	mem_cgroup_destroy_all_caches(memcg);
6319 6320
}

6321
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6322
{
6323
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6324

6325
	memcg_destroy_kmem(memcg);
6326
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6327 6328
}

6329
#ifdef CONFIG_MMU
6330
/* Handlers for move charge at task migration. */
6331 6332
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6333
{
6334 6335
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6336
	struct mem_cgroup *memcg = mc.to;
6337

6338
	if (mem_cgroup_is_root(memcg)) {
6339 6340 6341 6342 6343 6344 6345 6346
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6347
		 * "memcg" cannot be under rmdir() because we've already checked
6348 6349 6350 6351
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6352
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6353
			goto one_by_one;
6354
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6355
						PAGE_SIZE * count, &dummy)) {
6356
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6373 6374
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6375
		if (ret)
6376
			/* mem_cgroup_clear_mc() will do uncharge later */
6377
			return ret;
6378 6379
		mc.precharge++;
	}
6380 6381 6382 6383
	return ret;
}

/**
6384
 * get_mctgt_type - get target type of moving charge
6385 6386 6387
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6388
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6389 6390 6391 6392 6393 6394
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6395 6396 6397
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6398 6399 6400 6401 6402
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6403
	swp_entry_t	ent;
6404 6405 6406
};

enum mc_target_type {
6407
	MC_TARGET_NONE = 0,
6408
	MC_TARGET_PAGE,
6409
	MC_TARGET_SWAP,
6410 6411
};

D
Daisuke Nishimura 已提交
6412 6413
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6414
{
D
Daisuke Nishimura 已提交
6415
	struct page *page = vm_normal_page(vma, addr, ptent);
6416

D
Daisuke Nishimura 已提交
6417 6418 6419 6420
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6421
		if (!move_anon())
D
Daisuke Nishimura 已提交
6422
			return NULL;
6423 6424
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6425 6426 6427 6428 6429 6430 6431
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6432
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6433 6434 6435 6436 6437 6438 6439 6440
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6441 6442 6443 6444
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6445
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6446 6447 6448 6449 6450
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6451 6452 6453 6454 6455 6456 6457
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6458

6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6478 6479 6480 6481 6482 6483
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6484
		if (do_swap_account)
6485
			*entry = swap;
6486
		page = find_get_page(swap_address_space(swap), swap.val);
6487
	}
6488
#endif
6489 6490 6491
	return page;
}

6492
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6493 6494 6495 6496
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6497
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6498 6499 6500 6501 6502 6503
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6504 6505
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6506 6507

	if (!page && !ent.val)
6508
		return ret;
6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6524 6525
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6526
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6527 6528 6529
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6530 6531 6532 6533
	}
	return ret;
}

6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6569 6570 6571 6572 6573 6574 6575 6576
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6577 6578 6579 6580
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6581
		return 0;
6582
	}
6583

6584 6585
	if (pmd_trans_unstable(pmd))
		return 0;
6586 6587
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6588
		if (get_mctgt_type(vma, addr, *pte, NULL))
6589 6590 6591 6592
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6593 6594 6595
	return 0;
}

6596 6597 6598 6599 6600
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6601
	down_read(&mm->mmap_sem);
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6613
	up_read(&mm->mmap_sem);
6614 6615 6616 6617 6618 6619 6620 6621 6622

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6623 6624 6625 6626 6627
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6628 6629
}

6630 6631
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6632
{
6633 6634
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6635
	int i;
6636

6637
	/* we must uncharge all the leftover precharges from mc.to */
6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6649
	}
6650 6651 6652 6653 6654 6655
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6656 6657 6658

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6659 6660 6661 6662 6663 6664 6665 6666 6667

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6668
		/* we've already done css_get(mc.to) */
6669 6670
		mc.moved_swap = 0;
	}
6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6686
	spin_lock(&mc.lock);
6687 6688
	mc.from = NULL;
	mc.to = NULL;
6689
	spin_unlock(&mc.lock);
6690
	mem_cgroup_end_move(from);
6691 6692
}

6693
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6694
				 struct cgroup_taskset *tset)
6695
{
6696
	struct task_struct *p = cgroup_taskset_first(tset);
6697
	int ret = 0;
6698
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6699
	unsigned long move_charge_at_immigrate;
6700

6701 6702 6703 6704 6705 6706 6707
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6708 6709 6710
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6711
		VM_BUG_ON(from == memcg);
6712 6713 6714 6715 6716

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6717 6718 6719 6720
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6721
			VM_BUG_ON(mc.moved_charge);
6722
			VM_BUG_ON(mc.moved_swap);
6723
			mem_cgroup_start_move(from);
6724
			spin_lock(&mc.lock);
6725
			mc.from = from;
6726
			mc.to = memcg;
6727
			mc.immigrate_flags = move_charge_at_immigrate;
6728
			spin_unlock(&mc.lock);
6729
			/* We set mc.moving_task later */
6730 6731 6732 6733

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6734 6735
		}
		mmput(mm);
6736 6737 6738 6739
	}
	return ret;
}

6740
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6741
				     struct cgroup_taskset *tset)
6742
{
6743
	mem_cgroup_clear_mc();
6744 6745
}

6746 6747 6748
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6749
{
6750 6751 6752 6753
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6754 6755 6756 6757
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6758

6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6770
		if (mc.precharge < HPAGE_PMD_NR) {
6771 6772 6773 6774 6775 6776 6777 6778 6779
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6780
							pc, mc.from, mc.to)) {
6781 6782 6783 6784 6785 6786 6787 6788
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6789
		return 0;
6790 6791
	}

6792 6793
	if (pmd_trans_unstable(pmd))
		return 0;
6794 6795 6796 6797
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6798
		swp_entry_t ent;
6799 6800 6801 6802

		if (!mc.precharge)
			break;

6803
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6804 6805 6806 6807 6808
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6809
			if (!mem_cgroup_move_account(page, 1, pc,
6810
						     mc.from, mc.to)) {
6811
				mc.precharge--;
6812 6813
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6814 6815
			}
			putback_lru_page(page);
6816
put:			/* get_mctgt_type() gets the page */
6817 6818
			put_page(page);
			break;
6819 6820
		case MC_TARGET_SWAP:
			ent = target.ent;
6821
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6822
				mc.precharge--;
6823 6824 6825
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6826
			break;
6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6841
		ret = mem_cgroup_do_precharge(1);
6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6885
	up_read(&mm->mmap_sem);
6886 6887
}

6888
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6889
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6890
{
6891
	struct task_struct *p = cgroup_taskset_first(tset);
6892
	struct mm_struct *mm = get_task_mm(p);
6893 6894

	if (mm) {
6895 6896
		if (mc.to)
			mem_cgroup_move_charge(mm);
6897 6898
		mmput(mm);
	}
6899 6900
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6901
}
6902
#else	/* !CONFIG_MMU */
6903
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6904
				 struct cgroup_taskset *tset)
6905 6906 6907
{
	return 0;
}
6908
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6909
				     struct cgroup_taskset *tset)
6910 6911
{
}
6912
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6913
				 struct cgroup_taskset *tset)
6914 6915 6916
{
}
#endif
B
Balbir Singh 已提交
6917

6918 6919 6920 6921
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6922
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6923 6924 6925 6926 6927 6928
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6929 6930
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6931 6932
}

B
Balbir Singh 已提交
6933 6934 6935
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6936
	.css_alloc = mem_cgroup_css_alloc,
6937
	.css_online = mem_cgroup_css_online,
6938 6939
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6940 6941
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6942
	.attach = mem_cgroup_move_task,
6943
	.bind = mem_cgroup_bind,
6944
	.base_cftypes = mem_cgroup_files,
6945
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6946
	.use_id = 1,
B
Balbir Singh 已提交
6947
};
6948

A
Andrew Morton 已提交
6949
#ifdef CONFIG_MEMCG_SWAP
6950 6951 6952
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6953
	if (!strcmp(s, "1"))
6954
		really_do_swap_account = 1;
6955
	else if (!strcmp(s, "0"))
6956 6957 6958
		really_do_swap_account = 0;
	return 1;
}
6959
__setup("swapaccount=", enable_swap_account);
6960

6961 6962
static void __init memsw_file_init(void)
{
6963 6964 6965 6966 6967 6968 6969 6970 6971
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6972
}
6973

6974
#else
6975
static void __init enable_swap_cgroup(void)
6976 6977
{
}
6978
#endif
6979 6980

/*
6981 6982 6983 6984 6985 6986
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6987 6988 6989 6990
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6991
	enable_swap_cgroup();
6992
	mem_cgroup_soft_limit_tree_init();
6993
	memcg_stock_init();
6994 6995 6996
	return 0;
}
subsys_initcall(mem_cgroup_init);