memcontrol.c 194.2 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
70 71
EXPORT_SYMBOL(mem_cgroup_subsys);

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82 83 84 85
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
147 148 149 150
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
151
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
152 153
	unsigned long last_dead_count;

154 155 156 157
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

158 159 160 161
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
162
	struct lruvec		lruvec;
163
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
164

165 166
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

167 168 169 170
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
171
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172
						/* use container_of	   */
173 174 175 176 177 178
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

199 200 201 202 203
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
204
/* For threshold */
205
struct mem_cgroup_threshold_ary {
206
	/* An array index points to threshold just below or equal to usage. */
207
	int current_threshold;
208 209 210 211 212
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
213 214 215 216 217 218 219 220 221 222 223 224

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
225 226 227 228 229
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
230

231 232 233
/*
 * cgroup_event represents events which userspace want to receive.
 */
234
struct mem_cgroup_event {
235
	/*
236
	 * memcg which the event belongs to.
237
	 */
238
	struct mem_cgroup *memcg;
239 240 241 242 243 244 245 246
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
247 248 249 250 251
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
252
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
253
			      struct eventfd_ctx *eventfd, const char *args);
254 255 256 257 258
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
259
	void (*unregister_event)(struct mem_cgroup *memcg,
260
				 struct eventfd_ctx *eventfd);
261 262 263 264 265 266 267 268 269 270
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

271 272
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273

B
Balbir Singh 已提交
274 275 276 277 278 279 280
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 282 283
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
284 285 286 287 288 289 290
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
291

292 293 294
	/* vmpressure notifications */
	struct vmpressure vmpressure;

295 296 297 298
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
299

300 301 302 303
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
304 305 306 307
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
308
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309 310 311

	bool		oom_lock;
	atomic_t	under_oom;
312
	atomic_t	oom_wakeups;
313

314
	int	swappiness;
315 316
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
317

318 319 320
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

321 322 323 324
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
325
	struct mem_cgroup_thresholds thresholds;
326

327
	/* thresholds for mem+swap usage. RCU-protected */
328
	struct mem_cgroup_thresholds memsw_thresholds;
329

K
KAMEZAWA Hiroyuki 已提交
330 331
	/* For oom notifier event fd */
	struct list_head oom_notify;
332

333 334 335 336
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
337
	unsigned long move_charge_at_immigrate;
338 339 340 341
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
342 343
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
344
	/*
345
	 * percpu counter.
346
	 */
347
	struct mem_cgroup_stat_cpu __percpu *stat;
348 349 350 351 352 353
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
354

M
Michal Hocko 已提交
355
	atomic_t	dead_count;
M
Michal Hocko 已提交
356
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
358
#endif
359 360 361 362 363 364 365 366
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
367 368 369 370 371 372 373

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
374

375 376 377 378
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

379 380
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
381 382
};

383 384 385
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
386
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
387
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
388 389
};

390 391 392
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
393 394 395 396 397 398

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
399 400 401 402 403 404

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

405 406 407 408 409
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

410 411 412 413 414
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

415 416
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
417 418 419 420 421
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
422 423 424 425 426 427 428 429 430
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
431 432
#endif

433 434
/* Stuffs for move charges at task migration. */
/*
435 436
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
437 438
 */
enum move_type {
439
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
440
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
441 442 443
	NR_MOVE_TYPE,
};

444 445
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
446
	spinlock_t	  lock; /* for from, to */
447 448
	struct mem_cgroup *from;
	struct mem_cgroup *to;
449
	unsigned long immigrate_flags;
450
	unsigned long precharge;
451
	unsigned long moved_charge;
452
	unsigned long moved_swap;
453 454 455
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
456
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
457 458
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
459

D
Daisuke Nishimura 已提交
460 461
static bool move_anon(void)
{
462
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
463 464
}

465 466
static bool move_file(void)
{
467
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
468 469
}

470 471 472 473
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
474
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
475
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
476

477 478
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
479
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
480
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
481
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
482 483 484
	NR_CHARGE_TYPE,
};

485
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
486 487 488 489
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
490
	_KMEM,
G
Glauber Costa 已提交
491 492
};

493 494
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
495
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
496 497
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
498

499 500 501 502 503 504 505 506
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

507 508 509 510 511 512 513
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

514 515
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
516
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
517 518
}

519 520 521 522 523 524 525 526 527 528 529 530 531
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

532 533 534 535 536
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

537 538 539 540 541 542
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
	/*
	 * The ID of the root cgroup is 0, but memcg treat 0 as an
	 * invalid ID, so we return (cgroup_id + 1).
	 */
	return memcg->css.cgroup->id + 1;
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

	css = css_from_id(id - 1, &mem_cgroup_subsys);
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
560
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
561
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
562 563 564

void sock_update_memcg(struct sock *sk)
{
565
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
566
		struct mem_cgroup *memcg;
567
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
568 569 570

		BUG_ON(!sk->sk_prot->proto_cgroup);

571 572 573 574 575 576 577 578 579 580
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
581
			css_get(&sk->sk_cgrp->memcg->css);
582 583 584
			return;
		}

G
Glauber Costa 已提交
585 586
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
587
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
588 589
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
590
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
591 592 593 594 595 596 597 598
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
599
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
600 601 602
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
603
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
604 605
	}
}
G
Glauber Costa 已提交
606 607 608 609 610 611

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

612
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
613 614
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
615

616 617
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
618
	if (!memcg_proto_activated(&memcg->tcp_mem))
619 620 621 622 623 624 625 626 627
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

628
#ifdef CONFIG_MEMCG_KMEM
629 630
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
631 632 633 634 635
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
636 637 638 639 640 641
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
642 643
int memcg_limited_groups_array_size;

644 645 646 647 648 649
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
650
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
651 652
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
653
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
654 655 656
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
657
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
658

659 660 661 662 663 664
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
665
struct static_key memcg_kmem_enabled_key;
666
EXPORT_SYMBOL(memcg_kmem_enabled_key);
667 668 669

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
670
	if (memcg_kmem_is_active(memcg)) {
671
		static_key_slow_dec(&memcg_kmem_enabled_key);
672 673
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
674 675 676 677 678
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
679 680 681 682 683 684 685 686 687 688 689 690 691
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

692
static void drain_all_stock_async(struct mem_cgroup *memcg);
693

694
static struct mem_cgroup_per_zone *
695
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
696
{
697
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
698
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
699 700
}

701
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
702
{
703
	return &memcg->css;
704 705
}

706
static struct mem_cgroup_per_zone *
707
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
708
{
709 710
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
711

712
	return mem_cgroup_zoneinfo(memcg, nid, zid);
713 714
}

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
	mctz = soft_limit_tree_from_page(page);

	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node(node) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
892
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
893
				 enum mem_cgroup_stat_index idx)
894
{
895
	long val = 0;
896 897
	int cpu;

898 899
	get_online_cpus();
	for_each_online_cpu(cpu)
900
		val += per_cpu(memcg->stat->count[idx], cpu);
901
#ifdef CONFIG_HOTPLUG_CPU
902 903 904
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
905 906
#endif
	put_online_cpus();
907 908 909
	return val;
}

910
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
911 912 913
					 bool charge)
{
	int val = (charge) ? 1 : -1;
914
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
915 916
}

917
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
918 919 920 921 922
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

923
	get_online_cpus();
924
	for_each_online_cpu(cpu)
925
		val += per_cpu(memcg->stat->events[idx], cpu);
926
#ifdef CONFIG_HOTPLUG_CPU
927 928 929
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
930
#endif
931
	put_online_cpus();
932 933 934
	return val;
}

935
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
936
					 struct page *page,
937
					 bool anon, int nr_pages)
938
{
939 940
	preempt_disable();

941 942 943 944 945 946
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
947
				nr_pages);
948
	else
949
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
950
				nr_pages);
951

952 953 954 955
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

956 957
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
958
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
959
	else {
960
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
961 962
		nr_pages = -nr_pages; /* for event */
	}
963

964
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
965

966
	preempt_enable();
967 968
}

969
unsigned long
970
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
971 972 973 974 975 976 977 978
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
979
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
980
			unsigned int lru_mask)
981 982
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
983
	enum lru_list lru;
984 985
	unsigned long ret = 0;

986
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
987

H
Hugh Dickins 已提交
988 989 990
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
991 992 993 994 995
	}
	return ret;
}

static unsigned long
996
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
997 998
			int nid, unsigned int lru_mask)
{
999 1000 1001
	u64 total = 0;
	int zid;

1002
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
1003 1004
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
1005

1006 1007
	return total;
}
1008

1009
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
1010
			unsigned int lru_mask)
1011
{
1012
	int nid;
1013 1014
	u64 total = 0;

1015
	for_each_node_state(nid, N_MEMORY)
1016
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1017
	return total;
1018 1019
}

1020 1021
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
1022 1023 1024
{
	unsigned long val, next;

1025
	val = __this_cpu_read(memcg->stat->nr_page_events);
1026
	next = __this_cpu_read(memcg->stat->targets[target]);
1027
	/* from time_after() in jiffies.h */
1028 1029 1030 1031 1032
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
1033 1034 1035
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
1036 1037 1038 1039 1040 1041 1042 1043
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1044
	}
1045
	return false;
1046 1047 1048 1049 1050 1051
}

/*
 * Check events in order.
 *
 */
1052
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1053
{
1054
	preempt_disable();
1055
	/* threshold event is triggered in finer grain than soft limit */
1056 1057
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1058
		bool do_softlimit;
1059
		bool do_numainfo __maybe_unused;
1060

1061 1062
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1063 1064 1065 1066 1067 1068
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1069
		mem_cgroup_threshold(memcg);
1070 1071
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1072
#if MAX_NUMNODES > 1
1073
		if (unlikely(do_numainfo))
1074
			atomic_inc(&memcg->numainfo_events);
1075
#endif
1076 1077
	} else
		preempt_enable();
1078 1079
}

1080
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1081
{
1082 1083 1084 1085 1086 1087 1088 1089
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1090
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1091 1092
}

1093
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1094
{
1095
	struct mem_cgroup *memcg = NULL;
1096 1097 1098

	if (!mm)
		return NULL;
1099 1100 1101 1102 1103 1104 1105
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1106 1107
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1108
			break;
1109
	} while (!css_tryget(&memcg->css));
1110
	rcu_read_unlock();
1111
	return memcg;
1112 1113
}

1114 1115 1116 1117 1118 1119 1120
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1121
		struct mem_cgroup *last_visited)
1122
{
1123
	struct cgroup_subsys_state *prev_css, *next_css;
1124

1125
	prev_css = last_visited ? &last_visited->css : NULL;
1126
skip_node:
1127
	next_css = css_next_descendant_pre(prev_css, &root->css);
1128 1129 1130 1131 1132 1133 1134 1135

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
1136 1137 1138
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

1139 1140 1141
		if (css_tryget(&mem->css))
			return mem;
		else {
1142
			prev_css = next_css;
1143 1144 1145 1146 1147 1148 1149
			goto skip_node;
		}
	}

	return NULL;
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1219
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1220
				   struct mem_cgroup *prev,
1221
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1222
{
1223
	struct mem_cgroup *memcg = NULL;
1224
	struct mem_cgroup *last_visited = NULL;
1225

1226 1227
	if (mem_cgroup_disabled())
		return NULL;
1228

1229 1230
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1231

1232
	if (prev && !reclaim)
1233
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1234

1235 1236
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1237
			goto out_css_put;
1238
		return root;
1239
	}
K
KAMEZAWA Hiroyuki 已提交
1240

1241
	rcu_read_lock();
1242
	while (!memcg) {
1243
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1244
		int uninitialized_var(seq);
1245

1246 1247 1248 1249 1250 1251 1252
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1253
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1254
				iter->last_visited = NULL;
1255 1256
				goto out_unlock;
			}
M
Michal Hocko 已提交
1257

1258
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1259
		}
K
KAMEZAWA Hiroyuki 已提交
1260

1261
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1262

1263
		if (reclaim) {
1264
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1265

M
Michal Hocko 已提交
1266
			if (!memcg)
1267 1268 1269 1270
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1271

1272
		if (prev && !memcg)
1273
			goto out_unlock;
1274
	}
1275 1276
out_unlock:
	rcu_read_unlock();
1277 1278 1279 1280
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1281
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1282
}
K
KAMEZAWA Hiroyuki 已提交
1283

1284 1285 1286 1287 1288 1289 1290
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1291 1292 1293 1294 1295 1296
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1297

1298 1299 1300 1301 1302 1303
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1304
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1305
	     iter != NULL;				\
1306
	     iter = mem_cgroup_iter(root, iter, NULL))
1307

1308
#define for_each_mem_cgroup(iter)			\
1309
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1310
	     iter != NULL;				\
1311
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1312

1313
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1314
{
1315
	struct mem_cgroup *memcg;
1316 1317

	rcu_read_lock();
1318 1319
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1320 1321 1322 1323
		goto out;

	switch (idx) {
	case PGFAULT:
1324 1325 1326 1327
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1328 1329 1330 1331 1332 1333 1334
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1335
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1336

1337 1338 1339
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1340
 * @memcg: memcg of the wanted lruvec
1341 1342 1343 1344 1345 1346 1347 1348 1349
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1350
	struct lruvec *lruvec;
1351

1352 1353 1354 1355
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1356 1357

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1368 1369
}

K
KAMEZAWA Hiroyuki 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1383

1384
/**
1385
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1386
 * @page: the page
1387
 * @zone: zone of the page
1388
 */
1389
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1390 1391
{
	struct mem_cgroup_per_zone *mz;
1392 1393
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1394
	struct lruvec *lruvec;
1395

1396 1397 1398 1399
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1400

K
KAMEZAWA Hiroyuki 已提交
1401
	pc = lookup_page_cgroup(page);
1402
	memcg = pc->mem_cgroup;
1403 1404

	/*
1405
	 * Surreptitiously switch any uncharged offlist page to root:
1406 1407 1408 1409 1410 1411 1412
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1413
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1414 1415
		pc->mem_cgroup = memcg = root_mem_cgroup;

1416
	mz = page_cgroup_zoneinfo(memcg, page);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1427
}
1428

1429
/**
1430 1431 1432 1433
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1434
 *
1435 1436
 * This function must be called when a page is added to or removed from an
 * lru list.
1437
 */
1438 1439
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1440 1441
{
	struct mem_cgroup_per_zone *mz;
1442
	unsigned long *lru_size;
1443 1444 1445 1446

	if (mem_cgroup_disabled())
		return;

1447 1448 1449 1450
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1451
}
1452

1453
/*
1454
 * Checks whether given mem is same or in the root_mem_cgroup's
1455 1456
 * hierarchy subtree
 */
1457 1458
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1459
{
1460 1461
	if (root_memcg == memcg)
		return true;
1462
	if (!root_memcg->use_hierarchy || !memcg)
1463
		return false;
1464
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1465 1466 1467 1468 1469 1470 1471
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1472
	rcu_read_lock();
1473
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1474 1475
	rcu_read_unlock();
	return ret;
1476 1477
}

1478 1479
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1480
{
1481
	struct mem_cgroup *curr = NULL;
1482
	struct task_struct *p;
1483
	bool ret;
1484

1485
	p = find_lock_task_mm(task);
1486 1487 1488 1489 1490 1491 1492 1493 1494
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1495
		rcu_read_lock();
1496 1497 1498
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1499
		rcu_read_unlock();
1500
	}
1501
	if (!curr)
1502
		return false;
1503
	/*
1504
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1505
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1506 1507
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1508
	 */
1509
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1510
	css_put(&curr->css);
1511 1512 1513
	return ret;
}

1514
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1515
{
1516
	unsigned long inactive_ratio;
1517
	unsigned long inactive;
1518
	unsigned long active;
1519
	unsigned long gb;
1520

1521 1522
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1523

1524 1525 1526 1527 1528 1529
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1530
	return inactive * inactive_ratio < active;
1531 1532
}

1533 1534 1535
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1536
/**
1537
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1538
 * @memcg: the memory cgroup
1539
 *
1540
 * Returns the maximum amount of memory @mem can be charged with, in
1541
 * pages.
1542
 */
1543
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1544
{
1545 1546
	unsigned long long margin;

1547
	margin = res_counter_margin(&memcg->res);
1548
	if (do_swap_account)
1549
		margin = min(margin, res_counter_margin(&memcg->memsw));
1550
	return margin >> PAGE_SHIFT;
1551 1552
}

1553
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1554 1555
{
	/* root ? */
T
Tejun Heo 已提交
1556
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1557 1558
		return vm_swappiness;

1559
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1560 1561
}

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1576 1577 1578 1579

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1580
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1581
{
1582
	atomic_inc(&memcg_moving);
1583
	atomic_inc(&memcg->moving_account);
1584 1585 1586
	synchronize_rcu();
}

1587
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1588
{
1589 1590 1591 1592
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1593 1594
	if (memcg) {
		atomic_dec(&memcg_moving);
1595
		atomic_dec(&memcg->moving_account);
1596
	}
1597
}
1598

1599 1600 1601
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1602 1603
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1604 1605 1606 1607 1608 1609 1610
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1611
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1612 1613
{
	VM_BUG_ON(!rcu_read_lock_held());
1614
	return atomic_read(&memcg->moving_account) > 0;
1615
}
1616

1617
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1618
{
1619 1620
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1621
	bool ret = false;
1622 1623 1624 1625 1626 1627 1628 1629 1630
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1631

1632 1633
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1634 1635
unlock:
	spin_unlock(&mc.lock);
1636 1637 1638
	return ret;
}

1639
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1640 1641
{
	if (mc.moving_task && current != mc.moving_task) {
1642
		if (mem_cgroup_under_move(memcg)) {
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1655 1656 1657 1658
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1659
 * see mem_cgroup_stolen(), too.
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1673
#define K(x) ((x) << (PAGE_SHIFT-10))
1674
/**
1675
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1676 1677 1678 1679 1680 1681 1682 1683 1684
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	/*
1685 1686
	 * protects memcg_name and makes sure that parallel ooms do not
	 * interleave
1687
	 */
1688 1689 1690
	static DEFINE_SPINLOCK(oom_info_lock);
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
1691 1692
	static char memcg_name[PATH_MAX];
	int ret;
1693 1694
	struct mem_cgroup *iter;
	unsigned int i;
1695

1696
	if (!p)
1697 1698
		return;

1699
	spin_lock(&oom_info_lock);
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1716
	pr_info("Task in %s killed", memcg_name);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1729
	pr_cont(" as a result of limit of %s\n", memcg_name);
1730 1731
done:

1732
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1733 1734 1735
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1736
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1737 1738 1739
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1740
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1741 1742 1743
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1768
	spin_unlock(&oom_info_lock);
1769 1770
}

1771 1772 1773 1774
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1775
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1776 1777
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1778 1779
	struct mem_cgroup *iter;

1780
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1781
		num++;
1782 1783 1784
	return num;
}

D
David Rientjes 已提交
1785 1786 1787
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1788
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1789 1790 1791
{
	u64 limit;

1792 1793
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1794
	/*
1795
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1796
	 */
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1811 1812
}

1813 1814
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1815 1816 1817 1818 1819 1820 1821
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1822
	/*
1823 1824 1825
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1826
	 */
1827
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1828 1829 1830 1831 1832
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1833 1834
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1835
		struct css_task_iter it;
1836 1837
		struct task_struct *task;

1838 1839
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1852
				css_task_iter_end(&it);
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1869
		css_task_iter_end(&it);
1870 1871 1872 1873 1874 1875 1876 1877 1878
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1915 1916
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1917
 * @memcg: the target memcg
1918 1919 1920 1921 1922 1923 1924
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1925
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1926 1927
		int nid, bool noswap)
{
1928
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1929 1930 1931
		return true;
	if (noswap || !total_swap_pages)
		return false;
1932
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1933 1934 1935 1936
		return true;
	return false;

}
1937
#if MAX_NUMNODES > 1
1938 1939 1940 1941 1942 1943 1944

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1945
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1946 1947
{
	int nid;
1948 1949 1950 1951
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1952
	if (!atomic_read(&memcg->numainfo_events))
1953
		return;
1954
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1955 1956 1957
		return;

	/* make a nodemask where this memcg uses memory from */
1958
	memcg->scan_nodes = node_states[N_MEMORY];
1959

1960
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1961

1962 1963
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1964
	}
1965

1966 1967
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1982
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1983 1984 1985
{
	int node;

1986 1987
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1988

1989
	node = next_node(node, memcg->scan_nodes);
1990
	if (node == MAX_NUMNODES)
1991
		node = first_node(memcg->scan_nodes);
1992 1993 1994 1995 1996 1997 1998 1999 2000
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

2001
	memcg->last_scanned_node = node;
2002 2003 2004
	return node;
}

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

2040
#else
2041
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2042 2043 2044
{
	return 0;
}
2045

2046 2047 2048 2049
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
2050 2051
#endif

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2100
	}
2101 2102
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2103 2104
}

2105 2106 2107 2108 2109 2110
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2111 2112
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2113 2114 2115 2116
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2117
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2118
{
2119
	struct mem_cgroup *iter, *failed = NULL;
2120

2121 2122
	spin_lock(&memcg_oom_lock);

2123
	for_each_mem_cgroup_tree(iter, memcg) {
2124
		if (iter->oom_lock) {
2125 2126 2127 2128 2129
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2130 2131
			mem_cgroup_iter_break(memcg, iter);
			break;
2132 2133
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2134
	}
K
KAMEZAWA Hiroyuki 已提交
2135

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2147
		}
2148 2149
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2150 2151 2152 2153

	spin_unlock(&memcg_oom_lock);

	return !failed;
2154
}
2155

2156
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2157
{
K
KAMEZAWA Hiroyuki 已提交
2158 2159
	struct mem_cgroup *iter;

2160
	spin_lock(&memcg_oom_lock);
2161
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2162
	for_each_mem_cgroup_tree(iter, memcg)
2163
		iter->oom_lock = false;
2164
	spin_unlock(&memcg_oom_lock);
2165 2166
}

2167
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2168 2169 2170
{
	struct mem_cgroup *iter;

2171
	for_each_mem_cgroup_tree(iter, memcg)
2172 2173 2174
		atomic_inc(&iter->under_oom);
}

2175
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2176 2177 2178
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2179 2180 2181 2182 2183
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2184
	for_each_mem_cgroup_tree(iter, memcg)
2185
		atomic_add_unless(&iter->under_oom, -1, 0);
2186 2187
}

K
KAMEZAWA Hiroyuki 已提交
2188 2189
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2190
struct oom_wait_info {
2191
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2192 2193 2194 2195 2196 2197
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2198 2199
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2200 2201 2202
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2203
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2204 2205

	/*
2206
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2207 2208
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2209 2210
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2211 2212 2213 2214
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2215
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2216
{
2217
	atomic_inc(&memcg->oom_wakeups);
2218 2219
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2220 2221
}

2222
static void memcg_oom_recover(struct mem_cgroup *memcg)
2223
{
2224 2225
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2226 2227
}

2228
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2229
{
2230 2231
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2232
	/*
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2245
	 */
2246 2247 2248 2249
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2250 2251 2252 2253
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2254
 * @handle: actually kill/wait or just clean up the OOM state
2255
 *
2256 2257
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2258
 *
2259
 * Memcg supports userspace OOM handling where failed allocations must
2260 2261 2262 2263
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2264
 * the end of the page fault to complete the OOM handling.
2265 2266
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2267
 * completed, %false otherwise.
2268
 */
2269
bool mem_cgroup_oom_synchronize(bool handle)
2270
{
2271
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2272
	struct oom_wait_info owait;
2273
	bool locked;
2274 2275 2276

	/* OOM is global, do not handle */
	if (!memcg)
2277
		return false;
2278

2279 2280
	if (!handle)
		goto cleanup;
2281 2282 2283 2284 2285 2286

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2287

2288
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2302
		schedule();
2303 2304 2305 2306 2307
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2308 2309 2310 2311 2312 2313 2314 2315
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2316 2317
cleanup:
	current->memcg_oom.memcg = NULL;
2318
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2319
	return true;
2320 2321
}

2322 2323 2324
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2342 2343
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2344
 */
2345

2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2359
	 * need to take move_lock_mem_cgroup(). Because we already hold
2360
	 * rcu_read_lock(), any calls to move_account will be delayed until
2361
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2362
	 */
2363
	if (!mem_cgroup_stolen(memcg))
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2381
	 * should take move_lock_mem_cgroup().
2382 2383 2384 2385
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2386
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2387
				 enum mem_cgroup_stat_index idx, int val)
2388
{
2389
	struct mem_cgroup *memcg;
2390
	struct page_cgroup *pc = lookup_page_cgroup(page);
2391
	unsigned long uninitialized_var(flags);
2392

2393
	if (mem_cgroup_disabled())
2394
		return;
2395

2396
	VM_BUG_ON(!rcu_read_lock_held());
2397 2398
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2399
		return;
2400

2401
	this_cpu_add(memcg->stat->count[idx], val);
2402
}
2403

2404 2405 2406 2407
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2408
#define CHARGE_BATCH	32U
2409 2410
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2411
	unsigned int nr_pages;
2412
	struct work_struct work;
2413
	unsigned long flags;
2414
#define FLUSHING_CACHED_CHARGE	0
2415 2416
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2417
static DEFINE_MUTEX(percpu_charge_mutex);
2418

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2429
 */
2430
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2431 2432 2433 2434
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2435 2436 2437
	if (nr_pages > CHARGE_BATCH)
		return false;

2438
	stock = &get_cpu_var(memcg_stock);
2439 2440
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2454 2455 2456 2457
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2458
		if (do_swap_account)
2459 2460
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2473
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2474 2475
}

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2487 2488
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2489
 * This will be consumed by consume_stock() function, later.
2490
 */
2491
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2492 2493 2494
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2495
	if (stock->cached != memcg) { /* reset if necessary */
2496
		drain_stock(stock);
2497
		stock->cached = memcg;
2498
	}
2499
	stock->nr_pages += nr_pages;
2500 2501 2502 2503
	put_cpu_var(memcg_stock);
}

/*
2504
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2505 2506
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2507
 */
2508
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2509
{
2510
	int cpu, curcpu;
2511

2512 2513
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2514
	curcpu = get_cpu();
2515 2516
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2517
		struct mem_cgroup *memcg;
2518

2519 2520
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2521
			continue;
2522
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2523
			continue;
2524 2525 2526 2527 2528 2529
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2530
	}
2531
	put_cpu();
2532 2533 2534 2535 2536 2537

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2538
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2539 2540 2541
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2542
	put_online_cpus();
2543 2544 2545 2546 2547 2548 2549 2550
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2551
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2552
{
2553 2554 2555 2556 2557
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2558
	drain_all_stock(root_memcg, false);
2559
	mutex_unlock(&percpu_charge_mutex);
2560 2561 2562
}

/* This is a synchronous drain interface. */
2563
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2564 2565
{
	/* called when force_empty is called */
2566
	mutex_lock(&percpu_charge_mutex);
2567
	drain_all_stock(root_memcg, true);
2568
	mutex_unlock(&percpu_charge_mutex);
2569 2570
}

2571 2572 2573 2574
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2575
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2576 2577 2578
{
	int i;

2579
	spin_lock(&memcg->pcp_counter_lock);
2580
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2581
		long x = per_cpu(memcg->stat->count[i], cpu);
2582

2583 2584
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2585
	}
2586
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2587
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2588

2589 2590
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2591
	}
2592
	spin_unlock(&memcg->pcp_counter_lock);
2593 2594
}

2595
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2596 2597 2598 2599 2600
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2601
	struct mem_cgroup *iter;
2602

2603
	if (action == CPU_ONLINE)
2604 2605
		return NOTIFY_OK;

2606
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2607
		return NOTIFY_OK;
2608

2609
	for_each_mem_cgroup(iter)
2610 2611
		mem_cgroup_drain_pcp_counter(iter, cpu);

2612 2613 2614 2615 2616
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2617 2618 2619 2620 2621 2622 2623 2624 2625

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2626
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2627
				unsigned int nr_pages, unsigned int min_pages,
2628
				bool invoke_oom)
2629
{
2630
	unsigned long csize = nr_pages * PAGE_SIZE;
2631 2632 2633 2634 2635
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2636
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2637 2638 2639 2640

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2641
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2642 2643 2644
		if (likely(!ret))
			return CHARGE_OK;

2645
		res_counter_uncharge(&memcg->res, csize);
2646 2647 2648 2649
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2650 2651 2652 2653
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2654
	if (nr_pages > min_pages)
2655 2656 2657 2658 2659
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2660 2661 2662
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2663
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2664
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2665
		return CHARGE_RETRY;
2666
	/*
2667 2668 2669 2670 2671 2672 2673
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2674
	 */
2675
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2676 2677 2678 2679 2680 2681 2682 2683 2684
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2685 2686
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2687

2688
	return CHARGE_NOMEM;
2689 2690
}

2691
/*
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2711
 */
2712
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2713
				   gfp_t gfp_mask,
2714
				   unsigned int nr_pages,
2715
				   struct mem_cgroup **ptr,
2716
				   bool oom)
2717
{
2718
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2719
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2720
	struct mem_cgroup *memcg = NULL;
2721
	int ret;
2722

K
KAMEZAWA Hiroyuki 已提交
2723 2724 2725 2726 2727 2728 2729 2730
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2731

2732
	if (unlikely(task_in_memcg_oom(current)))
2733
		goto nomem;
2734

2735 2736 2737
	if (gfp_mask & __GFP_NOFAIL)
		oom = false;

2738
	/*
2739 2740
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2741
	 * thread group leader migrates. It's possible that mm is not
2742
	 * set, if so charge the root memcg (happens for pagecache usage).
2743
	 */
2744
	if (!*ptr && !mm)
2745
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2746
again:
2747 2748 2749
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2750
			goto done;
2751
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2752
			goto done;
2753
		css_get(&memcg->css);
2754
	} else {
K
KAMEZAWA Hiroyuki 已提交
2755
		struct task_struct *p;
2756

K
KAMEZAWA Hiroyuki 已提交
2757 2758 2759
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2760
		 * Because we don't have task_lock(), "p" can exit.
2761
		 * In that case, "memcg" can point to root or p can be NULL with
2762 2763 2764 2765 2766 2767
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2768
		 */
2769
		memcg = mem_cgroup_from_task(p);
2770 2771 2772
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2773 2774 2775
			rcu_read_unlock();
			goto done;
		}
2776
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2789
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2790 2791 2792 2793 2794
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2795

2796
	do {
2797
		bool invoke_oom = oom && !nr_oom_retries;
2798

2799
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2800
		if (fatal_signal_pending(current)) {
2801
			css_put(&memcg->css);
2802
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2803
		}
2804

2805 2806
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2807 2808 2809 2810
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2811
			batch = nr_pages;
2812 2813
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2814
			goto again;
2815
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2816
			css_put(&memcg->css);
2817 2818
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2819
			if (!oom || invoke_oom) {
2820
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2821
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2822
			}
2823 2824
			nr_oom_retries--;
			break;
2825
		}
2826 2827
	} while (ret != CHARGE_OK);

2828
	if (batch > nr_pages)
2829 2830
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2831
done:
2832
	*ptr = memcg;
2833 2834
	return 0;
nomem:
2835 2836 2837 2838
	if (!(gfp_mask & __GFP_NOFAIL)) {
		*ptr = NULL;
		return -ENOMEM;
	}
K
KAMEZAWA Hiroyuki 已提交
2839
bypass:
2840 2841
	*ptr = root_mem_cgroup;
	return -EINTR;
2842
}
2843

2844 2845 2846 2847 2848
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2849
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2850
				       unsigned int nr_pages)
2851
{
2852
	if (!mem_cgroup_is_root(memcg)) {
2853 2854
		unsigned long bytes = nr_pages * PAGE_SIZE;

2855
		res_counter_uncharge(&memcg->res, bytes);
2856
		if (do_swap_account)
2857
			res_counter_uncharge(&memcg->memsw, bytes);
2858
	}
2859 2860
}

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2879 2880
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2881 2882 2883
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2884 2885 2886 2887 2888 2889
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2890
	return mem_cgroup_from_id(id);
2891 2892
}

2893
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2894
{
2895
	struct mem_cgroup *memcg = NULL;
2896
	struct page_cgroup *pc;
2897
	unsigned short id;
2898 2899
	swp_entry_t ent;

2900 2901 2902
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2903
	lock_page_cgroup(pc);
2904
	if (PageCgroupUsed(pc)) {
2905 2906 2907
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2908
	} else if (PageSwapCache(page)) {
2909
		ent.val = page_private(page);
2910
		id = lookup_swap_cgroup_id(ent);
2911
		rcu_read_lock();
2912 2913 2914
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2915
		rcu_read_unlock();
2916
	}
2917
	unlock_page_cgroup(pc);
2918
	return memcg;
2919 2920
}

2921
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2922
				       struct page *page,
2923
				       unsigned int nr_pages,
2924 2925
				       enum charge_type ctype,
				       bool lrucare)
2926
{
2927
	struct page_cgroup *pc = lookup_page_cgroup(page);
2928
	struct zone *uninitialized_var(zone);
2929
	struct lruvec *lruvec;
2930
	bool was_on_lru = false;
2931
	bool anon;
2932

2933
	lock_page_cgroup(pc);
2934
	VM_BUG_ON(PageCgroupUsed(pc));
2935 2936 2937 2938
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2939 2940 2941 2942 2943 2944 2945 2946 2947

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2948
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2949
			ClearPageLRU(page);
2950
			del_page_from_lru_list(page, lruvec, page_lru(page));
2951 2952 2953 2954
			was_on_lru = true;
		}
	}

2955
	pc->mem_cgroup = memcg;
2956 2957 2958 2959 2960 2961
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2962
	 */
K
KAMEZAWA Hiroyuki 已提交
2963
	smp_wmb();
2964
	SetPageCgroupUsed(pc);
2965

2966 2967
	if (lrucare) {
		if (was_on_lru) {
2968
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2969 2970
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2971
			add_page_to_lru_list(page, lruvec, page_lru(page));
2972 2973 2974 2975
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2976
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2977 2978 2979 2980
		anon = true;
	else
		anon = false;

2981
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2982
	unlock_page_cgroup(pc);
2983

2984
	/*
2985 2986 2987
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2988
	 */
2989
	memcg_check_events(memcg, page);
2990
}
2991

2992 2993
static DEFINE_MUTEX(set_limit_mutex);

2994 2995 2996 2997
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2998 2999
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK) ==
							KMEM_ACCOUNTED_MASK;
3000 3001
}

G
Glauber Costa 已提交
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
3012
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
3013 3014
}

3015
#ifdef CONFIG_SLABINFO
3016
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
3017
{
3018
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3047
				      &_memcg, oom_gfp_allowed(gfp));
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3081 3082 3083 3084 3085

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3086 3087 3088 3089 3090 3091 3092 3093
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3094
	if (memcg_kmem_test_and_clear_dead(memcg))
3095
		css_put(&memcg->css);
3096 3097
}

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3118 3119 3120 3121 3122 3123 3124
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
3125
static int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3181 3182
static void kmem_cache_destroy_work_func(struct work_struct *w);

3183 3184 3185 3186
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

3187
	VM_BUG_ON(!is_root_cache(s));
3188 3189 3190 3191 3192 3193

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3194
		size += offsetof(struct memcg_cache_params, memcg_caches);
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3234 3235
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3236
{
3237
	size_t size;
3238 3239 3240 3241

	if (!memcg_kmem_enabled())
		return 0;

3242 3243
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3244
		size += memcg_limited_groups_array_size * sizeof(void *);
3245 3246
	} else
		size = sizeof(struct memcg_cache_params);
3247

3248 3249 3250 3251
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3252
	if (memcg) {
3253
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3254
		s->memcg_params->root_cache = root_cache;
3255 3256
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3257 3258 3259
	} else
		s->memcg_params->is_root_cache = true;

3260 3261 3262 3263 3264
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3289
	css_put(&memcg->css);
3290
out:
3291 3292 3293
	kfree(s->memcg_params);
}

3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3325 3326 3327 3328 3329 3330 3331 3332 3333
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3355 3356 3357 3358 3359 3360 3361 3362
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3383 3384 3385 3386 3387 3388 3389
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3390 3391 3392 3393 3394 3395 3396 3397 3398
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3399

3400 3401 3402
/*
 * Called with memcg_cache_mutex held
 */
3403 3404 3405 3406
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3407
	static char *tmp_name = NULL;
3408

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3427

3428
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3429
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3430

3431 3432 3433
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
3448
	new_cachep = cache_from_memcg_idx(cachep, idx);
3449 3450
	if (new_cachep) {
		css_put(&memcg->css);
3451
		goto out;
3452
	}
3453 3454 3455 3456

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3457
		css_put(&memcg->css);
3458 3459 3460
		goto out;
	}

G
Glauber Costa 已提交
3461
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
3494 3495
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3513
		cancel_work_sync(&c->memcg_params->destroy);
3514 3515 3516 3517 3518
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3519 3520 3521 3522 3523 3524
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3554 3555
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3556 3557 3558 3559
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3560 3561
	if (cw == NULL) {
		css_put(&memcg->css);
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3612 3613 3614
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3615 3616 3617 3618
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3619
		goto out;
3620 3621 3622 3623 3624 3625 3626 3627

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3628 3629
	if (likely(cache_from_memcg_idx(cachep, idx))) {
		cachep = cache_from_memcg_idx(cachep, idx);
3630
		goto out;
3631 3632
	}

3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3660 3661 3662
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3699 3700 3701
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3786 3787 3788 3789
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3790 3791
#endif /* CONFIG_MEMCG_KMEM */

3792 3793
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3794
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3795 3796
/*
 * Because tail pages are not marked as "used", set it. We're under
3797 3798 3799
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3800
 */
3801
void mem_cgroup_split_huge_fixup(struct page *head)
3802 3803
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3804
	struct page_cgroup *pc;
3805
	struct mem_cgroup *memcg;
3806
	int i;
3807

3808 3809
	if (mem_cgroup_disabled())
		return;
3810 3811

	memcg = head_pc->mem_cgroup;
3812 3813
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3814
		pc->mem_cgroup = memcg;
3815 3816 3817
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3818 3819
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3820
}
3821
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3822

3823 3824 3825 3826 3827 3828 3829 3830
static inline
void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
					struct mem_cgroup *to,
					unsigned int nr_pages,
					enum mem_cgroup_stat_index idx)
{
	/* Update stat data for mem_cgroup */
	preempt_disable();
3831
	__this_cpu_sub(from->stat->count[idx], nr_pages);
3832 3833 3834 3835
	__this_cpu_add(to->stat->count[idx], nr_pages);
	preempt_enable();
}

3836
/**
3837
 * mem_cgroup_move_account - move account of the page
3838
 * @page: the page
3839
 * @nr_pages: number of regular pages (>1 for huge pages)
3840 3841 3842 3843 3844
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3845
 * - page is not on LRU (isolate_page() is useful.)
3846
 * - compound_lock is held when nr_pages > 1
3847
 *
3848 3849
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3850
 */
3851 3852 3853 3854
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3855
				   struct mem_cgroup *to)
3856
{
3857 3858
	unsigned long flags;
	int ret;
3859
	bool anon = PageAnon(page);
3860

3861
	VM_BUG_ON(from == to);
3862
	VM_BUG_ON(PageLRU(page));
3863 3864 3865 3866 3867 3868 3869
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3870
	if (nr_pages > 1 && !PageTransHuge(page))
3871 3872 3873 3874 3875 3876 3877 3878
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3879
	move_lock_mem_cgroup(from, &flags);
3880

3881 3882 3883 3884 3885 3886 3887 3888
	if (!anon && page_mapped(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_FILE_MAPPED);

	if (PageWriteback(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_WRITEBACK);

3889
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3890

3891
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3892
	pc->mem_cgroup = to;
3893
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3894
	move_unlock_mem_cgroup(from, &flags);
3895 3896
	ret = 0;
unlock:
3897
	unlock_page_cgroup(pc);
3898 3899 3900
	/*
	 * check events
	 */
3901 3902
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3903
out:
3904 3905 3906
	return ret;
}

3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3927
 */
3928 3929
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3930
				  struct mem_cgroup *child)
3931 3932
{
	struct mem_cgroup *parent;
3933
	unsigned int nr_pages;
3934
	unsigned long uninitialized_var(flags);
3935 3936
	int ret;

3937
	VM_BUG_ON(mem_cgroup_is_root(child));
3938

3939 3940 3941 3942 3943
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3944

3945
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3946

3947 3948 3949 3950 3951 3952
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3953

3954 3955
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3956
		flags = compound_lock_irqsave(page);
3957
	}
3958

3959
	ret = mem_cgroup_move_account(page, nr_pages,
3960
				pc, child, parent);
3961 3962
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3963

3964
	if (nr_pages > 1)
3965
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3966
	putback_lru_page(page);
3967
put:
3968
	put_page(page);
3969
out:
3970 3971 3972
	return ret;
}

3973 3974 3975 3976 3977 3978 3979
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3980
				gfp_t gfp_mask, enum charge_type ctype)
3981
{
3982
	struct mem_cgroup *memcg = NULL;
3983
	unsigned int nr_pages = 1;
3984
	bool oom = true;
3985
	int ret;
A
Andrea Arcangeli 已提交
3986

A
Andrea Arcangeli 已提交
3987
	if (PageTransHuge(page)) {
3988
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3989
		VM_BUG_ON(!PageTransHuge(page));
3990 3991 3992 3993 3994
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3995
	}
3996

3997
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3998
	if (ret == -ENOMEM)
3999
		return ret;
4000
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
4001 4002 4003
	return 0;
}

4004 4005
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
4006
{
4007
	if (mem_cgroup_disabled())
4008
		return 0;
4009 4010 4011
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
4012
	return mem_cgroup_charge_common(page, mm, gfp_mask,
4013
					MEM_CGROUP_CHARGE_TYPE_ANON);
4014 4015
}

4016 4017 4018
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
4019
 * struct page_cgroup is acquired. This refcnt will be consumed by
4020 4021
 * "commit()" or removed by "cancel()"
 */
4022 4023 4024 4025
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
4026
{
4027
	struct mem_cgroup *memcg;
4028
	struct page_cgroup *pc;
4029
	int ret;
4030

4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
4041 4042
	if (!do_swap_account)
		goto charge_cur_mm;
4043 4044
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
4045
		goto charge_cur_mm;
4046 4047
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4048
	css_put(&memcg->css);
4049 4050
	if (ret == -EINTR)
		ret = 0;
4051
	return ret;
4052
charge_cur_mm:
4053 4054 4055 4056
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
4057 4058
}

4059 4060 4061 4062 4063 4064
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
4079 4080 4081
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4082 4083 4084 4085 4086 4087 4088 4089 4090
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4091
static void
4092
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4093
					enum charge_type ctype)
4094
{
4095
	if (mem_cgroup_disabled())
4096
		return;
4097
	if (!memcg)
4098
		return;
4099

4100
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4101 4102 4103
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4104 4105 4106
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4107
	 */
4108
	if (do_swap_account && PageSwapCache(page)) {
4109
		swp_entry_t ent = {.val = page_private(page)};
4110
		mem_cgroup_uncharge_swap(ent);
4111
	}
4112 4113
}

4114 4115
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4116
{
4117
	__mem_cgroup_commit_charge_swapin(page, memcg,
4118
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4119 4120
}

4121 4122
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4123
{
4124 4125 4126 4127
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4128
	if (mem_cgroup_disabled())
4129 4130 4131 4132 4133 4134 4135
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4136 4137
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4138 4139 4140 4141
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4142 4143
}

4144
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4145 4146
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4147 4148 4149
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4150

4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4162
		batch->memcg = memcg;
4163 4164
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4165
	 * In those cases, all pages freed continuously can be expected to be in
4166 4167 4168 4169 4170 4171 4172 4173
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4174
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4175 4176
		goto direct_uncharge;

4177 4178 4179 4180 4181
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4182
	if (batch->memcg != memcg)
4183 4184
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4185
	batch->nr_pages++;
4186
	if (uncharge_memsw)
4187
		batch->memsw_nr_pages++;
4188 4189
	return;
direct_uncharge:
4190
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4191
	if (uncharge_memsw)
4192 4193 4194
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4195
}
4196

4197
/*
4198
 * uncharge if !page_mapped(page)
4199
 */
4200
static struct mem_cgroup *
4201 4202
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4203
{
4204
	struct mem_cgroup *memcg = NULL;
4205 4206
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4207
	bool anon;
4208

4209
	if (mem_cgroup_disabled())
4210
		return NULL;
4211

A
Andrea Arcangeli 已提交
4212
	if (PageTransHuge(page)) {
4213
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4214 4215
		VM_BUG_ON(!PageTransHuge(page));
	}
4216
	/*
4217
	 * Check if our page_cgroup is valid
4218
	 */
4219
	pc = lookup_page_cgroup(page);
4220
	if (unlikely(!PageCgroupUsed(pc)))
4221
		return NULL;
4222

4223
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4224

4225
	memcg = pc->mem_cgroup;
4226

K
KAMEZAWA Hiroyuki 已提交
4227 4228 4229
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4230 4231
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4232
	switch (ctype) {
4233
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4234 4235 4236 4237 4238
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4239 4240
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4241
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4242
		/* See mem_cgroup_prepare_migration() */
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4264
	}
K
KAMEZAWA Hiroyuki 已提交
4265

4266
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4267

4268
	ClearPageCgroupUsed(pc);
4269 4270 4271 4272 4273 4274
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4275

4276
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4277
	/*
4278
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4279
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4280
	 */
4281
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4282
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4283
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4284
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4285
	}
4286 4287 4288 4289 4290 4291
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4292
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4293

4294
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4295 4296 4297

unlock_out:
	unlock_page_cgroup(pc);
4298
	return NULL;
4299 4300
}

4301 4302
void mem_cgroup_uncharge_page(struct page *page)
{
4303 4304 4305
	/* early check. */
	if (page_mapped(page))
		return;
4306
	VM_BUG_ON(page->mapping && !PageAnon(page));
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4319 4320
	if (PageSwapCache(page))
		return;
4321
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4322 4323 4324 4325 4326
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4327
	VM_BUG_ON(page->mapping);
4328
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4329 4330
}

4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4345 4346
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4367 4368 4369 4370 4371 4372
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4373
	memcg_oom_recover(batch->memcg);
4374 4375 4376 4377
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4378
#ifdef CONFIG_SWAP
4379
/*
4380
 * called after __delete_from_swap_cache() and drop "page" account.
4381 4382
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4383 4384
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4385 4386
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4387 4388 4389 4390 4391
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4392
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4393

K
KAMEZAWA Hiroyuki 已提交
4394 4395
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4396
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4397 4398
	 */
	if (do_swap_account && swapout && memcg)
L
Li Zefan 已提交
4399
		swap_cgroup_record(ent, mem_cgroup_id(memcg));
4400
}
4401
#endif
4402

A
Andrew Morton 已提交
4403
#ifdef CONFIG_MEMCG_SWAP
4404 4405 4406 4407 4408
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4409
{
4410
	struct mem_cgroup *memcg;
4411
	unsigned short id;
4412 4413 4414 4415

	if (!do_swap_account)
		return;

4416 4417 4418
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4419
	if (memcg) {
4420 4421 4422 4423
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4424
		if (!mem_cgroup_is_root(memcg))
4425
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4426
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4427
		css_put(&memcg->css);
4428
	}
4429
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4430
}
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4447
				struct mem_cgroup *from, struct mem_cgroup *to)
4448 4449 4450
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
4451 4452
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
4453 4454 4455

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4456
		mem_cgroup_swap_statistics(to, true);
4457
		/*
4458 4459 4460
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4461 4462 4463 4464 4465 4466
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4467
		 */
L
Li Zefan 已提交
4468
		css_get(&to->css);
4469 4470 4471 4472 4473 4474
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4475
				struct mem_cgroup *from, struct mem_cgroup *to)
4476 4477 4478
{
	return -EINVAL;
}
4479
#endif
K
KAMEZAWA Hiroyuki 已提交
4480

4481
/*
4482 4483
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4484
 */
4485 4486
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4487
{
4488
	struct mem_cgroup *memcg = NULL;
4489
	unsigned int nr_pages = 1;
4490
	struct page_cgroup *pc;
4491
	enum charge_type ctype;
4492

4493
	*memcgp = NULL;
4494

4495
	if (mem_cgroup_disabled())
4496
		return;
4497

4498 4499 4500
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4501 4502 4503
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4504 4505
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4537
	}
4538
	unlock_page_cgroup(pc);
4539 4540 4541 4542
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4543
	if (!memcg)
4544
		return;
4545

4546
	*memcgp = memcg;
4547 4548 4549 4550 4551 4552 4553
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4554
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4555
	else
4556
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4557 4558 4559 4560 4561
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4562
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4563
}
4564

4565
/* remove redundant charge if migration failed*/
4566
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4567
	struct page *oldpage, struct page *newpage, bool migration_ok)
4568
{
4569
	struct page *used, *unused;
4570
	struct page_cgroup *pc;
4571
	bool anon;
4572

4573
	if (!memcg)
4574
		return;
4575

4576
	if (!migration_ok) {
4577 4578
		used = oldpage;
		unused = newpage;
4579
	} else {
4580
		used = newpage;
4581 4582
		unused = oldpage;
	}
4583
	anon = PageAnon(used);
4584 4585 4586 4587
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4588
	css_put(&memcg->css);
4589
	/*
4590 4591 4592
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4593
	 */
4594 4595 4596 4597 4598
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4599
	/*
4600 4601 4602 4603 4604 4605
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4606
	 */
4607
	if (anon)
4608
		mem_cgroup_uncharge_page(used);
4609
}
4610

4611 4612 4613 4614 4615 4616 4617 4618
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4619
	struct mem_cgroup *memcg = NULL;
4620 4621 4622 4623 4624 4625 4626 4627 4628
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4629 4630
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4631
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4632 4633
		ClearPageCgroupUsed(pc);
	}
4634 4635
	unlock_page_cgroup(pc);

4636 4637 4638 4639 4640 4641
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4642 4643 4644 4645 4646
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4647
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4648 4649
}

4650 4651 4652 4653 4654 4655
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4656 4657 4658 4659 4660
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4680 4681
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4682 4683 4684 4685
	}
}
#endif

4686
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4687
				unsigned long long val)
4688
{
4689
	int retry_count;
4690
	u64 memswlimit, memlimit;
4691
	int ret = 0;
4692 4693
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4694
	int enlarge;
4695 4696 4697 4698 4699 4700 4701 4702 4703

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4704

4705
	enlarge = 0;
4706
	while (retry_count) {
4707 4708 4709 4710
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4711 4712 4713
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4714
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4715 4716 4717 4718 4719 4720
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4721 4722
			break;
		}
4723 4724 4725 4726 4727

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4728
		ret = res_counter_set_limit(&memcg->res, val);
4729 4730 4731 4732 4733 4734
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4735 4736 4737 4738 4739
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4740 4741
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4742 4743
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4744
		if (curusage >= oldusage)
4745 4746 4747
			retry_count--;
		else
			oldusage = curusage;
4748
	}
4749 4750
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4751

4752 4753 4754
	return ret;
}

L
Li Zefan 已提交
4755 4756
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4757
{
4758
	int retry_count;
4759
	u64 memlimit, memswlimit, oldusage, curusage;
4760 4761
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4762
	int enlarge = 0;
4763

4764
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4765
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4766
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4767 4768 4769 4770 4771 4772 4773 4774
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4775
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4776 4777 4778 4779 4780 4781 4782 4783
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4784 4785 4786
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4787
		ret = res_counter_set_limit(&memcg->memsw, val);
4788 4789 4790 4791 4792 4793
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4794 4795 4796 4797 4798
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4799 4800 4801
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4802
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4803
		/* Usage is reduced ? */
4804
		if (curusage >= oldusage)
4805
			retry_count--;
4806 4807
		else
			oldusage = curusage;
4808
	}
4809 4810
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4811 4812 4813
	return ret;
}

4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4906 4907 4908 4909 4910 4911 4912
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4913
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4914 4915
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4916
 */
4917
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4918
				int node, int zid, enum lru_list lru)
4919
{
4920
	struct lruvec *lruvec;
4921
	unsigned long flags;
4922
	struct list_head *list;
4923 4924
	struct page *busy;
	struct zone *zone;
4925

K
KAMEZAWA Hiroyuki 已提交
4926
	zone = &NODE_DATA(node)->node_zones[zid];
4927 4928
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4929

4930
	busy = NULL;
4931
	do {
4932
		struct page_cgroup *pc;
4933 4934
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4935
		spin_lock_irqsave(&zone->lru_lock, flags);
4936
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4937
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4938
			break;
4939
		}
4940 4941 4942
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4943
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4944
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4945 4946
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4947
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4948

4949
		pc = lookup_page_cgroup(page);
4950

4951
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4952
			/* found lock contention or "pc" is obsolete. */
4953
			busy = page;
4954 4955 4956
			cond_resched();
		} else
			busy = NULL;
4957
	} while (!list_empty(list));
4958 4959 4960
}

/*
4961 4962
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4963
 * This enables deleting this mem_cgroup.
4964 4965
 *
 * Caller is responsible for holding css reference on the memcg.
4966
 */
4967
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4968
{
4969
	int node, zid;
4970
	u64 usage;
4971

4972
	do {
4973 4974
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4975 4976
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4977
		for_each_node_state(node, N_MEMORY) {
4978
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4979 4980
				enum lru_list lru;
				for_each_lru(lru) {
4981
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4982
							node, zid, lru);
4983
				}
4984
			}
4985
		}
4986 4987
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4988
		cond_resched();
4989

4990
		/*
4991 4992 4993 4994 4995
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4996 4997 4998 4999 5000 5001
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
5002 5003 5004
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
5005 5006
}

5007 5008
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
	lockdep_assert_held(&memcg_create_mutex);
	/*
	 * The lock does not prevent addition or deletion to the list
	 * of children, but it prevents a new child from being
	 * initialized based on this parent in css_online(), so it's
	 * enough to decide whether hierarchically inherited
	 * attributes can still be changed or not.
	 */
	return memcg->use_hierarchy &&
		!list_empty(&memcg->css.cgroup->children);
5019 5020
}

5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
5031

5032
	/* returns EBUSY if there is a task or if we come here twice. */
5033 5034 5035
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

5036 5037
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
5038
	/* try to free all pages in this cgroup */
5039
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5040
		int progress;
5041

5042 5043 5044
		if (signal_pending(current))
			return -EINTR;

5045
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5046
						false);
5047
		if (!progress) {
5048
			nr_retries--;
5049
			/* maybe some writeback is necessary */
5050
			congestion_wait(BLK_RW_ASYNC, HZ/10);
5051
		}
5052 5053

	}
K
KAMEZAWA Hiroyuki 已提交
5054
	lru_add_drain();
5055 5056 5057
	mem_cgroup_reparent_charges(memcg);

	return 0;
5058 5059
}

5060 5061
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
5062
{
5063
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5064

5065 5066
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
5067
	return mem_cgroup_force_empty(memcg);
5068 5069
}

5070 5071
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
5072
{
5073
	return mem_cgroup_from_css(css)->use_hierarchy;
5074 5075
}

5076 5077
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
5078 5079
{
	int retval = 0;
5080
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5081
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5082

5083
	mutex_lock(&memcg_create_mutex);
5084 5085 5086 5087

	if (memcg->use_hierarchy == val)
		goto out;

5088
	/*
5089
	 * If parent's use_hierarchy is set, we can't make any modifications
5090 5091 5092 5093 5094 5095
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5096
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5097
				(val == 1 || val == 0)) {
5098
		if (list_empty(&memcg->css.cgroup->children))
5099
			memcg->use_hierarchy = val;
5100 5101 5102 5103
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5104 5105

out:
5106
	mutex_unlock(&memcg_create_mutex);
5107 5108 5109 5110

	return retval;
}

5111

5112
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5113
					       enum mem_cgroup_stat_index idx)
5114
{
K
KAMEZAWA Hiroyuki 已提交
5115
	struct mem_cgroup *iter;
5116
	long val = 0;
5117

5118
	/* Per-cpu values can be negative, use a signed accumulator */
5119
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5120 5121 5122 5123 5124
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5125 5126
}

5127
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5128
{
K
KAMEZAWA Hiroyuki 已提交
5129
	u64 val;
5130

5131
	if (!mem_cgroup_is_root(memcg)) {
5132
		if (!swap)
5133
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5134
		else
5135
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5136 5137
	}

5138 5139 5140 5141
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5142 5143
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5144

K
KAMEZAWA Hiroyuki 已提交
5145
	if (swap)
5146
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5147 5148 5149 5150

	return val << PAGE_SHIFT;
}

5151 5152
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
B
Balbir Singh 已提交
5153
{
5154
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5155
	u64 val;
5156
	int name;
G
Glauber Costa 已提交
5157
	enum res_type type;
5158 5159 5160

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5161

5162 5163
	switch (type) {
	case _MEM:
5164
		if (name == RES_USAGE)
5165
			val = mem_cgroup_usage(memcg, false);
5166
		else
5167
			val = res_counter_read_u64(&memcg->res, name);
5168 5169
		break;
	case _MEMSWAP:
5170
		if (name == RES_USAGE)
5171
			val = mem_cgroup_usage(memcg, true);
5172
		else
5173
			val = res_counter_read_u64(&memcg->memsw, name);
5174
		break;
5175 5176 5177
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5178 5179 5180
	default:
		BUG();
	}
5181

5182
	return val;
B
Balbir Singh 已提交
5183
}
5184

5185
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5186 5187 5188
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
5189
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5202
	mutex_lock(&memcg_create_mutex);
5203
	mutex_lock(&set_limit_mutex);
5204
	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5205
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5206 5207 5208 5209 5210 5211
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5212 5213
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
5214
			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5215 5216
			goto out;
		}
5217 5218 5219 5220 5221 5222
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
5223 5224 5225 5226
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5227
	mutex_unlock(&memcg_create_mutex);
5228 5229 5230 5231
#endif
	return ret;
}

5232
#ifdef CONFIG_MEMCG_KMEM
5233
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5234
{
5235
	int ret = 0;
5236 5237
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5238 5239
		goto out;

5240
	memcg->kmem_account_flags = parent->kmem_account_flags;
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5251 5252 5253 5254
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5255 5256 5257
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5258 5259 5260 5261
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5262
	memcg_stop_kmem_account();
5263
	ret = memcg_update_cache_sizes(memcg);
5264
	memcg_resume_kmem_account();
5265 5266 5267
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5268
}
5269
#endif /* CONFIG_MEMCG_KMEM */
5270

5271 5272 5273 5274
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5275
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5276
			    const char *buffer)
B
Balbir Singh 已提交
5277
{
5278
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5279 5280
	enum res_type type;
	int name;
5281 5282 5283
	unsigned long long val;
	int ret;

5284 5285
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5286

5287
	switch (name) {
5288
	case RES_LIMIT:
5289 5290 5291 5292
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5293 5294
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5295 5296 5297
		if (ret)
			break;
		if (type == _MEM)
5298
			ret = mem_cgroup_resize_limit(memcg, val);
5299
		else if (type == _MEMSWAP)
5300
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5301
		else if (type == _KMEM)
5302
			ret = memcg_update_kmem_limit(css, val);
5303 5304
		else
			return -EINVAL;
5305
		break;
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5320 5321 5322 5323 5324
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5325 5326
}

5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5337 5338
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5351
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5352
{
5353
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5354 5355
	int name;
	enum res_type type;
5356

5357 5358
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5359

5360
	switch (name) {
5361
	case RES_MAX_USAGE:
5362
		if (type == _MEM)
5363
			res_counter_reset_max(&memcg->res);
5364
		else if (type == _MEMSWAP)
5365
			res_counter_reset_max(&memcg->memsw);
5366 5367 5368 5369
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5370 5371
		break;
	case RES_FAILCNT:
5372
		if (type == _MEM)
5373
			res_counter_reset_failcnt(&memcg->res);
5374
		else if (type == _MEMSWAP)
5375
			res_counter_reset_failcnt(&memcg->memsw);
5376 5377 5378 5379
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5380 5381
		break;
	}
5382

5383
	return 0;
5384 5385
}

5386
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5387 5388
					struct cftype *cft)
{
5389
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5390 5391
}

5392
#ifdef CONFIG_MMU
5393
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5394 5395
					struct cftype *cft, u64 val)
{
5396
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5397 5398 5399

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5400

5401
	/*
5402 5403 5404 5405
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5406
	 */
5407
	memcg->move_charge_at_immigrate = val;
5408 5409
	return 0;
}
5410
#else
5411
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5412 5413 5414 5415 5416
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5417

5418
#ifdef CONFIG_NUMA
5419
static int memcg_numa_stat_show(struct seq_file *m, void *v)
5420
{
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
5433
	int nid;
5434
	unsigned long nr;
5435
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5436

5437 5438 5439 5440 5441 5442 5443 5444 5445
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5446 5447
	}

5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5463 5464 5465 5466 5467 5468
	}

	return 0;
}
#endif /* CONFIG_NUMA */

5469 5470 5471 5472 5473
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5474
static int memcg_stat_show(struct seq_file *m, void *v)
5475
{
5476
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5477 5478
	struct mem_cgroup *mi;
	unsigned int i;
5479

5480
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5481
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5482
			continue;
5483 5484
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5485
	}
L
Lee Schermerhorn 已提交
5486

5487 5488 5489 5490 5491 5492 5493 5494
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5495
	/* Hierarchical information */
5496 5497
	{
		unsigned long long limit, memsw_limit;
5498
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5499
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5500
		if (do_swap_account)
5501 5502
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5503
	}
K
KOSAKI Motohiro 已提交
5504

5505 5506 5507
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5508
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5509
			continue;
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5530
	}
K
KAMEZAWA Hiroyuki 已提交
5531

K
KOSAKI Motohiro 已提交
5532 5533 5534 5535
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5536
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5537 5538 5539 5540 5541
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5542
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5543
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5544

5545 5546 5547 5548
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5549
			}
5550 5551 5552 5553
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5554 5555 5556
	}
#endif

5557 5558 5559
	return 0;
}

5560 5561
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5562
{
5563
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5564

5565
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5566 5567
}

5568 5569
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5570
{
5571
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5572
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5573

T
Tejun Heo 已提交
5574
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5575 5576
		return -EINVAL;

5577
	mutex_lock(&memcg_create_mutex);
5578

K
KOSAKI Motohiro 已提交
5579
	/* If under hierarchy, only empty-root can set this value */
5580
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5581
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5582
		return -EINVAL;
5583
	}
K
KOSAKI Motohiro 已提交
5584 5585 5586

	memcg->swappiness = val;

5587
	mutex_unlock(&memcg_create_mutex);
5588

K
KOSAKI Motohiro 已提交
5589 5590 5591
	return 0;
}

5592 5593 5594 5595 5596 5597 5598 5599
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5600
		t = rcu_dereference(memcg->thresholds.primary);
5601
	else
5602
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5603 5604 5605 5606 5607 5608 5609

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5610
	 * current_threshold points to threshold just below or equal to usage.
5611 5612 5613
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5614
	i = t->current_threshold;
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5638
	t->current_threshold = i - 1;
5639 5640 5641 5642 5643 5644
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5645 5646 5647 5648 5649 5650 5651
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5652 5653 5654 5655 5656 5657 5658
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5659 5660 5661 5662 5663 5664 5665
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5666 5667
}

5668
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5669 5670 5671
{
	struct mem_cgroup_eventfd_list *ev;

5672
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5673 5674 5675 5676
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5677
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5678
{
K
KAMEZAWA Hiroyuki 已提交
5679 5680
	struct mem_cgroup *iter;

5681
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5682
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5683 5684
}

5685
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5686
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5687
{
5688 5689
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5690
	u64 threshold, usage;
5691
	int i, size, ret;
5692 5693 5694 5695 5696 5697

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5698

5699
	if (type == _MEM)
5700
		thresholds = &memcg->thresholds;
5701
	else if (type == _MEMSWAP)
5702
		thresholds = &memcg->memsw_thresholds;
5703 5704 5705 5706 5707 5708
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5709
	if (thresholds->primary)
5710 5711
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5712
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5713 5714

	/* Allocate memory for new array of thresholds */
5715
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5716
			GFP_KERNEL);
5717
	if (!new) {
5718 5719 5720
		ret = -ENOMEM;
		goto unlock;
	}
5721
	new->size = size;
5722 5723

	/* Copy thresholds (if any) to new array */
5724 5725
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5726
				sizeof(struct mem_cgroup_threshold));
5727 5728
	}

5729
	/* Add new threshold */
5730 5731
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5732 5733

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5734
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5735 5736 5737
			compare_thresholds, NULL);

	/* Find current threshold */
5738
	new->current_threshold = -1;
5739
	for (i = 0; i < size; i++) {
5740
		if (new->entries[i].threshold <= usage) {
5741
			/*
5742 5743
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5744 5745
			 * it here.
			 */
5746
			++new->current_threshold;
5747 5748
		} else
			break;
5749 5750
	}

5751 5752 5753 5754 5755
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5756

5757
	/* To be sure that nobody uses thresholds */
5758 5759 5760 5761 5762 5763 5764 5765
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5766
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5767 5768
	struct eventfd_ctx *eventfd, const char *args)
{
5769
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
5770 5771
}

5772
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5773 5774
	struct eventfd_ctx *eventfd, const char *args)
{
5775
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
5776 5777
}

5778
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5779
	struct eventfd_ctx *eventfd, enum res_type type)
5780
{
5781 5782
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5783
	u64 usage;
5784
	int i, j, size;
5785 5786 5787

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5788
		thresholds = &memcg->thresholds;
5789
	else if (type == _MEMSWAP)
5790
		thresholds = &memcg->memsw_thresholds;
5791 5792 5793
	else
		BUG();

5794 5795 5796
	if (!thresholds->primary)
		goto unlock;

5797 5798 5799 5800 5801 5802
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5803 5804 5805
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5806 5807 5808
			size++;
	}

5809
	new = thresholds->spare;
5810

5811 5812
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5813 5814
		kfree(new);
		new = NULL;
5815
		goto swap_buffers;
5816 5817
	}

5818
	new->size = size;
5819 5820

	/* Copy thresholds and find current threshold */
5821 5822 5823
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5824 5825
			continue;

5826
		new->entries[j] = thresholds->primary->entries[i];
5827
		if (new->entries[j].threshold <= usage) {
5828
			/*
5829
			 * new->current_threshold will not be used
5830 5831 5832
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5833
			++new->current_threshold;
5834 5835 5836 5837
		}
		j++;
	}

5838
swap_buffers:
5839 5840
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5841 5842 5843 5844 5845 5846
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5847
	rcu_assign_pointer(thresholds->primary, new);
5848

5849
	/* To be sure that nobody uses thresholds */
5850
	synchronize_rcu();
5851
unlock:
5852 5853
	mutex_unlock(&memcg->thresholds_lock);
}
5854

5855
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5856 5857
	struct eventfd_ctx *eventfd)
{
5858
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
5859 5860
}

5861
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5862 5863
	struct eventfd_ctx *eventfd)
{
5864
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
5865 5866
}

5867
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5868
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
5869 5870 5871 5872 5873 5874 5875
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5876
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5877 5878 5879 5880 5881

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5882
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5883
		eventfd_signal(eventfd, 1);
5884
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5885 5886 5887 5888

	return 0;
}

5889
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5890
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
5891 5892 5893
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

5894
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5895

5896
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5897 5898 5899 5900 5901 5902
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5903
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5904 5905
}

5906
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5907
{
5908
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5909

5910 5911
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5912 5913 5914
	return 0;
}

5915
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5916 5917
	struct cftype *cft, u64 val)
{
5918
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5919
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5920 5921

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5922
	if (!parent || !((val == 0) || (val == 1)))
5923 5924
		return -EINVAL;

5925
	mutex_lock(&memcg_create_mutex);
5926
	/* oom-kill-disable is a flag for subhierarchy. */
5927
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5928
		mutex_unlock(&memcg_create_mutex);
5929 5930
		return -EINVAL;
	}
5931
	memcg->oom_kill_disable = val;
5932
	if (!val)
5933
		memcg_oom_recover(memcg);
5934
	mutex_unlock(&memcg_create_mutex);
5935 5936 5937
	return 0;
}

A
Andrew Morton 已提交
5938
#ifdef CONFIG_MEMCG_KMEM
5939
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5940
{
5941 5942
	int ret;

5943
	memcg->kmemcg_id = -1;
5944 5945 5946
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5947

5948
	return mem_cgroup_sockets_init(memcg, ss);
5949
}
5950

5951
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5952
{
5953
	mem_cgroup_sockets_destroy(memcg);
5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5980 5981 5982 5983 5984 5985 5986

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5987
		css_put(&memcg->css);
G
Glauber Costa 已提交
5988
}
5989
#else
5990
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5991 5992 5993
{
	return 0;
}
G
Glauber Costa 已提交
5994

5995 5996 5997 5998 5999
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
6000 6001
{
}
6002 6003
#endif

6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

6017 6018 6019 6020 6021
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
6022
static void memcg_event_remove(struct work_struct *work)
6023
{
6024 6025
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
6026
	struct mem_cgroup *memcg = event->memcg;
6027 6028 6029

	remove_wait_queue(event->wqh, &event->wait);

6030
	event->unregister_event(memcg, event->eventfd);
6031 6032 6033 6034 6035 6036

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
6037
	css_put(&memcg->css);
6038 6039 6040 6041 6042 6043 6044
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
6045 6046
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
6047
{
6048 6049
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
6050
	struct mem_cgroup *memcg = event->memcg;
6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
6063
		spin_lock(&memcg->event_list_lock);
6064 6065 6066 6067 6068 6069 6070 6071
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
6072
		spin_unlock(&memcg->event_list_lock);
6073 6074 6075 6076 6077
	}

	return 0;
}

6078
static void memcg_event_ptable_queue_proc(struct file *file,
6079 6080
		wait_queue_head_t *wqh, poll_table *pt)
{
6081 6082
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
6083 6084 6085 6086 6087 6088

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
6089 6090
 * DO NOT USE IN NEW FILES.
 *
6091 6092 6093 6094 6095
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
6096 6097
static int memcg_write_event_control(struct cgroup_subsys_state *css,
				     struct cftype *cft, const char *buffer)
6098
{
6099
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6100
	struct mem_cgroup_event *event;
6101 6102 6103 6104
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
6105
	const char *name;
6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

6123
	event->memcg = memcg;
6124
	INIT_LIST_HEAD(&event->list);
6125 6126 6127
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

6153 6154 6155 6156 6157
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
6158 6159
	 *
	 * DO NOT ADD NEW FILES.
6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
6173 6174
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
6175 6176 6177 6178 6179
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

6180
	/*
6181 6182 6183
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
6184 6185 6186 6187
	 */
	rcu_read_lock();

	ret = -EINVAL;
6188 6189 6190
	cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
				 &mem_cgroup_subsys);
	if (cfile_css == css && css_tryget(css))
6191 6192 6193 6194 6195 6196
		ret = 0;

	rcu_read_unlock();
	if (ret)
		goto out_put_cfile;

6197
	ret = event->register_event(memcg, event->eventfd, buffer);
6198 6199 6200 6201 6202
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

6203 6204 6205
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
6206 6207 6208 6209 6210 6211 6212

	fdput(cfile);
	fdput(efile);

	return 0;

out_put_css:
6213
	css_put(css);
6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
6226 6227
static struct cftype mem_cgroup_files[] = {
	{
6228
		.name = "usage_in_bytes",
6229
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6230
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6231
	},
6232 6233
	{
		.name = "max_usage_in_bytes",
6234
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6235
		.trigger = mem_cgroup_reset,
6236
		.read_u64 = mem_cgroup_read_u64,
6237
	},
B
Balbir Singh 已提交
6238
	{
6239
		.name = "limit_in_bytes",
6240
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6241
		.write_string = mem_cgroup_write,
6242
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6243
	},
6244 6245 6246 6247
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
6248
		.read_u64 = mem_cgroup_read_u64,
6249
	},
B
Balbir Singh 已提交
6250 6251
	{
		.name = "failcnt",
6252
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6253
		.trigger = mem_cgroup_reset,
6254
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6255
	},
6256 6257
	{
		.name = "stat",
6258
		.seq_show = memcg_stat_show,
6259
	},
6260 6261 6262 6263
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
6264 6265
	{
		.name = "use_hierarchy",
6266
		.flags = CFTYPE_INSANE,
6267 6268 6269
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
6270
	{
6271 6272
		.name = "cgroup.event_control",		/* XXX: for compat */
		.write_string = memcg_write_event_control,
6273 6274 6275
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
6276 6277 6278 6279 6280
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
6281 6282 6283 6284 6285
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
6286 6287
	{
		.name = "oom_control",
6288
		.seq_show = mem_cgroup_oom_control_read,
6289
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6290 6291
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6292 6293 6294
	{
		.name = "pressure_level",
	},
6295 6296 6297
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6298
		.seq_show = memcg_numa_stat_show,
6299 6300
	},
#endif
6301 6302 6303 6304 6305
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
6306
		.read_u64 = mem_cgroup_read_u64,
6307 6308 6309 6310
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6311
		.read_u64 = mem_cgroup_read_u64,
6312 6313 6314 6315 6316
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6317
		.read_u64 = mem_cgroup_read_u64,
6318 6319 6320 6321 6322
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6323
		.read_u64 = mem_cgroup_read_u64,
6324
	},
6325 6326 6327
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
6328
		.seq_show = mem_cgroup_slabinfo_read,
6329 6330
	},
#endif
6331
#endif
6332
	{ },	/* terminate */
6333
};
6334

6335 6336 6337 6338 6339
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6340
		.read_u64 = mem_cgroup_read_u64,
6341 6342 6343 6344 6345
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6346
		.read_u64 = mem_cgroup_read_u64,
6347 6348 6349 6350 6351
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
6352
		.read_u64 = mem_cgroup_read_u64,
6353 6354 6355 6356 6357
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6358
		.read_u64 = mem_cgroup_read_u64,
6359 6360 6361 6362
	},
	{ },	/* terminate */
};
#endif
6363
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6364 6365
{
	struct mem_cgroup_per_node *pn;
6366
	struct mem_cgroup_per_zone *mz;
6367
	int zone, tmp = node;
6368 6369 6370 6371 6372 6373 6374 6375
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6376 6377
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6378
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6379 6380
	if (!pn)
		return 1;
6381 6382 6383

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6384
		lruvec_init(&mz->lruvec);
6385 6386
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6387
		mz->memcg = memcg;
6388
	}
6389
	memcg->nodeinfo[node] = pn;
6390 6391 6392
	return 0;
}

6393
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6394
{
6395
	kfree(memcg->nodeinfo[node]);
6396 6397
}

6398 6399
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6400
	struct mem_cgroup *memcg;
6401
	size_t size;
6402

6403 6404
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6405

6406
	memcg = kzalloc(size, GFP_KERNEL);
6407
	if (!memcg)
6408 6409
		return NULL;

6410 6411
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6412
		goto out_free;
6413 6414
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6415 6416

out_free:
6417
	kfree(memcg);
6418
	return NULL;
6419 6420
}

6421
/*
6422 6423 6424 6425 6426 6427 6428 6429
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6430
 */
6431 6432

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6433
{
6434
	int node;
6435

6436
	mem_cgroup_remove_from_trees(memcg);
6437 6438 6439 6440 6441 6442

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6454
	disarm_static_keys(memcg);
6455
	kfree(memcg);
6456
}
6457

6458 6459 6460
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6461
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6462
{
6463
	if (!memcg->res.parent)
6464
		return NULL;
6465
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6466
}
G
Glauber Costa 已提交
6467
EXPORT_SYMBOL(parent_mem_cgroup);
6468

6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6492
static struct cgroup_subsys_state * __ref
6493
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6494
{
6495
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6496
	long error = -ENOMEM;
6497
	int node;
B
Balbir Singh 已提交
6498

6499 6500
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6501
		return ERR_PTR(error);
6502

B
Bob Liu 已提交
6503
	for_each_node(node)
6504
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6505
			goto free_out;
6506

6507
	/* root ? */
6508
	if (parent_css == NULL) {
6509
		root_mem_cgroup = memcg;
6510 6511 6512
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6513
	}
6514

6515 6516 6517 6518 6519
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6520
	vmpressure_init(&memcg->vmpressure);
6521 6522
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
6523 6524 6525 6526 6527 6528 6529 6530 6531

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6532
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6533
{
6534 6535
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6536 6537
	int error = 0;

6538 6539 6540
	if (css->cgroup->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;

T
Tejun Heo 已提交
6541
	if (!parent)
6542 6543
		return 0;

6544
	mutex_lock(&memcg_create_mutex);
6545 6546 6547 6548 6549 6550

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6551 6552
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6553
		res_counter_init(&memcg->kmem, &parent->kmem);
6554

6555
		/*
6556 6557
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6558
		 */
6559
	} else {
6560 6561
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6562
		res_counter_init(&memcg->kmem, NULL);
6563 6564 6565 6566 6567
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6568
		if (parent != root_mem_cgroup)
6569
			mem_cgroup_subsys.broken_hierarchy = true;
6570
	}
6571 6572

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6573
	mutex_unlock(&memcg_create_mutex);
6574
	return error;
B
Balbir Singh 已提交
6575 6576
}

M
Michal Hocko 已提交
6577 6578 6579 6580 6581 6582 6583 6584
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6585
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6586 6587 6588 6589 6590 6591

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6592
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6593 6594
}

6595
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6596
{
6597
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6598
	struct mem_cgroup_event *event, *tmp;
6599 6600 6601 6602 6603 6604

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
6605 6606
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6607 6608 6609
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
6610
	spin_unlock(&memcg->event_list_lock);
6611

6612 6613
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6614
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6615
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6616
	mem_cgroup_destroy_all_caches(memcg);
6617
	vmpressure_cleanup(&memcg->vmpressure);
6618 6619
}

6620
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6621
{
6622
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
	/*
	 * XXX: css_offline() would be where we should reparent all
	 * memory to prepare the cgroup for destruction.  However,
	 * memcg does not do css_tryget() and res_counter charging
	 * under the same RCU lock region, which means that charging
	 * could race with offlining.  Offlining only happens to
	 * cgroups with no tasks in them but charges can show up
	 * without any tasks from the swapin path when the target
	 * memcg is looked up from the swapout record and not from the
	 * current task as it usually is.  A race like this can leak
	 * charges and put pages with stale cgroup pointers into
	 * circulation:
	 *
	 * #0                        #1
	 *                           lookup_swap_cgroup_id()
	 *                           rcu_read_lock()
	 *                           mem_cgroup_lookup()
	 *                           css_tryget()
	 *                           rcu_read_unlock()
	 * disable css_tryget()
	 * call_rcu()
	 *   offline_css()
	 *     reparent_charges()
	 *                           res_counter_charge()
	 *                           css_put()
	 *                             css_free()
	 *                           pc->mem_cgroup = dead memcg
	 *                           add page to lru
	 *
	 * The bulk of the charges are still moved in offline_css() to
	 * avoid pinning a lot of pages in case a long-term reference
	 * like a swapout record is deferring the css_free() to long
	 * after offlining.  But this makes sure we catch any charges
	 * made after offlining:
	 */
	mem_cgroup_reparent_charges(memcg);
6659

6660
	memcg_destroy_kmem(memcg);
6661
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6662 6663
}

6664
#ifdef CONFIG_MMU
6665
/* Handlers for move charge at task migration. */
6666 6667
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6668
{
6669 6670
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6671
	struct mem_cgroup *memcg = mc.to;
6672

6673
	if (mem_cgroup_is_root(memcg)) {
6674 6675 6676 6677 6678 6679 6680 6681
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6682
		 * "memcg" cannot be under rmdir() because we've already checked
6683 6684 6685 6686
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6687
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6688
			goto one_by_one;
6689
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6690
						PAGE_SIZE * count, &dummy)) {
6691
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6708 6709
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6710
		if (ret)
6711
			/* mem_cgroup_clear_mc() will do uncharge later */
6712
			return ret;
6713 6714
		mc.precharge++;
	}
6715 6716 6717 6718
	return ret;
}

/**
6719
 * get_mctgt_type - get target type of moving charge
6720 6721 6722
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6723
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6724 6725 6726 6727 6728 6729
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6730 6731 6732
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6733 6734 6735 6736 6737
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6738
	swp_entry_t	ent;
6739 6740 6741
};

enum mc_target_type {
6742
	MC_TARGET_NONE = 0,
6743
	MC_TARGET_PAGE,
6744
	MC_TARGET_SWAP,
6745 6746
};

D
Daisuke Nishimura 已提交
6747 6748
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6749
{
D
Daisuke Nishimura 已提交
6750
	struct page *page = vm_normal_page(vma, addr, ptent);
6751

D
Daisuke Nishimura 已提交
6752 6753 6754 6755
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6756
		if (!move_anon())
D
Daisuke Nishimura 已提交
6757
			return NULL;
6758 6759
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6760 6761 6762 6763 6764 6765 6766
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6767
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6768 6769 6770 6771 6772 6773 6774 6775
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6776 6777 6778 6779
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6780
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6781 6782 6783 6784 6785
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6786 6787 6788 6789 6790 6791 6792
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6793

6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6813 6814 6815 6816 6817 6818
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6819
		if (do_swap_account)
6820
			*entry = swap;
6821
		page = find_get_page(swap_address_space(swap), swap.val);
6822
	}
6823
#endif
6824 6825 6826
	return page;
}

6827
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6828 6829 6830 6831
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6832
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6833 6834 6835 6836 6837 6838
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6839 6840
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6841 6842

	if (!page && !ent.val)
6843
		return ret;
6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6859 6860
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
6861
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6862 6863 6864
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6865 6866 6867 6868
	}
	return ret;
}

6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6904 6905 6906 6907 6908 6909 6910 6911
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6912
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6913 6914
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
6915
		spin_unlock(ptl);
6916
		return 0;
6917
	}
6918

6919 6920
	if (pmd_trans_unstable(pmd))
		return 0;
6921 6922
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6923
		if (get_mctgt_type(vma, addr, *pte, NULL))
6924 6925 6926 6927
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6928 6929 6930
	return 0;
}

6931 6932 6933 6934 6935
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6936
	down_read(&mm->mmap_sem);
6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6948
	up_read(&mm->mmap_sem);
6949 6950 6951 6952 6953 6954 6955 6956 6957

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6958 6959 6960 6961 6962
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6963 6964
}

6965 6966
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6967
{
6968 6969
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6970
	int i;
6971

6972
	/* we must uncharge all the leftover precharges from mc.to */
6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6984
	}
6985 6986 6987 6988 6989 6990
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6991 6992 6993

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6994 6995 6996 6997 6998 6999 7000 7001 7002

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
7003
		/* we've already done css_get(mc.to) */
7004 7005
		mc.moved_swap = 0;
	}
7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
7021
	spin_lock(&mc.lock);
7022 7023
	mc.from = NULL;
	mc.to = NULL;
7024
	spin_unlock(&mc.lock);
7025
	mem_cgroup_end_move(from);
7026 7027
}

7028
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7029
				 struct cgroup_taskset *tset)
7030
{
7031
	struct task_struct *p = cgroup_taskset_first(tset);
7032
	int ret = 0;
7033
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7034
	unsigned long move_charge_at_immigrate;
7035

7036 7037 7038 7039 7040 7041 7042
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
7043 7044 7045
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

7046
		VM_BUG_ON(from == memcg);
7047 7048 7049 7050 7051

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
7052 7053 7054 7055
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
7056
			VM_BUG_ON(mc.moved_charge);
7057
			VM_BUG_ON(mc.moved_swap);
7058
			mem_cgroup_start_move(from);
7059
			spin_lock(&mc.lock);
7060
			mc.from = from;
7061
			mc.to = memcg;
7062
			mc.immigrate_flags = move_charge_at_immigrate;
7063
			spin_unlock(&mc.lock);
7064
			/* We set mc.moving_task later */
7065 7066 7067 7068

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
7069 7070
		}
		mmput(mm);
7071 7072 7073 7074
	}
	return ret;
}

7075
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7076
				     struct cgroup_taskset *tset)
7077
{
7078
	mem_cgroup_clear_mc();
7079 7080
}

7081 7082 7083
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
7084
{
7085 7086 7087 7088
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
7089 7090 7091 7092
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
7093

7094 7095 7096 7097 7098 7099 7100 7101 7102 7103
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
7104
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
7105
		if (mc.precharge < HPAGE_PMD_NR) {
7106
			spin_unlock(ptl);
7107 7108 7109 7110 7111 7112 7113 7114
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7115
							pc, mc.from, mc.to)) {
7116 7117 7118 7119 7120 7121 7122
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
7123
		spin_unlock(ptl);
7124
		return 0;
7125 7126
	}

7127 7128
	if (pmd_trans_unstable(pmd))
		return 0;
7129 7130 7131 7132
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
7133
		swp_entry_t ent;
7134 7135 7136 7137

		if (!mc.precharge)
			break;

7138
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
7139 7140 7141 7142 7143
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
7144
			if (!mem_cgroup_move_account(page, 1, pc,
7145
						     mc.from, mc.to)) {
7146
				mc.precharge--;
7147 7148
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
7149 7150
			}
			putback_lru_page(page);
7151
put:			/* get_mctgt_type() gets the page */
7152 7153
			put_page(page);
			break;
7154 7155
		case MC_TARGET_SWAP:
			ent = target.ent;
7156
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7157
				mc.precharge--;
7158 7159 7160
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
7161
			break;
7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
7176
		ret = mem_cgroup_do_precharge(1);
7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
7220
	up_read(&mm->mmap_sem);
7221 7222
}

7223
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7224
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
7225
{
7226
	struct task_struct *p = cgroup_taskset_first(tset);
7227
	struct mm_struct *mm = get_task_mm(p);
7228 7229

	if (mm) {
7230 7231
		if (mc.to)
			mem_cgroup_move_charge(mm);
7232 7233
		mmput(mm);
	}
7234 7235
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
7236
}
7237
#else	/* !CONFIG_MMU */
7238
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7239
				 struct cgroup_taskset *tset)
7240 7241 7242
{
	return 0;
}
7243
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7244
				     struct cgroup_taskset *tset)
7245 7246
{
}
7247
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7248
				 struct cgroup_taskset *tset)
7249 7250 7251
{
}
#endif
B
Balbir Singh 已提交
7252

7253 7254 7255 7256
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
7257
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7258 7259 7260 7261 7262 7263
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
7264 7265
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
7266 7267
}

B
Balbir Singh 已提交
7268 7269 7270
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
7271
	.css_alloc = mem_cgroup_css_alloc,
7272
	.css_online = mem_cgroup_css_online,
7273 7274
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
7275 7276
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
7277
	.attach = mem_cgroup_move_task,
7278
	.bind = mem_cgroup_bind,
7279
	.base_cftypes = mem_cgroup_files,
7280
	.early_init = 0,
B
Balbir Singh 已提交
7281
};
7282

A
Andrew Morton 已提交
7283
#ifdef CONFIG_MEMCG_SWAP
7284 7285
static int __init enable_swap_account(char *s)
{
7286
	if (!strcmp(s, "1"))
7287
		really_do_swap_account = 1;
7288
	else if (!strcmp(s, "0"))
7289 7290 7291
		really_do_swap_account = 0;
	return 1;
}
7292
__setup("swapaccount=", enable_swap_account);
7293

7294 7295
static void __init memsw_file_init(void)
{
7296 7297 7298 7299 7300 7301 7302 7303 7304
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7305
}
7306

7307
#else
7308
static void __init enable_swap_cgroup(void)
7309 7310
{
}
7311
#endif
7312 7313

/*
7314 7315 7316 7317 7318 7319
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7320 7321 7322 7323
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7324
	enable_swap_cgroup();
7325
	mem_cgroup_soft_limit_tree_init();
7326
	memcg_stock_init();
7327 7328 7329
	return 0;
}
subsys_initcall(mem_cgroup_init);