blk-mq.c 56.4 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
42
	return sbitmap_any_bit_set(&hctx->ctx_map);
43 44
}

45 46 47 48 49 50
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
51 52
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
53 54 55 56 57
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
58
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
59 60
}

61
void blk_mq_freeze_queue_start(struct request_queue *q)
62
{
63
	int freeze_depth;
64

65 66
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
67
		percpu_ref_kill(&q->q_usage_counter);
68
		blk_mq_run_hw_queues(q, false);
69
	}
70
}
71
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
72 73 74

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
75
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
76 77
}

78 79 80 81
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
82
void blk_freeze_queue(struct request_queue *q)
83
{
84 85 86 87 88 89 90
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
91 92 93
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
94 95 96 97 98 99 100 101 102

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
103
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
104

105
void blk_mq_unfreeze_queue(struct request_queue *q)
106
{
107
	int freeze_depth;
108

109 110 111
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
112
		percpu_ref_reinit(&q->q_usage_counter);
113
		wake_up_all(&q->mq_freeze_wq);
114
	}
115
}
116
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
117

118 119 120 121 122 123 124 125
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
126 127 128 129 130 131 132

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
133 134
}

135 136 137 138 139 140
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

141
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
142
			       struct request *rq, unsigned int op)
143
{
144 145 146
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
147
	rq->mq_ctx = ctx;
148
	rq->cmd_flags = op;
149 150
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
151 152 153 154 155 156
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
157
	rq->start_time = jiffies;
158 159
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
160
	set_start_time_ns(rq);
161 162 163 164 165 166 167 168 169 170
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

171 172
	rq->cmd = rq->__cmd;

173 174 175 176 177 178
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
179 180
	rq->timeout = 0;

181 182 183 184
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

185
	ctx->rq_dispatched[op_is_sync(op)]++;
186 187
}

188
static struct request *
189
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
190 191 192 193
{
	struct request *rq;
	unsigned int tag;

194
	tag = blk_mq_get_tag(data);
195
	if (tag != BLK_MQ_TAG_FAIL) {
196
		rq = data->hctx->tags->rqs[tag];
197

198
		if (blk_mq_tag_busy(data->hctx)) {
199
			rq->rq_flags = RQF_MQ_INFLIGHT;
200
			atomic_inc(&data->hctx->nr_active);
201 202 203
		}

		rq->tag = tag;
204
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
205 206 207 208 209 210
		return rq;
	}

	return NULL;
}

211 212
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
213
{
214 215
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
216
	struct request *rq;
217
	struct blk_mq_alloc_data alloc_data;
218
	int ret;
219

220
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
221 222
	if (ret)
		return ERR_PTR(ret);
223

224
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
225
	hctx = blk_mq_map_queue(q, ctx->cpu);
226
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
227
	rq = __blk_mq_alloc_request(&alloc_data, rw);
228
	blk_mq_put_ctx(ctx);
229

K
Keith Busch 已提交
230
	if (!rq) {
231
		blk_queue_exit(q);
232
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
233
	}
234 235 236 237

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
238 239
	return rq;
}
240
EXPORT_SYMBOL(blk_mq_alloc_request);
241

M
Ming Lin 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

267 268 269 270
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
M
Ming Lin 已提交
271
	hctx = q->queue_hw_ctx[hctx_idx];
272 273 274 275
	if (!blk_mq_hw_queue_mapped(hctx)) {
		ret = -EXDEV;
		goto out_queue_exit;
	}
M
Ming Lin 已提交
276 277 278
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
279
	rq = __blk_mq_alloc_request(&alloc_data, rw);
M
Ming Lin 已提交
280
	if (!rq) {
281 282
		ret = -EWOULDBLOCK;
		goto out_queue_exit;
M
Ming Lin 已提交
283 284 285
	}

	return rq;
286 287 288 289

out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
290 291 292
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

293 294 295 296 297 298
static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

299
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
300
		atomic_dec(&hctx->nr_active);
301
	rq->rq_flags = 0;
302

303
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
304
	blk_mq_put_tag(hctx, ctx, tag);
305
	blk_queue_exit(q);
306 307
}

308
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
309 310 311 312 313
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
314 315 316 317 318 319

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
C
Christoph Hellwig 已提交
320
	blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
321
}
J
Jens Axboe 已提交
322
EXPORT_SYMBOL_GPL(blk_mq_free_request);
323

324
inline void __blk_mq_end_request(struct request *rq, int error)
325
{
M
Ming Lei 已提交
326 327
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
328
	if (rq->end_io) {
329
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
330 331 332
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
333
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
334
	}
335
}
336
EXPORT_SYMBOL(__blk_mq_end_request);
337

338
void blk_mq_end_request(struct request *rq, int error)
339 340 341
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
342
	__blk_mq_end_request(rq, error);
343
}
344
EXPORT_SYMBOL(blk_mq_end_request);
345

346
static void __blk_mq_complete_request_remote(void *data)
347
{
348
	struct request *rq = data;
349

350
	rq->q->softirq_done_fn(rq);
351 352
}

353
static void blk_mq_ipi_complete_request(struct request *rq)
354 355
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
356
	bool shared = false;
357 358
	int cpu;

C
Christoph Hellwig 已提交
359
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
360 361 362
		rq->q->softirq_done_fn(rq);
		return;
	}
363 364

	cpu = get_cpu();
C
Christoph Hellwig 已提交
365 366 367 368
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
369
		rq->csd.func = __blk_mq_complete_request_remote;
370 371
		rq->csd.info = rq;
		rq->csd.flags = 0;
372
		smp_call_function_single_async(ctx->cpu, &rq->csd);
373
	} else {
374
		rq->q->softirq_done_fn(rq);
375
	}
376 377
	put_cpu();
}
378

379
static void __blk_mq_complete_request(struct request *rq)
380 381 382 383
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
384
		blk_mq_end_request(rq, rq->errors);
385 386 387 388
	else
		blk_mq_ipi_complete_request(rq);
}

389 390 391 392 393 394 395 396
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
397
void blk_mq_complete_request(struct request *rq, int error)
398
{
399 400 401
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
402
		return;
403 404
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
405
		__blk_mq_complete_request(rq);
406
	}
407 408
}
EXPORT_SYMBOL(blk_mq_complete_request);
409

410 411 412 413 414 415
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

416
void blk_mq_start_request(struct request *rq)
417 418 419 420 421
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
422
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
423 424
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
425

426
	blk_add_timer(rq);
427

428 429 430 431 432 433
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

434 435 436 437 438 439
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
440 441 442 443
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
444 445 446 447 448 449 450 451 452

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
453
}
454
EXPORT_SYMBOL(blk_mq_start_request);
455

456
static void __blk_mq_requeue_request(struct request *rq)
457 458 459 460
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
461

462 463 464 465
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
466 467
}

468 469 470 471 472
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
473
	blk_mq_add_to_requeue_list(rq, true);
474 475 476
}
EXPORT_SYMBOL(blk_mq_requeue_request);

477 478 479
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
480
		container_of(work, struct request_queue, requeue_work.work);
481 482 483 484 485 486 487 488 489
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
490
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
491 492
			continue;

493
		rq->rq_flags &= ~RQF_SOFTBARRIER;
494 495 496 497 498 499 500 501 502 503
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

504
	blk_mq_run_hw_queues(q, false);
505 506 507 508 509 510 511 512 513 514 515
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
516
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
517 518 519

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
520
		rq->rq_flags |= RQF_SOFTBARRIER;
521 522 523 524 525 526 527 528
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

529 530
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
531
	cancel_delayed_work_sync(&q->requeue_work);
532 533 534
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

535 536
void blk_mq_kick_requeue_list(struct request_queue *q)
{
537
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
538 539 540
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

541 542 543 544 545 546 547 548
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

569 570
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
571 572
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
573
		return tags->rqs[tag];
574
	}
575 576

	return NULL;
577 578 579
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

580
struct blk_mq_timeout_data {
581 582
	unsigned long next;
	unsigned int next_set;
583 584
};

585
void blk_mq_rq_timed_out(struct request *req, bool reserved)
586
{
587 588
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
589 590 591 592 593 594 595 596 597 598

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
599 600
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
601

602
	if (ops->timeout)
603
		ret = ops->timeout(req, reserved);
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
619
}
620

621 622 623 624
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
625

626 627 628 629 630
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
631 632 633 634
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
635
		return;
636
	}
637

638 639
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
640
			blk_mq_rq_timed_out(rq, reserved);
641 642 643 644
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
645 646
}

647
static void blk_mq_timeout_work(struct work_struct *work)
648
{
649 650
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
651 652 653 654 655
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
656

657 658 659 660 661 662 663 664 665 666 667 668 669 670
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
671 672
		return;

673
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
674

675 676 677
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
678
	} else {
679 680
		struct blk_mq_hw_ctx *hctx;

681 682 683 684 685
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
686
	}
687
	blk_queue_exit(q);
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

747 748 749 750 751 752
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
753 754 755 756
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
757

758
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
759 760
}

761 762 763 764
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
765

766
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
767 768
}

769 770 771 772 773 774 775 776 777 778 779
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
780 781
	LIST_HEAD(driver_list);
	struct list_head *dptr;
782
	int queued;
783

784
	if (unlikely(blk_mq_hctx_stopped(hctx)))
785 786
		return;

787 788 789
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

790 791 792 793 794
	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
795
	flush_busy_ctxs(hctx, &rq_list);
796 797 798 799 800 801 802 803 804 805 806 807

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

808 809 810 811 812 813
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

814 815 816
	/*
	 * Now process all the entries, sending them to the driver.
	 */
817
	queued = 0;
818
	while (!list_empty(&rq_list)) {
819
		struct blk_mq_queue_data bd;
820 821 822 823 824
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

825 826 827 828 829
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
830 831 832
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
833
			break;
834 835
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
836
			__blk_mq_requeue_request(rq);
837 838 839 840
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
841
			rq->errors = -EIO;
842
			blk_mq_end_request(rq, rq->errors);
843 844 845 846 847
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
848 849 850 851 852 853 854

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
855 856
	}

857
	hctx->dispatched[queued_to_index(queued)]++;
858 859 860 861 862 863 864 865 866

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
867 868 869 870 871 872 873 874 875 876
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
877 878 879
	}
}

880 881 882 883 884 885 886 887
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
888 889
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
890 891

	if (--hctx->next_cpu_batch <= 0) {
892
		int cpu = hctx->next_cpu, next_cpu;
893 894 895 896 897 898 899

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
900 901

		return cpu;
902 903
	}

904
	return hctx->next_cpu;
905 906
}

907 908
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
909 910
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
911 912
		return;

913
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
914 915
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
916
			__blk_mq_run_hw_queue(hctx);
917
			put_cpu();
918 919
			return;
		}
920

921
		put_cpu();
922
	}
923

924
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
925 926
}

927
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
928 929 930 931 932 933 934
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
935
		    blk_mq_hctx_stopped(hctx))
936 937
			continue;

938
		blk_mq_run_hw_queue(hctx, async);
939 940
	}
}
941
EXPORT_SYMBOL(blk_mq_run_hw_queues);
942

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

963 964
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
965
	cancel_work(&hctx->run_work);
966
	cancel_delayed_work(&hctx->delay_work);
967 968 969 970
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

971 972 973 974 975 976 977 978 979 980
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

981 982 983
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
984

985
	blk_mq_run_hw_queue(hctx, false);
986 987 988
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

989 990 991 992 993 994 995 996 997 998
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

999
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1000 1001 1002 1003 1004
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1005
		if (!blk_mq_hctx_stopped(hctx))
1006 1007 1008
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1009
		blk_mq_run_hw_queue(hctx, async);
1010 1011 1012 1013
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1014
static void blk_mq_run_work_fn(struct work_struct *work)
1015 1016 1017
{
	struct blk_mq_hw_ctx *hctx;

1018
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1019

1020 1021 1022
	__blk_mq_run_hw_queue(hctx);
}

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1035 1036
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1037

1038 1039
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1040 1041 1042
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1043 1044 1045
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1046
{
J
Jens Axboe 已提交
1047 1048
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1049 1050
	trace_block_rq_insert(hctx->queue, rq);

1051 1052 1053 1054
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1055
}
1056

1057 1058 1059 1060 1061
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1062
	__blk_mq_insert_req_list(hctx, rq, at_head);
1063 1064 1065
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1066
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
J
Jens Axboe 已提交
1067
			   bool async)
1068
{
J
Jens Axboe 已提交
1069
	struct blk_mq_ctx *ctx = rq->mq_ctx;
1070
	struct request_queue *q = rq->q;
C
Christoph Hellwig 已提交
1071
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1072

1073 1074 1075
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
C
Christoph Hellwig 已提交
1088
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

	trace_block_unplug(q, depth, !from_schedule);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1101
		BUG_ON(rq->mq_ctx != ctx);
1102
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1103
		__blk_mq_insert_req_list(hctx, rq, false);
1104
	}
1105
	blk_mq_hctx_mark_pending(hctx, ctx);
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1171

1172
	blk_account_io_start(rq, 1);
1173 1174
}

1175 1176 1177 1178 1179 1180
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1181 1182 1183
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1184
{
1185
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1186 1187 1188 1189 1190 1191 1192
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1193 1194
		struct request_queue *q = hctx->queue;

1195 1196 1197 1198 1199
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1200

1201 1202 1203
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1204
	}
1205
}
1206

1207 1208
static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
1209
					  struct blk_mq_alloc_data *data)
1210 1211 1212 1213
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
1214

1215
	blk_queue_enter_live(q);
1216
	ctx = blk_mq_get_ctx(q);
C
Christoph Hellwig 已提交
1217
	hctx = blk_mq_map_queue(q, ctx->cpu);
1218

1219
	trace_block_getrq(q, bio, bio->bi_opf);
1220
	blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1221
	rq = __blk_mq_alloc_request(data, bio->bi_opf);
1222

1223
	data->hctx->queued++;
1224 1225 1226
	return rq;
}

1227 1228
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
				      struct request *rq, blk_qc_t *cookie)
1229 1230 1231 1232 1233 1234 1235 1236
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1237
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1238

1239 1240 1241
	if (blk_mq_hctx_stopped(hctx))
		goto insert;

1242 1243 1244 1245 1246 1247
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1248 1249
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1250
		return;
1251
	}
1252

1253 1254 1255 1256 1257 1258
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1259
		return;
1260
	}
1261

1262 1263
insert:
	blk_mq_insert_request(rq, false, true, true);
1264 1265
}

1266 1267 1268 1269 1270
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1271
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1272
{
1273
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1274
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1275
	struct blk_mq_alloc_data data;
1276
	struct request *rq;
1277 1278
	unsigned int request_count = 0;
	struct blk_plug *plug;
1279
	struct request *same_queue_rq = NULL;
1280
	blk_qc_t cookie;
1281 1282 1283 1284

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1285
		bio_io_error(bio);
1286
		return BLK_QC_T_NONE;
1287 1288
	}

1289 1290
	blk_queue_split(q, &bio, q->bio_split);

1291 1292 1293
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1294

1295 1296
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1297
		return BLK_QC_T_NONE;
1298

1299
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1300 1301 1302 1303 1304 1305 1306

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1307
	plug = current->plug;
1308 1309 1310 1311 1312
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1313 1314 1315
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1316 1317 1318 1319

		blk_mq_bio_to_request(rq, bio);

		/*
1320
		 * We do limited pluging. If the bio can be merged, do that.
1321 1322
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1323
		 */
1324
		if (plug) {
1325 1326
			/*
			 * The plug list might get flushed before this. If that
1327 1328 1329
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1330 1331
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1332
				list_del_init(&old_rq->queuelist);
1333
			}
1334 1335 1336 1337 1338
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1339
			goto done;
1340
		blk_mq_try_issue_directly(data.hctx, old_rq, &cookie);
1341
		goto done;
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1355 1356
done:
	return cookie;
1357 1358 1359 1360 1361 1362
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1363
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1364
{
1365
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1366
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1367 1368
	struct blk_plug *plug;
	unsigned int request_count = 0;
1369
	struct blk_mq_alloc_data data;
1370
	struct request *rq;
1371
	blk_qc_t cookie;
1372 1373 1374 1375

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1376
		bio_io_error(bio);
1377
		return BLK_QC_T_NONE;
1378 1379
	}

1380 1381
	blk_queue_split(q, &bio, q->bio_split);

1382 1383 1384 1385 1386
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1387 1388

	rq = blk_mq_map_request(q, bio, &data);
1389
	if (unlikely(!rq))
1390
		return BLK_QC_T_NONE;
1391

1392
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1405 1406 1407
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1408
		if (!request_count)
1409
			trace_block_plug(q);
1410 1411 1412 1413

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1414 1415
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1416
		}
1417

1418
		list_add_tail(&rq->queuelist, &plug->mq_list);
1419
		return cookie;
1420 1421
	}

1422 1423 1424 1425 1426 1427 1428 1429 1430
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1431 1432
	}

1433
	blk_mq_put_ctx(data.ctx);
1434
	return cookie;
1435 1436
}

1437 1438
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1439
{
1440
	struct page *page;
1441

1442
	if (tags->rqs && set->ops->exit_request) {
1443
		int i;
1444

1445 1446
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1447
				continue;
1448 1449
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1450
			tags->rqs[i] = NULL;
1451
		}
1452 1453
	}

1454 1455
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1456
		list_del_init(&page->lru);
1457 1458 1459 1460 1461
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1462 1463 1464
		__free_pages(page, page->private);
	}

1465
	kfree(tags->rqs);
1466

1467
	blk_mq_free_tags(tags);
1468 1469 1470 1471
}

static size_t order_to_size(unsigned int order)
{
1472
	return (size_t)PAGE_SIZE << order;
1473 1474
}

1475 1476
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1477
{
1478
	struct blk_mq_tags *tags;
1479 1480 1481
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1482
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1483 1484
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1485 1486
	if (!tags)
		return NULL;
1487

1488 1489
	INIT_LIST_HEAD(&tags->page_list);

1490 1491 1492
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1493 1494 1495 1496
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1497 1498 1499 1500 1501

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1502
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1503
				cache_line_size());
1504
	left = rq_size * set->queue_depth;
1505

1506
	for (i = 0; i < set->queue_depth; ) {
1507 1508 1509 1510 1511
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1512
		while (this_order && left < order_to_size(this_order - 1))
1513 1514 1515
			this_order--;

		do {
1516
			page = alloc_pages_node(set->numa_node,
1517
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1518
				this_order);
1519 1520 1521 1522 1523 1524 1525 1526 1527
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1528
			goto fail;
1529 1530

		page->private = this_order;
1531
		list_add_tail(&page->lru, &tags->page_list);
1532 1533

		p = page_address(page);
1534 1535 1536 1537 1538
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1539
		entries_per_page = order_to_size(this_order) / rq_size;
1540
		to_do = min(entries_per_page, set->queue_depth - i);
1541 1542
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1543 1544 1545 1546
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1547 1548
						set->numa_node)) {
					tags->rqs[i] = NULL;
1549
					goto fail;
1550
				}
1551 1552
			}

1553 1554 1555 1556
			p += rq_size;
			i++;
		}
	}
1557
	return tags;
1558

1559 1560 1561
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1562 1563
}

J
Jens Axboe 已提交
1564 1565 1566 1567 1568
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1569
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1570
{
1571
	struct blk_mq_hw_ctx *hctx;
1572 1573 1574
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1575
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1576
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1577 1578 1579 1580 1581 1582 1583 1584 1585

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1586
		return 0;
1587

J
Jens Axboe 已提交
1588 1589 1590
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1591 1592

	blk_mq_run_hw_queue(hctx, true);
1593
	return 0;
1594 1595
}

1596
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1597
{
1598 1599
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1600 1601
}

1602
/* hctx->ctxs will be freed in queue's release handler */
1603 1604 1605 1606
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1607 1608
	unsigned flush_start_tag = set->queue_depth;

1609 1610
	blk_mq_tag_idle(hctx);

1611 1612 1613 1614 1615
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1616 1617 1618
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1619
	blk_mq_remove_cpuhp(hctx);
1620
	blk_free_flush_queue(hctx->fq);
1621
	sbitmap_free(&hctx->ctx_map);
1622 1623
}

M
Ming Lei 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1633
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1643
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1644 1645 1646
		free_cpumask_var(hctx->cpumask);
}

1647 1648 1649
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1650
{
1651
	int node;
1652
	unsigned flush_start_tag = set->queue_depth;
1653 1654 1655 1656 1657

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1658
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1659 1660 1661 1662 1663
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1664
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1665

1666
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1667 1668

	hctx->tags = set->tags[hctx_idx];
1669 1670

	/*
1671 1672
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1673
	 */
1674 1675 1676 1677
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1678

1679 1680
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1681
		goto free_ctxs;
1682

1683
	hctx->nr_ctx = 0;
1684

1685 1686 1687
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1688

1689 1690 1691
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1692

1693 1694 1695 1696 1697
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1698

1699
	return 0;
1700

1701 1702 1703 1704 1705
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1706
 free_bitmap:
1707
	sbitmap_free(&hctx->ctx_map);
1708 1709 1710
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1711
	blk_mq_remove_cpuhp(hctx);
1712 1713
	return -1;
}
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1734
		hctx = blk_mq_map_queue(q, i);
1735

1736 1737 1738 1739 1740
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1741
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1742 1743 1744
	}
}

1745 1746
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1747 1748 1749 1750
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1751
	struct blk_mq_tag_set *set = q->tag_set;
1752

1753 1754 1755 1756 1757
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1758
	queue_for_each_hw_ctx(q, hctx, i) {
1759
		cpumask_clear(hctx->cpumask);
1760 1761 1762 1763 1764 1765
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
1766
	for_each_possible_cpu(i) {
1767
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1768
		if (!cpumask_test_cpu(i, online_mask))
1769 1770
			continue;

1771
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
1772
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
1773

1774
		cpumask_set_cpu(i, hctx->cpumask);
1775 1776 1777
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1778

1779 1780
	mutex_unlock(&q->sysfs_lock);

1781
	queue_for_each_hw_ctx(q, hctx, i) {
1782
		/*
1783 1784
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1785 1786 1787 1788 1789 1790
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1791
			hctx->tags = NULL;
1792 1793 1794
			continue;
		}

M
Ming Lei 已提交
1795 1796 1797 1798 1799 1800
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1801 1802 1803 1804 1805
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1806
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1807

1808 1809 1810
		/*
		 * Initialize batch roundrobin counts
		 */
1811 1812 1813
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1814 1815
}

1816
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1817 1818 1819 1820
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1832 1833 1834

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1835
		queue_set_hctx_shared(q, shared);
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1846 1847 1848 1849 1850 1851
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1852 1853 1854 1855 1856 1857 1858 1859 1860
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1861 1862 1863 1864 1865 1866 1867 1868 1869

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1870
	list_add_tail(&q->tag_set_list, &set->tag_list);
1871

1872 1873 1874
	mutex_unlock(&set->tag_list_lock);
}

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1887 1888 1889 1890
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1891
		kfree(hctx);
1892
	}
1893

1894 1895
	q->mq_map = NULL;

1896 1897 1898 1899 1900 1901
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1902
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
1918 1919
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
1920
{
K
Keith Busch 已提交
1921 1922
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1923

K
Keith Busch 已提交
1924
	blk_mq_sysfs_unregister(q);
1925
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
1926
		int node;
1927

K
Keith Busch 已提交
1928 1929 1930 1931
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
1932 1933
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1934
		if (!hctxs[i])
K
Keith Busch 已提交
1935
			break;
1936

1937
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
1938 1939 1940 1941 1942
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
1943

1944
		atomic_set(&hctxs[i]->nr_active, 0);
1945
		hctxs[i]->numa_node = node;
1946
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
1947 1948 1949 1950 1951 1952 1953 1954

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
1955
	}
K
Keith Busch 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
1980 1981 1982
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
1983 1984
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
1985
		goto err_exit;
K
Keith Busch 已提交
1986 1987 1988 1989 1990 1991

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

1992
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
1993 1994 1995 1996

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
1997

1998
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
1999
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2000 2001 2002

	q->nr_queues = nr_cpu_ids;

2003
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2004

2005 2006 2007
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2008 2009
	q->sg_reserved_size = INT_MAX;

2010
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2011 2012 2013
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2014 2015 2016 2017 2018
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2019 2020 2021 2022 2023
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2024 2025
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2026

2027
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2028

2029
	get_online_cpus();
2030 2031
	mutex_lock(&all_q_mutex);

2032
	list_add_tail(&q->all_q_node, &all_q_list);
2033
	blk_mq_add_queue_tag_set(set, q);
2034
	blk_mq_map_swqueue(q, cpu_online_mask);
2035

2036
	mutex_unlock(&all_q_mutex);
2037
	put_online_cpus();
2038

2039
	return q;
2040

2041
err_hctxs:
K
Keith Busch 已提交
2042
	kfree(q->queue_hw_ctx);
2043
err_percpu:
K
Keith Busch 已提交
2044
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2045 2046
err_exit:
	q->mq_ops = NULL;
2047 2048
	return ERR_PTR(-ENOMEM);
}
2049
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2050 2051 2052

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2053
	struct blk_mq_tag_set	*set = q->tag_set;
2054

2055 2056 2057 2058
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2059 2060
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2061 2062
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2063 2064 2065
}

/* Basically redo blk_mq_init_queue with queue frozen */
2066 2067
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2068
{
2069
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2070

2071 2072
	blk_mq_sysfs_unregister(q);

2073 2074 2075 2076 2077 2078
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2079
	blk_mq_map_swqueue(q, online_mask);
2080

2081
	blk_mq_sysfs_register(q);
2082 2083
}

2084 2085 2086 2087 2088 2089 2090 2091
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2092 2093 2094 2095
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2096 2097 2098 2099 2100 2101 2102 2103 2104
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2105
	list_for_each_entry(q, &all_q_list, all_q_node) {
2106 2107
		blk_mq_freeze_queue_wait(q);

2108 2109 2110 2111 2112 2113 2114
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2115
	list_for_each_entry(q, &all_q_list, all_q_node)
2116
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2117 2118 2119 2120

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2121
	mutex_unlock(&all_q_mutex);
2122 2123 2124 2125
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2126
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
 * is ignored.
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2153 2154
}

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2209 2210 2211 2212 2213 2214
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2215 2216
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2217 2218
	int ret;

B
Bart Van Assche 已提交
2219 2220
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2221 2222
	if (!set->nr_hw_queues)
		return -EINVAL;
2223
	if (!set->queue_depth)
2224 2225 2226 2227
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2228
	if (!set->ops->queue_rq)
2229 2230
		return -EINVAL;

2231 2232 2233 2234 2235
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2236

2237 2238 2239 2240 2241 2242 2243 2244 2245
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2246 2247 2248 2249 2250
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2251

K
Keith Busch 已提交
2252
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2253 2254
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2255
		return -ENOMEM;
2256

2257 2258 2259
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2260 2261 2262
	if (!set->mq_map)
		goto out_free_tags;

2263 2264 2265 2266 2267 2268 2269 2270 2271
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2272
		goto out_free_mq_map;
2273

2274 2275 2276
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2277
	return 0;
2278 2279 2280 2281 2282

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2283 2284
	kfree(set->tags);
	set->tags = NULL;
2285
	return ret;
2286 2287 2288 2289 2290 2291 2292
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2293
	for (i = 0; i < nr_cpu_ids; i++) {
2294
		if (set->tags[i])
2295 2296 2297
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

2298 2299 2300
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2301
	kfree(set->tags);
2302
	set->tags = NULL;
2303 2304 2305
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2317 2318
		if (!hctx->tags)
			continue;
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2369 2370
static int __init blk_mq_init(void)
{
2371 2372
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2373

2374 2375 2376
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2377 2378 2379
	return 0;
}
subsys_initcall(blk_mq_init);