1. 12 2月, 2015 5 次提交
    • J
      mm: memcontrol: default hierarchy interface for memory · 241994ed
      Johannes Weiner 提交于
      Introduce the basic control files to account, partition, and limit
      memory using cgroups in default hierarchy mode.
      
      This interface versioning allows us to address fundamental design
      issues in the existing memory cgroup interface, further explained
      below.  The old interface will be maintained indefinitely, but a
      clearer model and improved workload performance should encourage
      existing users to switch over to the new one eventually.
      
      The control files are thus:
      
        - memory.current shows the current consumption of the cgroup and its
          descendants, in bytes.
      
        - memory.low configures the lower end of the cgroup's expected
          memory consumption range.  The kernel considers memory below that
          boundary to be a reserve - the minimum that the workload needs in
          order to make forward progress - and generally avoids reclaiming
          it, unless there is an imminent risk of entering an OOM situation.
      
        - memory.high configures the upper end of the cgroup's expected
          memory consumption range.  A cgroup whose consumption grows beyond
          this threshold is forced into direct reclaim, to work off the
          excess and to throttle new allocations heavily, but is generally
          allowed to continue and the OOM killer is not invoked.
      
        - memory.max configures the hard maximum amount of memory that the
          cgroup is allowed to consume before the OOM killer is invoked.
      
        - memory.events shows event counters that indicate how often the
          cgroup was reclaimed while below memory.low, how often it was
          forced to reclaim excess beyond memory.high, how often it hit
          memory.max, and how often it entered OOM due to memory.max.  This
          allows users to identify configuration problems when observing a
          degradation in workload performance.  An overcommitted system will
          have an increased rate of low boundary breaches, whereas increased
          rates of high limit breaches, maximum hits, or even OOM situations
          will indicate internally overcommitted cgroups.
      
      For existing users of memory cgroups, the following deviations from
      the current interface are worth pointing out and explaining:
      
        - The original lower boundary, the soft limit, is defined as a limit
          that is per default unset.  As a result, the set of cgroups that
          global reclaim prefers is opt-in, rather than opt-out.  The costs
          for optimizing these mostly negative lookups are so high that the
          implementation, despite its enormous size, does not even provide
          the basic desirable behavior.  First off, the soft limit has no
          hierarchical meaning.  All configured groups are organized in a
          global rbtree and treated like equal peers, regardless where they
          are located in the hierarchy.  This makes subtree delegation
          impossible.  Second, the soft limit reclaim pass is so aggressive
          that it not just introduces high allocation latencies into the
          system, but also impacts system performance due to overreclaim, to
          the point where the feature becomes self-defeating.
      
          The memory.low boundary on the other hand is a top-down allocated
          reserve.  A cgroup enjoys reclaim protection when it and all its
          ancestors are below their low boundaries, which makes delegation
          of subtrees possible.  Secondly, new cgroups have no reserve per
          default and in the common case most cgroups are eligible for the
          preferred reclaim pass.  This allows the new low boundary to be
          efficiently implemented with just a minor addition to the generic
          reclaim code, without the need for out-of-band data structures and
          reclaim passes.  Because the generic reclaim code considers all
          cgroups except for the ones running low in the preferred first
          reclaim pass, overreclaim of individual groups is eliminated as
          well, resulting in much better overall workload performance.
      
        - The original high boundary, the hard limit, is defined as a strict
          limit that can not budge, even if the OOM killer has to be called.
          But this generally goes against the goal of making the most out of
          the available memory.  The memory consumption of workloads varies
          during runtime, and that requires users to overcommit.  But doing
          that with a strict upper limit requires either a fairly accurate
          prediction of the working set size or adding slack to the limit.
          Since working set size estimation is hard and error prone, and
          getting it wrong results in OOM kills, most users tend to err on
          the side of a looser limit and end up wasting precious resources.
      
          The memory.high boundary on the other hand can be set much more
          conservatively.  When hit, it throttles allocations by forcing
          them into direct reclaim to work off the excess, but it never
          invokes the OOM killer.  As a result, a high boundary that is
          chosen too aggressively will not terminate the processes, but
          instead it will lead to gradual performance degradation.  The user
          can monitor this and make corrections until the minimal memory
          footprint that still gives acceptable performance is found.
      
          In extreme cases, with many concurrent allocations and a complete
          breakdown of reclaim progress within the group, the high boundary
          can be exceeded.  But even then it's mostly better to satisfy the
          allocation from the slack available in other groups or the rest of
          the system than killing the group.  Otherwise, memory.max is there
          to limit this type of spillover and ultimately contain buggy or
          even malicious applications.
      
        - The original control file names are unwieldy and inconsistent in
          many different ways.  For example, the upper boundary hit count is
          exported in the memory.failcnt file, but an OOM event count has to
          be manually counted by listening to memory.oom_control events, and
          lower boundary / soft limit events have to be counted by first
          setting a threshold for that value and then counting those events.
          Also, usage and limit files encode their units in the filename.
          That makes the filenames very long, even though this is not
          information that a user needs to be reminded of every time they
          type out those names.
      
          To address these naming issues, as well as to signal clearly that
          the new interface carries a new configuration model, the naming
          conventions in it necessarily differ from the old interface.
      
        - The original limit files indicate the state of an unset limit with
          a very high number, and a configured limit can be unset by echoing
          -1 into those files.  But that very high number is implementation
          and architecture dependent and not very descriptive.  And while -1
          can be understood as an underflow into the highest possible value,
          -2 or -10M etc. do not work, so it's not inconsistent.
      
          memory.low, memory.high, and memory.max will use the string
          "infinity" to indicate and set the highest possible value.
      
      [akpm@linux-foundation.org: use seq_puts() for basic strings]
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Vladimir Davydov <vdavydov@parallels.com>
      Cc: Greg Thelen <gthelen@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      241994ed
    • J
      mm: page_counter: pull "-1" handling out of page_counter_memparse() · 650c5e56
      Johannes Weiner 提交于
      The unified hierarchy interface for memory cgroups will no longer use "-1"
      to mean maximum possible resource value.  In preparation for this, make
      the string an argument and let the caller supply it.
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Vladimir Davydov <vdavydov@parallels.com>
      Cc: Greg Thelen <gthelen@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      650c5e56
    • G
      memcg: add BUILD_BUG_ON() for string tables · 0ca44b14
      Greg Thelen 提交于
      Use BUILD_BUG_ON() to compile assert that memcg string tables are in sync
      with corresponding enums.  There aren't currently any issues with these
      tables.  This is just defensive.
      Signed-off-by: NGreg Thelen <gthelen@google.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0ca44b14
    • V
      vmscan: force scan offline memory cgroups · 90cbc250
      Vladimir Davydov 提交于
      Since commit b2052564 ("mm: memcontrol: continue cache reclaim from
      offlined groups") pages charged to a memory cgroup are not reparented when
      the cgroup is removed.  Instead, they are supposed to be reclaimed in a
      regular way, along with pages accounted to online memory cgroups.
      
      However, an lruvec of an offline memory cgroup will sooner or later get so
      small that it will be scanned only at low scan priorities (see
      get_scan_count()).  Therefore, if there are enough reclaimable pages in
      big lruvecs, pages accounted to offline memory cgroups will never be
      scanned at all, wasting memory.
      
      Fix this by unconditionally forcing scanning dead lruvecs from kswapd.
      
      [akpm@linux-foundation.org: fix build]
      Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      90cbc250
    • J
      mm: memcontrol: track move_lock state internally · 6de22619
      Johannes Weiner 提交于
      The complexity of memcg page stat synchronization is currently leaking
      into the callsites, forcing them to keep track of the move_lock state and
      the IRQ flags.  Simplify the API by tracking it in the memcg.
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Reviewed-by: NVladimir Davydov <vdavydov@parallels.com>
      Cc: Wu Fengguang <fengguang.wu@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6de22619
  2. 11 2月, 2015 4 次提交
  3. 06 2月, 2015 1 次提交
  4. 27 1月, 2015 1 次提交
  5. 09 1月, 2015 2 次提交
  6. 14 12月, 2014 11 次提交
  7. 11 12月, 2014 16 次提交