workqueue.c 145.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72

T
Tejun Heo 已提交
73 74 75
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
76
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80

81 82
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
83

84
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85

86
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
87
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88

89 90 91
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

92 93 94
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
95 96 97 98 99
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
100
	 * all cpus.  Give MIN_NICE.
101
	 */
102 103
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 105

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
106
};
L
Linus Torvalds 已提交
107 108

/*
T
Tejun Heo 已提交
109 110
 * Structure fields follow one of the following exclusion rules.
 *
111 112
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
113
 *
114 115 116
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
117
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
118
 *
119 120 121 122
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
123
 *
124
 * A: pool->attach_mutex protected.
125
 *
126
 * PL: wq_pool_mutex protected.
127
 *
128
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129
 *
130 131 132 133 134
 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 *
 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 *      sched-RCU for reads.
 *
135 136
 * WQ: wq->mutex protected.
 *
137
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
138 139
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
140 141
 */

142
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
143

144
struct worker_pool {
145
	spinlock_t		lock;		/* the pool lock */
146
	int			cpu;		/* I: the associated cpu */
147
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
148
	int			id;		/* I: pool ID */
149
	unsigned int		flags;		/* X: flags */
150 151 152

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
153 154

	/* nr_idle includes the ones off idle_list for rebinding */
155 156 157 158 159 160
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

161
	/* a workers is either on busy_hash or idle_list, or the manager */
162 163 164
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

165
	/* see manage_workers() for details on the two manager mutexes */
166
	struct mutex		manager_arb;	/* manager arbitration */
167
	struct worker		*manager;	/* L: purely informational */
168 169
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
170
	struct completion	*detach_completion; /* all workers detached */
171

172
	struct ida		worker_ida;	/* worker IDs for task name */
173

T
Tejun Heo 已提交
174
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
175 176
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
177

178 179 180 181 182 183
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
184 185 186 187 188 189

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
190 191
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
192
/*
193 194 195 196
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
197
 */
198
struct pool_workqueue {
199
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
200
	struct workqueue_struct *wq;		/* I: the owning workqueue */
201 202
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
203
	int			refcnt;		/* L: reference count */
204 205
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
206
	int			nr_active;	/* L: nr of active works */
207
	int			max_active;	/* L: max active works */
208
	struct list_head	delayed_works;	/* L: delayed works */
209
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
210
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
211 212 213 214 215

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
216
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
217 218 219
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
220
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
221

222 223 224 225
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
226 227
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
228 229 230
	struct completion	done;		/* flush completion */
};

231 232
struct wq_device;

L
Linus Torvalds 已提交
233
/*
234 235
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
236 237
 */
struct workqueue_struct {
238
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
239
	struct list_head	list;		/* PR: list of all workqueues */
240

241 242 243
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
244
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
245 246 247
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
248

249
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
250 251
	struct worker		*rescuer;	/* I: rescue worker */

252
	int			nr_drainers;	/* WQ: drain in progress */
253
	int			saved_max_active; /* WQ: saved pwq max_active */
254

255 256
	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
257

258 259 260
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
261
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
262
	struct lockdep_map	lockdep_map;
263
#endif
264
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
265

266 267 268 269 270 271 272
	/*
	 * Destruction of workqueue_struct is sched-RCU protected to allow
	 * walking the workqueues list without grabbing wq_pool_mutex.
	 * This is used to dump all workqueues from sysrq.
	 */
	struct rcu_head		rcu;

273 274 275
	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
276
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
277 278
};

279 280
static struct kmem_cache *pwq_cache;

281 282 283
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

284 285 286
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

287
/* see the comment above the definition of WQ_POWER_EFFICIENT */
288
static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
289 290
module_param_named(power_efficient, wq_power_efficient, bool, 0444);

291 292
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

293 294 295
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

296
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
297
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
298

299
static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
300
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
301

302
static cpumask_var_t wq_unbound_cpumask; /* PL: low level cpumask for all unbound wqs */
303

304 305 306 307
/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

308
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
309

310
/* PL: hash of all unbound pools keyed by pool->attrs */
311 312
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

313
/* I: attributes used when instantiating standard unbound pools on demand */
314 315
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

316 317 318
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

319
struct workqueue_struct *system_wq __read_mostly;
320
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
321
struct workqueue_struct *system_highpri_wq __read_mostly;
322
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
323
struct workqueue_struct *system_long_wq __read_mostly;
324
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
325
struct workqueue_struct *system_unbound_wq __read_mostly;
326
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
327
struct workqueue_struct *system_freezable_wq __read_mostly;
328
EXPORT_SYMBOL_GPL(system_freezable_wq);
329 330 331 332
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
333

334
static int worker_thread(void *__worker);
335
static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
336

337 338 339
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

340
#define assert_rcu_or_pool_mutex()					\
341
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
342 343
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
344

345
#define assert_rcu_or_wq_mutex(wq)					\
346
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
347
			   lockdep_is_held(&wq->mutex),			\
348
			   "sched RCU or wq->mutex should be held")
349

350 351 352 353 354 355
#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
			   lockdep_is_held(&wq->mutex) ||		\
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU, wq->mutex or wq_pool_mutex should be held")

356 357 358
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
359
	     (pool)++)
360

T
Tejun Heo 已提交
361 362 363
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
364
 * @pi: integer used for iteration
365
 *
366 367 368
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
369 370 371
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
372
 */
373 374
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
375
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
376
		else
T
Tejun Heo 已提交
377

378 379 380 381 382
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
383
 * This must be called with @pool->attach_mutex.
384 385 386 387
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
388 389
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
390
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
391 392
		else

393 394 395 396
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
397
 *
398
 * This must be called either with wq->mutex held or sched RCU read locked.
399 400
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
401 402 403
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
404 405
 */
#define for_each_pwq(pwq, wq)						\
406
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
407
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
408
		else
409

410 411 412 413
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

414 415 416 417 418
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
454
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
490
	.debug_hint	= work_debug_hint,
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

521 522 523 524 525 526 527
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

528 529 530 531 532
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

533 534 535 536 537 538 539
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
540 541 542 543
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

544
	lockdep_assert_held(&wq_pool_mutex);
545

546 547
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
548
	if (ret >= 0) {
T
Tejun Heo 已提交
549
		pool->id = ret;
550 551
		return 0;
	}
552
	return ret;
553 554
}

555 556 557 558 559
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
560 561
 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 * read locked.
562 563
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
564 565
 *
 * Return: The unbound pool_workqueue for @node.
566 567 568 569
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
570
	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
571 572 573
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
589

590
/*
591 592
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
593
 * is cleared and the high bits contain OFFQ flags and pool ID.
594
 *
595 596
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
597 598
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
599
 *
600
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
601
 * corresponding to a work.  Pool is available once the work has been
602
 * queued anywhere after initialization until it is sync canceled.  pwq is
603
 * available only while the work item is queued.
604
 *
605 606 607 608
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
609
 */
610 611
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
612
{
613
	WARN_ON_ONCE(!work_pending(work));
614 615
	atomic_long_set(&work->data, data | flags | work_static(work));
}
616

617
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
618 619
			 unsigned long extra_flags)
{
620 621
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
622 623
}

624 625 626 627 628 629 630
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

631 632
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
633
{
634 635 636 637 638 639 640
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
641
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
642
}
643

644
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
645
{
646 647
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
648 649
}

650
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
651
{
652
	unsigned long data = atomic_long_read(&work->data);
653

654
	if (data & WORK_STRUCT_PWQ)
655 656 657
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
658 659
}

660 661 662 663
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
664 665 666
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
667 668 669 670 671
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
672 673
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
674 675
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
676
{
677
	unsigned long data = atomic_long_read(&work->data);
678
	int pool_id;
679

680
	assert_rcu_or_pool_mutex();
681

682 683
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
684
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
685

686 687
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
688 689
		return NULL;

690
	return idr_find(&worker_pool_idr, pool_id);
691 692 693 694 695 696
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
697
 * Return: The worker_pool ID @work was last associated with.
698 699 700 701
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
702 703
	unsigned long data = atomic_long_read(&work->data);

704 705
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
706
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
707

708
	return data >> WORK_OFFQ_POOL_SHIFT;
709 710
}

711 712
static void mark_work_canceling(struct work_struct *work)
{
713
	unsigned long pool_id = get_work_pool_id(work);
714

715 716
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
717 718 719 720 721 722
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

723
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
724 725
}

726
/*
727 728
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
729
 * they're being called with pool->lock held.
730 731
 */

732
static bool __need_more_worker(struct worker_pool *pool)
733
{
734
	return !atomic_read(&pool->nr_running);
735 736
}

737
/*
738 739
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
740 741
 *
 * Note that, because unbound workers never contribute to nr_running, this
742
 * function will always return %true for unbound pools as long as the
743
 * worklist isn't empty.
744
 */
745
static bool need_more_worker(struct worker_pool *pool)
746
{
747
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
748
}
749

750
/* Can I start working?  Called from busy but !running workers. */
751
static bool may_start_working(struct worker_pool *pool)
752
{
753
	return pool->nr_idle;
754 755 756
}

/* Do I need to keep working?  Called from currently running workers. */
757
static bool keep_working(struct worker_pool *pool)
758
{
759 760
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
761 762 763
}

/* Do we need a new worker?  Called from manager. */
764
static bool need_to_create_worker(struct worker_pool *pool)
765
{
766
	return need_more_worker(pool) && !may_start_working(pool);
767
}
768

769
/* Do we have too many workers and should some go away? */
770
static bool too_many_workers(struct worker_pool *pool)
771
{
772
	bool managing = mutex_is_locked(&pool->manager_arb);
773 774
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
775 776

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
777 778
}

779
/*
780 781 782
 * Wake up functions.
 */

783 784
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
785
{
786
	if (unlikely(list_empty(&pool->idle_list)))
787 788
		return NULL;

789
	return list_first_entry(&pool->idle_list, struct worker, entry);
790 791 792 793
}

/**
 * wake_up_worker - wake up an idle worker
794
 * @pool: worker pool to wake worker from
795
 *
796
 * Wake up the first idle worker of @pool.
797 798
 *
 * CONTEXT:
799
 * spin_lock_irq(pool->lock).
800
 */
801
static void wake_up_worker(struct worker_pool *pool)
802
{
803
	struct worker *worker = first_idle_worker(pool);
804 805 806 807 808

	if (likely(worker))
		wake_up_process(worker->task);
}

809
/**
810 811 812 813 814 815 816 817 818 819
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
820
void wq_worker_waking_up(struct task_struct *task, int cpu)
821 822 823
{
	struct worker *worker = kthread_data(task);

824
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
825
		WARN_ON_ONCE(worker->pool->cpu != cpu);
826
		atomic_inc(&worker->pool->nr_running);
827
	}
828 829 830 831 832 833 834 835 836 837 838 839 840 841
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
842
 * Return:
843 844
 * Worker task on @cpu to wake up, %NULL if none.
 */
845
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
846 847
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
848
	struct worker_pool *pool;
849

850 851 852 853 854
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
855
	if (worker->flags & WORKER_NOT_RUNNING)
856 857
		return NULL;

858 859
	pool = worker->pool;

860
	/* this can only happen on the local cpu */
861
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
862
		return NULL;
863 864 865 866 867 868

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
869 870 871
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
872
	 * manipulating idle_list, so dereferencing idle_list without pool
873
	 * lock is safe.
874
	 */
875 876
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
877
		to_wakeup = first_idle_worker(pool);
878 879 880 881 882
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
883
 * @worker: self
884 885
 * @flags: flags to set
 *
886
 * Set @flags in @worker->flags and adjust nr_running accordingly.
887
 *
888
 * CONTEXT:
889
 * spin_lock_irq(pool->lock)
890
 */
891
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
892
{
893
	struct worker_pool *pool = worker->pool;
894

895 896
	WARN_ON_ONCE(worker->task != current);

897
	/* If transitioning into NOT_RUNNING, adjust nr_running. */
898 899
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
900
		atomic_dec(&pool->nr_running);
901 902
	}

903 904 905 906
	worker->flags |= flags;
}

/**
907
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
908
 * @worker: self
909 910
 * @flags: flags to clear
 *
911
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
912
 *
913
 * CONTEXT:
914
 * spin_lock_irq(pool->lock)
915 916 917
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
918
	struct worker_pool *pool = worker->pool;
919 920
	unsigned int oflags = worker->flags;

921 922
	WARN_ON_ONCE(worker->task != current);

923
	worker->flags &= ~flags;
924

925 926 927 928 929
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
930 931
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
932
			atomic_inc(&pool->nr_running);
933 934
}

935 936
/**
 * find_worker_executing_work - find worker which is executing a work
937
 * @pool: pool of interest
938 939
 * @work: work to find worker for
 *
940 941
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
942 943 944 945 946 947 948 949 950 951 952 953
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
954 955 956 957 958 959
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
960 961
 *
 * CONTEXT:
962
 * spin_lock_irq(pool->lock).
963
 *
964 965
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
966
 * otherwise.
967
 */
968
static struct worker *find_worker_executing_work(struct worker_pool *pool,
969
						 struct work_struct *work)
970
{
971 972
	struct worker *worker;

973
	hash_for_each_possible(pool->busy_hash, worker, hentry,
974 975 976
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
977 978 979
			return worker;

	return NULL;
980 981
}

982 983 984 985
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
986
 * @nextp: out parameter for nested worklist walking
987 988 989 990 991 992 993 994 995 996
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
997
 * spin_lock_irq(pool->lock).
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1081
static void pwq_activate_delayed_work(struct work_struct *work)
1082
{
1083
	struct pool_workqueue *pwq = get_work_pwq(work);
1084 1085

	trace_workqueue_activate_work(work);
1086
	move_linked_works(work, &pwq->pool->worklist, NULL);
1087
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1088
	pwq->nr_active++;
1089 1090
}

1091
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1092
{
1093
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1094 1095
						    struct work_struct, entry);

1096
	pwq_activate_delayed_work(work);
1097 1098
}

1099
/**
1100 1101
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1102 1103 1104
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1105
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1106 1107
 *
 * CONTEXT:
1108
 * spin_lock_irq(pool->lock).
1109
 */
1110
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1111
{
T
Tejun Heo 已提交
1112
	/* uncolored work items don't participate in flushing or nr_active */
1113
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1114
		goto out_put;
1115

1116
	pwq->nr_in_flight[color]--;
1117

1118 1119
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1120
		/* one down, submit a delayed one */
1121 1122
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1123 1124 1125
	}

	/* is flush in progress and are we at the flushing tip? */
1126
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1127
		goto out_put;
1128 1129

	/* are there still in-flight works? */
1130
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1131
		goto out_put;
1132

1133 1134
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1135 1136

	/*
1137
	 * If this was the last pwq, wake up the first flusher.  It
1138 1139
	 * will handle the rest.
	 */
1140 1141
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1142 1143
out_put:
	put_pwq(pwq);
1144 1145
}

1146
/**
1147
 * try_to_grab_pending - steal work item from worklist and disable irq
1148 1149
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1150
 * @flags: place to store irq state
1151 1152
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1153
 * stable state - idle, on timer or on worklist.
1154
 *
1155
 * Return:
1156 1157 1158
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1159 1160
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1161
 *
1162
 * Note:
1163
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1164 1165 1166
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1167 1168 1169 1170
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1171
 * This function is safe to call from any context including IRQ handler.
1172
 */
1173 1174
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1175
{
1176
	struct worker_pool *pool;
1177
	struct pool_workqueue *pwq;
1178

1179 1180
	local_irq_save(*flags);

1181 1182 1183 1184
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1185 1186 1187 1188 1189
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1190 1191 1192 1193 1194
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1195 1196 1197 1198 1199 1200 1201
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1202 1203
	pool = get_work_pool(work);
	if (!pool)
1204
		goto fail;
1205

1206
	spin_lock(&pool->lock);
1207
	/*
1208 1209 1210 1211 1212
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1213 1214
	 * item is currently queued on that pool.
	 */
1215 1216
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1217 1218 1219 1220 1221
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1222
		 * on the delayed_list, will confuse pwq->nr_active
1223 1224 1225 1226
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1227
			pwq_activate_delayed_work(work);
1228 1229

		list_del_init(&work->entry);
1230
		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1231

1232
		/* work->data points to pwq iff queued, point to pool */
1233 1234 1235 1236
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1237
	}
1238
	spin_unlock(&pool->lock);
1239 1240 1241 1242 1243
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1244
	return -EAGAIN;
1245 1246
}

T
Tejun Heo 已提交
1247
/**
1248
 * insert_work - insert a work into a pool
1249
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1250 1251 1252 1253
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1254
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1255
 * work_struct flags.
T
Tejun Heo 已提交
1256 1257
 *
 * CONTEXT:
1258
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1259
 */
1260 1261
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1262
{
1263
	struct worker_pool *pool = pwq->pool;
1264

T
Tejun Heo 已提交
1265
	/* we own @work, set data and link */
1266
	set_work_pwq(work, pwq, extra_flags);
1267
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1268
	get_pwq(pwq);
1269 1270

	/*
1271 1272 1273
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1274 1275 1276
	 */
	smp_mb();

1277 1278
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1279 1280
}

1281 1282
/*
 * Test whether @work is being queued from another work executing on the
1283
 * same workqueue.
1284 1285 1286
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1287 1288 1289 1290 1291 1292 1293
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1294
	return worker && worker->current_pwq->wq == wq;
1295 1296
}

1297
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1298 1299
			 struct work_struct *work)
{
1300
	struct pool_workqueue *pwq;
1301
	struct worker_pool *last_pool;
1302
	struct list_head *worklist;
1303
	unsigned int work_flags;
1304
	unsigned int req_cpu = cpu;
1305 1306 1307 1308 1309 1310 1311 1312

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1313

1314
	debug_work_activate(work);
1315

1316
	/* if draining, only works from the same workqueue are allowed */
1317
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1318
	    WARN_ON_ONCE(!is_chained_work(wq)))
1319
		return;
1320
retry:
1321 1322 1323
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1324
	/* pwq which will be used unless @work is executing elsewhere */
1325
	if (!(wq->flags & WQ_UNBOUND))
1326
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1327 1328
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1329

1330 1331 1332 1333 1334 1335 1336 1337
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1338

1339
		spin_lock(&last_pool->lock);
1340

1341
		worker = find_worker_executing_work(last_pool, work);
1342

1343 1344
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1345
		} else {
1346 1347
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1348
			spin_lock(&pwq->pool->lock);
1349
		}
1350
	} else {
1351
		spin_lock(&pwq->pool->lock);
1352 1353
	}

1354 1355 1356 1357
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1358 1359
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1373 1374
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1375

1376
	if (WARN_ON(!list_empty(&work->entry))) {
1377
		spin_unlock(&pwq->pool->lock);
1378 1379
		return;
	}
1380

1381 1382
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1383

1384
	if (likely(pwq->nr_active < pwq->max_active)) {
1385
		trace_workqueue_activate_work(work);
1386 1387
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1388 1389
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1390
		worklist = &pwq->delayed_works;
1391
	}
1392

1393
	insert_work(pwq, work, worklist, work_flags);
1394

1395
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1396 1397
}

1398
/**
1399 1400
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1401 1402 1403
 * @wq: workqueue to use
 * @work: work to queue
 *
1404 1405
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1406 1407
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1408
 */
1409 1410
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1411
{
1412
	bool ret = false;
1413
	unsigned long flags;
1414

1415
	local_irq_save(flags);
1416

1417
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1418
		__queue_work(cpu, wq, work);
1419
		ret = true;
1420
	}
1421

1422
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1423 1424
	return ret;
}
1425
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1426

1427
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1428
{
1429
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1430

1431
	/* should have been called from irqsafe timer with irq already off */
1432
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1433
}
1434
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1435

1436 1437
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1438
{
1439 1440 1441 1442 1443
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1444 1445
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1446

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1458
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1459

1460
	dwork->wq = wq;
1461
	dwork->cpu = cpu;
1462 1463 1464 1465 1466 1467
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1468 1469
}

1470 1471 1472 1473
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1474
 * @dwork: work to queue
1475 1476
 * @delay: number of jiffies to wait before queueing
 *
1477
 * Return: %false if @work was already on a queue, %true otherwise.  If
1478 1479
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1480
 */
1481 1482
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1483
{
1484
	struct work_struct *work = &dwork->work;
1485
	bool ret = false;
1486
	unsigned long flags;
1487

1488 1489
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1490

1491
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1492
		__queue_delayed_work(cpu, wq, dwork, delay);
1493
		ret = true;
1494
	}
1495

1496
	local_irq_restore(flags);
1497 1498
	return ret;
}
1499
EXPORT_SYMBOL(queue_delayed_work_on);
1500

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1513
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1514 1515
 * pending and its timer was modified.
 *
1516
 * This function is safe to call from any context including IRQ handler.
1517 1518 1519 1520 1521 1522 1523
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1524

1525 1526 1527
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1528

1529 1530 1531
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1532
	}
1533 1534

	/* -ENOENT from try_to_grab_pending() becomes %true */
1535 1536
	return ret;
}
1537 1538
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1539 1540 1541 1542 1543 1544 1545 1546
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1547
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1548 1549
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1550
{
1551
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1552

1553 1554 1555 1556
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1557

1558
	/* can't use worker_set_flags(), also called from create_worker() */
1559
	worker->flags |= WORKER_IDLE;
1560
	pool->nr_idle++;
1561
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1562 1563

	/* idle_list is LIFO */
1564
	list_add(&worker->entry, &pool->idle_list);
1565

1566 1567
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1568

1569
	/*
1570
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1571
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1572 1573
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1574
	 */
1575
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1576
		     pool->nr_workers == pool->nr_idle &&
1577
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1587
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1588 1589 1590
 */
static void worker_leave_idle(struct worker *worker)
{
1591
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1592

1593 1594
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1595
	worker_clr_flags(worker, WORKER_IDLE);
1596
	pool->nr_idle--;
T
Tejun Heo 已提交
1597 1598 1599
	list_del_init(&worker->entry);
}

1600
static struct worker *alloc_worker(int node)
T
Tejun Heo 已提交
1601 1602 1603
{
	struct worker *worker;

1604
	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
T
Tejun Heo 已提交
1605 1606
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1607
		INIT_LIST_HEAD(&worker->scheduled);
1608
		INIT_LIST_HEAD(&worker->node);
1609 1610
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1611
	}
T
Tejun Heo 已提交
1612 1613 1614
	return worker;
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1648 1649 1650 1651 1652
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1653 1654 1655
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1656 1657 1658 1659 1660 1661
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1662
	mutex_lock(&pool->attach_mutex);
1663 1664
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1665
		detach_completion = pool->detach_completion;
1666
	mutex_unlock(&pool->attach_mutex);
1667

1668 1669 1670
	/* clear leftover flags without pool->lock after it is detached */
	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);

1671 1672 1673 1674
	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1675 1676
/**
 * create_worker - create a new workqueue worker
1677
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1678
 *
1679
 * Create and start a new worker which is attached to @pool.
T
Tejun Heo 已提交
1680 1681 1682 1683
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1684
 * Return:
T
Tejun Heo 已提交
1685 1686
 * Pointer to the newly created worker.
 */
1687
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1688 1689
{
	struct worker *worker = NULL;
1690
	int id = -1;
1691
	char id_buf[16];
T
Tejun Heo 已提交
1692

1693 1694
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1695 1696
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1697

1698
	worker = alloc_worker(pool->node);
T
Tejun Heo 已提交
1699 1700 1701
	if (!worker)
		goto fail;

1702
	worker->pool = pool;
T
Tejun Heo 已提交
1703 1704
	worker->id = id;

1705
	if (pool->cpu >= 0)
1706 1707
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1708
	else
1709 1710
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1711
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1712
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1713 1714 1715
	if (IS_ERR(worker->task))
		goto fail;

1716 1717 1718 1719 1720
	set_user_nice(worker->task, pool->attrs->nice);

	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;

1721
	/* successful, attach the worker to the pool */
1722
	worker_attach_to_pool(worker, pool);
1723

1724 1725 1726 1727 1728 1729 1730
	/* start the newly created worker */
	spin_lock_irq(&pool->lock);
	worker->pool->nr_workers++;
	worker_enter_idle(worker);
	wake_up_process(worker->task);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1731
	return worker;
1732

T
Tejun Heo 已提交
1733
fail:
1734
	if (id >= 0)
1735
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1736 1737 1738 1739 1740 1741 1742 1743
	kfree(worker);
	return NULL;
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1744 1745
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1746 1747
 *
 * CONTEXT:
1748
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1749 1750 1751
 */
static void destroy_worker(struct worker *worker)
{
1752
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1753

1754 1755
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1756
	/* sanity check frenzy */
1757
	if (WARN_ON(worker->current_work) ||
1758 1759
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1760
		return;
T
Tejun Heo 已提交
1761

1762 1763
	pool->nr_workers--;
	pool->nr_idle--;
1764

T
Tejun Heo 已提交
1765
	list_del_init(&worker->entry);
1766
	worker->flags |= WORKER_DIE;
1767
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1768 1769
}

1770
static void idle_worker_timeout(unsigned long __pool)
1771
{
1772
	struct worker_pool *pool = (void *)__pool;
1773

1774
	spin_lock_irq(&pool->lock);
1775

1776
	while (too_many_workers(pool)) {
1777 1778 1779 1780
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1781
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1782 1783
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1784
		if (time_before(jiffies, expires)) {
1785
			mod_timer(&pool->idle_timer, expires);
1786
			break;
1787
		}
1788 1789

		destroy_worker(worker);
1790 1791
	}

1792
	spin_unlock_irq(&pool->lock);
1793
}
1794

1795
static void send_mayday(struct work_struct *work)
1796
{
1797 1798
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1799

1800
	lockdep_assert_held(&wq_mayday_lock);
1801

1802
	if (!wq->rescuer)
1803
		return;
1804 1805

	/* mayday mayday mayday */
1806
	if (list_empty(&pwq->mayday_node)) {
1807 1808 1809 1810 1811 1812
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1813
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1814
		wake_up_process(wq->rescuer->task);
1815
	}
1816 1817
}

1818
static void pool_mayday_timeout(unsigned long __pool)
1819
{
1820
	struct worker_pool *pool = (void *)__pool;
1821 1822
	struct work_struct *work;

1823 1824
	spin_lock_irq(&pool->lock);
	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1825

1826
	if (need_to_create_worker(pool)) {
1827 1828 1829 1830 1831 1832
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1833
		list_for_each_entry(work, &pool->worklist, entry)
1834
			send_mayday(work);
L
Linus Torvalds 已提交
1835
	}
1836

1837 1838
	spin_unlock(&wq_mayday_lock);
	spin_unlock_irq(&pool->lock);
1839

1840
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1841 1842
}

1843 1844
/**
 * maybe_create_worker - create a new worker if necessary
1845
 * @pool: pool to create a new worker for
1846
 *
1847
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1848 1849
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1850
 * sent to all rescuers with works scheduled on @pool to resolve
1851 1852
 * possible allocation deadlock.
 *
1853 1854
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1855 1856
 *
 * LOCKING:
1857
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1858 1859 1860
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 */
1861
static void maybe_create_worker(struct worker_pool *pool)
1862 1863
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1864
{
1865
restart:
1866
	spin_unlock_irq(&pool->lock);
1867

1868
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1869
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1870 1871

	while (true) {
1872
		if (create_worker(pool) || !need_to_create_worker(pool))
1873
			break;
L
Linus Torvalds 已提交
1874

1875
		schedule_timeout_interruptible(CREATE_COOLDOWN);
1876

1877
		if (!need_to_create_worker(pool))
1878 1879 1880
			break;
	}

1881
	del_timer_sync(&pool->mayday_timer);
1882
	spin_lock_irq(&pool->lock);
1883 1884 1885 1886 1887
	/*
	 * This is necessary even after a new worker was just successfully
	 * created as @pool->lock was dropped and the new worker might have
	 * already become busy.
	 */
1888
	if (need_to_create_worker(pool))
1889 1890 1891
		goto restart;
}

1892
/**
1893 1894
 * manage_workers - manage worker pool
 * @worker: self
1895
 *
1896
 * Assume the manager role and manage the worker pool @worker belongs
1897
 * to.  At any given time, there can be only zero or one manager per
1898
 * pool.  The exclusion is handled automatically by this function.
1899 1900 1901 1902
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1903 1904
 *
 * CONTEXT:
1905
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1906 1907
 * multiple times.  Does GFP_KERNEL allocations.
 *
1908
 * Return:
1909 1910 1911 1912
 * %false if the pool doesn't need management and the caller can safely
 * start processing works, %true if management function was performed and
 * the conditions that the caller verified before calling the function may
 * no longer be true.
1913
 */
1914
static bool manage_workers(struct worker *worker)
1915
{
1916
	struct worker_pool *pool = worker->pool;
1917

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	/*
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 */
1928
	if (!mutex_trylock(&pool->manager_arb))
1929
		return false;
1930
	pool->manager = worker;
1931

1932
	maybe_create_worker(pool);
1933

1934
	pool->manager = NULL;
1935
	mutex_unlock(&pool->manager_arb);
1936
	return true;
1937 1938
}

1939 1940
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
1941
 * @worker: self
1942 1943 1944 1945 1946 1947 1948 1949 1950
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
1951
 * spin_lock_irq(pool->lock) which is released and regrabbed.
1952
 */
T
Tejun Heo 已提交
1953
static void process_one_work(struct worker *worker, struct work_struct *work)
1954 1955
__releases(&pool->lock)
__acquires(&pool->lock)
1956
{
1957
	struct pool_workqueue *pwq = get_work_pwq(work);
1958
	struct worker_pool *pool = worker->pool;
1959
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1960
	int work_color;
1961
	struct worker *collision;
1962 1963 1964 1965 1966 1967 1968 1969
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
1970 1971 1972
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1973
#endif
1974
	/* ensure we're on the correct CPU */
1975
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1976
		     raw_smp_processor_id() != pool->cpu);
1977

1978 1979 1980 1981 1982 1983
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
1984
	collision = find_worker_executing_work(pool, work);
1985 1986 1987 1988 1989
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

1990
	/* claim and dequeue */
1991
	debug_work_deactivate(work);
1992
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
1993
	worker->current_work = work;
1994
	worker->current_func = work->func;
1995
	worker->current_pwq = pwq;
1996
	work_color = get_work_color(work);
1997

1998 1999
	list_del_init(&work->entry);

2000
	/*
2001 2002 2003 2004
	 * CPU intensive works don't participate in concurrency management.
	 * They're the scheduler's responsibility.  This takes @worker out
	 * of concurrency management and the next code block will chain
	 * execution of the pending work items.
2005 2006
	 */
	if (unlikely(cpu_intensive))
2007
		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2008

2009
	/*
2010 2011 2012 2013
	 * Wake up another worker if necessary.  The condition is always
	 * false for normal per-cpu workers since nr_running would always
	 * be >= 1 at this point.  This is used to chain execution of the
	 * pending work items for WORKER_NOT_RUNNING workers such as the
2014
	 * UNBOUND and CPU_INTENSIVE ones.
2015
	 */
2016
	if (need_more_worker(pool))
2017
		wake_up_worker(pool);
2018

2019
	/*
2020
	 * Record the last pool and clear PENDING which should be the last
2021
	 * update to @work.  Also, do this inside @pool->lock so that
2022 2023
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2024
	 */
2025
	set_work_pool_and_clear_pending(work, pool->id);
2026

2027
	spin_unlock_irq(&pool->lock);
2028

2029
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2030
	lock_map_acquire(&lockdep_map);
2031
	trace_workqueue_execute_start(work);
2032
	worker->current_func(work);
2033 2034 2035 2036 2037
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2038
	lock_map_release(&lockdep_map);
2039
	lock_map_release(&pwq->wq->lockdep_map);
2040 2041

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2042 2043
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2044 2045
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2046 2047 2048 2049
		debug_show_held_locks(current);
		dump_stack();
	}

2050 2051 2052 2053 2054
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
2055 2056
	 * stop_machine. At the same time, report a quiescent RCU state so
	 * the same condition doesn't freeze RCU.
2057
	 */
2058
	cond_resched_rcu_qs();
2059

2060
	spin_lock_irq(&pool->lock);
2061

2062 2063 2064 2065
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2066
	/* we're done with it, release */
2067
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2068
	worker->current_work = NULL;
2069
	worker->current_func = NULL;
2070
	worker->current_pwq = NULL;
2071
	worker->desc_valid = false;
2072
	pwq_dec_nr_in_flight(pwq, work_color);
2073 2074
}

2075 2076 2077 2078 2079 2080 2081 2082 2083
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2084
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2085 2086 2087
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2088
{
2089 2090
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2091
						struct work_struct, entry);
T
Tejun Heo 已提交
2092
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2093 2094 2095
	}
}

T
Tejun Heo 已提交
2096 2097
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2098
 * @__worker: self
T
Tejun Heo 已提交
2099
 *
2100 2101 2102 2103 2104
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2105 2106
 *
 * Return: 0
T
Tejun Heo 已提交
2107
 */
T
Tejun Heo 已提交
2108
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2109
{
T
Tejun Heo 已提交
2110
	struct worker *worker = __worker;
2111
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2112

2113 2114
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2115
woke_up:
2116
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2117

2118 2119
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2120
		spin_unlock_irq(&pool->lock);
2121 2122
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2123 2124

		set_task_comm(worker->task, "kworker/dying");
2125
		ida_simple_remove(&pool->worker_ida, worker->id);
2126 2127
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2128
		return 0;
T
Tejun Heo 已提交
2129
	}
2130

T
Tejun Heo 已提交
2131
	worker_leave_idle(worker);
2132
recheck:
2133
	/* no more worker necessary? */
2134
	if (!need_more_worker(pool))
2135 2136 2137
		goto sleep;

	/* do we need to manage? */
2138
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2139 2140
		goto recheck;

T
Tejun Heo 已提交
2141 2142 2143 2144 2145
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2146
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2147

2148
	/*
2149 2150 2151 2152 2153
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2154
	 */
2155
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2156 2157

	do {
T
Tejun Heo 已提交
2158
		struct work_struct *work =
2159
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2160 2161 2162 2163 2164 2165
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2166
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2167 2168 2169
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2170
		}
2171
	} while (keep_working(pool));
2172

2173
	worker_set_flags(worker, WORKER_PREP);
2174
sleep:
T
Tejun Heo 已提交
2175
	/*
2176 2177 2178 2179 2180
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2181 2182 2183
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2184
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2185 2186
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2187 2188
}

2189 2190
/**
 * rescuer_thread - the rescuer thread function
2191
 * @__rescuer: self
2192 2193
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2194
 * workqueue which has WQ_MEM_RECLAIM set.
2195
 *
2196
 * Regular work processing on a pool may block trying to create a new
2197 2198 2199 2200 2201
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2202 2203
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2204 2205 2206
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2207 2208
 *
 * Return: 0
2209
 */
2210
static int rescuer_thread(void *__rescuer)
2211
{
2212 2213
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2214
	struct list_head *scheduled = &rescuer->scheduled;
2215
	bool should_stop;
2216 2217

	set_user_nice(current, RESCUER_NICE_LEVEL);
2218 2219 2220 2221 2222 2223

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2224 2225 2226
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2227 2228 2229 2230 2231 2232 2233 2234 2235
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2236

2237
	/* see whether any pwq is asking for help */
2238
	spin_lock_irq(&wq_mayday_lock);
2239 2240 2241 2242

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2243
		struct worker_pool *pool = pwq->pool;
2244 2245 2246
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2247 2248
		list_del_init(&pwq->mayday_node);

2249
		spin_unlock_irq(&wq_mayday_lock);
2250

2251 2252 2253
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2254
		rescuer->pool = pool;
2255 2256 2257 2258 2259

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2260
		WARN_ON_ONCE(!list_empty(scheduled));
2261
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2262
			if (get_work_pwq(work) == pwq)
2263 2264
				move_linked_works(work, scheduled, &n);

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
		if (!list_empty(scheduled)) {
			process_scheduled_works(rescuer);

			/*
			 * The above execution of rescued work items could
			 * have created more to rescue through
			 * pwq_activate_first_delayed() or chained
			 * queueing.  Let's put @pwq back on mayday list so
			 * that such back-to-back work items, which may be
			 * being used to relieve memory pressure, don't
			 * incur MAYDAY_INTERVAL delay inbetween.
			 */
			if (need_to_create_worker(pool)) {
				spin_lock(&wq_mayday_lock);
				get_pwq(pwq);
				list_move_tail(&pwq->mayday_node, &wq->maydays);
				spin_unlock(&wq_mayday_lock);
			}
		}
2284

2285 2286
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
2287
		 * go away while we're still attached to it.
2288 2289 2290
		 */
		put_pwq(pwq);

2291
		/*
2292
		 * Leave this pool.  If need_more_worker() is %true, notify a
2293 2294 2295
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2296
		if (need_more_worker(pool))
2297
			wake_up_worker(pool);
2298

2299
		rescuer->pool = NULL;
2300 2301 2302 2303 2304
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&wq_mayday_lock);
2305 2306
	}

2307
	spin_unlock_irq(&wq_mayday_lock);
2308

2309 2310 2311 2312 2313 2314
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2315 2316
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2317 2318
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2319 2320
}

O
Oleg Nesterov 已提交
2321 2322 2323
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
2324
	struct task_struct	*task;	/* purely informational */
O
Oleg Nesterov 已提交
2325 2326 2327 2328 2329 2330 2331 2332
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2333 2334
/**
 * insert_wq_barrier - insert a barrier work
2335
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2336
 * @barr: wq_barrier to insert
2337 2338
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2339
 *
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2352
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2353 2354
 *
 * CONTEXT:
2355
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2356
 */
2357
static void insert_wq_barrier(struct pool_workqueue *pwq,
2358 2359
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2360
{
2361 2362 2363
	struct list_head *head;
	unsigned int linked = 0;

2364
	/*
2365
	 * debugobject calls are safe here even with pool->lock locked
2366 2367 2368 2369
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2370
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2371
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2372
	init_completion(&barr->done);
2373
	barr->task = current;
2374

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2390
	debug_work_activate(&barr->work);
2391
	insert_work(pwq, &barr->work, head,
2392
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2393 2394
}

2395
/**
2396
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2397 2398 2399 2400
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2401
 * Prepare pwqs for workqueue flushing.
2402
 *
2403 2404 2405 2406 2407
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2408 2409 2410 2411 2412 2413 2414
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2415
 * If @work_color is non-negative, all pwqs should have the same
2416 2417 2418 2419
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2420
 * mutex_lock(wq->mutex).
2421
 *
2422
 * Return:
2423 2424 2425
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2426
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2427
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2428
{
2429
	bool wait = false;
2430
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2431

2432
	if (flush_color >= 0) {
2433
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2434
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2435
	}
2436

2437
	for_each_pwq(pwq, wq) {
2438
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2439

2440
		spin_lock_irq(&pool->lock);
2441

2442
		if (flush_color >= 0) {
2443
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2444

2445 2446 2447
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2448 2449 2450
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2451

2452
		if (work_color >= 0) {
2453
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2454
			pwq->work_color = work_color;
2455
		}
L
Linus Torvalds 已提交
2456

2457
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2458
	}
2459

2460
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2461
		complete(&wq->first_flusher->done);
2462

2463
	return wait;
L
Linus Torvalds 已提交
2464 2465
}

2466
/**
L
Linus Torvalds 已提交
2467
 * flush_workqueue - ensure that any scheduled work has run to completion.
2468
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2469
 *
2470 2471
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2472
 */
2473
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2474
{
2475 2476 2477 2478 2479 2480
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2481

2482 2483
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2484

2485
	mutex_lock(&wq->mutex);
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2498
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2499 2500 2501 2502 2503
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2504
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2505 2506 2507

			wq->first_flusher = &this_flusher;

2508
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2509 2510 2511 2512 2513 2514 2515 2516
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2517
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2518
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2519
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2530
	mutex_unlock(&wq->mutex);
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2543
	mutex_lock(&wq->mutex);
2544

2545 2546 2547 2548
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2549 2550
	wq->first_flusher = NULL;

2551 2552
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2565 2566
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2586
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2587 2588 2589
		}

		if (list_empty(&wq->flusher_queue)) {
2590
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2591 2592 2593 2594 2595
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2596
		 * the new first flusher and arm pwqs.
2597
		 */
2598 2599
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2600 2601 2602 2603

		list_del_init(&next->list);
		wq->first_flusher = next;

2604
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2615
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2616
}
2617
EXPORT_SYMBOL(flush_workqueue);
L
Linus Torvalds 已提交
2618

2619 2620 2621 2622 2623 2624 2625
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
C
Chen Hanxiao 已提交
2626
 * repeatedly until it becomes empty.  The number of flushing is determined
2627 2628 2629 2630 2631 2632
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2633
	struct pool_workqueue *pwq;
2634 2635 2636 2637

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2638
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2639
	 */
2640
	mutex_lock(&wq->mutex);
2641
	if (!wq->nr_drainers++)
2642
		wq->flags |= __WQ_DRAINING;
2643
	mutex_unlock(&wq->mutex);
2644 2645 2646
reflush:
	flush_workqueue(wq);

2647
	mutex_lock(&wq->mutex);
2648

2649
	for_each_pwq(pwq, wq) {
2650
		bool drained;
2651

2652
		spin_lock_irq(&pwq->pool->lock);
2653
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2654
		spin_unlock_irq(&pwq->pool->lock);
2655 2656

		if (drained)
2657 2658 2659 2660
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2661
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2662
				wq->name, flush_cnt);
2663

2664
		mutex_unlock(&wq->mutex);
2665 2666 2667 2668
		goto reflush;
	}

	if (!--wq->nr_drainers)
2669
		wq->flags &= ~__WQ_DRAINING;
2670
	mutex_unlock(&wq->mutex);
2671 2672 2673
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2674
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2675
{
2676
	struct worker *worker = NULL;
2677
	struct worker_pool *pool;
2678
	struct pool_workqueue *pwq;
2679 2680

	might_sleep();
2681 2682

	local_irq_disable();
2683
	pool = get_work_pool(work);
2684 2685
	if (!pool) {
		local_irq_enable();
2686
		return false;
2687
	}
2688

2689
	spin_lock(&pool->lock);
2690
	/* see the comment in try_to_grab_pending() with the same code */
2691 2692 2693
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2694
			goto already_gone;
2695
	} else {
2696
		worker = find_worker_executing_work(pool, work);
2697
		if (!worker)
T
Tejun Heo 已提交
2698
			goto already_gone;
2699
		pwq = worker->current_pwq;
2700
	}
2701

2702
	insert_wq_barrier(pwq, barr, work, worker);
2703
	spin_unlock_irq(&pool->lock);
2704

2705 2706 2707 2708 2709 2710
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2711
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2712
		lock_map_acquire(&pwq->wq->lockdep_map);
2713
	else
2714 2715
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2716

2717
	return true;
T
Tejun Heo 已提交
2718
already_gone:
2719
	spin_unlock_irq(&pool->lock);
2720
	return false;
2721
}
2722 2723 2724 2725 2726

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2727 2728
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2729
 *
2730
 * Return:
2731 2732 2733 2734 2735
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2736 2737
	struct wq_barrier barr;

2738 2739 2740
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2741 2742 2743 2744 2745 2746 2747
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2748
}
2749
EXPORT_SYMBOL_GPL(flush_work);
2750

2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
struct cwt_wait {
	wait_queue_t		wait;
	struct work_struct	*work;
};

static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);

	if (cwait->work != key)
		return 0;
	return autoremove_wake_function(wait, mode, sync, key);
}

2765
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2766
{
2767
	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2768
	unsigned long flags;
2769 2770 2771
	int ret;

	do {
2772 2773
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
		 * If someone else is already canceling, wait for it to
		 * finish.  flush_work() doesn't work for PREEMPT_NONE
		 * because we may get scheduled between @work's completion
		 * and the other canceling task resuming and clearing
		 * CANCELING - flush_work() will return false immediately
		 * as @work is no longer busy, try_to_grab_pending() will
		 * return -ENOENT as @work is still being canceled and the
		 * other canceling task won't be able to clear CANCELING as
		 * we're hogging the CPU.
		 *
		 * Let's wait for completion using a waitqueue.  As this
		 * may lead to the thundering herd problem, use a custom
		 * wake function which matches @work along with exclusive
		 * wait and wakeup.
2788
		 */
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
		if (unlikely(ret == -ENOENT)) {
			struct cwt_wait cwait;

			init_wait(&cwait.wait);
			cwait.wait.func = cwt_wakefn;
			cwait.work = work;

			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
						  TASK_UNINTERRUPTIBLE);
			if (work_is_canceling(work))
				schedule();
			finish_wait(&cancel_waitq, &cwait.wait);
		}
2802 2803
	} while (unlikely(ret < 0));

2804 2805 2806 2807
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2808
	flush_work(work);
2809
	clear_work_data(work);
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819

	/*
	 * Paired with prepare_to_wait() above so that either
	 * waitqueue_active() is visible here or !work_is_canceling() is
	 * visible there.
	 */
	smp_mb();
	if (waitqueue_active(&cancel_waitq))
		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);

2820 2821 2822
	return ret;
}

2823
/**
2824 2825
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2826
 *
2827 2828 2829 2830
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2831
 *
2832 2833
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2834
 *
2835
 * The caller must ensure that the workqueue on which @work was last
2836
 * queued can't be destroyed before this function returns.
2837
 *
2838
 * Return:
2839
 * %true if @work was pending, %false otherwise.
2840
 */
2841
bool cancel_work_sync(struct work_struct *work)
2842
{
2843
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2844
}
2845
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2846

2847
/**
2848 2849
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2850
 *
2851 2852 2853
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2854
 *
2855
 * Return:
2856 2857
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2858
 */
2859 2860
bool flush_delayed_work(struct delayed_work *dwork)
{
2861
	local_irq_disable();
2862
	if (del_timer_sync(&dwork->timer))
2863
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2864
	local_irq_enable();
2865 2866 2867 2868
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2869
/**
2870 2871
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2872
 *
2873 2874 2875 2876 2877 2878 2879 2880 2881
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
2882
 *
2883
 * This function is safe to call from any context including IRQ handler.
2884
 */
2885
bool cancel_delayed_work(struct delayed_work *dwork)
2886
{
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2897 2898
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2899
	local_irq_restore(flags);
2900
	return ret;
2901
}
2902
EXPORT_SYMBOL(cancel_delayed_work);
2903

2904 2905 2906 2907 2908 2909
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
2910
 * Return:
2911 2912 2913
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2914
{
2915
	return __cancel_work_timer(&dwork->work, true);
2916
}
2917
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2918

2919
/**
2920
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2921 2922
 * @func: the function to call
 *
2923 2924
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2925
 * schedule_on_each_cpu() is very slow.
2926
 *
2927
 * Return:
2928
 * 0 on success, -errno on failure.
2929
 */
2930
int schedule_on_each_cpu(work_func_t func)
2931 2932
{
	int cpu;
2933
	struct work_struct __percpu *works;
2934

2935 2936
	works = alloc_percpu(struct work_struct);
	if (!works)
2937
		return -ENOMEM;
2938

2939 2940
	get_online_cpus();

2941
	for_each_online_cpu(cpu) {
2942 2943 2944
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2945
		schedule_work_on(cpu, work);
2946
	}
2947 2948 2949 2950

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2951
	put_online_cpus();
2952
	free_percpu(works);
2953 2954 2955
	return 0;
}

2956 2957 2958 2959 2960 2961 2962 2963 2964
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
2965
 * Return:	0 - function was executed
2966 2967
 *		1 - function was scheduled for execution
 */
2968
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2969 2970
{
	if (!in_interrupt()) {
2971
		fn(&ew->work);
2972 2973 2974
		return 0;
	}

2975
	INIT_WORK(&ew->work, fn);
2976 2977 2978 2979 2980 2981
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

2982 2983 2984
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
2985
 *
2986
 * Undo alloc_workqueue_attrs().
2987
 */
2988
void free_workqueue_attrs(struct workqueue_attrs *attrs)
2989
{
2990 2991 2992 2993
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
2994 2995
}

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3006
{
3007
	struct workqueue_attrs *attrs;
3008

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_copy(attrs->cpumask, cpu_possible_mask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
3020 3021
}

3022 3023
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
3024
{
3025 3026 3027 3028 3029 3030 3031 3032
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3033 3034
}

3035 3036
/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3037
{
3038
	u32 hash = 0;
3039

3040 3041 3042 3043
	hash = jhash_1word(attrs->nice, hash);
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
	return hash;
3044 3045
}

3046 3047 3048
/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
3049
{
3050 3051 3052 3053 3054
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
3055 3056
}

3057 3058 3059 3060
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
3061
 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3062 3063 3064 3065 3066 3067
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
 */
static int init_worker_pool(struct worker_pool *pool)
3068
{
3069 3070 3071 3072 3073 3074 3075 3076
	spin_lock_init(&pool->lock);
	pool->id = -1;
	pool->cpu = -1;
	pool->node = NUMA_NO_NODE;
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);
3077

3078 3079 3080
	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;
3081

3082 3083
	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);
3084

3085 3086 3087
	mutex_init(&pool->manager_arb);
	mutex_init(&pool->attach_mutex);
	INIT_LIST_HEAD(&pool->workers);
3088

3089 3090 3091
	ida_init(&pool->worker_ida);
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;
3092

3093 3094 3095 3096 3097
	/* shouldn't fail above this point */
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3098 3099
}

3100
static void rcu_free_wq(struct rcu_head *rcu)
3101
{
3102 3103
	struct workqueue_struct *wq =
		container_of(rcu, struct workqueue_struct, rcu);
3104

3105 3106
	if (!(wq->flags & WQ_UNBOUND))
		free_percpu(wq->cpu_pwqs);
3107
	else
3108
		free_workqueue_attrs(wq->unbound_attrs);
3109

3110 3111
	kfree(wq->rescuer);
	kfree(wq);
3112 3113
}

3114
static void rcu_free_pool(struct rcu_head *rcu)
3115
{
3116
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3117

3118 3119 3120
	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
3121 3122
}

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
 *
 * Should be called with wq_pool_mutex held.
 */
static void put_unbound_pool(struct worker_pool *pool)
3135
{
3136 3137
	DECLARE_COMPLETION_ONSTACK(detach_completion);
	struct worker *worker;
3138

3139
	lockdep_assert_held(&wq_pool_mutex);
3140

3141 3142
	if (--pool->refcnt)
		return;
3143

3144 3145 3146 3147
	/* sanity checks */
	if (WARN_ON(!(pool->cpu < 0)) ||
	    WARN_ON(!list_empty(&pool->worklist)))
		return;
3148

3149 3150 3151 3152
	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);
3153

3154 3155 3156 3157 3158 3159
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * attach_mutex.
	 */
	mutex_lock(&pool->manager_arb);
3160

3161 3162 3163 3164 3165
	spin_lock_irq(&pool->lock);
	while ((worker = first_idle_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3166

3167 3168 3169 3170
	mutex_lock(&pool->attach_mutex);
	if (!list_empty(&pool->workers))
		pool->detach_completion = &detach_completion;
	mutex_unlock(&pool->attach_mutex);
3171

3172 3173
	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);
3174

3175
	mutex_unlock(&pool->manager_arb);
3176

3177 3178 3179
	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);
3180

3181 3182
	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
3183 3184 3185
}

/**
3186 3187
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
3188
 *
3189 3190 3191 3192
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.
3193
 *
3194
 * Should be called with wq_pool_mutex held.
3195
 *
3196 3197
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3198
 */
3199
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3200
{
3201 3202 3203
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
	int node;
3204

3205
	lockdep_assert_held(&wq_pool_mutex);
3206

3207 3208 3209 3210 3211 3212 3213
	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			return pool;
		}
	}
3214

3215 3216 3217 3218 3219 3220 3221
	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
	copy_workqueue_attrs(pool->attrs, attrs);
3222 3223

	/*
3224 3225
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
3226
	 */
3227
	pool->attrs->no_numa = false;
3228

3229 3230 3231 3232 3233 3234 3235
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
3236 3237 3238 3239
			}
		}
	}

3240 3241
	if (worker_pool_assign_id(pool) < 0)
		goto fail;
3242

3243 3244 3245
	/* create and start the initial worker */
	if (!create_worker(pool))
		goto fail;
3246

3247 3248
	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3249

3250 3251 3252 3253 3254
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
3255 3256
}

3257
static void rcu_free_pwq(struct rcu_head *rcu)
T
Tejun Heo 已提交
3258
{
3259 3260
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
T
Tejun Heo 已提交
3261 3262
}

3263 3264 3265
/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
T
Tejun Heo 已提交
3266
 */
3267
static void pwq_unbound_release_workfn(struct work_struct *work)
T
Tejun Heo 已提交
3268
{
3269 3270 3271 3272 3273
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
	bool is_last;
T
Tejun Heo 已提交
3274

3275 3276
	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;
T
Tejun Heo 已提交
3277

3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
	mutex_lock(&wq->mutex);
	list_del_rcu(&pwq->pwqs_node);
	is_last = list_empty(&wq->pwqs);
	mutex_unlock(&wq->mutex);

	mutex_lock(&wq_pool_mutex);
	put_unbound_pool(pool);
	mutex_unlock(&wq_pool_mutex);

	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
T
Tejun Heo 已提交
3288

3289
	/*
3290 3291
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Schedule RCU free.
3292
	 */
3293 3294
	if (is_last)
		call_rcu_sched(&wq->rcu, rcu_free_wq);
3295 3296
}

T
Tejun Heo 已提交
3297
/**
3298 3299
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
 * @pwq: target pool_workqueue
3300
 *
3301 3302 3303
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
T
Tejun Heo 已提交
3304
 */
3305
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3306
{
3307 3308
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;
3309

3310 3311
	/* for @wq->saved_max_active */
	lockdep_assert_held(&wq->mutex);
3312

3313 3314 3315
	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;
T
Tejun Heo 已提交
3316

3317
	spin_lock_irq(&pwq->pool->lock);
3318

3319 3320 3321 3322 3323 3324 3325
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
		pwq->max_active = wq->saved_max_active;
3326

3327 3328 3329
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3330

3331 3332 3333 3334 3335 3336 3337 3338
		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
	} else {
		pwq->max_active = 0;
	}
3339

3340
	spin_unlock_irq(&pwq->pool->lock);
3341 3342
}

3343 3344 3345
/* initialize newly alloced @pwq which is associated with @wq and @pool */
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3346
{
3347
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3348

3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
	memset(pwq, 0, sizeof(*pwq));

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
	pwq->refcnt = 1;
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->pwqs_node);
	INIT_LIST_HEAD(&pwq->mayday_node);
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3359 3360
}

3361 3362
/* sync @pwq with the current state of its associated wq and link it */
static void link_pwq(struct pool_workqueue *pwq)
3363
{
3364
	struct workqueue_struct *wq = pwq->wq;
3365

3366
	lockdep_assert_held(&wq->mutex);
3367

3368 3369
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
3370 3371
		return;

3372 3373
	/* set the matching work_color */
	pwq->work_color = wq->work_color;
3374

3375 3376
	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);
3377

3378 3379 3380
	/* link in @pwq */
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
}
3381

3382 3383 3384 3385 3386 3387
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;
3388

3389
	lockdep_assert_held(&wq_pool_mutex);
3390

3391 3392 3393
	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;
3394

3395 3396 3397 3398 3399
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
	}
3400

3401 3402 3403
	init_pwq(pwq, wq, pool);
	return pwq;
}
3404 3405

/**
3406
 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3407
 * @attrs: the wq_attrs of the default pwq of the target workqueue
3408 3409 3410
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
3411
 *
3412 3413 3414
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
 * calculation.  The result is stored in @cpumask.
3415
 *
3416 3417 3418 3419
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
3420
 *
3421 3422 3423 3424 3425
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3426
 */
3427 3428
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
3429
{
3430 3431
	if (!wq_numa_enabled || attrs->no_numa)
		goto use_dfl;
3432

3433 3434 3435 3436
	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);
3437

3438 3439
	if (cpumask_empty(cpumask))
		goto use_dfl;
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3450 3451 3452 3453 3454 3455 3456
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

3457
	lockdep_assert_held(&wq_pool_mutex);
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3468 3469 3470 3471
/* context to store the prepared attrs & pwqs before applying */
struct apply_wqattrs_ctx {
	struct workqueue_struct	*wq;		/* target workqueue */
	struct workqueue_attrs	*attrs;		/* attrs to apply */
3472
	struct list_head	list;		/* queued for batching commit */
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
	struct pool_workqueue	*dfl_pwq;
	struct pool_workqueue	*pwq_tbl[];
};

/* free the resources after success or abort */
static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
{
	if (ctx) {
		int node;

		for_each_node(node)
			put_pwq_unlocked(ctx->pwq_tbl[node]);
		put_pwq_unlocked(ctx->dfl_pwq);

		free_workqueue_attrs(ctx->attrs);

		kfree(ctx);
	}
}

/* allocate the attrs and pwqs for later installation */
static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct *wq,
		      const struct workqueue_attrs *attrs)
3497
{
3498
	struct apply_wqattrs_ctx *ctx;
3499
	struct workqueue_attrs *new_attrs, *tmp_attrs;
3500
	int node;
3501

3502
	lockdep_assert_held(&wq_pool_mutex);
3503

3504 3505
	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
		      GFP_KERNEL);
3506

3507
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3508
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3509 3510
	if (!ctx || !new_attrs || !tmp_attrs)
		goto out_free;
3511

3512 3513 3514 3515 3516
	/*
	 * Calculate the attrs of the default pwq.
	 * If the user configured cpumask doesn't overlap with the
	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
	 */
3517
	copy_workqueue_attrs(new_attrs, attrs);
3518
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3519 3520
	if (unlikely(cpumask_empty(new_attrs->cpumask)))
		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3521

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
3534 3535 3536
	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!ctx->dfl_pwq)
		goto out_free;
3537 3538

	for_each_node(node) {
3539
		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3540 3541 3542
			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!ctx->pwq_tbl[node])
				goto out_free;
3543
		} else {
3544 3545
			ctx->dfl_pwq->refcnt++;
			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3546 3547 3548
		}
	}

3549 3550 3551
	/* save the user configured attrs and sanitize it. */
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3552
	ctx->attrs = new_attrs;
3553

3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
	ctx->wq = wq;
	free_workqueue_attrs(tmp_attrs);
	return ctx;

out_free:
	free_workqueue_attrs(tmp_attrs);
	free_workqueue_attrs(new_attrs);
	apply_wqattrs_cleanup(ctx);
	return NULL;
}

/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
{
	int node;
3569

3570
	/* all pwqs have been created successfully, let's install'em */
3571
	mutex_lock(&ctx->wq->mutex);
3572

3573
	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3574 3575

	/* save the previous pwq and install the new one */
3576
	for_each_node(node)
3577 3578
		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
							  ctx->pwq_tbl[node]);
3579 3580

	/* @dfl_pwq might not have been used, ensure it's linked */
3581 3582
	link_pwq(ctx->dfl_pwq);
	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3583

3584 3585
	mutex_unlock(&ctx->wq->mutex);
}
3586

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
static void apply_wqattrs_lock(void)
{
	/* CPUs should stay stable across pwq creations and installations */
	get_online_cpus();
	mutex_lock(&wq_pool_mutex);
}

static void apply_wqattrs_unlock(void)
{
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
}

static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
3602 3603 3604
{
	struct apply_wqattrs_ctx *ctx;
	int ret = -ENOMEM;
3605

3606 3607 3608
	/* only unbound workqueues can change attributes */
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;
3609

3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

	ctx = apply_wqattrs_prepare(wq, attrs);

	/* the ctx has been prepared successfully, let's commit it */
	if (ctx) {
		apply_wqattrs_commit(ctx);
		ret = 0;
	}

	apply_wqattrs_cleanup(ctx);

	return ret;
3625 3626
}

3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
	int ret;

	apply_wqattrs_lock();
	ret = apply_workqueue_attrs_locked(wq, attrs);
	apply_wqattrs_unlock();

	return ret;
}

3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

3688 3689
	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
	    wq->unbound_attrs->no_numa)
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
3705 3706 3707
	 * different from the default pwq's, we need to compare it to @pwq's
	 * and create a new one if they don't match.  If the target cpumask
	 * equals the default pwq's, the default pwq should be used.
3708
	 */
3709
	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3710
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3711
			return;
3712
	} else {
3713
		goto use_dfl_pwq;
3714 3715 3716 3717 3718
	}

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
3719 3720
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
3721
		goto use_dfl_pwq;
3722 3723
	}

3724
	/* Install the new pwq. */
3725 3726 3727 3728 3729
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
3730
	mutex_lock(&wq->mutex);
3731 3732 3733 3734 3735 3736 3737 3738 3739
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

3740
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3741
{
3742
	bool highpri = wq->flags & WQ_HIGHPRI;
3743
	int cpu, ret;
3744 3745

	if (!(wq->flags & WQ_UNBOUND)) {
3746 3747
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3748 3749 3750
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3751 3752
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3753
			struct worker_pool *cpu_pools =
3754
				per_cpu(cpu_worker_pools, cpu);
3755

3756 3757 3758
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
3759
			link_pwq(pwq);
3760
			mutex_unlock(&wq->mutex);
3761
		}
3762
		return 0;
3763 3764 3765 3766 3767 3768 3769
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
3770
	} else {
3771
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3772
	}
T
Tejun Heo 已提交
3773 3774
}

3775 3776
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3777
{
3778 3779 3780
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3781 3782
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3783

3784
	return clamp_val(max_active, 1, lim);
3785 3786
}

3787
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3788 3789 3790
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3791
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3792
{
3793
	size_t tbl_size = 0;
3794
	va_list args;
L
Linus Torvalds 已提交
3795
	struct workqueue_struct *wq;
3796
	struct pool_workqueue *pwq;
3797

3798 3799 3800 3801
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

3802
	/* allocate wq and format name */
3803
	if (flags & WQ_UNBOUND)
3804
		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3805 3806

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3807
	if (!wq)
3808
		return NULL;
3809

3810 3811 3812 3813 3814 3815
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

3816 3817
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3818
	va_end(args);
L
Linus Torvalds 已提交
3819

3820
	max_active = max_active ?: WQ_DFL_ACTIVE;
3821
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3822

3823
	/* init wq */
3824
	wq->flags = flags;
3825
	wq->saved_max_active = max_active;
3826
	mutex_init(&wq->mutex);
3827
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3828
	INIT_LIST_HEAD(&wq->pwqs);
3829 3830
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3831
	INIT_LIST_HEAD(&wq->maydays);
3832

3833
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3834
	INIT_LIST_HEAD(&wq->list);
3835

3836
	if (alloc_and_link_pwqs(wq) < 0)
3837
		goto err_free_wq;
T
Tejun Heo 已提交
3838

3839 3840 3841 3842 3843
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
3844 3845
		struct worker *rescuer;

3846
		rescuer = alloc_worker(NUMA_NO_NODE);
3847
		if (!rescuer)
3848
			goto err_destroy;
3849

3850 3851
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3852
					       wq->name);
3853 3854 3855 3856
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
3857

3858
		wq->rescuer = rescuer;
3859
		rescuer->task->flags |= PF_NO_SETAFFINITY;
3860
		wake_up_process(rescuer->task);
3861 3862
	}

3863 3864 3865
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

3866
	/*
3867 3868 3869
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
3870
	 */
3871
	mutex_lock(&wq_pool_mutex);
3872

3873
	mutex_lock(&wq->mutex);
3874 3875
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3876
	mutex_unlock(&wq->mutex);
3877

3878
	list_add_tail_rcu(&wq->list, &workqueues);
3879

3880
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
3881

3882
	return wq;
3883 3884

err_free_wq:
3885
	free_workqueue_attrs(wq->unbound_attrs);
3886 3887 3888 3889
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
3890
	return NULL;
3891
}
3892
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3893

3894 3895 3896 3897 3898 3899 3900 3901
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3902
	struct pool_workqueue *pwq;
3903
	int node;
3904

3905 3906
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3907

3908
	/* sanity checks */
3909
	mutex_lock(&wq->mutex);
3910
	for_each_pwq(pwq, wq) {
3911 3912
		int i;

3913 3914
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
3915
				mutex_unlock(&wq->mutex);
3916
				return;
3917 3918 3919
			}
		}

3920
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
3921
		    WARN_ON(pwq->nr_active) ||
3922
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
3923
			mutex_unlock(&wq->mutex);
3924
			return;
3925
		}
3926
	}
3927
	mutex_unlock(&wq->mutex);
3928

3929 3930 3931 3932
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3933
	mutex_lock(&wq_pool_mutex);
3934
	list_del_rcu(&wq->list);
3935
	mutex_unlock(&wq_pool_mutex);
3936

3937 3938
	workqueue_sysfs_unregister(wq);

3939
	if (wq->rescuer)
3940 3941
		kthread_stop(wq->rescuer->task);

T
Tejun Heo 已提交
3942 3943 3944
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
3945
		 * schedule RCU free.
T
Tejun Heo 已提交
3946
		 */
3947
		call_rcu_sched(&wq->rcu, rcu_free_wq);
T
Tejun Heo 已提交
3948 3949 3950
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
3951 3952
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
3953
		 */
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
3966
		put_pwq_unlocked(pwq);
3967
	}
3968 3969 3970
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
3983
	struct pool_workqueue *pwq;
3984

3985 3986 3987 3988
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

3989
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3990

3991
	mutex_lock(&wq->mutex);
3992 3993 3994

	wq->saved_max_active = max_active;

3995 3996
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
3997

3998
	mutex_unlock(&wq->mutex);
3999
}
4000
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4001

4002 4003 4004 4005 4006
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4007 4008
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4009 4010 4011 4012 4013
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4014
	return worker && worker->rescue_wq;
4015 4016
}

4017
/**
4018 4019 4020
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4021
 *
4022 4023 4024
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4025
 *
4026 4027 4028 4029 4030 4031
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4032
 * Return:
4033
 * %true if congested, %false otherwise.
4034
 */
4035
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4036
{
4037
	struct pool_workqueue *pwq;
4038 4039
	bool ret;

4040
	rcu_read_lock_sched();
4041

4042 4043 4044
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4045 4046 4047
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4048
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4049

4050
	ret = !list_empty(&pwq->delayed_works);
4051
	rcu_read_unlock_sched();
4052 4053

	return ret;
L
Linus Torvalds 已提交
4054
}
4055
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4056

4057 4058 4059 4060 4061 4062 4063 4064
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4065
 * Return:
4066 4067 4068
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4069
{
4070
	struct worker_pool *pool;
4071 4072
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4073

4074 4075
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4076

4077 4078
	local_irq_save(flags);
	pool = get_work_pool(work);
4079
	if (pool) {
4080
		spin_lock(&pool->lock);
4081 4082
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4083
		spin_unlock(&pool->lock);
4084
	}
4085
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4086

4087
	return ret;
L
Linus Torvalds 已提交
4088
}
4089
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4090

4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
static void pr_cont_pool_info(struct worker_pool *pool)
{
	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
	if (pool->node != NUMA_NO_NODE)
		pr_cont(" node=%d", pool->node);
	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
}

static void pr_cont_work(bool comma, struct work_struct *work)
{
	if (work->func == wq_barrier_func) {
		struct wq_barrier *barr;

		barr = container_of(work, struct wq_barrier, work);

		pr_cont("%s BAR(%d)", comma ? "," : "",
			task_pid_nr(barr->task));
	} else {
		pr_cont("%s %pf", comma ? "," : "", work->func);
	}
}

static void show_pwq(struct pool_workqueue *pwq)
{
	struct worker_pool *pool = pwq->pool;
	struct work_struct *work;
	struct worker *worker;
	bool has_in_flight = false, has_pending = false;
	int bkt;

	pr_info("  pwq %d:", pool->id);
	pr_cont_pool_info(pool);

	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");

	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
		if (worker->current_pwq == pwq) {
			has_in_flight = true;
			break;
		}
	}
	if (has_in_flight) {
		bool comma = false;

		pr_info("    in-flight:");
		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
			if (worker->current_pwq != pwq)
				continue;

			pr_cont("%s %d%s:%pf", comma ? "," : "",
				task_pid_nr(worker->task),
				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
				worker->current_func);
			list_for_each_entry(work, &worker->scheduled, entry)
				pr_cont_work(false, work);
			comma = true;
		}
		pr_cont("\n");
	}

	list_for_each_entry(work, &pool->worklist, entry) {
		if (get_work_pwq(work) == pwq) {
			has_pending = true;
			break;
		}
	}
	if (has_pending) {
		bool comma = false;

		pr_info("    pending:");
		list_for_each_entry(work, &pool->worklist, entry) {
			if (get_work_pwq(work) != pwq)
				continue;

			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}

	if (!list_empty(&pwq->delayed_works)) {
		bool comma = false;

		pr_info("    delayed:");
		list_for_each_entry(work, &pwq->delayed_works, entry) {
			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}
}

/**
 * show_workqueue_state - dump workqueue state
 *
 * Called from a sysrq handler and prints out all busy workqueues and
 * pools.
 */
void show_workqueue_state(void)
{
	struct workqueue_struct *wq;
	struct worker_pool *pool;
	unsigned long flags;
	int pi;

	rcu_read_lock_sched();

	pr_info("Showing busy workqueues and worker pools:\n");

	list_for_each_entry_rcu(wq, &workqueues, list) {
		struct pool_workqueue *pwq;
		bool idle = true;

		for_each_pwq(pwq, wq) {
			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
				idle = false;
				break;
			}
		}
		if (idle)
			continue;

		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);

		for_each_pwq(pwq, wq) {
			spin_lock_irqsave(&pwq->pool->lock, flags);
			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
				show_pwq(pwq);
			spin_unlock_irqrestore(&pwq->pool->lock, flags);
		}
	}

	for_each_pool(pool, pi) {
		struct worker *worker;
		bool first = true;

		spin_lock_irqsave(&pool->lock, flags);
		if (pool->nr_workers == pool->nr_idle)
			goto next_pool;

		pr_info("pool %d:", pool->id);
		pr_cont_pool_info(pool);
		pr_cont(" workers=%d", pool->nr_workers);
		if (pool->manager)
			pr_cont(" manager: %d",
				task_pid_nr(pool->manager->task));
		list_for_each_entry(worker, &pool->idle_list, entry) {
			pr_cont(" %s%d", first ? "idle: " : "",
				task_pid_nr(worker->task));
			first = false;
		}
		pr_cont("\n");
	next_pool:
		spin_unlock_irqrestore(&pool->lock, flags);
	}

	rcu_read_unlock_sched();
}

4328 4329 4330
/*
 * CPU hotplug.
 *
4331
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4332
 * are a lot of assumptions on strong associations among work, pwq and
4333
 * pool which make migrating pending and scheduled works very
4334
 * difficult to implement without impacting hot paths.  Secondly,
4335
 * worker pools serve mix of short, long and very long running works making
4336 4337
 * blocked draining impractical.
 *
4338
 * This is solved by allowing the pools to be disassociated from the CPU
4339 4340
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4341
 */
L
Linus Torvalds 已提交
4342

4343
static void wq_unbind_fn(struct work_struct *work)
4344
{
4345
	int cpu = smp_processor_id();
4346
	struct worker_pool *pool;
4347
	struct worker *worker;
4348

4349
	for_each_cpu_worker_pool(pool, cpu) {
4350
		mutex_lock(&pool->attach_mutex);
4351
		spin_lock_irq(&pool->lock);
4352

4353
		/*
4354
		 * We've blocked all attach/detach operations. Make all workers
4355 4356 4357 4358 4359
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4360
		for_each_pool_worker(worker, pool)
4361
			worker->flags |= WORKER_UNBOUND;
4362

4363
		pool->flags |= POOL_DISASSOCIATED;
4364

4365
		spin_unlock_irq(&pool->lock);
4366
		mutex_unlock(&pool->attach_mutex);
4367

4368 4369 4370 4371 4372 4373 4374
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4375

4376 4377 4378 4379 4380 4381 4382 4383
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4384
		atomic_set(&pool->nr_running, 0);
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4395 4396
}

T
Tejun Heo 已提交
4397 4398 4399 4400
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4401
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4402 4403 4404
 */
static void rebind_workers(struct worker_pool *pool)
{
4405
	struct worker *worker;
T
Tejun Heo 已提交
4406

4407
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4408

4409 4410 4411
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
4412
	 * wake-ups for concurrency management happen, restore CPU affinity
4413 4414 4415
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4416
	for_each_pool_worker(worker, pool)
4417 4418
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4419

4420
	spin_lock_irq(&pool->lock);
4421
	pool->flags &= ~POOL_DISASSOCIATED;
T
Tejun Heo 已提交
4422

4423
	for_each_pool_worker(worker, pool) {
4424
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4425 4426

		/*
4427 4428 4429 4430 4431 4432
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4433
		 */
4434 4435
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4436

4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4456
	}
4457 4458

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4459 4460
}

4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4476
	lockdep_assert_held(&pool->attach_mutex);
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4488
	for_each_pool_worker(worker, pool)
4489 4490 4491 4492
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4493 4494 4495 4496
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4497
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4498 4499
					       unsigned long action,
					       void *hcpu)
4500
{
4501
	int cpu = (unsigned long)hcpu;
4502
	struct worker_pool *pool;
4503
	struct workqueue_struct *wq;
4504
	int pi;
4505

T
Tejun Heo 已提交
4506
	switch (action & ~CPU_TASKS_FROZEN) {
4507
	case CPU_UP_PREPARE:
4508
		for_each_cpu_worker_pool(pool, cpu) {
4509 4510
			if (pool->nr_workers)
				continue;
4511
			if (!create_worker(pool))
4512
				return NOTIFY_BAD;
4513
		}
T
Tejun Heo 已提交
4514
		break;
4515

4516 4517
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4518
		mutex_lock(&wq_pool_mutex);
4519 4520

		for_each_pool(pool, pi) {
4521
			mutex_lock(&pool->attach_mutex);
4522

4523
			if (pool->cpu == cpu)
4524
				rebind_workers(pool);
4525
			else if (pool->cpu < 0)
4526
				restore_unbound_workers_cpumask(pool, cpu);
4527

4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
			mutex_unlock(&pool->attach_mutex);
		}

		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

		mutex_unlock(&wq_pool_mutex);
		break;
	}
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
						 unsigned long action,
						 void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;
	struct workqueue_struct *wq;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		/* unbinding per-cpu workers should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
		queue_work_on(cpu, system_highpri_wq, &unbind_work);

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
		flush_work(&unbind_work);
		destroy_work_on_stack(&unbind_work);
		break;
	}
	return NOTIFY_OK;
}

#ifdef CONFIG_SMP

struct work_for_cpu {
	struct work_struct work;
	long (*fn)(void *);
	void *arg;
	long ret;
};

static void work_for_cpu_fn(struct work_struct *work)
{
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
 * It is up to the caller to ensure that the cpu doesn't go offline.
 * The caller must not hold any locks which would prevent @fn from completing.
 *
 * Return: The value @fn returns.
 */
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
{
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };

	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
	destroy_work_on_stack(&wfc.work);
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their delayed_works list instead of
 * pool->worklist.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void freeze_workqueues_begin(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(workqueue_freezing);
	workqueue_freezing = true;

	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

	mutex_unlock(&wq_pool_mutex);
}

/**
 * freeze_workqueues_busy - are freezable workqueues still busy?
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex.
 *
 * Return:
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(!workqueue_freezing);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		rcu_read_lock_sched();
		for_each_pwq(pwq, wq) {
			WARN_ON_ONCE(pwq->nr_active < 0);
			if (pwq->nr_active) {
				busy = true;
				rcu_read_unlock_sched();
				goto out_unlock;
			}
		}
		rcu_read_unlock_sched();
	}
out_unlock:
	mutex_unlock(&wq_pool_mutex);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
 * frozen works are transferred to their respective pool worklists.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void thaw_workqueues(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	if (!workqueue_freezing)
		goto out_unlock;

	workqueue_freezing = false;

	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

out_unlock:
	mutex_unlock(&wq_pool_mutex);
}
#endif /* CONFIG_FREEZER */

4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780
static int workqueue_apply_unbound_cpumask(void)
{
	LIST_HEAD(ctxs);
	int ret = 0;
	struct workqueue_struct *wq;
	struct apply_wqattrs_ctx *ctx, *n;

	lockdep_assert_held(&wq_pool_mutex);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_UNBOUND))
			continue;
		/* creating multiple pwqs breaks ordering guarantee */
		if (wq->flags & __WQ_ORDERED)
			continue;

		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
		if (!ctx) {
			ret = -ENOMEM;
			break;
		}

		list_add_tail(&ctx->list, &ctxs);
	}

	list_for_each_entry_safe(ctx, n, &ctxs, list) {
		if (!ret)
			apply_wqattrs_commit(ctx);
		apply_wqattrs_cleanup(ctx);
	}

	return ret;
}

/**
 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
 *  @cpumask: the cpumask to set
 *
 *  The low-level workqueues cpumask is a global cpumask that limits
 *  the affinity of all unbound workqueues.  This function check the @cpumask
 *  and apply it to all unbound workqueues and updates all pwqs of them.
 *
 *  Retun:	0	- Success
 *  		-EINVAL	- Invalid @cpumask
 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
 */
int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
{
	int ret = -EINVAL;
	cpumask_var_t saved_cpumask;

	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
		return -ENOMEM;

	cpumask_and(cpumask, cpumask, cpu_possible_mask);
	if (!cpumask_empty(cpumask)) {
4781
		apply_wqattrs_lock();
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793

		/* save the old wq_unbound_cpumask. */
		cpumask_copy(saved_cpumask, wq_unbound_cpumask);

		/* update wq_unbound_cpumask at first and apply it to wqs. */
		cpumask_copy(wq_unbound_cpumask, cpumask);
		ret = workqueue_apply_unbound_cpumask();

		/* restore the wq_unbound_cpumask when failed. */
		if (ret < 0)
			cpumask_copy(wq_unbound_cpumask, saved_cpumask);

4794
		apply_wqattrs_unlock();
4795 4796 4797 4798 4799 4800
	}

	free_cpumask_var(saved_cpumask);
	return ret;
}

4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
static DEVICE_ATTR_RO(per_cpu);

static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
static DEVICE_ATTR_RW(max_active);

static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
};
ATTRIBUTE_GROUPS(wq_sysfs);

static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	const char *delim = "";
	int node, written = 0;

	rcu_read_lock_sched();
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

4905 4906
	lockdep_assert_held(&wq_pool_mutex);

4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
4920 4921 4922
	int ret = -ENOMEM;

	apply_wqattrs_lock();
4923 4924 4925

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
4926
		goto out_unlock;
4927 4928 4929

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
4930
		ret = apply_workqueue_attrs_locked(wq, attrs);
4931 4932 4933
	else
		ret = -EINVAL;

4934 4935
out_unlock:
	apply_wqattrs_unlock();
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq->unbound_attrs->cpumask));
	mutex_unlock(&wq->mutex);
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
4959 4960 4961
	int ret = -ENOMEM;

	apply_wqattrs_lock();
4962 4963 4964

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
4965
		goto out_unlock;
4966 4967 4968

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
4969
		ret = apply_workqueue_attrs_locked(wq, attrs);
4970

4971 4972
out_unlock:
	apply_wqattrs_unlock();
4973 4974 4975 4976 4977 4978 4979 4980 4981
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;
4982

4983 4984 4985 4986
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);
4987

4988
	return written;
4989 4990
}

4991 4992
static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
4993
{
4994 4995
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
4996 4997 4998
	int v, ret = -ENOMEM;

	apply_wqattrs_lock();
4999

5000 5001
	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5002
		goto out_unlock;
5003

5004 5005 5006
	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
5007
		ret = apply_workqueue_attrs_locked(wq, attrs);
5008
	}
5009

5010 5011
out_unlock:
	apply_wqattrs_unlock();
5012 5013
	free_workqueue_attrs(attrs);
	return ret ?: count;
5014 5015
}

5016 5017 5018 5019 5020 5021 5022
static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
	__ATTR_NULL,
};
5023

5024 5025 5026
static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_groups			= wq_sysfs_groups,
5027 5028
};

5029 5030 5031 5032 5033
static ssize_t wq_unbound_cpumask_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int written;

5034
	mutex_lock(&wq_pool_mutex);
5035 5036
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq_unbound_cpumask));
5037
	mutex_unlock(&wq_pool_mutex);
5038 5039 5040 5041

	return written;
}

5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
static ssize_t wq_unbound_cpumask_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	cpumask_var_t cpumask;
	int ret;

	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
		return -ENOMEM;

	ret = cpumask_parse(buf, cpumask);
	if (!ret)
		ret = workqueue_set_unbound_cpumask(cpumask);

	free_cpumask_var(cpumask);
	return ret ? ret : count;
}

5059
static struct device_attribute wq_sysfs_cpumask_attr =
5060 5061
	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
	       wq_unbound_cpumask_store);
5062

5063
static int __init wq_sysfs_init(void)
5064
{
5065 5066 5067 5068 5069 5070 5071
	int err;

	err = subsys_virtual_register(&wq_subsys, NULL);
	if (err)
		return err;

	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5072
}
5073
core_initcall(wq_sysfs_init);
5074

5075
static void wq_device_release(struct device *dev)
5076
{
5077
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5078

5079
	kfree(wq_dev);
5080
}
5081 5082

/**
5083 5084
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
5085
 *
5086 5087 5088
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
5089
 *
5090 5091 5092 5093 5094 5095
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Return: 0 on success, -errno on failure.
5096
 */
5097
int workqueue_sysfs_register(struct workqueue_struct *wq)
5098
{
5099 5100
	struct wq_device *wq_dev;
	int ret;
5101

5102
	/*
5103
	 * Adjusting max_active or creating new pwqs by applying
5104 5105 5106 5107 5108
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;
5109

5110 5111 5112
	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;
5113

5114 5115 5116 5117
	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;
5118

5119 5120 5121 5122 5123
	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);
5124

5125 5126 5127 5128 5129 5130
	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}
5131

5132 5133
	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;
5134

5135 5136 5137 5138 5139 5140
		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
5141 5142 5143
			}
		}
	}
5144 5145 5146 5147

	dev_set_uevent_suppress(&wq_dev->dev, false);
	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
5148 5149 5150
}

/**
5151 5152
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
5153
 *
5154
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5155
 */
5156
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5157
{
5158
	struct wq_device *wq_dev = wq->wq_dev;
5159

5160 5161
	if (!wq->wq_dev)
		return;
5162

5163 5164
	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
5165
}
5166 5167 5168
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */
5169

5170 5171 5172 5173 5174 5175 5176 5177
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	if (num_possible_nodes() <= 1)
		return;

5178 5179 5180 5181 5182
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

5183 5184 5185
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

5186 5187 5188 5189 5190
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
5191
	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5192 5193 5194
	BUG_ON(!tbl);

	for_each_node(node)
5195
		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5196
				node_online(node) ? node : NUMA_NO_NODE));
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

5212
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
5213
{
T
Tejun Heo 已提交
5214 5215
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
5216

5217 5218
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

5219 5220 5221
	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);

5222 5223
	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

5224
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5225
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5226

5227 5228
	wq_numa_init();

5229
	/* initialize CPU pools */
5230
	for_each_possible_cpu(cpu) {
5231
		struct worker_pool *pool;
5232

T
Tejun Heo 已提交
5233
		i = 0;
5234
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5235
			BUG_ON(init_worker_pool(pool));
5236
			pool->cpu = cpu;
5237
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5238
			pool->attrs->nice = std_nice[i++];
5239
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5240

T
Tejun Heo 已提交
5241
			/* alloc pool ID */
5242
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5243
			BUG_ON(worker_pool_assign_id(pool));
5244
			mutex_unlock(&wq_pool_mutex);
5245
		}
5246 5247
	}

5248
	/* create the initial worker */
5249
	for_each_online_cpu(cpu) {
5250
		struct worker_pool *pool;
5251

5252
		for_each_cpu_worker_pool(pool, cpu) {
5253
			pool->flags &= ~POOL_DISASSOCIATED;
5254
			BUG_ON(!create_worker(pool));
5255
		}
5256 5257
	}

5258
	/* create default unbound and ordered wq attrs */
5259 5260 5261 5262 5263 5264
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5275 5276
	}

5277
	system_wq = alloc_workqueue("events", 0, 0);
5278
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5279
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5280 5281
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5282 5283
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5284 5285 5286 5287 5288
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5289
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5290 5291 5292
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5293
	return 0;
L
Linus Torvalds 已提交
5294
}
5295
early_initcall(init_workqueues);