sched.c 164.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
L
Linus Torvalds 已提交
64

65
#include <asm/tlb.h>
L
Linus Torvalds 已提交
66

67 68 69 70 71 72 73 74 75 76
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
101 102 103
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
104 105 106 107 108 109 110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

I
Ingo Molnar 已提交
135 136 137
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)

138
/*
I
Ingo Molnar 已提交
139
 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 141
 * to time slice values: [800ms ... 100ms ... 5ms]
 */
I
Ingo Molnar 已提交
142
static unsigned int static_prio_timeslice(int static_prio)
143
{
I
Ingo Molnar 已提交
144 145 146 147 148 149 150
	if (static_prio == NICE_TO_PRIO(19))
		return 1;

	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
	else
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
165
/*
I
Ingo Molnar 已提交
166
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
167
 */
I
Ingo Molnar 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
	u64 load_update_start, load_update_last;
	unsigned long delta_fair, delta_exec, delta_stat;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
210

I
Ingo Molnar 已提交
211 212 213 214 215 216 217
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
218 219 220 221 222 223 224
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
225
struct rq {
I
Ingo Molnar 已提交
226
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
227 228 229 230 231 232

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
233 234
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235
	unsigned char idle_at_tick;
236 237 238
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
239 240 241 242 243 244 245
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
246
#endif
I
Ingo Molnar 已提交
247
	struct rt_rq  rt;
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

257
	struct task_struct *curr, *idle;
258
	unsigned long next_balance;
L
Linus Torvalds 已提交
259
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
260 261 262 263 264 265 266

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
	unsigned int clock_unstable_events;

L
Linus Torvalds 已提交
267 268 269 270 271 272 273 274
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
275
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
276

277
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
300
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
301 302
};

303
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
304
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
305

I
Ingo Molnar 已提交
306 307 308 309 310
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

311 312 313 314 315 316 317 318 319
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
320
/*
I
Ingo Molnar 已提交
321 322
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
323
 */
I
Ingo Molnar 已提交
324
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
325 326 327 328 329 330
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
331 332 333
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
		if (unlikely(delta > 2*TICK_NSEC)) {
			clock++;
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
356
}
I
Ingo Molnar 已提交
357

I
Ingo Molnar 已提交
358 359 360 361
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
362 363
}

N
Nick Piggin 已提交
364 365
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
366
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
367 368 369 370
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
371 372
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
373 374 375 376 377 378

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

379 380 381 382 383 384 385 386
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
387
	struct rq *rq;
388

389
	local_irq_save(flags);
I
Ingo Molnar 已提交
390 391 392
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
393
	local_irq_restore(flags);
394 395 396 397

	return now;
}

I
Ingo Molnar 已提交
398 399 400 401 402 403 404 405 406 407 408 409
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
410
#ifndef prepare_arch_switch
411 412 413 414 415 416 417
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
418
static inline int task_running(struct rq *rq, struct task_struct *p)
419 420 421 422
{
	return rq->curr == p;
}

423
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
424 425 426
{
}

427
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
428
{
429 430 431 432
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
433 434 435 436 437 438 439
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

440 441 442 443
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
444
static inline int task_running(struct rq *rq, struct task_struct *p)
445 446 447 448 449 450 451 452
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

453
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

470
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
471 472 473 474 475 476 477 478 479 480 481 482
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
483
#endif
484 485
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
486

487 488 489 490
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
491
static inline struct rq *__task_rq_lock(struct task_struct *p)
492 493
	__acquires(rq->lock)
{
494
	struct rq *rq;
495 496 497 498 499 500 501 502 503 504 505

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
506 507 508 509 510
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
511
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
512 513
	__acquires(rq->lock)
{
514
	struct rq *rq;
L
Linus Torvalds 已提交
515 516 517 518 519 520 521 522 523 524 525 526

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

527
static inline void __task_rq_unlock(struct rq *rq)
528 529 530 531 532
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

533
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
534 535 536 537 538 539
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
540
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
541
 */
542
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
543 544
	__acquires(rq->lock)
{
545
	struct rq *rq;
L
Linus Torvalds 已提交
546 547 548 549 550 551 552 553

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*
 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
 */
void sched_clock_unstable_event(void)
{
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(current, &flags);
	rq->prev_clock_raw = sched_clock();
	rq->clock_unstable_events++;
	task_rq_unlock(rq, &flags);
}

I
Ingo Molnar 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
static u64 div64_likely32(u64 divident, unsigned long divisor)
{
#if BITS_PER_LONG == 32
	if (likely(divident <= 0xffffffffULL))
		return (u32)divident / divisor;
	do_div(divident, divisor);

	return divident;
#else
	return divident / divisor;
#endif
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

641
static unsigned long
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
		lw->inv_weight = WMULT_CONST / lw->weight;

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST)) {
		tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
				>> (WMULT_SHIFT/2);
	} else {
		tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
	}

661
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

static void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

682 683 684 685 686 687 688 689 690
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
691 692 693 694 695 696 697 698 699 700 701
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
702 703 704
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
705 706 707 708 709 710 711 712 713
 */
static const int prio_to_weight[40] = {
/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
/* -10 */  9537,  7629,  6103,  4883,  3906,  3125,  2500,  2000,  1600,  1280,
/*   0 */  NICE_0_LOAD /* 1024 */,
/*   1 */          819,   655,   524,   419,   336,   268,   215,   172,   137,
/*  10 */   110,    87,    70,    56,    45,    36,    29,    23,    18,    15,
};

714 715 716 717 718 719 720
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
721
static const u32 prio_to_wmult[40] = {
722 723 724 725 726 727 728 729
/* -20 */     48356,     60446,     75558,     94446,    118058,
/* -15 */    147573,    184467,    230589,    288233,    360285,
/* -10 */    450347,    562979,    703746,    879575,   1099582,
/*  -5 */   1374389,   1717986,   2147483,   2684354,   3355443,
/*   0 */   4194304,   5244160,   6557201,   8196502,  10250518,
/*   5 */  12782640,  16025997,  19976592,  24970740,  31350126,
/*  10 */  39045157,  49367440,  61356675,  76695844,  95443717,
/*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
730
};
731

I
Ingo Molnar 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
749
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
750 751 752 753 754 755 756 757 758 759 760

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
static void __update_curr_load(struct rq *rq, struct load_stat *ls)
{
	if (rq->curr != rq->idle && ls->load.weight) {
		ls->delta_exec += ls->delta_stat;
		ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
		ls->delta_stat = 0;
	}
}

/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
 * total load (rq->ls.load.weight) on the runqueue, while
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
 * This function is called /before/ updating rq->ls.load
 * and when switching tasks.
 */
785
static void update_curr_load(struct rq *rq)
786 787 788 789 790
{
	struct load_stat *ls = &rq->ls;
	u64 start;

	start = ls->load_update_start;
791 792
	ls->load_update_start = rq->clock;
	ls->delta_stat += rq->clock - start;
793 794 795 796 797 798 799 800
	/*
	 * Stagger updates to ls->delta_fair. Very frequent updates
	 * can be expensive.
	 */
	if (ls->delta_stat >= sysctl_sched_stat_granularity)
		__update_curr_load(rq, ls);
}

801
static inline void inc_load(struct rq *rq, const struct task_struct *p)
802
{
803
	update_curr_load(rq);
804 805 806 807 808 809
	update_load_add(&rq->ls.load, p->se.load.weight);
}

static inline void
dec_load(struct rq *rq, const struct task_struct *p, u64 now)
{
810
	update_curr_load(rq);
811 812 813 814 815 816
	update_load_sub(&rq->ls.load, p->se.load.weight);
}

static void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
{
	rq->nr_running++;
817
	inc_load(rq, p);
818 819 820 821 822 823 824 825
}

static void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
{
	rq->nr_running--;
	dec_load(rq, p, now);
}

826 827
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
828 829 830
	task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
	p->se.wait_runtime = 0;

831
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
832 833 834 835
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
836

I
Ingo Molnar 已提交
837 838 839 840 841 842 843 844
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
845

I
Ingo Molnar 已提交
846 847
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
848 849
}

I
Ingo Molnar 已提交
850 851
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
852
{
I
Ingo Molnar 已提交
853
	sched_info_queued(p);
854
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
855
	p->se.on_rq = 1;
856 857
}

I
Ingo Molnar 已提交
858 859
static void
dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
860
{
861
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
862
	p->se.on_rq = 0;
863 864
}

865
/*
I
Ingo Molnar 已提交
866
 * __normal_prio - return the priority that is based on the static prio
867 868 869
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
870
	return p->static_prio;
871 872
}

873 874 875 876 877 878 879
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
880
static inline int normal_prio(struct task_struct *p)
881 882 883
{
	int prio;

884
	if (task_has_rt_policy(p))
885 886 887 888 889 890 891 892 893 894 895 896 897
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
898
static int effective_prio(struct task_struct *p)
899 900 901 902 903 904 905 906 907 908 909 910
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
911
/*
I
Ingo Molnar 已提交
912
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
913
 */
I
Ingo Molnar 已提交
914
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
915
{
I
Ingo Molnar 已提交
916 917 918 919
	u64 now;

	update_rq_clock(rq);
	now = rq->clock;
920

I
Ingo Molnar 已提交
921 922
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
923

I
Ingo Molnar 已提交
924 925
	enqueue_task(rq, p, wakeup, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
926 927 928
}

/*
I
Ingo Molnar 已提交
929
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
930
 */
I
Ingo Molnar 已提交
931
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
932
{
I
Ingo Molnar 已提交
933 934 935 936
	u64 now;

	update_rq_clock(rq);
	now = rq->clock;
L
Linus Torvalds 已提交
937

I
Ingo Molnar 已提交
938 939
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
940

I
Ingo Molnar 已提交
941 942
	enqueue_task(rq, p, 0, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
943 944 945 946 947
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
I
Ingo Molnar 已提交
948 949
static void
deactivate_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
L
Linus Torvalds 已提交
950
{
I
Ingo Molnar 已提交
951 952 953 954 955
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep, now);
	dec_nr_running(p, rq, now);
L
Linus Torvalds 已提交
956 957 958 959 960 961
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
962
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
963 964 965 966
{
	return cpu_curr(task_cpu(p)) == p;
}

967 968 969
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
I
Ingo Molnar 已提交
970 971 972 973 974 975 976 977 978
	return cpu_rq(cpu)->ls.load.weight;
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
	set_task_cfs_rq(p);
#endif
979 980
}

L
Linus Torvalds 已提交
981
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
982

I
Ingo Molnar 已提交
983
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
984
{
I
Ingo Molnar 已提交
985 986 987 988 989
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
	u64 clock_offset, fair_clock_offset;

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
990 991
	fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;

I
Ingo Molnar 已提交
992 993
	if (p->se.wait_start_fair)
		p->se.wait_start_fair -= fair_clock_offset;
I
Ingo Molnar 已提交
994 995 996 997 998 999
	if (p->se.sleep_start_fair)
		p->se.sleep_start_fair -= fair_clock_offset;

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1000 1001 1002 1003
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
I
Ingo Molnar 已提交
1004
#endif
I
Ingo Molnar 已提交
1005 1006

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1007 1008
}

1009
struct migration_req {
L
Linus Torvalds 已提交
1010 1011
	struct list_head list;

1012
	struct task_struct *task;
L
Linus Torvalds 已提交
1013 1014 1015
	int dest_cpu;

	struct completion done;
1016
};
L
Linus Torvalds 已提交
1017 1018 1019 1020 1021

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1022
static int
1023
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1024
{
1025
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1026 1027 1028 1029 1030

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1031
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1032 1033 1034 1035 1036 1037 1038 1039
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1040

L
Linus Torvalds 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1053
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1054 1055
{
	unsigned long flags;
I
Ingo Molnar 已提交
1056
	int running, on_rq;
1057
	struct rq *rq;
L
Linus Torvalds 已提交
1058 1059

repeat:
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1087
	rq = task_rq_lock(p, &flags);
1088
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1089
	on_rq = p->se.on_rq;
1090 1091 1092 1093 1094 1095 1096 1097 1098
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1099 1100 1101
		cpu_relax();
		goto repeat;
	}
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1112
	if (unlikely(on_rq)) {
1113 1114 1115 1116 1117 1118 1119 1120 1121
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1137
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1149 1150
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1151 1152 1153 1154
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1155
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1156
{
1157
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1158
	unsigned long total = weighted_cpuload(cpu);
1159

1160
	if (type == 0)
I
Ingo Molnar 已提交
1161
		return total;
1162

I
Ingo Molnar 已提交
1163
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1164 1165 1166
}

/*
1167 1168
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1169
 */
N
Nick Piggin 已提交
1170
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1171
{
1172
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1173
	unsigned long total = weighted_cpuload(cpu);
1174

N
Nick Piggin 已提交
1175
	if (type == 0)
I
Ingo Molnar 已提交
1176
		return total;
1177

I
Ingo Molnar 已提交
1178
	return max(rq->cpu_load[type-1], total);
1179 1180 1181 1182 1183 1184 1185
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1186
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1187
	unsigned long total = weighted_cpuload(cpu);
1188 1189
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1190
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1191 1192
}

N
Nick Piggin 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1210 1211 1212 1213
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1230 1231
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1232 1233 1234 1235 1236 1237 1238 1239

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1240
nextgroup:
N
Nick Piggin 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1250
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1251
 */
I
Ingo Molnar 已提交
1252 1253
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1254
{
1255
	cpumask_t tmp;
N
Nick Piggin 已提交
1256 1257 1258 1259
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1260 1261 1262 1263
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1264
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1290

1291
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1292 1293 1294
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1295 1296
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1297 1298
		if (tmp->flags & flag)
			sd = tmp;
1299
	}
N
Nick Piggin 已提交
1300 1301 1302 1303

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1304 1305 1306 1307 1308 1309
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1310 1311 1312

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1313 1314 1315 1316
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1317

1318
		new_cpu = find_idlest_cpu(group, t, cpu);
1319 1320 1321 1322 1323
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1324

1325
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1352
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1353 1354 1355 1356 1357
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1368 1369 1370 1371
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1372
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1373 1374 1375 1376
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1377
		} else {
N
Nick Piggin 已提交
1378
			break;
I
Ingo Molnar 已提交
1379
		}
L
Linus Torvalds 已提交
1380 1381 1382 1383
	}
	return cpu;
}
#else
1384
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1404
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1405 1406 1407 1408
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1409
	struct rq *rq;
L
Linus Torvalds 已提交
1410
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1411
	struct sched_domain *sd, *this_sd = NULL;
1412
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1413 1414 1415 1416 1417 1418 1419 1420
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1421
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1431 1432
	new_cpu = cpu;

L
Linus Torvalds 已提交
1433 1434 1435
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1436 1437 1438 1439 1440 1441 1442 1443
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1444 1445 1446
		}
	}

N
Nick Piggin 已提交
1447
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1448 1449 1450
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1451
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1452
	 */
N
Nick Piggin 已提交
1453 1454 1455
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1456

1457 1458
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1459 1460
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1461

N
Nick Piggin 已提交
1462 1463
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1464 1465
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1466 1467 1468
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1469

L
Linus Torvalds 已提交
1470
			/*
1471 1472 1473
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1474
			 */
1475
			if (sync)
I
Ingo Molnar 已提交
1476
				tl -= current->se.load.weight;
1477 1478

			if ((tl <= load &&
1479
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1480
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1514
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1515 1516 1517 1518 1519 1520 1521 1522
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1523
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1524 1525 1526 1527 1528 1529 1530 1531
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1532 1533
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1544
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1545 1546 1547 1548 1549 1550
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1551
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1552 1553 1554 1555 1556 1557 1558
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.wait_start_fair		= 0;
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
	p->se.delta_exec		= 0;
	p->se.delta_fair_run		= 0;
	p->se.delta_fair_sleep		= 0;
	p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
1571 1572 1573 1574
	p->se.sleep_start_fair		= 0;

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	p->se.sum_wait_runtime		= 0;
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
	p->se.wait_max			= 0;
	p->se.wait_runtime_overruns	= 0;
	p->se.wait_runtime_underruns	= 0;
I
Ingo Molnar 已提交
1585
#endif
N
Nick Piggin 已提交
1586

I
Ingo Molnar 已提交
1587 1588
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1589

1590 1591 1592 1593
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1594 1595 1596 1597 1598 1599 1600
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1616 1617 1618 1619 1620 1621

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1622
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1623
	if (likely(sched_info_on()))
1624
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1625
#endif
1626
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1627 1628
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1629
#ifdef CONFIG_PREEMPT
1630
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1631
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1632
#endif
N
Nick Piggin 已提交
1633
	put_cpu();
L
Linus Torvalds 已提交
1634 1635
}

I
Ingo Molnar 已提交
1636 1637 1638 1639 1640 1641
/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
unsigned int __read_mostly sysctl_sched_child_runs_first = 1;

L
Linus Torvalds 已提交
1642 1643 1644 1645 1646 1647 1648
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1649
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1650 1651
{
	unsigned long flags;
I
Ingo Molnar 已提交
1652 1653
	struct rq *rq;
	int this_cpu;
I
Ingo Molnar 已提交
1654
	u64 now;
L
Linus Torvalds 已提交
1655 1656

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1657
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1658
	this_cpu = smp_processor_id(); /* parent's CPU */
I
Ingo Molnar 已提交
1659 1660
	update_rq_clock(rq);
	now = rq->clock;
L
Linus Torvalds 已提交
1661 1662 1663

	p->prio = effective_prio(p);

I
Ingo Molnar 已提交
1664 1665 1666 1667
	if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
			(clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
			!current->se.on_rq) {

I
Ingo Molnar 已提交
1668
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1669 1670
	} else {
		/*
I
Ingo Molnar 已提交
1671 1672
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1673
		 */
1674
		p->sched_class->task_new(rq, p);
I
Ingo Molnar 已提交
1675
		inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
1676
	}
I
Ingo Molnar 已提交
1677 1678
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1679 1680
}

1681 1682 1683
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1684 1685
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1686 1687 1688 1689 1690 1691 1692 1693 1694
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1695
 * @notifier: notifier struct to unregister
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1739 1740 1741
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1742
 * @prev: the current task that is being switched out
1743 1744 1745 1746 1747 1748 1749 1750 1751
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1752 1753 1754
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1755
{
1756
	fire_sched_out_preempt_notifiers(prev, next);
1757 1758 1759 1760
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1761 1762
/**
 * finish_task_switch - clean up after a task-switch
1763
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1764 1765
 * @prev: the thread we just switched away from.
 *
1766 1767 1768 1769
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1770 1771 1772 1773 1774 1775
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1776
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1777 1778 1779
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1780
	long prev_state;
L
Linus Torvalds 已提交
1781 1782 1783 1784 1785

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1786
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1787 1788
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1789
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1790 1791 1792 1793 1794
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1795
	prev_state = prev->state;
1796 1797
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1798
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1799 1800
	if (mm)
		mmdrop(mm);
1801
	if (unlikely(prev_state == TASK_DEAD)) {
1802 1803 1804
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1805
		 */
1806
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1807
		put_task_struct(prev);
1808
	}
L
Linus Torvalds 已提交
1809 1810 1811 1812 1813 1814
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1815
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1816 1817
	__releases(rq->lock)
{
1818 1819
	struct rq *rq = this_rq();

1820 1821 1822 1823 1824
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1825 1826 1827 1828 1829 1830 1831 1832
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1833
static inline void
1834
context_switch(struct rq *rq, struct task_struct *prev,
1835
	       struct task_struct *next)
L
Linus Torvalds 已提交
1836
{
I
Ingo Molnar 已提交
1837
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1838

1839
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1840 1841
	mm = next->mm;
	oldmm = prev->active_mm;
1842 1843 1844 1845 1846 1847 1848
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1849
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1850 1851 1852 1853 1854 1855
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1856
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1857 1858 1859
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1860 1861 1862 1863 1864 1865 1866
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1867
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1868
#endif
L
Linus Torvalds 已提交
1869 1870 1871 1872

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1873 1874 1875 1876 1877 1878 1879
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1903
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1918 1919
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1920

1921
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1922 1923 1924 1925 1926 1927 1928 1929 1930
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1931
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1932 1933 1934 1935 1936
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1952
/*
I
Ingo Molnar 已提交
1953 1954
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1955
 */
I
Ingo Molnar 已提交
1956
static void update_cpu_load(struct rq *this_rq)
1957
{
I
Ingo Molnar 已提交
1958 1959 1960 1961
	u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
	unsigned long total_load = this_rq->ls.load.weight;
	unsigned long this_load =  total_load;
	struct load_stat *ls = &this_rq->ls;
I
Ingo Molnar 已提交
1962
	u64 now;
I
Ingo Molnar 已提交
1963 1964
	int i, scale;

I
Ingo Molnar 已提交
1965 1966 1967
	__update_rq_clock(this_rq);
	now = this_rq->clock;

I
Ingo Molnar 已提交
1968 1969 1970 1971 1972
	this_rq->nr_load_updates++;
	if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
		goto do_avg;

	/* Update delta_fair/delta_exec fields first */
1973
	update_curr_load(this_rq);
I
Ingo Molnar 已提交
1974 1975 1976 1977 1978 1979 1980

	fair_delta64 = ls->delta_fair + 1;
	ls->delta_fair = 0;

	exec_delta64 = ls->delta_exec + 1;
	ls->delta_exec = 0;

1981 1982
	sample_interval64 = this_rq->clock - ls->load_update_last;
	ls->load_update_last = this_rq->clock;
I
Ingo Molnar 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

	if ((s64)sample_interval64 < (s64)TICK_NSEC)
		sample_interval64 = TICK_NSEC;

	if (exec_delta64 > sample_interval64)
		exec_delta64 = sample_interval64;

	idle_delta64 = sample_interval64 - exec_delta64;

	tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
	tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);

	this_load = (unsigned long)tmp64;

do_avg:

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;

		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2010 2011
}

I
Ingo Molnar 已提交
2012 2013
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2014 2015 2016 2017 2018 2019
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2020
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2021 2022 2023
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2024
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2025 2026 2027 2028
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2029
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2045
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2059
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2060 2061 2062 2063
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2064 2065 2066 2067 2068
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2069
	if (unlikely(!spin_trylock(&busiest->lock))) {
2070
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2085
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2086
{
2087
	struct migration_req req;
L
Linus Torvalds 已提交
2088
	unsigned long flags;
2089
	struct rq *rq;
L
Linus Torvalds 已提交
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2100

L
Linus Torvalds 已提交
2101 2102 2103 2104 2105
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2106

L
Linus Torvalds 已提交
2107 2108 2109 2110 2111 2112 2113
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2114 2115
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2116 2117 2118 2119
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2120
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2121
	put_cpu();
N
Nick Piggin 已提交
2122 2123
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2124 2125 2126 2127 2128 2129
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2130 2131
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2132
{
I
Ingo Molnar 已提交
2133 2134
	update_rq_clock(src_rq);
	deactivate_task(src_rq, p, 0, src_rq->clock);
L
Linus Torvalds 已提交
2135
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2136
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2137 2138 2139 2140
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2141
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2142 2143 2144 2145 2146
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2147
static
2148
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2149
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2150
		     int *all_pinned)
L
Linus Torvalds 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2160 2161 2162 2163
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2164 2165

	/*
I
Ingo Molnar 已提交
2166
	 * Aggressive migration if too many balance attempts have failed:
L
Linus Torvalds 已提交
2167
	 */
I
Ingo Molnar 已提交
2168
	if (sd->nr_balance_failed > sd->cache_nice_tries)
L
Linus Torvalds 已提交
2169 2170 2171 2172 2173
		return 1;

	return 1;
}

I
Ingo Molnar 已提交
2174
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2175
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2176
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2177
		      int *all_pinned, unsigned long *load_moved,
2178
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2179
{
I
Ingo Molnar 已提交
2180 2181 2182
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2183

2184
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2185 2186
		goto out;

2187 2188
	pinned = 1;

L
Linus Torvalds 已提交
2189
	/*
I
Ingo Molnar 已提交
2190
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2191
	 */
I
Ingo Molnar 已提交
2192 2193 2194
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2195
		goto out;
2196 2197 2198 2199 2200
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2201 2202
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2203
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2204 2205 2206
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2207 2208
	}

I
Ingo Molnar 已提交
2209
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2210
	pulled++;
I
Ingo Molnar 已提交
2211
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2212

2213 2214 2215 2216 2217
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2218 2219
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2220 2221
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2222 2223 2224 2225 2226 2227 2228 2229
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2230 2231 2232

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2233
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2234 2235 2236
	return pulled;
}

I
Ingo Molnar 已提交
2237
/*
P
Peter Williams 已提交
2238 2239 2240
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2241 2242 2243 2244
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2245
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2246 2247 2248 2249
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2250
	unsigned long total_load_moved = 0;
2251
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2252 2253

	do {
P
Peter Williams 已提交
2254 2255 2256
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2257
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2258
		class = class->next;
P
Peter Williams 已提交
2259
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2260

P
Peter Williams 已提交
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct sched_class *class;
2275
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2276 2277 2278

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2279 2280
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2281 2282 2283
			return 1;

	return 0;
I
Ingo Molnar 已提交
2284 2285
}

L
Linus Torvalds 已提交
2286 2287
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2288 2289
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2290 2291 2292
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2293 2294
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2295 2296 2297
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2298
	unsigned long max_pull;
2299 2300
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2301
	int load_idx;
2302 2303 2304 2305 2306 2307
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2308 2309

	max_load = this_load = total_load = total_pwr = 0;
2310 2311
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2312
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2313
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2314
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2315 2316 2317
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2318 2319

	do {
2320
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2321 2322
		int local_group;
		int i;
2323
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2324
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2325 2326 2327

		local_group = cpu_isset(this_cpu, group->cpumask);

2328 2329 2330
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2331
		/* Tally up the load of all CPUs in the group */
2332
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2333 2334

		for_each_cpu_mask(i, group->cpumask) {
2335 2336 2337 2338 2339 2340
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2341

2342
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2343 2344
				*sd_idle = 0;

L
Linus Torvalds 已提交
2345
			/* Bias balancing toward cpus of our domain */
2346 2347 2348 2349 2350 2351
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2352
				load = target_load(i, load_idx);
2353
			} else
N
Nick Piggin 已提交
2354
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2355 2356

			avg_load += load;
2357
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2358
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2359 2360
		}

2361 2362 2363
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2364 2365
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2366
		 */
2367 2368
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2369 2370 2371 2372
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2373
		total_load += avg_load;
2374
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2375 2376

		/* Adjust by relative CPU power of the group */
2377 2378
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2379

2380
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2381

L
Linus Torvalds 已提交
2382 2383 2384
		if (local_group) {
			this_load = avg_load;
			this = group;
2385 2386 2387
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2388
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2389 2390
			max_load = avg_load;
			busiest = group;
2391 2392
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2393
		}
2394 2395 2396 2397 2398 2399

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2400 2401 2402
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2403 2404 2405 2406 2407 2408 2409 2410 2411

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2412
		/*
2413 2414
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2415 2416
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2417
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2418
			goto group_next;
2419

I
Ingo Molnar 已提交
2420
		/*
2421
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2422 2423 2424 2425 2426
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2427 2428
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2429 2430
			group_min = group;
			min_nr_running = sum_nr_running;
2431 2432
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2433
		}
2434

I
Ingo Molnar 已提交
2435
		/*
2436
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2448
		}
2449 2450
group_next:
#endif
L
Linus Torvalds 已提交
2451 2452 2453
		group = group->next;
	} while (group != sd->groups);

2454
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2455 2456 2457 2458 2459 2460 2461 2462
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2463
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2487 2488

	/* Don't want to pull so many tasks that a group would go idle */
2489
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2490

L
Linus Torvalds 已提交
2491
	/* How much load to actually move to equalise the imbalance */
2492 2493
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2494 2495
			/ SCHED_LOAD_SCALE;

2496 2497 2498 2499 2500 2501
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
I
Ingo Molnar 已提交
2502
	if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2503
		unsigned long tmp, pwr_now, pwr_move;
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2515

I
Ingo Molnar 已提交
2516 2517
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2518
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2528 2529 2530 2531
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2532 2533 2534
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2535 2536
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2537
		if (max_load > tmp)
2538
			pwr_move += busiest->__cpu_power *
2539
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2540 2541

		/* Amount of load we'd add */
2542
		if (max_load * busiest->__cpu_power <
2543
				busiest_load_per_task * SCHED_LOAD_SCALE)
2544 2545
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2546
		else
2547 2548 2549 2550
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2551 2552 2553 2554 2555 2556
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2557
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2558 2559 2560 2561 2562
	}

	return busiest;

out_balanced:
2563
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2564
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2565
		goto ret;
L
Linus Torvalds 已提交
2566

2567 2568 2569 2570 2571
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2572
ret:
L
Linus Torvalds 已提交
2573 2574 2575 2576 2577 2578 2579
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2580
static struct rq *
I
Ingo Molnar 已提交
2581
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2582
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2583
{
2584
	struct rq *busiest = NULL, *rq;
2585
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2586 2587 2588
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2589
		unsigned long wl;
2590 2591 2592 2593

		if (!cpu_isset(i, *cpus))
			continue;

2594
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2595
		wl = weighted_cpuload(i);
2596

I
Ingo Molnar 已提交
2597
		if (rq->nr_running == 1 && wl > imbalance)
2598
			continue;
L
Linus Torvalds 已提交
2599

I
Ingo Molnar 已提交
2600 2601
		if (wl > max_load) {
			max_load = wl;
2602
			busiest = rq;
L
Linus Torvalds 已提交
2603 2604 2605 2606 2607 2608
		}
	}

	return busiest;
}

2609 2610 2611 2612 2613 2614
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2615 2616 2617 2618
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2619
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2620
			struct sched_domain *sd, enum cpu_idle_type idle,
2621
			int *balance)
L
Linus Torvalds 已提交
2622
{
P
Peter Williams 已提交
2623
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2624 2625
	struct sched_group *group;
	unsigned long imbalance;
2626
	struct rq *busiest;
2627
	cpumask_t cpus = CPU_MASK_ALL;
2628
	unsigned long flags;
N
Nick Piggin 已提交
2629

2630 2631 2632
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2633
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2634
	 * portraying it as CPU_NOT_IDLE.
2635
	 */
I
Ingo Molnar 已提交
2636
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2637
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2638
		sd_idle = 1;
L
Linus Torvalds 已提交
2639 2640 2641

	schedstat_inc(sd, lb_cnt[idle]);

2642 2643
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2644 2645
				   &cpus, balance);

2646
	if (*balance == 0)
2647 2648
		goto out_balanced;

L
Linus Torvalds 已提交
2649 2650 2651 2652 2653
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2654
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2655 2656 2657 2658 2659
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2660
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2661 2662 2663

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2664
	ld_moved = 0;
L
Linus Torvalds 已提交
2665 2666 2667 2668
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2669
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2670 2671
		 * correctly treated as an imbalance.
		 */
2672
		local_irq_save(flags);
N
Nick Piggin 已提交
2673
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2674
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2675
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2676
		double_rq_unlock(this_rq, busiest);
2677
		local_irq_restore(flags);
2678

2679 2680 2681
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2682
		if (ld_moved && this_cpu != smp_processor_id())
2683 2684
			resched_cpu(this_cpu);

2685
		/* All tasks on this runqueue were pinned by CPU affinity */
2686 2687 2688 2689
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2690
			goto out_balanced;
2691
		}
L
Linus Torvalds 已提交
2692
	}
2693

P
Peter Williams 已提交
2694
	if (!ld_moved) {
L
Linus Torvalds 已提交
2695 2696 2697 2698 2699
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2700
			spin_lock_irqsave(&busiest->lock, flags);
2701 2702 2703 2704 2705

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2706
				spin_unlock_irqrestore(&busiest->lock, flags);
2707 2708 2709 2710
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2711 2712 2713
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2714
				active_balance = 1;
L
Linus Torvalds 已提交
2715
			}
2716
			spin_unlock_irqrestore(&busiest->lock, flags);
2717
			if (active_balance)
L
Linus Torvalds 已提交
2718 2719 2720 2721 2722 2723
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2724
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2725
		}
2726
	} else
L
Linus Torvalds 已提交
2727 2728
		sd->nr_balance_failed = 0;

2729
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2730 2731
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2732 2733 2734 2735 2736 2737 2738 2739 2740
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2741 2742
	}

P
Peter Williams 已提交
2743
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2744
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2745
		return -1;
P
Peter Williams 已提交
2746
	return ld_moved;
L
Linus Torvalds 已提交
2747 2748 2749 2750

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2751
	sd->nr_balance_failed = 0;
2752 2753

out_one_pinned:
L
Linus Torvalds 已提交
2754
	/* tune up the balancing interval */
2755 2756
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2757 2758
		sd->balance_interval *= 2;

2759
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2760
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2761
		return -1;
L
Linus Torvalds 已提交
2762 2763 2764 2765 2766 2767 2768
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2769
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2770 2771
 * this_rq is locked.
 */
2772
static int
2773
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2774 2775
{
	struct sched_group *group;
2776
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2777
	unsigned long imbalance;
P
Peter Williams 已提交
2778
	int ld_moved = 0;
N
Nick Piggin 已提交
2779
	int sd_idle = 0;
2780
	int all_pinned = 0;
2781
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2782

2783 2784 2785 2786
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2787
	 * portraying it as CPU_NOT_IDLE.
2788 2789 2790
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2791
		sd_idle = 1;
L
Linus Torvalds 已提交
2792

I
Ingo Molnar 已提交
2793
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2794
redo:
I
Ingo Molnar 已提交
2795
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2796
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2797
	if (!group) {
I
Ingo Molnar 已提交
2798
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2799
		goto out_balanced;
L
Linus Torvalds 已提交
2800 2801
	}

I
Ingo Molnar 已提交
2802
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2803
				&cpus);
N
Nick Piggin 已提交
2804
	if (!busiest) {
I
Ingo Molnar 已提交
2805
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2806
		goto out_balanced;
L
Linus Torvalds 已提交
2807 2808
	}

N
Nick Piggin 已提交
2809 2810
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2811
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2812

P
Peter Williams 已提交
2813
	ld_moved = 0;
2814 2815 2816
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
P
Peter Williams 已提交
2817
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2818 2819
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2820
		spin_unlock(&busiest->lock);
2821

2822
		if (unlikely(all_pinned)) {
2823 2824 2825 2826
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2827 2828
	}

P
Peter Williams 已提交
2829
	if (!ld_moved) {
I
Ingo Molnar 已提交
2830
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2831 2832
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2833 2834
			return -1;
	} else
2835
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2836

P
Peter Williams 已提交
2837
	return ld_moved;
2838 2839

out_balanced:
I
Ingo Molnar 已提交
2840
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2841
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2842
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2843
		return -1;
2844
	sd->nr_balance_failed = 0;
2845

2846
	return 0;
L
Linus Torvalds 已提交
2847 2848 2849 2850 2851 2852
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2853
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2854 2855
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2856 2857
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2858 2859

	for_each_domain(this_cpu, sd) {
2860 2861 2862 2863 2864 2865
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2866
			/* If we've pulled tasks over stop searching: */
2867
			pulled_task = load_balance_newidle(this_cpu,
2868 2869 2870 2871 2872 2873 2874
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2875
	}
I
Ingo Molnar 已提交
2876
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2877 2878 2879 2880 2881
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2882
	}
L
Linus Torvalds 已提交
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2893
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2894
{
2895
	int target_cpu = busiest_rq->push_cpu;
2896 2897
	struct sched_domain *sd;
	struct rq *target_rq;
2898

2899
	/* Is there any task to move? */
2900 2901 2902 2903
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2904 2905

	/*
2906 2907 2908
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2909
	 */
2910
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2911

2912 2913 2914 2915
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
2916
	for_each_domain(target_cpu, sd) {
2917
		if ((sd->flags & SD_LOAD_BALANCE) &&
2918
		    cpu_isset(busiest_cpu, sd->span))
2919
				break;
2920
	}
2921

2922 2923
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2924

P
Peter Williams 已提交
2925 2926
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2927 2928 2929 2930
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2931
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2932 2933
}

2934 2935 2936 2937 2938 2939 2940 2941 2942
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2943
/*
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2954
 *
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3011 3012 3013 3014 3015
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
3016
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3017
{
3018 3019
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3020 3021
	unsigned long interval;
	struct sched_domain *sd;
3022
	/* Earliest time when we have to do rebalance again */
3023
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
3024

3025
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3026 3027 3028 3029
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3030
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3031 3032 3033 3034 3035 3036
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3037 3038 3039
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3040

3041 3042 3043 3044 3045
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3046
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3047
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3048 3049
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3050 3051 3052
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3053
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3054
			}
3055
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3056
		}
3057 3058 3059
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3060 3061
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
3062 3063 3064 3065 3066 3067 3068 3069

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3070
	}
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
	rq->next_balance = next_balance;
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3081 3082 3083 3084
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3085

I
Ingo Molnar 已提交
3086
	rebalance_domains(this_cpu, idle);
3087 3088 3089 3090 3091 3092 3093

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3094 3095
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3096 3097 3098 3099
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3100
		cpu_clear(this_cpu, cpus);
3101 3102 3103 3104 3105 3106 3107 3108 3109
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

I
Ingo Molnar 已提交
3110
			rebalance_domains(balance_cpu, SCHED_IDLE);
3111 3112

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3113 3114
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3127
static inline void trigger_load_balance(struct rq *rq, int cpu)
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3179
}
I
Ingo Molnar 已提交
3180 3181 3182

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3183 3184 3185
/*
 * on UP we do not need to balance between CPUs:
 */
3186
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3187 3188
{
}
I
Ingo Molnar 已提交
3189 3190 3191 3192 3193 3194

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3195
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3196 3197 3198 3199 3200 3201
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3202 3203 3204 3205 3206 3207 3208
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3209 3210
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3211
 */
3212
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3213 3214
{
	unsigned long flags;
3215 3216
	u64 ns, delta_exec;
	struct rq *rq;
3217

3218 3219 3220
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3221 3222
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3223 3224 3225 3226
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3227

L
Linus Torvalds 已提交
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3262
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3292
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3315 3316 3317
	struct task_struct *curr = rq->curr;

	spin_lock(&rq->lock);
3318
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3319 3320 3321
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3322

3323
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3324 3325
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3326
#endif
L
Linus Torvalds 已提交
3327 3328 3329 3330 3331 3332 3333 3334 3335
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3336 3337
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3338 3339 3340 3341
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3342 3343
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3344 3345 3346 3347 3348 3349 3350 3351
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3352 3353
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3354 3355 3356
	/*
	 * Is the spinlock portion underflowing?
	 */
3357 3358 3359 3360
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3361 3362 3363 3364 3365 3366 3367
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3368
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3369
 */
I
Ingo Molnar 已提交
3370
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3371
{
I
Ingo Molnar 已提交
3372 3373 3374 3375 3376 3377 3378
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3379

I
Ingo Molnar 已提交
3380 3381 3382 3383 3384
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3385 3386 3387 3388 3389
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3390 3391 3392
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3393 3394
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3395 3396 3397 3398 3399 3400 3401
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3402
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3403 3404 3405
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3406 3407

	/*
I
Ingo Molnar 已提交
3408 3409
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3410
	 */
I
Ingo Molnar 已提交
3411
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3412
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3413 3414
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3415 3416
	}

I
Ingo Molnar 已提交
3417 3418
	class = sched_class_highest;
	for ( ; ; ) {
3419
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3420 3421 3422 3423 3424 3425 3426 3427 3428
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3429

I
Ingo Molnar 已提交
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	u64 now;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3453 3454

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3455
	clear_tsk_need_resched(prev);
I
Ingo Molnar 已提交
3456 3457
	__update_rq_clock(rq);
	now = rq->clock;
L
Linus Torvalds 已提交
3458 3459 3460

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3461
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3462
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3463
		} else {
I
Ingo Molnar 已提交
3464
			deactivate_task(rq, prev, 1, now);
L
Linus Torvalds 已提交
3465
		}
I
Ingo Molnar 已提交
3466
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3467 3468
	}

I
Ingo Molnar 已提交
3469
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3470 3471
		idle_balance(cpu, rq);

3472
	prev->sched_class->put_prev_task(rq, prev);
3473
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3474 3475

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3476

L
Linus Torvalds 已提交
3477 3478 3479 3480 3481
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3482
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3483 3484 3485
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3486 3487 3488
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3489
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3490
	}
L
Linus Torvalds 已提交
3491 3492 3493 3494 3495 3496 3497 3498
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3499
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3514
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3542
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3554
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3584 3585
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3586
{
3587
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3606 3607 3608
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3609
		if (curr->func(curr, mode, sync, key) &&
3610
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3611 3612 3613 3614 3615 3616 3617 3618 3619
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3620
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3621 3622
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3623
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3642
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3654 3655
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3699

L
Linus Torvalds 已提交
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3818 3819 3820 3821 3822
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3823
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3824
}
L
Linus Torvalds 已提交
3825

I
Ingo Molnar 已提交
3826 3827 3828 3829 3830 3831 3832
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3833

I
Ingo Molnar 已提交
3834
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3835
{
I
Ingo Molnar 已提交
3836 3837 3838 3839
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3840 3841 3842

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3843
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3844
	schedule();
I
Ingo Molnar 已提交
3845
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3846 3847 3848
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3849
long __sched
I
Ingo Molnar 已提交
3850
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3851
{
I
Ingo Molnar 已提交
3852 3853 3854 3855
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3856 3857 3858

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3859
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3860
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3861
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3862 3863 3864 3865 3866

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3867
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3868
{
I
Ingo Molnar 已提交
3869 3870 3871 3872
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3873 3874 3875

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3876
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3877
	schedule();
I
Ingo Molnar 已提交
3878
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3879 3880 3881
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3882
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3883
{
I
Ingo Molnar 已提交
3884 3885 3886 3887
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3888 3889 3890

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3891
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3892
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3893
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3894 3895 3896 3897 3898

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3911
void rt_mutex_setprio(struct task_struct *p, int prio)
3912 3913
{
	unsigned long flags;
I
Ingo Molnar 已提交
3914
	int oldprio, on_rq;
3915
	struct rq *rq;
I
Ingo Molnar 已提交
3916
	u64 now;
3917 3918 3919 3920

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3921 3922
	update_rq_clock(rq);
	now = rq->clock;
3923

3924
	oldprio = p->prio;
I
Ingo Molnar 已提交
3925 3926 3927 3928 3929 3930 3931 3932 3933
	on_rq = p->se.on_rq;
	if (on_rq)
		dequeue_task(rq, p, 0, now);

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3934 3935
	p->prio = prio;

I
Ingo Molnar 已提交
3936 3937
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
3938 3939
		/*
		 * Reschedule if we are currently running on this runqueue and
3940 3941
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3942
		 */
3943 3944 3945
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3946 3947 3948
		} else {
			check_preempt_curr(rq, p);
		}
3949 3950 3951 3952 3953 3954
	}
	task_rq_unlock(rq, &flags);
}

#endif

3955
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3956
{
I
Ingo Molnar 已提交
3957
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3958
	unsigned long flags;
3959
	struct rq *rq;
I
Ingo Molnar 已提交
3960
	u64 now;
L
Linus Torvalds 已提交
3961 3962 3963 3964 3965 3966 3967 3968

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3969 3970
	update_rq_clock(rq);
	now = rq->clock;
L
Linus Torvalds 已提交
3971 3972 3973 3974
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3975
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3976
	 */
3977
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3978 3979 3980
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3981 3982 3983 3984
	on_rq = p->se.on_rq;
	if (on_rq) {
		dequeue_task(rq, p, 0, now);
		dec_load(rq, p, now);
3985
	}
L
Linus Torvalds 已提交
3986 3987

	p->static_prio = NICE_TO_PRIO(nice);
3988
	set_load_weight(p);
3989 3990 3991
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3992

I
Ingo Molnar 已提交
3993 3994
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
3995
		inc_load(rq, p);
L
Linus Torvalds 已提交
3996
		/*
3997 3998
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3999
		 */
4000
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4001 4002 4003 4004 4005 4006 4007
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4008 4009 4010 4011 4012
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4013
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4014
{
4015 4016
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4017

M
Matt Mackall 已提交
4018 4019 4020 4021
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4033
	long nice, retval;
L
Linus Torvalds 已提交
4034 4035 4036 4037 4038 4039

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4040 4041
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4042 4043 4044 4045 4046 4047 4048 4049 4050
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4051 4052 4053
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4072
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4073 4074 4075 4076 4077 4078 4079 4080
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4081
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4100
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4101 4102 4103 4104 4105 4106 4107 4108
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4109
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4110 4111 4112 4113 4114
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4115 4116
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4117
{
I
Ingo Molnar 已提交
4118
	BUG_ON(p->se.on_rq);
4119

L
Linus Torvalds 已提交
4120
	p->policy = policy;
I
Ingo Molnar 已提交
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4133
	p->rt_priority = prio;
4134 4135 4136
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4137
	set_load_weight(p);
L
Linus Torvalds 已提交
4138 4139 4140
}

/**
4141
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4142 4143 4144
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4145
 *
4146
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4147
 */
I
Ingo Molnar 已提交
4148 4149
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4150
{
I
Ingo Molnar 已提交
4151
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4152
	unsigned long flags;
4153
	struct rq *rq;
L
Linus Torvalds 已提交
4154

4155 4156
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4157 4158 4159 4160 4161
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4162 4163
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4164
		return -EINVAL;
L
Linus Torvalds 已提交
4165 4166
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4167 4168
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4169 4170
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4171
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4172
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4173
		return -EINVAL;
4174
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4175 4176
		return -EINVAL;

4177 4178 4179 4180
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4181
		if (rt_policy(policy)) {
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4198 4199 4200 4201 4202 4203
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4204

4205 4206 4207 4208 4209
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4210 4211 4212 4213

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4214 4215 4216 4217 4218
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4219 4220 4221 4222
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4223
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4224 4225 4226
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4227 4228
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4229 4230
		goto recheck;
	}
I
Ingo Molnar 已提交
4231
	on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
4232 4233 4234 4235
	if (on_rq) {
		update_rq_clock(rq);
		deactivate_task(rq, p, 0, rq->clock);
	}
L
Linus Torvalds 已提交
4236
	oldprio = p->prio;
I
Ingo Molnar 已提交
4237 4238 4239
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4240 4241
		/*
		 * Reschedule if we are currently running on this runqueue and
4242 4243
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4244
		 */
4245 4246 4247
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4248 4249 4250
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4251
	}
4252 4253 4254
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4255 4256
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4257 4258 4259 4260
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4261 4262
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4263 4264 4265
{
	struct sched_param lparam;
	struct task_struct *p;
4266
	int retval;
L
Linus Torvalds 已提交
4267 4268 4269 4270 4271

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4272 4273 4274

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4275
	p = find_process_by_pid(pid);
4276 4277 4278
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4279

L
Linus Torvalds 已提交
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4292 4293 4294 4295
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4315
	struct task_struct *p;
L
Linus Torvalds 已提交
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4343
	struct task_struct *p;
L
Linus Torvalds 已提交
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4378 4379
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4380

4381
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4382 4383 4384 4385 4386
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4387
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4404 4405 4406 4407
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4408 4409 4410 4411 4412 4413
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4414
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4455
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4456 4457 4458
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4459
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4460 4461
EXPORT_SYMBOL(cpu_online_map);

4462
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4463
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4464 4465 4466 4467
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4468
	struct task_struct *p;
L
Linus Torvalds 已提交
4469 4470
	int retval;

4471
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4472 4473 4474 4475 4476 4477 4478
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4479 4480 4481 4482
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4483
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4484 4485 4486

out_unlock:
	read_unlock(&tasklist_lock);
4487
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4488

4489
	return retval;
L
Linus Torvalds 已提交
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4520 4521
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4522 4523 4524
 */
asmlinkage long sys_sched_yield(void)
{
4525
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4526 4527

	schedstat_inc(rq, yld_cnt);
I
Ingo Molnar 已提交
4528
	if (unlikely(rq->nr_running == 1))
L
Linus Torvalds 已提交
4529
		schedstat_inc(rq, yld_act_empty);
I
Ingo Molnar 已提交
4530 4531
	else
		current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4532 4533 4534 4535 4536 4537

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4538
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4539 4540 4541 4542 4543 4544 4545 4546
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4547
static void __cond_resched(void)
L
Linus Torvalds 已提交
4548
{
4549 4550 4551
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4552 4553 4554 4555 4556
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4557 4558 4559 4560 4561 4562 4563 4564 4565
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4566 4567
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4583
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4584
{
J
Jan Kara 已提交
4585 4586
	int ret = 0;

L
Linus Torvalds 已提交
4587 4588 4589
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4590
		ret = 1;
L
Linus Torvalds 已提交
4591 4592
		spin_lock(lock);
	}
4593
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4594
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4595 4596 4597
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4598
		ret = 1;
L
Linus Torvalds 已提交
4599 4600
		spin_lock(lock);
	}
J
Jan Kara 已提交
4601
	return ret;
L
Linus Torvalds 已提交
4602 4603 4604 4605 4606 4607 4608
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4609
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4610
		local_bh_enable();
L
Linus Torvalds 已提交
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4622
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4641
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4642

4643
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4644 4645 4646
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4647
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4648 4649 4650 4651 4652
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4653
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4654 4655
	long ret;

4656
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4657 4658 4659
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4660
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4681
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4682
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4706
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4707
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4724
	struct task_struct *p;
L
Linus Torvalds 已提交
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4741
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4742
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4743 4744 4745 4746 4747 4748 4749 4750 4751
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4752
static const char stat_nam[] = "RSDTtZX";
4753 4754

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4755 4756
{
	unsigned long free = 0;
4757
	unsigned state;
L
Linus Torvalds 已提交
4758 4759

	state = p->state ? __ffs(p->state) + 1 : 0;
4760 4761
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4762
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4763
	if (state == TASK_RUNNING)
4764
		printk(" running  ");
L
Linus Torvalds 已提交
4765
	else
4766
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4767 4768
#else
	if (state == TASK_RUNNING)
4769
		printk("  running task    ");
L
Linus Torvalds 已提交
4770 4771 4772 4773 4774
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4775
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4776 4777
		while (!*n)
			n++;
4778
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4779 4780
	}
#endif
4781
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4782 4783 4784 4785 4786

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4787
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4788
{
4789
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4790

4791 4792 4793
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4794
#else
4795 4796
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4797 4798 4799 4800 4801 4802 4803 4804
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4805
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4806
			show_task(p);
L
Linus Torvalds 已提交
4807 4808
	} while_each_thread(g, p);

4809 4810
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4811 4812 4813
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4814
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4815 4816 4817 4818 4819
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4820 4821
}

I
Ingo Molnar 已提交
4822 4823
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4824
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4825 4826
}

4827 4828 4829 4830 4831 4832 4833 4834
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4835
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4836
{
4837
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4838 4839
	unsigned long flags;

I
Ingo Molnar 已提交
4840 4841 4842
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4843
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4844
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4845
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4846 4847 4848

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4849 4850 4851
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4852 4853 4854 4855
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4856
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4857
#else
A
Al Viro 已提交
4858
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4859
#endif
I
Ingo Molnar 已提交
4860 4861 4862 4863
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
4887
	const unsigned long gran_limit = 100000000;
I
Ingo Molnar 已提交
4888 4889 4890 4891 4892 4893 4894 4895 4896

	sysctl_sched_granularity *= factor;
	if (sysctl_sched_granularity > gran_limit)
		sysctl_sched_granularity = gran_limit;

	sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
	sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
}

L
Linus Torvalds 已提交
4897 4898 4899 4900
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4901
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4923
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4924
{
4925
	struct migration_req req;
L
Linus Torvalds 已提交
4926
	unsigned long flags;
4927
	struct rq *rq;
4928
	int ret = 0;
L
Linus Torvalds 已提交
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4951

L
Linus Torvalds 已提交
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4964 4965
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4966
 */
4967
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4968
{
4969
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4970
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4971 4972

	if (unlikely(cpu_is_offline(dest_cpu)))
4973
		return ret;
L
Linus Torvalds 已提交
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4986
	on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
4987 4988 4989 4990
	if (on_rq) {
		update_rq_clock(rq_src);
		deactivate_task(rq_src, p, 0, rq_src->clock);
	}
L
Linus Torvalds 已提交
4991
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4992 4993 4994
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4995
	}
4996
	ret = 1;
L
Linus Torvalds 已提交
4997 4998
out:
	double_rq_unlock(rq_src, rq_dest);
4999
	return ret;
L
Linus Torvalds 已提交
5000 5001 5002 5003 5004 5005 5006
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5007
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5008 5009
{
	int cpu = (long)data;
5010
	struct rq *rq;
L
Linus Torvalds 已提交
5011 5012 5013 5014 5015 5016

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5017
		struct migration_req *req;
L
Linus Torvalds 已提交
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5040
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5041 5042
		list_del_init(head->next);

N
Nick Piggin 已提交
5043 5044 5045
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5064 5065 5066 5067
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5068
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5069
{
5070
	unsigned long flags;
L
Linus Torvalds 已提交
5071
	cpumask_t mask;
5072 5073
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5074

5075
restart:
L
Linus Torvalds 已提交
5076 5077
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5078
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5079 5080 5081 5082
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5083
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5084 5085 5086

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5087 5088 5089
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5090
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5091 5092 5093 5094 5095 5096

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5097
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5098 5099
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5100
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5101
	}
5102
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5103
		goto restart;
L
Linus Torvalds 已提交
5104 5105 5106 5107 5108 5109 5110 5111 5112
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5113
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5114
{
5115
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5129
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5130 5131 5132

	write_lock_irq(&tasklist_lock);

5133 5134
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5135 5136
			continue;

5137 5138 5139
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5140 5141 5142 5143

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5144 5145
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5146
 * It does so by boosting its priority to highest possible and adding it to
5147
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5148 5149 5150
 */
void sched_idle_next(void)
{
5151
	int this_cpu = smp_processor_id();
5152
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5153 5154 5155 5156
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5157
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5158

5159 5160 5161
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5162 5163 5164
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5165
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5166 5167

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5168
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5169 5170 5171 5172

	spin_unlock_irqrestore(&rq->lock, flags);
}

5173 5174
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5188
/* called under rq->lock with disabled interrupts */
5189
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5190
{
5191
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5192 5193

	/* Must be exiting, otherwise would be on tasklist. */
5194
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5195 5196

	/* Cannot have done final schedule yet: would have vanished. */
5197
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5198

5199
	get_task_struct(p);
L
Linus Torvalds 已提交
5200 5201 5202 5203 5204

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5205
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5206
	 */
5207
	spin_unlock(&rq->lock);
5208
	move_task_off_dead_cpu(dead_cpu, p);
5209
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5210

5211
	put_task_struct(p);
L
Linus Torvalds 已提交
5212 5213 5214 5215 5216
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5217
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5218
	struct task_struct *next;
5219

I
Ingo Molnar 已提交
5220 5221 5222
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5223
		update_rq_clock(rq);
5224
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5225 5226 5227
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5228

L
Linus Torvalds 已提交
5229 5230 5231 5232
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5233 5234 5235
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5236 5237 5238 5239
	{
		.procname	= "sched_domain",
		.mode		= 0755,
	},
5240 5241 5242 5243
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5244 5245 5246 5247 5248
	{
		.procname	= "kernel",
		.mode		= 0755,
		.child		= sd_ctl_dir,
	},
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);

	BUG_ON(!entry);
	memset(entry, 0, n * sizeof(struct ctl_table));

	return entry;
}

static void
5264
set_table_entry(struct ctl_table *entry,
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
	struct ctl_table *table = sd_alloc_ctl_entry(14);

5280
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5281
		sizeof(long), 0644, proc_doulongvec_minmax);
5282
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5283
		sizeof(long), 0644, proc_doulongvec_minmax);
5284
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5285
		sizeof(int), 0644, proc_dointvec_minmax);
5286
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5287
		sizeof(int), 0644, proc_dointvec_minmax);
5288
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5289
		sizeof(int), 0644, proc_dointvec_minmax);
5290
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5291
		sizeof(int), 0644, proc_dointvec_minmax);
5292
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5293
		sizeof(int), 0644, proc_dointvec_minmax);
5294
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5295
		sizeof(int), 0644, proc_dointvec_minmax);
5296
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5297
		sizeof(int), 0644, proc_dointvec_minmax);
5298
	set_table_entry(&table[10], "cache_nice_tries",
5299 5300
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5301
	set_table_entry(&table[12], "flags", &sd->flags,
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
		sizeof(int), 0644, proc_dointvec_minmax);

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
		entry->mode = 0755;
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
static void init_sched_domain_sysctl(void)
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

	sd_ctl_dir[0].child = entry;

	for (i = 0; i < cpu_num; i++, entry++) {
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
		entry->mode = 0755;
		entry->child = sd_alloc_ctl_cpu_table(i);
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
#else
static void init_sched_domain_sysctl(void)
{
}
#endif

L
Linus Torvalds 已提交
5353 5354 5355 5356
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5357 5358
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5359 5360
{
	struct task_struct *p;
5361
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5362
	unsigned long flags;
5363
	struct rq *rq;
L
Linus Torvalds 已提交
5364 5365

	switch (action) {
5366 5367 5368 5369
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5370
	case CPU_UP_PREPARE:
5371
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5372
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5373 5374 5375 5376 5377
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5378
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5379 5380 5381
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5382

L
Linus Torvalds 已提交
5383
	case CPU_ONLINE:
5384
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5385 5386 5387
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5388

L
Linus Torvalds 已提交
5389 5390
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5391
	case CPU_UP_CANCELED_FROZEN:
5392 5393
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5394
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5395 5396
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5397 5398 5399
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5400

L
Linus Torvalds 已提交
5401
	case CPU_DEAD:
5402
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5403 5404 5405 5406 5407 5408
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5409 5410
		update_rq_clock(rq);
		deactivate_task(rq, rq->idle, 0, rq->clock);
L
Linus Torvalds 已提交
5411
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5412 5413
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5414 5415 5416 5417 5418 5419
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5420
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5421 5422 5423
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5424 5425
			struct migration_req *req;

L
Linus Torvalds 已提交
5426
			req = list_entry(rq->migration_queue.next,
5427
					 struct migration_req, list);
L
Linus Torvalds 已提交
5428 5429 5430 5431 5432 5433
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5434 5435 5436
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5437 5438 5439 5440 5441 5442 5443
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5444
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5445 5446 5447 5448 5449 5450 5451
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5452
	int err;
5453 5454

	/* Start one for the boot CPU: */
5455 5456
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5457 5458
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5459

L
Linus Torvalds 已提交
5460 5461 5462 5463 5464
	return 0;
}
#endif

#ifdef CONFIG_SMP
5465 5466 5467 5468 5469

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5470
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5471 5472 5473 5474 5475
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5476 5477 5478 5479 5480
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5500 5501
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5502 5503 5504 5505 5506 5507
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5508 5509
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5510
		if (!cpu_isset(cpu, group->cpumask))
5511 5512
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5525
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5526
				printk("\n");
5527 5528
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5551 5552
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5553 5554 5555

		level++;
		sd = sd->parent;
5556 5557
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5558

5559 5560 5561
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5562 5563 5564 5565

	} while (sd);
}
#else
5566
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5567 5568
#endif

5569
static int sd_degenerate(struct sched_domain *sd)
5570 5571 5572 5573 5574 5575 5576 5577
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5578 5579 5580
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5594 5595
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5614 5615 5616
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5617 5618 5619 5620 5621 5622 5623
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5624 5625 5626 5627
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5628
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5629
{
5630
	struct rq *rq = cpu_rq(cpu);
5631 5632 5633 5634 5635 5636 5637
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5638
		if (sd_parent_degenerate(tmp, parent)) {
5639
			tmp->parent = parent->parent;
5640 5641 5642
			if (parent->parent)
				parent->parent->child = tmp;
		}
5643 5644
	}

5645
	if (sd && sd_degenerate(sd)) {
5646
		sd = sd->parent;
5647 5648 5649
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5650 5651 5652

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5653
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5654 5655 5656
}

/* cpus with isolated domains */
5657
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5675 5676 5677 5678
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5679 5680 5681 5682 5683
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5684
static void
5685 5686 5687
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5688 5689 5690 5691 5692 5693
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5694 5695
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5696 5697 5698 5699 5700 5701
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5702
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5703 5704

		for_each_cpu_mask(j, span) {
5705
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5720
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5721

5722
#ifdef CONFIG_NUMA
5723

5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5776 5777
	cpumask_t span, nodemask;
	int i;
5778 5779 5780 5781 5782 5783 5784 5785 5786 5787

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5788

5789 5790 5791 5792 5793 5794 5795 5796
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5797
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5798

5799
/*
5800
 * SMT sched-domains:
5801
 */
L
Linus Torvalds 已提交
5802 5803
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5804
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5805

5806 5807
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5808
{
5809 5810
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5811 5812 5813 5814
	return cpu;
}
#endif

5815 5816 5817
/*
 * multi-core sched-domains:
 */
5818 5819
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5820
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5821 5822 5823
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5824 5825
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5826
{
5827
	int group;
5828 5829
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5830 5831 5832 5833
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5834 5835
}
#elif defined(CONFIG_SCHED_MC)
5836 5837
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5838
{
5839 5840
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5841 5842 5843 5844
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5845
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5846
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5847

5848 5849
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5850
{
5851
	int group;
5852
#ifdef CONFIG_SCHED_MC
5853
	cpumask_t mask = cpu_coregroup_map(cpu);
5854
	cpus_and(mask, mask, *cpu_map);
5855
	group = first_cpu(mask);
5856
#elif defined(CONFIG_SCHED_SMT)
5857 5858
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5859
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5860
#else
5861
	group = cpu;
L
Linus Torvalds 已提交
5862
#endif
5863 5864 5865
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5866 5867 5868 5869
}

#ifdef CONFIG_NUMA
/*
5870 5871 5872
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5873
 */
5874
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5875
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5876

5877
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5878
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5879

5880 5881
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5882
{
5883 5884 5885 5886 5887 5888 5889 5890 5891
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5892
}
5893

5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5914
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5915 5916 5917 5918 5919
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5920 5921
#endif

5922
#ifdef CONFIG_NUMA
5923 5924 5925
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5926
	int cpu, i;
5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5957 5958 5959 5960 5961
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5962

5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5989 5990
	sd->groups->__cpu_power = 0;

5991 5992 5993 5994 5995 5996 5997 5998 5999 6000
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6001
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6002 6003 6004 6005 6006 6007 6008 6009
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6010
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6011 6012 6013 6014
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6015
/*
6016 6017
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6018
 */
6019
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6020 6021
{
	int i;
6022 6023
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6024
	int sd_allnodes = 0;
6025 6026 6027 6028

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
6029
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6030
					   GFP_KERNEL);
6031 6032
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6033
		return -ENOMEM;
6034 6035 6036
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6037 6038

	/*
6039
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6040
	 */
6041
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6042 6043 6044
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6045
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6046 6047

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6048 6049
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6050 6051 6052
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6053
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6054
			p = sd;
6055
			sd_allnodes = 1;
6056 6057 6058
		} else
			p = NULL;

L
Linus Torvalds 已提交
6059 6060
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6061 6062
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6063 6064
		if (p)
			p->child = sd;
6065
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6066 6067 6068 6069 6070 6071 6072
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6073 6074
		if (p)
			p->child = sd;
6075
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6076

6077 6078 6079 6080 6081 6082 6083
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6084
		p->child = sd;
6085
		cpu_to_core_group(i, cpu_map, &sd->groups);
6086 6087
#endif

L
Linus Torvalds 已提交
6088 6089 6090 6091 6092
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6093
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6094
		sd->parent = p;
6095
		p->child = sd;
6096
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6097 6098 6099 6100 6101
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6102
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6103
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6104
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6105 6106 6107
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6108 6109
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6110 6111 6112
	}
#endif

6113 6114 6115 6116 6117 6118 6119
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6120 6121
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6122 6123 6124
	}
#endif

L
Linus Torvalds 已提交
6125 6126 6127 6128
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6129
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6130 6131 6132
		if (cpus_empty(nodemask))
			continue;

6133
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6134 6135 6136 6137
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6138
	if (sd_allnodes)
I
Ingo Molnar 已提交
6139 6140
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6151 6152
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6153
			continue;
6154
		}
6155 6156 6157 6158

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6159
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6160 6161 6162 6163 6164
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6165 6166 6167
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6168

6169 6170 6171
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6172
		sg->__cpu_power = 0;
6173
		sg->cpumask = nodemask;
6174
		sg->next = sg;
6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6193 6194
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6195 6196 6197
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6198
				goto error;
6199
			}
6200
			sg->__cpu_power = 0;
6201
			sg->cpumask = tmp;
6202
			sg->next = prev->next;
6203 6204 6205 6206 6207
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6208 6209 6210
#endif

	/* Calculate CPU power for physical packages and nodes */
6211
#ifdef CONFIG_SCHED_SMT
6212
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6213 6214
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6215
		init_sched_groups_power(i, sd);
6216
	}
L
Linus Torvalds 已提交
6217
#endif
6218
#ifdef CONFIG_SCHED_MC
6219
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6220 6221
		struct sched_domain *sd = &per_cpu(core_domains, i);

6222
		init_sched_groups_power(i, sd);
6223 6224
	}
#endif
6225

6226
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6227 6228
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6229
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6230 6231
	}

6232
#ifdef CONFIG_NUMA
6233 6234
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6235

6236 6237
	if (sd_allnodes) {
		struct sched_group *sg;
6238

6239
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6240 6241
		init_numa_sched_groups_power(sg);
	}
6242 6243
#endif

L
Linus Torvalds 已提交
6244
	/* Attach the domains */
6245
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6246 6247 6248
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6249 6250
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6251 6252 6253 6254 6255
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6256 6257 6258

	return 0;

6259
#ifdef CONFIG_NUMA
6260 6261 6262
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6263
#endif
L
Linus Torvalds 已提交
6264
}
6265 6266 6267
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6268
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6269 6270
{
	cpumask_t cpu_default_map;
6271
	int err;
L
Linus Torvalds 已提交
6272

6273 6274 6275 6276 6277 6278 6279
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6280 6281 6282
	err = build_sched_domains(&cpu_default_map);

	return err;
6283 6284 6285
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6286
{
6287
	free_sched_groups(cpu_map);
6288
}
L
Linus Torvalds 已提交
6289

6290 6291 6292 6293
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6294
static void detach_destroy_domains(const cpumask_t *cpu_map)
6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6312
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6313 6314
{
	cpumask_t change_map;
6315
	int err = 0;
6316 6317 6318 6319 6320 6321 6322 6323

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6324 6325 6326 6327 6328
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6329 6330
}

6331 6332 6333 6334 6335
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

6336
	mutex_lock(&sched_hotcpu_mutex);
6337 6338
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6339
	mutex_unlock(&sched_hotcpu_mutex);
6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6364

6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6384 6385
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6398 6399
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6400 6401 6402 6403 6404 6405 6406
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6407 6408 6409
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6410
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6411 6412 6413 6414 6415 6416 6417
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6418
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6419
	case CPU_DOWN_PREPARE:
6420
	case CPU_DOWN_PREPARE_FROZEN:
6421
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6422 6423 6424
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6425
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6426
	case CPU_DOWN_FAILED:
6427
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6428
	case CPU_ONLINE:
6429
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6430
	case CPU_DEAD:
6431
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6432 6433 6434 6435 6436 6437 6438 6439 6440
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6441
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6442 6443 6444 6445 6446 6447

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6448 6449
	cpumask_t non_isolated_cpus;

6450
	mutex_lock(&sched_hotcpu_mutex);
6451
	arch_init_sched_domains(&cpu_online_map);
6452
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6453 6454
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6455
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6456 6457
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6458

6459 6460
	init_sched_domain_sysctl();

6461 6462 6463
	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6464
	sched_init_granularity();
L
Linus Torvalds 已提交
6465 6466 6467 6468
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6469
	sched_init_granularity();
L
Linus Torvalds 已提交
6470 6471 6472 6473 6474 6475 6476
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6477

L
Linus Torvalds 已提交
6478 6479 6480 6481 6482
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6483 6484 6485 6486 6487 6488 6489 6490 6491
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->fair_clock = 1;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6492 6493
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6494
	u64 now = sched_clock();
6495
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6496 6497 6498 6499 6500 6501 6502 6503
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6504

6505
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6506
		struct rt_prio_array *array;
6507
		struct rq *rq;
L
Linus Torvalds 已提交
6508 6509 6510

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6511
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6512
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6513 6514 6515 6516 6517 6518 6519 6520
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
#endif
		rq->ls.load_update_last = now;
		rq->ls.load_update_start = now;
L
Linus Torvalds 已提交
6521

I
Ingo Molnar 已提交
6522 6523
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6524
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6525
		rq->sd = NULL;
L
Linus Torvalds 已提交
6526
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6527
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6528
		rq->push_cpu = 0;
6529
		rq->cpu = i;
L
Linus Torvalds 已提交
6530 6531 6532 6533 6534
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6535 6536 6537 6538
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6539
		}
6540
		highest_cpu = i;
I
Ingo Molnar 已提交
6541 6542
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6543 6544
	}

6545
	set_load_weight(&init_task);
6546

6547 6548 6549 6550
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6551
#ifdef CONFIG_SMP
6552
	nr_cpu_ids = highest_cpu + 1;
6553 6554 6555
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6556 6557 6558 6559
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6573 6574 6575 6576
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6577 6578 6579 6580 6581
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6582
#ifdef in_atomic
L
Linus Torvalds 已提交
6583 6584 6585 6586 6587 6588 6589
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6590
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6591 6592 6593
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6594
		debug_show_held_locks(current);
6595 6596
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6597 6598 6599 6600 6601 6602 6603 6604 6605 6606
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6607
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6608
	unsigned long flags;
6609
	struct rq *rq;
I
Ingo Molnar 已提交
6610
	int on_rq;
L
Linus Torvalds 已提交
6611 6612

	read_lock_irq(&tasklist_lock);
6613
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6614 6615
		p->se.fair_key			= 0;
		p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
6616
		p->se.exec_start		= 0;
I
Ingo Molnar 已提交
6617
		p->se.wait_start_fair		= 0;
I
Ingo Molnar 已提交
6618 6619
		p->se.sleep_start_fair		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6620 6621 6622
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6623
#endif
I
Ingo Molnar 已提交
6624 6625 6626 6627 6628 6629 6630 6631 6632 6633
		task_rq(p)->cfs.fair_clock	= 0;
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6634
			continue;
I
Ingo Molnar 已提交
6635
		}
L
Linus Torvalds 已提交
6636

6637 6638
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6639 6640 6641 6642 6643 6644 6645
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6646

I
Ingo Molnar 已提交
6647
		on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
6648 6649 6650 6651
		if (on_rq) {
			update_rq_clock(task_rq(p));
			deactivate_task(task_rq(p), p, 0, task_rq(p)->clock);
		}
I
Ingo Molnar 已提交
6652 6653 6654
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
			activate_task(task_rq(p), p, 0);
L
Linus Torvalds 已提交
6655 6656
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6657 6658 6659
#ifdef CONFIG_SMP
 out_unlock:
#endif
6660 6661
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6662 6663
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6664 6665 6666 6667
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6686
struct task_struct *curr_task(int cpu)
6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6706
void set_curr_task(int cpu, struct task_struct *p)
6707 6708 6709 6710 6711
{
	cpu_curr(cpu) = p;
}

#endif