nn.py 491.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39
    'fc',
H
HaoRen 已提交
40
    'center_loss',
X
Xin Pan 已提交
41 42 43 44 45 46 47 48 49
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
50
    'bpr_loss',
X
Xin Pan 已提交
51 52 53 54 55 56 57 58 59 60
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
61 62
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
63
    'batch_norm',
H
heqiaozhi 已提交
64
    'data_norm',
X
Xin Pan 已提交
65 66 67 68 69 70
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
71
    'sequence_unpad',
X
Xin Pan 已提交
72 73 74 75 76 77
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
78 79
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
80 81
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
82
    'sequence_slice',
X
Xin Pan 已提交
83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
95
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
96 97 98 99 100
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
101
    'group_norm',
D
dengkaipeng 已提交
102
    'spectral_norm',
X
Xin Pan 已提交
103 104 105 106 107 108 109 110
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
111
    'lod_append',
X
Xin Pan 已提交
112 113 114 115 116
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
117
    'roi_align',
X
Xin Pan 已提交
118 119 120 121
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
122
    'resize_trilinear',
123
    'resize_nearest',
X
Xin Pan 已提交
124 125 126 127 128 129
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
130
    'selu',
X
Xin Pan 已提交
131 132 133
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
134
    'margin_rank_loss',
X
Xin Pan 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
Z
zhoukunsheng 已提交
151
    'unique',
152
    'unique_with_counts',
X
Xin Pan 已提交
153 154 155 156 157 158 159 160 161 162
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
163 164
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
165 166 167 168 169 170 171
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
172
    'rank',
Z
zhoukunsheng 已提交
173
    'size',
X
Xin Pan 已提交
174 175 176 177 178 179 180 181 182 183
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
184
    'space_to_depth',
W
whs 已提交
185
    'affine_grid',
S
sneaxiy 已提交
186
    'sequence_reverse',
187
    'sequence_topk_avg_pooling',
188
    'affine_channel',
B
barrierye 已提交
189
    'similarity_focus',
M
minqiyang 已提交
190
    'hash',
D
dengkaipeng 已提交
191
    'grid_sampler',
G
gmcather 已提交
192 193
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
194
    'bilinear_tensor_product',
C
chengduo 已提交
195 196
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
197
    'lstm',
S
shippingwang 已提交
198
    'shuffle_channel',
199
    'temporal_shift',
S
sneaxiy 已提交
200
    'py_func',
201
    'psroi_pool',
H
heqiaozhi 已提交
202
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
203
    'huber_loss',
D
dengkaipeng 已提交
204
    'kldiv_loss',
Z
zhaozhehao 已提交
205
    'tree_conv',
C
ceci3 已提交
206
    'npair_loss',
R
ruri 已提交
207
    'pixel_shuffle',
208
    'fsp_matrix',
H
heqiaozhi 已提交
209
    'continuous_value_model',
Z
zhoukunsheng 已提交
210
    'where',
Z
zhoukunsheng 已提交
211
    'sign',
212
    'deformable_conv',
213
    'unfold',
C
cjt222 已提交
214
    'deformable_roi_pooling',
A
Aurelius84 已提交
215
    'match_matrix_tensor',
J
Jiawei Wang 已提交
216
    'filter_by_instag',
K
Kevin 已提交
217
    'var_conv_2d',
218
    'shard_index',
H
huangjun12 已提交
219
    'hard_swish',
Y
Yu Yang 已提交
220 221
]

J
jerrywgz 已提交
222 223
kIgnoreIndex = -100

Y
Yu Yang 已提交
224 225 226 227 228 229 230

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
231
       name=None):
Y
Yu Yang 已提交
232
    """
233
    **Fully Connected Layer**
Y
Yu Yang 已提交
234

235
    This function creates a fully connected layer in the network. It can take
236
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
237
    Args in detail). It creates a variable called weights for each input tensor,
238 239 240 241
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
242
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
243 244
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
245

246
    When the input is single tensor:
C
caoying03 已提交
247

248 249 250 251 252
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
253 254 255

    .. math::

256
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
257 258 259

    In the above equation:

260 261 262
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
263
    * :math:`b`: The bias parameter created by this layer (if needed).
264
    * :math:`Act`: The activation function.
C
caoying03 已提交
265
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
266

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
285
    Args:
R
ranqiu 已提交
286 287 288 289 290 291 292 293 294 295
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
296
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
297 298 299 300
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
301 302
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
303 304
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
305

306
    Returns:
F
fengjiayi 已提交
307
        Variable: The transformation result.
308 309

    Raises:
C
caoying03 已提交
310
        ValueError: If rank of the input tensor is less than 2.
311 312 313 314

    Examples:
        .. code-block:: python

315
          import paddle.fluid as fluid
316
          # when input is single tensor
F
fengjiayi 已提交
317
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
318
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
319 320 321 322 323

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
324
    """
C
caoying03 已提交
325
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
326 327 328 329

    dtype = helper.input_dtype()

    mul_results = []
330 331
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
332 333 334
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
335

Y
Yu Yang 已提交
336
        w = helper.create_parameter(
337
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
338
        tmp = helper.create_variable_for_type_inference(dtype)
339
        helper.append_op(
340 341 342
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
343
            outputs={"Out": tmp},
M
mozga-intel 已提交
344 345
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
346 347 348 349
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
350
    else:
X
Xin Pan 已提交
351
        pre_bias = helper.create_variable_for_type_inference(dtype)
352
        helper.append_op(
353 354 355
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
356
            attrs={"use_mkldnn": False})
357 358 359 360
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
361 362


H
HaoRen 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
def center_loss(input,
                label,
                num_classes,
                alpha,
                param_attr,
                update_center=True):
    """
    **Center loss Cost layer**
    
    This layer accepts input (deep features,the output of the last hidden layer)
    and target label and return the center loss cost
    
    For deep features, :math:`X`, and target labels, :math:`Y`, the equation is:
    
    .. math::

        Out = \\frac{1}{2}(X - Y)^2

    Args:
        input (Variable): a 2-D tensor with shape[N x M].
        label (Variable): the groud truth which is a 2-D tensor
                         with shape[N x 1],where N is the batch size.
        num_classes (int): the number of classification categories.
        alpha (float|Variable): learning rate of centers.
        param_attr (ParamAttr): Attribute initializer of centers. 
        update_center (bool): whether to update value of center.

    Returns:
        Variable: 2-D tensor with shape [N * 1] 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid 

          input = fluid.layers.data(name='x',shape=[20,30],dtype='float32')
          label = fluid.layers.data(name='y',shape=[20,1],dtype='int64')
          num_classes = 1000
          alpha = 0.01
          param_attr = fluid.initializer.Xavier(uniform=False)
          center_loss=fluid.layers.center_loss(input=input,
                 label=label,
                 num_classes=1000,
                 alpha=alpha,
                 param_attr=fluid.initializer.Xavier(uniform=False),
                 update_center=True)
    """
    helper = LayerHelper('center_loss', **locals())
    dtype = helper.input_dtype()
    centers_shape = [num_classes, input.shape[1]]
    centers_param = helper.create_parameter(
        attr=param_attr, shape=centers_shape, dtype=dtype)
    centers_param.stop_gradient = True
    if isinstance(alpha, Variable):
        alpha_param = alpha
    else:
        assert isinstance(alpha, float)
        alpha_param = helper.create_variable(
            name="centerloss_alpha",
            shape=[1],
            dtype="float32",
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=True,
            stop_gradient=True,
            initializer=Constant(alpha))

    centersdiff = helper.create_variable_for_type_inference(dtype=input.dtype)
    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='center_loss',
        inputs={
            'X': [input],
            'Label': [label],
            'Centers': [centers_param],
            'CenterUpdateRate': [alpha_param]
        },
        outputs={
            'SampleCenterDiff': [centersdiff],
            'Loss': [loss],
            'CentersOut': [centers_param]
        },
        attrs={'cluster_num': num_classes,
               'need_update': update_center})
    return loss


449 450 451
def embedding(input,
              size,
              is_sparse=False,
452
              is_distributed=False,
453 454 455
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
456
    """
457 458
    **Embedding Layer**

459
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
460 461
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
462 463 464

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
465 466

    Args:
467
        input(Variable): Input is a Tensor<int64> Variable, which contains the IDs information.
K
Kevin 已提交
468
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
469 470 471 472
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
473
        is_distributed(bool): Whether to run lookup table from remote parameter server.
K
Kevin 已提交
474 475 476 477 478 479 480 481
        padding_idx(int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        param_attr(ParamAttr): Parameters for this layer.
        dtype(np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
Y
Yu Yang 已提交
482

483 484 485
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
486

487 488
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
489

B
bdzhuxiaoning 已提交
490 491 492
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
493 494 495
    """

    helper = LayerHelper('embedding', **locals())
496
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
497 498
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
499 500
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
501
    tmp = helper.create_variable_for_type_inference(dtype)
502 503
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
504 505 506 507 508
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
509 510 511
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
512
            'remote_prefetch': remote_prefetch,
513 514
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
515 516 517
    return tmp


W
wopeizl 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
534

W
wopeizl 已提交
535 536 537 538 539 540 541 542 543 544 545
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
546

W
wopeizl 已提交
547 548 549 550
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
551

W
wopeizl 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
588
            
589
            import paddle.fluid as fluid
590 591
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
592
            hidden_dim = 512
593 594 595 596 597 598
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
599
                                           bias_attr=False)
600

W
wopeizl 已提交
601 602 603
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
604
    assert in_dygraph_mode(
605
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
649 650


P
phlrain 已提交
651 652 653 654 655 656
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
657
         dropout_prob=0.0,
P
phlrain 已提交
658 659 660 661 662
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
663
    """
P
phlrain 已提交
664
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
665 666

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
667
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
668 669
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
670
    .. math::
M
minqiyang 已提交
671 672 673 674 675 676 677

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
678
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
679 680 681 682

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
683 684

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
685 686 687 688 689 690
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
691 692 693
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
694
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
695

M
minqiyang 已提交
696
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
697 698 699 700 701
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
702
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
703 704 705 706 707
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
708
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
709 710
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
711 712
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
713 714 715 716 717 718
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
719
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
720

L
liuhongyu 已提交
721 722

    Returns:
M
minqiyang 已提交
723 724
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
725
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
726

H
haowang101779990 已提交
727 728 729 730
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
731
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
732 733
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
734
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
735 736 737 738


    Examples:
        .. code-block:: python
739
            
740 741 742
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

743 744 745 746 747
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
748 749 750 751 752 753
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
754 755 756 757 758
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
759 760 761 762
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
763 764 765
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
825 826 827 828 829 830 831 832 833 834
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
835
                  proj_activation='tanh',
836
                  dtype='float32',
X
xuezhong 已提交
837 838 839 840 841
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
842 843 844
    """
    **Dynamic LSTMP Layer**

845 846 847 848 849 850
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
851 852 853 854 855

    The formula is as follows:

    .. math::

856
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
857

858
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
859

860
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
861

862
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
863

864
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
865

866
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
867

868
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
869

Y
Yibing Liu 已提交
870 871 872 873 874 875
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
876
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
877
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
878
          bias vector).
Y
Yibing Liu 已提交
879 880 881
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
882
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
883
    * :math:`h`: The hidden state.
884
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
885 886
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
887
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
888
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
889
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
890 891
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
892 893 894 895

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
896

Y
Yibing Liu 已提交
897 898 899 900 901 902 903 904 905 906 907 908
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
909
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
910 911
                               hidden-hidden weight and projection weight.

912 913
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
914 915
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
916 917
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
918
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
919 920 921 922 923

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
924
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
925 926 927 928 929 930
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
931
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
932 933 934
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
935
                                - The shape is (1 x 7D).
C
chengduo 已提交
936 937 938 939 940

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
941 942 943 944 945 946 947 948 949
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
950
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
951 952
                              default "tanh".
        proj_activation(str): The activation for projection output.
953
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
954
                              default "tanh".
Y
Yibing Liu 已提交
955
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
956 957
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
958 959 960 961 962 963 964 965 966 967 968
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
969 970

    Returns:
971 972 973 974
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
975 976

    Examples:
977

Y
Yibing Liu 已提交
978 979
        .. code-block:: python

980
            import paddle.fluid as fluid
981 982 983 984
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
985
            hidden_dim, proj_dim = 512, 256
986
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
987
                                     act=None, bias_attr=None)
988 989 990
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
991 992 993 994
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
995
    """
996

L
lujun 已提交
997
    assert in_dygraph_mode(
998 999
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
1000
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
1001
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
1002
    size = size // 4
Y
Yibing Liu 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
1013 1014 1015 1016 1017 1018
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
1034

X
xuezhong 已提交
1035 1036 1037 1038 1039
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
1040 1041
    helper.append_op(
        type='lstmp',
1042
        inputs=inputs,
Y
Yibing Liu 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
1052 1053
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
1063 1064 1065 1066 1067 1068 1069
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
1070 1071
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
1072
    """
1073
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
1074

1075 1076 1077
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
1078

G
guosheng 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
1088

G
guosheng 已提交
1089
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
1090

Q
Qiao Longfei 已提交
1091 1092 1093

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1106
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1107 1108
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1109 1110 1111 1112
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1113
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1114 1115

    Args:
1116 1117
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1118
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1119
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1120 1121
            is the hidden size.
        size(int): The dimension of the gru cell.
1122
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1123 1124
            hidden-hidden weight matrix. Note:

1125
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1126
              :math:`D` is the hidden size.
1127
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1128
              The first part are weights of the update gate and reset gate with
1129
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1130
              candidate hidden state with shape :math:`(D \\times D)`.
1131 1132 1133 1134 1135

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1136
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1137
            the bias in the update gate, reset gate and candidate calculations.
1138 1139 1140
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1141 1142
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1143
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1144 1145 1146
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1147
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1148
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1149 1150 1151 1152
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1153 1154

    Returns:
G
guosheng 已提交
1155
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1156
            and sequence length is the same with the input.
1157

G
guosheng 已提交
1158
    Examples:
1159

G
guosheng 已提交
1160 1161
        .. code-block:: python

1162 1163
            import paddle.fluid as fluid

1164 1165 1166 1167
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1168
            hidden_dim = 512
1169
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1170
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1171 1172
    """

L
lujun 已提交
1173
    assert in_dygraph_mode(
1174 1175
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1176 1177 1178 1179 1180 1181 1182
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1183
    batch_size = input.shape[0]
G
guosheng 已提交
1184
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1185
    if h_0:
G
guosheng 已提交
1186
        assert h_0.shape == (
Y
Yancey 已提交
1187 1188 1189
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1190

X
Xin Pan 已提交
1191 1192 1193 1194
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1208 1209
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1210 1211 1212 1213
        })
    return hidden


Y
Yu Yang 已提交
1214 1215 1216
def gru_unit(input,
             hidden,
             size,
1217 1218
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1219
             activation='tanh',
Q
Qiao Longfei 已提交
1220 1221
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1222
    """
1223 1224 1225
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1226
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1227
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1228

1229 1230
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1231

1232
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1233

1234
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1235

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1251 1252

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1253 1254 1255
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1256 1257
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1258 1259
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1260 1261 1262
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1263 1264 1265

    Args:
        input (Variable): The fc transformed input value of current step.
1266
        hidden (Variable): The hidden value of gru unit from previous step.
1267
        size (integer): The input dimension value.
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1282
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1283
            the bias in the update gate, reset gate and candidate calculations.
1284 1285 1286
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1287 1288
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1289 1290 1291 1292
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1293

1294 1295 1296 1297 1298 1299
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1300

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1324
    size = size // 3
Y
Yu Yang 已提交
1325 1326

    # create weight
1327 1328
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1329

X
Xin Pan 已提交
1330 1331 1332
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1333
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1334
    # create bias
1335
    if helper.bias_attr:
Y
Yu Yang 已提交
1336 1337 1338
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1339
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1340 1341 1342

    helper.append_op(
        type='gru_unit',
1343
        inputs=inputs,
Y
Yu Yang 已提交
1344 1345 1346 1347 1348 1349
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1350 1351
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1352 1353 1354 1355 1356
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1357
@templatedoc()
1358
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1359 1360 1361 1362 1363 1364 1365
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1366
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1367 1368 1369 1370
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1371 1372 1373
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1374

J
JesseyXujin 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1388
    """
Y
Yu Yang 已提交
1389 1390 1391 1392 1393 1394
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1395 1396 1397 1398 1399 1400 1401 1402
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1418 1419 1420 1421
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1422

W
wopeizl 已提交
1423 1424
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1425

W
wopeizl 已提交
1426
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1427

W
wopeizl 已提交
1428
        label(${label_type}): ${label_comment}
1429

W
wopeizl 已提交
1430 1431
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1432

W
wopeizl 已提交
1433 1434
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1435

1436
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
1437 1438 1439 1440 1441 1442 1443
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1444 1445 1446 1447 1448 1449 1450 1451
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1452
                "Transition": transition,
W
wopeizl 已提交
1453 1454
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1455

W
wopeizl 已提交
1456
    return viterbi_path
Y
Yu Yang 已提交
1457 1458


Y
yi.wu 已提交
1459
@templatedoc()
F
fengjiayi 已提交
1460
def cos_sim(X, Y):
Y
Yu Yang 已提交
1461
    """
Y
yi.wu 已提交
1462 1463 1464
    ${comment}

    Args:
1465 1466
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1467

Y
yi.wu 已提交
1468
    Returns:
1469
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1470 1471 1472 1473

    Examples:
        .. code-block:: python

1474
            import paddle.fluid as fluid
L
lvmengsi 已提交
1475 1476 1477
            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1478
    """
F
fengjiayi 已提交
1479
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1480 1481 1482
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1493 1494 1495 1496 1497
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1498
            dropout_implementation="downgrade_in_infer"):
1499 1500 1501 1502 1503
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1504
    training. The dropout operator randomly sets (according to the given dropout
1505 1506 1507
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1508 1509
    dropout op can be removed from the program to make the program more efficient.

1510
    Args:
1511 1512
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1513 1514 1515 1516 1517 1518 1519
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1520 1521
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1522
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1523 1524

                                           - train: out = input * mask
C
ceci3 已提交
1525
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1526 1527 1528

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1529
                                        2. upscale_in_train, upscale the outcome at training time
1530

H
haowang101779990 已提交
1531 1532
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1533

H
haowang101779990 已提交
1534 1535
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1536

M
minqiyang 已提交
1537

1538
    Returns:
1539
        Variable: A tensor variable is the shape with `x`.
1540 1541

    Examples:
1542

1543 1544
        .. code-block:: python

1545
            import paddle.fluid as fluid
1546 1547
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1548 1549
    """

F
fengjiayi 已提交
1550
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1551 1552
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1553
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1554 1555 1556 1557

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1558 1559 1560 1561 1562
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1563 1564 1565 1566
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
L
lvmengsi 已提交
1567
            'seed': seed if seed is not None else 0,
P
phlrain 已提交
1568
            'dropout_implementation': dropout_implementation,
1569
        })
1570 1571 1572
    return out


J
jerrywgz 已提交
1573
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1574
    """
Y
Yibing Liu 已提交
1575 1576
    **Cross Entropy Layer**

1577 1578 1579
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1580 1581

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1582
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1583

Y
Yibing Liu 已提交
1584
        .. math::
Y
yangyaming 已提交
1585

Y
Yibing Liu 已提交
1586 1587 1588
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1589 1590
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1591 1592 1593 1594 1595

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1596
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1597 1598 1599
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1600 1601
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1602
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1603

Y
Yibing Liu 已提交
1604
    Args:
Y
yangyaming 已提交
1605
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1606 1607 1608 1609
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1610
        label (Variable|list): the ground truth which is a 2-D tensor. When
1611 1612 1613 1614
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1615
        soft_label (bool): a flag indicating whether to
1616
                                           interpretate the given labels as soft
1617
                                           labels. Default: `False`.
M
minqiyang 已提交
1618 1619
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1620
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1621 1622 1623 1624 1625

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1626 1627 1628
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1629

H
haowang101779990 已提交
1630 1631
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1632

H
haowang101779990 已提交
1633 1634
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1635 1636 1637 1638

    Examples:
        .. code-block:: python

1639
          import paddle.fluid as fluid
L
lvmengsi 已提交
1640 1641 1642 1643
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1644
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1645
    """
S
sneaxiy 已提交
1646 1647
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1648
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1649
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1650 1651 1652 1653 1654
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1655 1656
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1657 1658 1659
    return out


S
sneaxiy 已提交
1660 1661 1662 1663
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1664
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1665 1666 1667 1668 1669
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1670
                 'MatchX': [match_x],
S
sneaxiy 已提交
1671 1672 1673 1674 1675
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1676
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1677
    """
1678
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1679

1680
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1681
    The loss at a given point in one session is defined as:
1682 1683 1684

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1685 1686

    Learn more details by reading paper <session-based recommendations with recurrent
1687
    neural networks>.
F
frankwhzhang 已提交
1688

1689 1690 1691 1692 1693 1694
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1695 1696
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1697 1698 1699
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1700 1701 1702
    Examples:
        .. code-block:: python

1703 1704 1705 1706 1707 1708 1709
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1710
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1711
    """
1712 1713 1714 1715 1716
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1717
                'Label': [label]},
1718 1719 1720 1721
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1722
def square_error_cost(input, label):
Y
Yu Yang 已提交
1723
    """
1724 1725
    **Square error cost layer**

1726 1727
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1728

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1742 1743
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1744 1745

    Returns:
G
guosheng 已提交
1746
        Variable: The tensor variable storing the element-wise squared error \
1747
                  difference of input and label.
1748 1749 1750 1751

    Examples:
        .. code-block:: python

1752
          import paddle.fluid as fluid
R
ruri 已提交
1753 1754 1755
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1756

Y
Yu Yang 已提交
1757
    """
F
fengjiayi 已提交
1758
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1759
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1760 1761 1762 1763 1764 1765
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1766
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1767
    helper.append_op(
F
fengjiayi 已提交
1768 1769
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1770 1771 1772
    return square_out


Y
yi.wu 已提交
1773
@templatedoc()
Y
Yu Yang 已提交
1774 1775 1776 1777
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1778 1779
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1780
    """
Y
yi.wu 已提交
1781
    **Chunk Evaluator**
Y
yi.wu 已提交
1782

Y
yangyaming 已提交
1783
    This function computes and outputs the precision, recall and
1784
    F1-score of chunk detection.
Y
yi.wu 已提交
1785

M
minqiyang 已提交
1786
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1787
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1788 1789 1790 1791 1792 1793

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1794

Y
yi.wu 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1820

Y
yi.wu 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1845
    Args:
1846 1847 1848 1849 1850
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
1851
        seq_length(Variable): 1-D Tensor specifying sequence length when input and label are Tensor type.
F
fengjiayi 已提交
1852

Y
yi.wu 已提交
1853
    Returns:
Y
update  
yi.wu 已提交
1854 1855 1856
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1857

Y
yi.wu 已提交
1858 1859 1860
    Examples:
        .. code-block:: python

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1872
            crf = fluid.layers.linear_chain_crf(
1873
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1874
            crf_decode = fluid.layers.crf_decoding(
1875
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1876 1877 1878 1879 1880
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1881
    """
F
fengjiayi 已提交
1882
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1883 1884

    # prepare output
X
Xin Pan 已提交
1885 1886 1887 1888 1889 1890 1891
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1892

1893 1894 1895 1896 1897
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
1898 1899
    helper.append_op(
        type="chunk_eval",
1900
        inputs=this_input,
Y
Yu Yang 已提交
1901 1902 1903
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1904 1905 1906 1907
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1908 1909 1910
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1911 1912
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1913
        })
1914 1915
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1916 1917


1918
@templatedoc()
Y
Yu Yang 已提交
1919 1920 1921 1922
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
1923 1924
                  padding=True,
                  padding_start=None,
Y
Yu Yang 已提交
1925 1926
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1927 1928
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1929
    """
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
    The sequence_conv receives input sequences with variable length and other convolutional
    configuration parameters for the filter and stride to apply the convolution operation.
    It fills all-zero padding data on both sides of the sequence by default to ensure that
    the output is the same length as the input. You can customize the padding behavior by
    configuring the parameter :attr:`padding\_start`.
    
    **Warning:** the parameter :attr:`padding` take no effect and will be deprecated in the future.

    .. code-block:: text

            Here we'll illustrate the details of the padding operation:
            For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps:
            Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3, 4].
            Besides, for the sake of simplicity, we assume M=1 and N=2.
            X = [[a1, a2;
                  b1, b2;
                  c1, c2]
                 [d1, d2]]

            This is to say that input (X) has 4 words and the dimension of each word
            representation is 2.

            * Case1:

                If padding_start is -1 and filter_size is 3.
                The length of padding data is calculated as follows:
                up_pad_len = max(0, -padding_start) = 1
                down_pad_len = max(0, filter_size + padding_start - 1) = 1

                The output of the input sequence after padding is:
                data_aftet_padding = [[0,  0,  a1, a2, b1, b2;
                                       a1, a2, b1, b2, c1, c2;
                                       b1, b2, c1, c2, 0,  0 ]
                                      [0,  0,  d1, d2, 0,  0 ]]

                It will be multiplied by the filter weight to get the final output.
1966 1967 1968

    Args:
        input (Variable): ${x_comment}
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
        num_filters (int): the number of filters.
        filter_size (int): the height of filter, the width is hidden size by default.
        filter_stride (int): stride of the filter. Currently only supports :attr:`stride` = 1.
        padding (bool): the parameter :attr:`padding` take no effect and will be discarded in the
            future. Currently, it will always pad input to make sure the length of the output is
            the same as input whether :attr:`padding` is set true or false. Because the length of
            input sequence may be shorter than :attr:`filter\_size`, which will cause the convolution
            result to not be computed correctly. These padding data will not be trainable or updated
            while trainnig. 
        padding_start (int|None): It is used to indicate the start index for padding the input
            sequence, which can be negative. The negative number means to pad
            :attr:`|padding_start|` time-steps of all-zero data at the beginning of each instance.
            The positive number means to skip :attr:`padding_start` time-steps of each instance,
            and it will pad :math:`filter\_size + padding\_start - 1` time-steps of all-zero data
            at the end of the sequence to ensure that the output is the same length as the input.
            If set None, the same length :math:`\\frac{filter\_size}{2}` of data will be filled
            on both sides of the sequence. If set 0, the length of :math:`filter\_size - 1` data
            is padded at the end of each input sequence.
C
chengduo 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
2000

2001 2002
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
2003 2004

    Examples:
2005

B
bdzhuxiaoning 已提交
2006 2007 2008
        .. code-block:: python

             import paddle.fluid as fluid
2009

B
bdzhuxiaoning 已提交
2010
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
2011
             x_conved = fluid.layers.sequence_conv(input=x, num_filters=2, filter_size=3, padding_start=-1)
Y
Yu Yang 已提交
2012 2013
    """

L
lujun 已提交
2014
    assert not in_dygraph_mode(), (
2015
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
2016 2017 2018 2019 2020
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
2021
    pre_bias = helper.create_variable_for_type_inference(dtype)
2022 2023
    if padding_start is None:
        padding_start = -int(filter_size // 2)
Y
Yu Yang 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
2034 2035
            'contextStart': padding_start,
            'contextLength': filter_size,
Y
Yu Yang 已提交
2036 2037 2038 2039 2040
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
2041
def sequence_softmax(input, use_cudnn=False, name=None):
2042 2043 2044
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
2045
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
2062 2063 2064
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
2065

2066 2067 2068 2069 2070 2071 2072
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

2073
             import paddle.fluid as fluid
2074 2075 2076 2077
             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
2078
    assert not in_dygraph_mode(), (
2079
        "sequence layer is not supported in dygraph mode yet.")
2080 2081
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2082
    softmax_out = helper.create_variable_for_type_inference(dtype)
2083 2084 2085 2086 2087 2088 2089 2090
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
2091
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
2092
    """
2093
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
2094
    has the same shape as the input.
Q
qiaolongfei 已提交
2095

D
dengkaipeng 已提交
2096
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
2097
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
2098
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
2099 2100 2101
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
2102
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
2103
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
2104 2105 2106 2107 2108 2109 2110

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
2111
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
2112 2113 2114 2115 2116 2117 2118 2119

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
2120 2121
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
2122 2123
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
2124 2125 2126
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
2127 2128 2129 2130 2131 2132 2133 2134

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
2135 2136
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
2137
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
2138
             # perform softmax in the second dimension
D
dengkaipeng 已提交
2139
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
2140 2141
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
2142 2143

    """
2144 2145
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2146
    softmax_out = helper.create_variable_for_type_inference(dtype)
2147 2148 2149 2150
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
2151 2152
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
2153 2154 2155
    return softmax_out


Y
Yu Yang 已提交
2156 2157 2158
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
2159 2160
           stride=1,
           padding=0,
2161
           dilation=1,
Y
Yu Yang 已提交
2162 2163 2164
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
2165
           use_cudnn=True,
2166 2167
           act=None,
           name=None):
Y
Yu Yang 已提交
2168
    """
C
chengduoZH 已提交
2169
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2170 2171
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2172
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2173 2174 2175 2176 2177 2178
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
2179
    for more details.
2180 2181 2182
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2183

2184
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2185

C
chengduoZH 已提交
2186 2187
    .. math::

C
refine  
chengduoZH 已提交
2188
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2189

T
tensor-tang 已提交
2190
    Where:
C
chengduoZH 已提交
2191

2192 2193 2194 2195 2196
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2197
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2198 2199 2200

    Example:

2201 2202
        - Input:

W
weixing02 已提交
2203
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2204

W
weixing02 已提交
2205
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2206

2207
        - Output:
T
tensor-tang 已提交
2208

W
weixing02 已提交
2209
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2210

C
chengduoZH 已提交
2211
        Where
2212 2213

        .. math::
C
chengduoZH 已提交
2214

W
weixing02 已提交
2215 2216
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2217 2218

    Args:
2219
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2220
        num_filters(int): The number of filter. It is as same as the output
2221
            image channel.
2222
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2238 2239 2240 2241 2242
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2243
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2244 2245 2246 2247 2248
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2249 2250
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2251 2252
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2253
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2254
            will be named automatically. Default: None
C
chengduoZH 已提交
2255 2256

    Returns:
G
guosheng 已提交
2257
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2258 2259
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2260
    Raises:
2261 2262
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2263

C
chengduoZH 已提交
2264 2265 2266
    Examples:
        .. code-block:: python

2267
          import paddle.fluid as fluid
2268 2269
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2270 2271 2272
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2273
    assert param_attr is not False, "param_attr should not be False here."
2274
    l_type = 'conv2d'
X
xzl 已提交
2275 2276
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2277
        l_type = 'depthwise_conv2d'
2278 2279 2280 2281

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2282 2283 2284 2285 2286
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2287
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2288

C
chengduoZH 已提交
2289 2290 2291
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2292
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2293

C
chengduoZH 已提交
2294 2295
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2296 2297

    input_shape = input.shape
M
minqiyang 已提交
2298
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2299 2300

    def _get_default_param_initializer():
C
chengduo 已提交
2301 2302
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2303 2304 2305 2306 2307 2308 2309 2310
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2311
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2312

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2327
    helper.append_op(
2328
        type=l_type,
Y
Yu Yang 已提交
2329 2330 2331 2332 2333
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2334 2335 2336
        attrs={
            'strides': stride,
            'paddings': padding,
2337
            'dilations': dilation,
C
chengduoZH 已提交
2338
            'groups': groups,
2339
            'use_cudnn': use_cudnn,
2340
            'use_mkldnn': False,
2341
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2342
        })
Y
Yu Yang 已提交
2343 2344 2345 2346 2347 2348

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2366 2367 2368 2369 2370 2371
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2372 2373 2374 2375 2376 2377 2378 2379 2380

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2381 2382
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2383 2384 2385
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2386
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
2409
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2410 2411
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2412
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2413 2414
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2415
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2416 2417
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2418
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2419 2420
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2421
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2422 2423 2424 2425 2426 2427
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2438 2439
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2440 2441
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2442
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2443
            will be named automatically. Default: None.
C
chengduoZH 已提交
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2456
          import paddle.fluid as fluid
2457 2458
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2459 2460 2461
    """

    l_type = 'conv3d'
C
chengduo 已提交
2462
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2473
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2487 2488 2489
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2490 2491 2492 2493 2494 2495 2496 2497
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2498
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2513
            'use_mkldnn': False
C
chengduoZH 已提交
2514 2515
        })

2516
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2517 2518 2519 2520

    return helper.append_activation(pre_act)


2521
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2522
    """
Y
yangyaming 已提交
2523 2524 2525
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2536 2537
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2538 2539 2540 2541
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2542
         out.dim = [4, 1]
2543
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2544 2545

       for different pool_type:
2546 2547 2548
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2549
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2550 2551 2552 2553 2554
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2555

L
Luo Tao 已提交
2556
    Args:
2557
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2558
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2559
            It supports average, sum, sqrt and max.
2560 2561
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2562 2563 2564 2565 2566 2567 2568

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2569

2570 2571
             import paddle.fluid as fluid

Y
yangyaming 已提交
2572
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2573 2574 2575 2576 2577
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2578 2579
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2580
    """
L
lujun 已提交
2581
    assert not in_dygraph_mode(), (
2582
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2583
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2584
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2585 2586
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2587 2588 2589 2590 2591 2592

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2593 2594 2595 2596 2597
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2598

Y
yangyaming 已提交
2599 2600 2601 2602 2603
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2604 2605 2606
    return pool_out


C
add doc  
chengduoZH 已提交
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2623 2624 2625 2626
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2627
    """
L
lujun 已提交
2628
    assert not in_dygraph_mode(), (
2629
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2630
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2631
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2632 2633 2634 2635 2636
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2637
def sequence_first_step(input):
L
Luo Tao 已提交
2638
    """
L
Luo Tao 已提交
2639
    This function gets the first step of sequence.
L
Luo Tao 已提交
2640 2641 2642 2643

    .. code-block:: text

       x is a 1-level LoDTensor:
2644
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2645 2646 2647 2648 2649
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2650
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2651
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2652

L
Luo Tao 已提交
2653 2654 2655 2656 2657 2658 2659 2660 2661
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2662

2663
             import paddle.fluid as fluid
Y
yangyaming 已提交
2664
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2665 2666 2667
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2668 2669 2670
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2671
def sequence_last_step(input):
L
Luo Tao 已提交
2672
    """
L
Luo Tao 已提交
2673
    This function gets the last step of sequence.
L
Luo Tao 已提交
2674 2675 2676 2677

    .. code-block:: text

       x is a 1-level LoDTensor:
2678
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2679 2680 2681 2682 2683
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2684
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2685
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2686

L
Luo Tao 已提交
2687 2688 2689 2690 2691 2692 2693 2694 2695
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2696

2697
             import paddle.fluid as fluid
Y
yangyaming 已提交
2698
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2699 2700 2701
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2702 2703 2704
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2705 2706 2707 2708
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2709
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2710 2711 2712 2713 2714
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2715

H
haowang101779990 已提交
2716
              - Case:
Y
Yibing Liu 已提交
2717

2718
            Given the input Variable **input**:
2719

2720 2721 2722
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2723

2724
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2725

2726
            the output Variable will be
2727

2728 2729 2730
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2731

M
minqiyang 已提交
2732
    Note:
H
haowang101779990 已提交
2733
          The first dimension size of **input**, **offset** and **length**
2734
          should be equal. The **offset** should start from 0.
2735

Y
Yibing Liu 已提交
2736
    Args:
2737
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2738
                         sequences.
Y
Yibing Liu 已提交
2739 2740 2741 2742 2743 2744
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2745
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2746 2747 2748 2749 2750

    Examples:

        .. code-block:: python

2751
             import paddle.fluid as fluid
Y
Yibing Liu 已提交
2752 2753 2754 2755 2756
             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2757
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2758 2759
                                                   length=length)
    """
L
lujun 已提交
2760
    assert not in_dygraph_mode(), (
2761
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2762 2763
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2764
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2779
@templatedoc()
Y
Yu Yang 已提交
2780
def pool2d(input,
C
chengduoZH 已提交
2781 2782
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2783 2784
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2785
           global_pooling=False,
C
chengduoZH 已提交
2786
           use_cudnn=True,
2787
           ceil_mode=False,
2788 2789
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2790
    """
F
fengjiayi 已提交
2791
    ${comment}
2792 2793

    Args:
2794 2795 2796
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2797
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2798
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2799 2800
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2801
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2802 2803 2804 2805 2806 2807
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2808 2809 2810
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2811
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2812
                        layer will be named automatically.
2813
        exclusive (bool): Whether to exclude padding points in average pooling
2814
                          mode, default is true
F
fengjiayi 已提交
2815

2816
    Returns:
F
fengjiayi 已提交
2817
        Variable: The pooling result.
F
fengjiayi 已提交
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

2828
          import paddle.fluid as fluid
F
fengjiayi 已提交
2829 2830
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2831
          pool2d = fluid.layers.pool2d(
2832 2833 2834 2835
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2836
                            global_pooling=False)
Y
Yu Yang 已提交
2837 2838 2839 2840 2841
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2842

C
chengduoZH 已提交
2843 2844 2845 2846 2847
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2848 2849 2850 2851
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2852 2853
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2854

C
Add doc  
chengduoZH 已提交
2855
    l_type = 'pool2d'
2856 2857

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2858
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2859
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2860 2861

    helper.append_op(
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2873 2874
            "use_mkldnn": False,
            "exclusive": exclusive,
2875 2876 2877 2878 2879
        })

    return pool_out


D
dengkaipeng 已提交
2880
@templatedoc()
2881 2882 2883 2884 2885 2886 2887 2888
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2889 2890
           name=None,
           exclusive=True):
2891
    """
2892
    ${comment}
2893 2894

    Args:
D
dengkaipeng 已提交
2895 2896 2897 2898 2899
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2900 2901 2902 2903 2904
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2905 2906 2907 2908 2909 2910 2911
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2912
        exclusive (bool): Whether to exclude padding points in average pooling
2913
                          mode, default is true
2914

2915
    Returns:
2916
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2917 2918 2919 2920 2921

    Examples:

        .. code-block:: python

2922
          import paddle.fluid as fluid
D
dengkaipeng 已提交
2923 2924 2925 2926 2927 2928 2929 2930
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2931 2932 2933 2934 2935
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2936

C
chengduoZH 已提交
2937 2938 2939 2940 2941
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2942 2943 2944
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2945

C
chengduoZH 已提交
2946 2947
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2948

2949 2950
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2951
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2952
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2953 2954

    helper.append_op(
2955
        type=l_type,
Y
Yu Yang 已提交
2956 2957 2958 2959 2960 2961 2962
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2963
            "paddings": pool_padding,
2964
            "use_cudnn": use_cudnn,
2965
            "ceil_mode": ceil_mode,
2966 2967
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2968 2969 2970 2971 2972
        })

    return pool_out


2973 2974 2975 2976 2977 2978 2979
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2980 2981 2982 2983 2984 2985 2986
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2987

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
3001 3002 3003 3004 3005 3006 3007 3008 3009

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3010 3011
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
3026
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
3027
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
3028
          # of input data into m * n grids averagely and performs poolings in each
3029 3030
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3031
          #
3032 3033 3034 3035 3036 3037 3038 3039
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
3040
          import paddle.fluid as fluid
3041 3042
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
3043
          pool_out = fluid.layers.adaptive_pool2d(
3044 3045
                            input=data,
                            pool_size=[3, 3],
3046
                            pool_type='avg')
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3057
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3083
    return (pool_out, mask) if require_index else pool_out
3084 3085 3086 3087 3088 3089 3090 3091 3092


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3093 3094 3095 3096 3097 3098 3099
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
3100

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
3118 3119 3120

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
3121 3122 3123
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
3124
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
3125
            it must contain three integers, (Depth, Height, Width).
3126
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3127 3128
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

3143 3144
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
3145
          # of input data into l * m * n grids averagely and performs poolings in each
3146 3147
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3148
          #
3149 3150 3151 3152 3153 3154 3155 3156 3157
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
3158
          #                 output[:, :, i, j, k] =
3159 3160
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
3161 3162 3163

          import paddle.fluid as fluid

3164
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
3165 3166
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
3167
                            input=data,
D
dengkaipeng 已提交
3168
                            pool_size=[3, 3, 3],
3169
                            pool_type='avg')
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3180
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3206
    return (pool_out, mask) if require_index else pool_out
3207 3208


Y
Yu Yang 已提交
3209 3210 3211 3212 3213 3214 3215
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3216
               data_layout='NCHW',
Y
Yang Yang 已提交
3217
               in_place=False,
3218 3219
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3220
               moving_variance_name=None,
3221
               do_model_average_for_mean_and_var=False,
3222 3223
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3224
    """
Q
qiaolongfei 已提交
3225 3226 3227 3228
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3229

Q
qiaolongfei 已提交
3230
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3231

Q
qiaolongfei 已提交
3232 3233
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3234 3235 3236
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3249

3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
3263 3264 3265 3266
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.

3267
    Args:
Q
qingqing01 已提交
3268
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3269
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3270 3271 3272 3273 3274 3275 3276 3277 3278
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3279 3280
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
3281 3282 3283
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
3284 3285
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
3286 3287 3288
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
Q
qiaolongfei 已提交
3289
        data_layout(string, default NCHW): NCHW|NHWC
3290
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3291 3292
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3293 3294 3295
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3296
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3297 3298
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3299
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3300
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3301 3302 3303 3304 3305
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3306 3307

    Returns:
Q
qiaolongfei 已提交
3308
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3309 3310 3311 3312 3313

    Examples:

        .. code-block:: python

3314
            import paddle.fluid as fluid
L
lvmengsi 已提交
3315
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3316 3317
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3318
    """
C
chengduo 已提交
3319
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3320 3321 3322
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3323 3324 3325 3326
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3345
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3346

3347 3348
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3349 3350 3351
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3352
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3353
        shape=param_shape,
W
Wu Yi 已提交
3354
        dtype=dtype)
3355 3356 3357 3358 3359 3360
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3361
            trainable=False,
W
wanghaoshuang 已提交
3362
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3363
        shape=param_shape,
W
Wu Yi 已提交
3364
        dtype=dtype)
3365
    variance.stop_gradient = True
Y
Yu Yang 已提交
3366 3367 3368 3369 3370 3371

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3372 3373 3374 3375
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3376

X
Xin Pan 已提交
3377 3378
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3396 3397 3398 3399
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3400
            "data_layout": data_layout,
X
Xin Pan 已提交
3401
            "use_mkldnn": False,
3402 3403
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3404
        })
Y
Yu Yang 已提交
3405 3406 3407 3408

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3460 3461
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3462

3463 3464
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3530
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3531 3532 3533 3534

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3535
@templatedoc()
G
guosheng 已提交
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3546
    ${comment}
G
guosheng 已提交
3547 3548 3549

    The formula is as follows:

Y
yuyang18 已提交
3550
    ..  math::
G
guosheng 已提交
3551 3552 3553 3554 3555 3556 3557

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3558 3559 3560 3561 3562 3563 3564 3565
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3566

G
guosheng 已提交
3567 3568
    Args:
        input(Variable): The input tensor variable.
3569
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3570
            normalization. Default True.
3571
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3572 3573
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3574
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3575
            Default 1.
3576
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3577
            division by zero. Default 1e-05.
G
guosheng 已提交
3578
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3579 3580
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3581 3582
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3583
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3584 3585
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3586
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3587
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3588
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3589 3590 3591
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3592 3593

    Returns:
Y
yuyang18 已提交
3594
        ${y_comment}
G
guosheng 已提交
3595 3596 3597

    Examples:

3598
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3599 3600 3601
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3602
    """
L
lujun 已提交
3603
    assert in_dygraph_mode(
L
lujun 已提交
3604
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3619
    if shift:
G
guosheng 已提交
3620 3621 3622 3623 3624 3625
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3626 3627 3628 3629 3630
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3658
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

3680
        >>> import paddle.fluid as fluid
D
Dun 已提交
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3707 3708
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3726
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3727 3728 3729
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3730
    This layer calculates the spectral normalization value of weight parameters of
3731
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3732
    Parameters. Calculations are showed as follows.
3733

D
dengkaipeng 已提交
3734 3735 3736
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3737
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3750
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3751 3752 3753 3754

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3755

D
dengkaipeng 已提交
3756
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3757 3758
                

D
dengkaipeng 已提交
3759 3760 3761 3762
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3763 3764 3765
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3766 3767 3768
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3769
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3770 3771

    Examples:
K
Kaipeng Deng 已提交
3772
       .. code-block:: python
D
dengkaipeng 已提交
3773

K
Kaipeng Deng 已提交
3774 3775 3776 3777 3778
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3779 3780
    """
    helper = LayerHelper('spectral_norm', **locals())
3781
    dtype = weight.dtype
D
dengkaipeng 已提交
3782 3783 3784

    # create intput and parameters
    inputs = {'Weight': weight}
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3803 3804

    # create output
3805
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3806 3807

    helper.append_op(
3808
        type="spectral_norm",
D
Dun 已提交
3809
        inputs=inputs,
3810 3811 3812 3813 3814 3815
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3816

3817
    return out
D
Dun 已提交
3818 3819


Y
Yu Yang 已提交
3820 3821 3822 3823
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3824 3825 3826
                     padding=0,
                     stride=1,
                     dilation=1,
3827
                     groups=None,
C
caoying03 已提交
3828
                     param_attr=None,
3829
                     bias_attr=None,
C
chengduoZH 已提交
3830
                     use_cudnn=True,
3831
                     act=None,
C
caoying03 已提交
3832
                     name=None):
Y
Yu Yang 已提交
3833
    """
3834 3835 3836 3837 3838 3839 3840 3841
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3842
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3843
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3844 3845 3846
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3847 3848 3849 3850 3851

    For each input :math:`X`, the equation is:

    .. math::

3852
        Out = \sigma (W \\ast X + b)
3853

3854
    Where:
3855 3856 3857

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3858 3859 3860 3861
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3862

3863 3864 3865 3866
    Example:

        - Input:

3867
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3868

3869
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3870 3871 3872

        - Output:

3873
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3874 3875

        Where
Y
Yu Yang 已提交
3876

3877 3878
        .. math::

3879 3880
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ] 

    Note:
          if output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3890 3891

    Args:
3892 3893 3894 3895
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3896 3897 3898 3899
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3928
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3929 3930 3931
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3932
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3933
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3934 3935

    Returns:
3936
        Variable: The tensor variable storing the convolution transpose result.
3937 3938

    Raises:
3939 3940
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3941 3942 3943 3944

    Examples:
       .. code-block:: python

3945
          import paddle.fluid as fluid
3946 3947
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3948
    """
C
chengduo 已提交
3949
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3950 3951 3952 3953 3954 3955 3956 3957
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3958 3959 3960
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3961 3962 3963
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3964

C
chengduoZH 已提交
3965 3966
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3967

Y
Yu Yang 已提交
3968 3969 3970 3971 3972
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3973

Y
Yu Yang 已提交
3974 3975
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3976

C
chengduoZH 已提交
3977
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3978
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3979
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3980
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3981
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3982 3983 3984
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3985

3986 3987 3988 3989 3990 3991 3992
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3993
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3994
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3995

Y
Yu Yang 已提交
3996 3997 3998
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3999
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4000
    helper.append_op(
4001
        type=op_type,
Y
Yu Yang 已提交
4002 4003
        inputs={'Input': [input],
                'Filter': [img_filter]},
4004
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4005
        attrs={
4006
            'output_size': output_size,
4007 4008 4009 4010 4011
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
4012 4013
        })

4014 4015 4016
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
4017 4018


4019
def conv3d_transpose(input,
Y
Yu Yang 已提交
4020 4021 4022
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
4023 4024 4025
                     padding=0,
                     stride=1,
                     dilation=1,
4026
                     groups=None,
C
caoying03 已提交
4027
                     param_attr=None,
4028
                     bias_attr=None,
C
chengduoZH 已提交
4029
                     use_cudnn=True,
4030
                     act=None,
C
caoying03 已提交
4031
                     name=None):
Y
Yu Yang 已提交
4032
    """
4033
    **Convlution3D transpose layer**
4034

4035
    The convolution3D transpose layer calculates the output based on the input,
4036
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
4037 4038 4039 4040 4041
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
4042
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
4043 4044 4045
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
4046 4047 4048 4049 4050

    For each input :math:`X`, the equation is:

    .. math::

4051
        Out = \sigma (W \\ast X + b)
4052 4053 4054

    In the above equation:

4055 4056
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
4057 4058 4059 4060
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
4061

4062 4063 4064 4065
    Example:

        - Input:

4066
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
4067

4068
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
4069 4070 4071

        - Output:

4072
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
4073 4074

        Where
Y
Yu Yang 已提交
4075

4076 4077
        .. math::

4078 4079 4080
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
4081 4082

    Args:
4083
        input(Variable): The input image with [N, C, D, H, W] format.
4084 4085 4086
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
4087
            tuple, it must contain three integers, (image_D, image_H, image_W). This
4088 4089
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
4090
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
4091 4092 4093
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
4094 4095
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
4096
        stride(int|tuple): The stride size. If stride is a tuple, it must
4097 4098
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
4099
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
4100 4101 4102
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
4103 4104 4105 4106 4107
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
4108 4109 4110 4111 4112 4113 4114 4115 4116
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4117 4118
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
4119 4120
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
4121 4122
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
4123 4124

    Returns:
4125
        Variable: The tensor variable storing the convolution transpose result.
4126 4127

    Raises:
4128 4129
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4130 4131 4132 4133

    Examples:
       .. code-block:: python

4134
          import paddle.fluid as fluid
4135 4136
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4137
    """
C
chengduo 已提交
4138
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
4139 4140
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
4141
    if not isinstance(input, Variable):
4142
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
4143 4144
    input_channel = input.shape[1]

4145 4146 4147
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
4148

C
chengduoZH 已提交
4149 4150 4151
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
4152 4153 4154 4155 4156 4157
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

4158 4159 4160
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
4161

4162
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4163
                         padding[0] - 1) // dilation[0] + 1
4164
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4165
                         padding[1] - 1) // dilation[1] + 1
4166
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
4167
                         padding[2] - 1) // dilation[2] + 1
4168
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
4169
    else:
4170 4171
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
4172

4173
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4174
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
4175 4176 4177
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4178
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4179
    helper.append_op(
4180
        type=l_type,
Y
Yu Yang 已提交
4181 4182
        inputs={'Input': [input],
                'Filter': [img_filter]},
4183
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4184 4185 4186 4187
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
4188
            'groups': groups,
C
chengduoZH 已提交
4189 4190
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
4191

4192 4193
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
4194
    return out
Y
yangyaming 已提交
4195 4196


Y
yangyaming 已提交
4197
def sequence_expand(x, y, ref_level=-1, name=None):
4198
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4199 4200 4201 4202
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4203 4204 4205 4206 4207

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4208
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4209
                x.data = [[a], [b], [c], [d]]
4210 4211 4212
                x.dims = [4, 1]

            y is a LoDTensor:
4213 4214
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4215

Y
yangyaming 已提交
4216
            ref_level: 0
4217

Y
yangyaming 已提交
4218
            then output is a 1-level LoDTensor:
4219
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4220
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4221 4222 4223 4224
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4225
                x.data = [[a], [b], [c]]
4226 4227 4228
                x.dims = [3, 1]

            y is a LoDTensor:
4229
                y.lod = [[2, 0, 3]]
4230

Y
yangyaming 已提交
4231
            ref_level: -1
4232

Y
yangyaming 已提交
4233 4234 4235
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4236 4237 4238
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4239 4240
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4241
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4242
                        will be named automatically.
4243 4244 4245 4246 4247 4248

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4249
	
4250
            import paddle.fluid as fluid
4251
            import paddle.fluid.layers as layers
4252 4253 4254
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4255
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4256
    """
L
lujun 已提交
4257
    assert not in_dygraph_mode(), (
4258
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4259
    helper = LayerHelper('sequence_expand', input=x, **locals())
4260
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4261
    tmp = helper.create_variable_for_type_inference(dtype)
4262
    helper.append_op(
Y
yangyaming 已提交
4263 4264 4265 4266 4267
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4268
    return tmp
4269 4270


C
chengduo 已提交
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4319 4320
            
            import paddle.fluid as fluid
4321
            import paddle.fluid.layers as layers
C
chengduo 已提交
4322 4323 4324 4325 4326 4327

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4328
    assert not in_dygraph_mode(), (
4329
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4330 4331
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4332
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4333 4334 4335 4336 4337 4338 4339 4340
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4341
@templatedoc()
4342
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4343 4344 4345 4346 4347
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4348 4349 4350
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4351
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4352 4353 4354 4355
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4356 4357 4358
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4359

F
fengjiayi 已提交
4360
    Returns:
M
minqiyang 已提交
4361
        Variable: The padded sequence batch and the original lengths before
4362
                  padding. All sequences has the same length.
M
minqiyang 已提交
4363

F
fengjiayi 已提交
4364 4365 4366
    Examples:
        .. code-block:: python

4367
            import paddle.fluid as fluid
F
fengjiayi 已提交
4368 4369 4370 4371
            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4372
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4373
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4374 4375 4376
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4377
    assert not in_dygraph_mode(), (
4378
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4379 4380
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4381 4382
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4383 4384 4385 4386

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4387 4388 4389 4390 4391 4392
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4393 4394
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4395
        attrs={'padded_length': maxlen})
4396
    return out, length
F
fengjiayi 已提交
4397 4398


4399
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4400
    """
4401
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4402

4403 4404
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4405 4406 4407 4408 4409 4410 4411 4412 4413
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4414 4415 4416
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4417
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4418 4419 4420 4421 4422 4423

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4424
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4425 4426 4427 4428 4429 4430

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4431 4432
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4433 4434 4435 4436 4437 4438 4439

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

4440
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
4441 4442 4443 4444 4445
            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4446
    assert not in_dygraph_mode(), (
4447
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4448 4449
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4450
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4462 4463 4464 4465 4466 4467 4468
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4469
                is_accumulated=True,
4470 4471
                name=None,
                return_parent_idx=False):
4472
    """
4473 4474
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4475 4476 4477

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4478 4479

    This layer does the search in beams for one time step. Specifically, it
4480 4481 4482
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4494 4495 4496 4497

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4498

4499
    Args:
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4523 4524
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4525 4526
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4527 4528 4529 4530
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4531

4532
    Returns:
4533 4534 4535 4536
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4537 4538 4539 4540

    Examples:
        .. code-block:: python

4541 4542
            import paddle.fluid as fluid

4543 4544 4545
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4558
                axis=0)
4559
            selected_ids, selected_scores = fluid.layers.beam_search(
4560 4561 4562 4563 4564 4565 4566
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4567
    helper = LayerHelper('beam_search', **locals())
4568 4569 4570 4571 4572 4573
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4574

X
Xin Pan 已提交
4575 4576 4577
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4578 4579 4580 4581 4582
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4583 4584 4585

    helper.append_op(
        type='beam_search',
4586
        inputs=inputs,
Q
Qiao Longfei 已提交
4587 4588 4589
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4590
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4591 4592 4593 4594 4595 4596
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4597
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4598
        })
4599 4600 4601 4602
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4603 4604


4605 4606 4607 4608 4609 4610 4611
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4612

4613 4614 4615 4616 4617 4618 4619 4620 4621
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4622

4623 4624 4625 4626 4627 4628
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4629

4630 4631
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4632

4633 4634
            import paddle.fluid as fluid

4635 4636
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4637 4638 4639
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4640 4641 4642
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4643 4644
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4660 4661 4662 4663
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4664
              param_attr=None,
C
caoying03 已提交
4665 4666
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4667 4668 4669 4670
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4671
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4672

4673
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4674

4675
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4676

4677
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4678 4679 4680

            h_t & = o_t tanh(c_t)

4681 4682 4683 4684 4685 4686
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4687 4688 4689

        .. math::

4690
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4691 4692 4693 4694 4695 4696 4697 4698

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

4699
    This layer has two outputs including :math:`h_t` and :math:`c_t`.
Y
yangyaming 已提交
4700 4701

    Args:
Y
yangyaming 已提交
4702 4703 4704 4705 4706 4707
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4708
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4721 4722
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4723 4724

    Returns:
Y
yangyaming 已提交
4725
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4726 4727

    Raises:
4728 4729 4730 4731
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4732 4733 4734 4735 4736

    Examples:

        .. code-block:: python

4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4764
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4765 4766 4767 4768
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4769 4770
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4771 4772 4773
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4774
    size = cell_t_prev.shape[1]
4775
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4776 4777
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4778
                param_attr=param_attr,
4779
                bias_attr=bias_attr)
Y
yangyaming 已提交
4780
    dtype = x_t.dtype
X
Xin Pan 已提交
4781 4782
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4783 4784 4785 4786 4787 4788 4789 4790 4791

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4792
    return h, c
G
guosheng 已提交
4793 4794


C
caoying03 已提交
4795
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4796
    """
Y
yangyaming 已提交
4797
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4798 4799 4800

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4801
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4802 4803
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4804 4805
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4806
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4807
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4808
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4809 4810
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4811 4812 4813

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4814

G
guosheng 已提交
4815 4816 4817
    Examples:
        .. code-block:: python

4818
            import paddle.fluid as fluid
G
guosheng 已提交
4819 4820 4821
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4822
            # Each example is followed by the corresponding output tensor.
4823
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4824 4825 4826 4827
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4828

4829
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4830 4831
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4832
            # Each example is followed by the corresponding output tensor.
4833 4834 4835
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4836

G
guosheng 已提交
4837 4838
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4839
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4840 4841
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4842 4843 4844 4845 4846
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4847
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4848 4849 4850 4851
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4852 4853


C
caoying03 已提交
4854
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4855
    """
Y
Yibing Liu 已提交
4856
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4857 4858 4859

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4860 4861 4862
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4863
            must be in the range :math:`[-rank(input), rank(input))`. If
4864
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4865
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4866 4867
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4868
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4869
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4870
                       will be named automatically.
G
guosheng 已提交
4871 4872

    Returns:
Y
Yibing Liu 已提交
4873
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4874

G
guosheng 已提交
4875 4876 4877
    Examples:
        .. code-block:: python

4878
            import paddle.fluid as fluid
G
guosheng 已提交
4879 4880 4881 4882
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4883
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4884 4885 4886
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4887
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4888

4889
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4890 4891 4892
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4893 4894 4895
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4896 4897
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4898
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4899 4900
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4901 4902 4903 4904 4905
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4906
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4907 4908 4909 4910
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4911 4912


C
caoying03 已提交
4913
def reduce_max(input, dim=None, keep_dim=False, name=None):
4914
    """
Y
yangyaming 已提交
4915
    Computes the maximum of tensor elements over the given dimension.
4916 4917 4918

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4919
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4920 4921 4922
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4923
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4924 4925
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4926
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4927 4928
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4929 4930 4931

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4932

4933 4934 4935
    Examples:
        .. code-block:: python

4936
            import paddle.fluid as fluid
4937 4938 4939 4940
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4941
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4942 4943 4944 4945
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4946

4947
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4948 4949 4950
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4951 4952 4953
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4954 4955
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4956
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4957 4958
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4959 4960 4961 4962 4963
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4964
            'dim': dim if dim != None else [0],
4965 4966 4967 4968 4969 4970
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4971
def reduce_min(input, dim=None, keep_dim=False, name=None):
4972
    """
Y
yangyaming 已提交
4973
    Computes the minimum of tensor elements over the given dimension.
4974 4975 4976

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4977
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4978 4979 4980
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4981
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4982 4983
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4984
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4985 4986
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4987 4988 4989

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4990

4991 4992 4993
    Examples:
        .. code-block:: python

4994
            import paddle.fluid as fluid
4995 4996 4997 4998
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4999
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5000 5001 5002 5003
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
5004

5005
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5006 5007 5008
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5009 5010 5011
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
5012 5013
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
5014
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5015 5016
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5017 5018 5019 5020 5021
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5022
            'dim': dim if dim != None else [0],
5023 5024 5025 5026
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
5027 5028


5029 5030 5031 5032 5033 5034
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
5035
        dim (list|int|None): The dimensions along which the product is performed. If
5036 5037
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
5038 5039
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
5040 5041 5042
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
5043
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
5044
            layer will be named automatically.
5045 5046 5047 5048 5049 5050 5051

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

5052
            import paddle.fluid as fluid
5053 5054 5055 5056
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5057
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5058 5059 5060
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
5061
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
5062
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
5063

5064
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5065 5066 5067
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5068 5069 5070
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
5071 5072
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
5073
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5074 5075
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5076 5077 5078 5079 5080
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5081
            'dim': dim if dim != None else [0],
5082 5083 5084 5085 5086 5087
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
5088 5089
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5090
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5110
        
5111
            import paddle.fluid as fluid
5112 5113 5114
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5115 5116 5117
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
5118 5119 5120 5121 5122 5123 5124
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
Z
zhoukunsheng 已提交
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5145
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5165

5166
            import paddle.fluid as fluid
5167 5168 5169
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5170 5171 5172
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
5173 5174 5175 5176 5177 5178 5179
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
5194 5195 5196 5197 5198
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5199
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
5200
    """
C
caoying03 已提交
5201
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
5202 5203 5204

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
5205 5206 5207 5208 5209
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
5210
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5211
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5212
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5213 5214
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5215 5216

    Returns:
D
dzhwinter 已提交
5217
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5218 5219 5220 5221

    Examples:
        .. code-block:: python

5222 5223 5224 5225 5226 5227
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

5228
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
5229 5230 5231 5232 5233 5234 5235 5236
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5237 5238 5239 5240 5241 5242 5243 5244
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5245
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5246 5247 5248
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5249
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5263 5264 5265 5266 5267 5268 5269 5270 5271


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5272
    .. math::
5273 5274

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5275 5276 5277 5278 5279

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5280
        x(Variable|list): The input tensor to l2_normalize layer.
5281
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5282 5283
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5284
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5285
            the default value is 1e-12.
5286
        name(str|None): A name for this layer(optional). If set None, the layer \
5287
            will be named automatically.
C
caoying03 已提交
5288 5289

    Returns:
5290
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5291 5292

    Examples:
5293

C
caoying03 已提交
5294 5295
        .. code-block:: python

5296
            import paddle.fluid as fluid
5297 5298 5299 5300
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5301 5302
    """

F
fengjiayi 已提交
5303 5304
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5305 5306
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5307 5308
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5309
    helper.append_op(
5310 5311 5312 5313
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5314
        attrs={
5315 5316
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5317 5318
        })
    return out
5319 5320


S
sneaxiy 已提交
5321
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5322
    """
Y
ying 已提交
5323 5324 5325 5326
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5327

C
chengduoZH 已提交
5328
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5329
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5330

5331 5332 5333 5334 5335
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5336
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5337

C
chengduoZH 已提交
5338
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5339
      performs in the following way.
G
guosheng 已提交
5340

5341
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5342
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5343
        last two dimensions and a batched matrix multiply supporting broadcast
5344
        applies on the two tensors.
G
guosheng 已提交
5345

Y
ying 已提交
5346 5347
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5348
    removed after matrix multiplication.
G
guosheng 已提交
5349 5350 5351

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5352 5353 5354
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5355
        alpha (float): The scale of output. Default 1.0.
5356
        name(str|None): A name for this layer(optional). If set None, the layer
5357
            will be named automatically.
G
guosheng 已提交
5358 5359

    Returns:
石晓伟 已提交
5360
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
5361

G
guosheng 已提交
5362 5363 5364
    Examples:
        .. code-block:: python

5365
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5366
            # x: [B, ..., M, K], y: [B, ..., K, N]
5367
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5368

5369
            # x: [B, M, K], y: [B, K, N]
5370
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5371

5372
            # x: [B, M, K], y: [K, N]
5373
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5374

5375
            # x: [M, K], y: [K, N]
5376
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5377 5378

            # x: [B, M, K], y: [K]
5379
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5380

5381
            # x: [K], y: [K]
5382
            # fluid.layers.matmul(x, y)  # out: [1]
5383

Y
ying 已提交
5384
            # x: [M], y: [N]
5385 5386
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

5387
            import paddle.fluid as fluid
5388 5389 5390
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5391
    """
Y
ying 已提交
5392 5393 5394 5395 5396 5397 5398

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5399
            y_shape = y_shape + [1]
Y
ying 已提交
5400 5401 5402 5403 5404 5405 5406

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5407 5408
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5409

C
chengduo 已提交
5410
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5411
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5412 5413 5414
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5415
                if dim_x != y_shape[i]:
C
chengduo 已提交
5416 5417
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5418 5419 5420

    __check_input(x, y)

5421
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5422
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5423
    helper.append_op(
5424 5425 5426 5427
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5428 5429 5430
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5431
            'alpha': float(alpha),
S
sneaxiy 已提交
5432
        })
5433
    return out
5434 5435


5436
def topk(input, k, name=None):
Q
qingqing01 已提交
5437 5438 5439 5440
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5441
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5442 5443 5444 5445 5446 5447
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5469 5470 5471
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5472
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5473
                 of input.
5474
        name(str|None): A name for this layer(optional). If set None, the layer
5475
                       will be named automatically.
F
fengjiayi 已提交
5476
                       Default: None
Q
qingqing01 已提交
5477 5478

    Returns:
5479 5480 5481
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5482
        within the last dimension of input.
Q
qingqing01 已提交
5483

F
fengjiayi 已提交
5484 5485
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5486 5487 5488 5489

    Examples:
        .. code-block:: python

5490
            import paddle.fluid as fluid
5491 5492
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5493 5494 5495
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5496 5497
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5498 5499 5500 5501 5502 5503
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5504 5505
    helper.append_op(
        type="top_k",
W
whs 已提交
5506
        inputs=inputs,
Q
qingqing01 已提交
5507 5508
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5509
        attrs=attrs)
Q
qingqing01 已提交
5510 5511 5512 5513 5514
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5515 5516 5517 5518 5519 5520
def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
5521
    """
R
ruri 已提交
5522
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5523 5524 5525 5526 5527 5528 5529 5530
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5531

Y
ying 已提交
5532
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5533

5534
    The input is a LoDTensor/Tensor consisting of all the hypothesis strings with
Y
ying 已提交
5535
    the total number denoted by `batch_size`, and the separation is specified
5536 5537
    by the LoD information or input_length. And the `batch_size` reference strings are arranged
    in order in the same way as `input`.
W
wanghaoshuang 已提交
5538

5539
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5540 5541
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5542

5543
    Args:
5544 5545
        input(Variable): The indices for hypothesis strings, it should have rank 2 and dtype int64.
        label(Variable): The indices for reference strings, it should have rank 2 and dtype int64.
5546
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5547
                          the length of reference string.
5548
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5549
                                     calculating edit distance.
5550 5551
        input_length(Variable): The length for each sequence in `input` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
        label_length(Variable): The length for each sequence in `label` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
5552

W
wanghaoshuang 已提交
5553
    Returns:
5554 5555 5556
        edit_distance_out(Variable): edit distance result in shape [batch_size, 1]. \n
        sequence_num(Variable): sequence number in shape [].
        
W
wanghaoshuang 已提交
5557 5558 5559

    Examples:
        .. code-block:: python
5560
            
R
ruri 已提交
5561 5562
            import paddle.fluid as fluid

5563 5564 5565 5566
            # using LoDTensor
            x_lod = fluid.layers.data(name='x_lod', shape=[1], dtype='int64', lod_level=1)
            y_lod = fluid.layers.data(name='y_lod', shape=[1], dtype='int64', lod_level=1)
            distance_lod, seq_num_lod = fluid.layers.edit_distance(input=x_lod, label=y_lod)
R
ruri 已提交
5567

5568 5569 5570 5571 5572 5573 5574 5575
            # using Tensor
            x_seq_len = 5
            y_seq_len = 6
            x_pad = fluid.layers.data(name='x_pad', shape=[x_seq_len], dtype='int64')
            y_pad = fluid.layers.data(name='y_pad', shape=[y_seq_len], dtype='int64')
            x_len = fluid.layers.data(name='x_len', shape=[], dtype='int64')
            y_len = fluid.layers.data(name='y_len', shape=[], dtype='int64')
            distance_pad, seq_num_pad = fluid.layers.edit_distance(input=x_pad, label=y_pad, input_length=x_len, label_length=y_len)
R
ruri 已提交
5576

5577
    """
5578
    helper = LayerHelper("edit_distance", **locals())
5579

5580
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5581
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5582 5583
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5584 5585 5586 5587 5588

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5589
            attrs={"tokens": ignored_tokens})
5590 5591 5592 5593 5594
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5595
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5596
            attrs={"tokens": ignored_tokens})
5597 5598
        label = erased_label

5599 5600 5601 5602 5603
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length and label_length:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

5604
    # edit distance op
X
Xin Pan 已提交
5605 5606
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5607 5608
    helper.append_op(
        type="edit_distance",
5609
        inputs=this_inputs,
5610 5611
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5612 5613
        attrs={"normalized": normalized})

5614
    return edit_distance_out, sequence_num
5615 5616 5617 5618 5619


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5620

Y
ying 已提交
5621 5622 5623 5624
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5642
        input.lod = [[4, 4]]
M
minqiyang 已提交
5643

W
whs 已提交
5644
        Computation:
5645

W
whs 已提交
5646 5647 5648 5649 5650 5651
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5652 5653 5654 5655 5656

        output.data = [[2],
                       [1],
                       [3]]

5657
        output.lod = [[2, 1]]
5658

W
whs 已提交
5659

5660 5661
    Args:

Y
ying 已提交
5662 5663 5664 5665 5666 5667 5668 5669 5670
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5671
        name (str): The name of this layer. It is optional.
5672 5673

    Returns:
H
haowang101779990 已提交
5674 5675 5676
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5677
                  LoD [[]] and dims [1, 1].
5678 5679 5680 5681

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5682
            import paddle.fluid as fluid
5683 5684
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5685
    """
5686
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5687
    _, topk_indices = topk(input, k=1)
5688 5689

    # ctc align op
X
Xin Pan 已提交
5690
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5691 5692 5693
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5694
        outputs={"Output": [ctc_out]},
5695 5696
        attrs={"merge_repeated": True,
               "blank": blank})
5697
    return ctc_out
5698 5699


5700 5701 5702 5703 5704 5705 5706
def warpctc(input,
            label,
            blank=0,
            norm_by_times=False,
            use_cudnn=False,
            input_length=None,
            label_length=None):
W
wanghaoshuang 已提交
5707
    """
5708 5709
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5710
    to compute Connectionist Temporal Classification (CTC) loss.
5711 5712
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5713 5714 5715
    input tensor.

    Args:
5716
       input (Variable): The unscaled probabilities of variable-length sequences,
5717 5718 5719
         which is a 2-D Tensor with LoD information, or a 3-D Tensor without Lod
         information. When it is a 2-D LodTensor, it's shape is 
         [Lp, num_classes + 1], where Lp is the sum of all input
W
wanghaoshuang 已提交
5720
         sequences' length and num_classes is the true number of classes.
5721 5722 5723 5724
         (not including the blank label). When it is a 3-D Tensor, it's shape 
         is [max_logit_length, batch_size, num_classes + 1],
         where max_logit_length is the length of the longest
         input logit sequence.
5725
       label (Variable): The ground truth of variable-length sequence,
5726 5727 5728
         which is a 2-D Tensor with LoD information or a 2-D Tensor without
         LoD information. When it is a 2-D LoDTensor or 2-D Tensor, 
         it is of the shape [Lg, 1], where Lg is th sum of all labels' length.
5729
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5730 5731
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5732 5733 5734
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5735
         follewed by a mean_op.
W
Wu Yi 已提交
5736
       use_cudnn (bool, default false): Whether to use cudnn.
5737 5738 5739 5740
       input_length(Variable): The length for each input sequence if it is 
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
       label_length(Variable): The length for each label sequence if it is
         of Tensor type, it should have shape `[batch_size]` and dtype int64.
W
wanghaoshuang 已提交
5741 5742

    Returns:
5743 5744
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5745 5746 5747

    Examples:
        .. code-block:: python
5748

5749
            # using LoDTensor
B
Bai Yifan 已提交
5750
            import paddle.fluid as fluid
5751 5752 5753
            import numpy as np
            
            label = fluid.layers.data(name='label', shape=[12, 1],
B
Bai Yifan 已提交
5754
                                      dtype='float32', lod_level=1)
5755 5756 5757
            predict = fluid.layers.data(name='predict', 
                                        shape=[11, 8],
                                        dtype='float32',lod_level=1)
5758
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5759

5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
            # using Tensor
            input_length = fluid.layers.data(name='logits_length', shape=[11],
                                         dtype='int64')
            label_length = fluid.layers.data(name='labels_length', shape=[12],
                                         dtype='int64')
            target = fluid.layers.data(name='target', shape=[12, 1],
                                       dtype='int32')
            # length of the longest logit sequence
            max_seq_length = 4
            # number of logit sequences
            batch_size = 4
            output = fluid.layers.data(name='output', 
                                       shape=[max_seq_length, batch_size, 8],
                                       dtype='float32')
            loss = fluid.layers.warpctc(input=output,label=target,
                                        input_length=input_length,
                                        label_length=label_length)

W
wanghaoshuang 已提交
5778
    """
F
fengjiayi 已提交
5779
    helper = LayerHelper('warpctc', **locals())
5780 5781 5782 5783 5784
    this_inputs = {'Logits': [input], 'Label': [label]}
    if input_length and label_length:
        this_inputs['LogitsLength'] = [input_length]
        this_inputs['LabelLength'] = [label_length]

X
Xin Pan 已提交
5785 5786
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
5787

W
wanghaoshuang 已提交
5788 5789
    helper.append_op(
        type='warpctc',
5790
        inputs=this_inputs,
W
wanghaoshuang 已提交
5791 5792
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5793 5794 5795 5796 5797
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5798
    return loss_out
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5814 5815 5816
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5817 5818 5819 5820 5821
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5822

5823
            out.lod  = [[0, 1, 3]]
5824 5825 5826 5827

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5828 5829 5830 5831 5832 5833 5834
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5835 5836 5837

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5838 5839

    Returns:
5840

5841 5842 5843 5844 5845
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5846 5847 5848
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5849
    """
L
lujun 已提交
5850
    assert not in_dygraph_mode(), (
5851
        "sequence layer is not supported in dygraph mode yet.")
5852
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5853
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5854 5855 5856 5857 5858 5859
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5860 5861


5862 5863 5864 5865
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5866 5867 5868 5869 5870 5871
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5872
        num_neg_samples=None,
5873 5874 5875
        name=None,
        sampler="uniform",
        custom_dist=None,
5876 5877
        seed=0,
        is_sparse=False):
5878 5879 5880 5881 5882 5883 5884
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5885 5886
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5887
            sample is 1.0.
C
chengduo 已提交
5888 5889 5890 5891 5892 5893 5894 5895 5896
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5897
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5898 5899
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5900 5901 5902
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5903
        custom_dist (float[]): A float[] with size=num_total_classes.
5904 5905 5906 5907
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5908
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5909

5910
    Returns:
Y
Yibing Liu 已提交
5911 5912 5913 5914 5915 5916
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


X
xsrobin 已提交
5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
            import paddle.fluid as fluid
            import numpy as np

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(fluid.layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
                                   param_attr='embed', is_sparse=True)
                embs.append(emb)

            embs = fluid.layers.concat(input=embs, axis=1)
            loss = fluid.layers.nce(input=embs, label=words[label_word],
                      num_total_classes=dict_size, param_attr='nce.w_0',
                      bias_attr='nce.b_0')

             #or use custom distribution
             dist = np.array([0.05,0.5,0.1,0.3,0.05])
             loss = fluid.layers.nce(input=embs, label=words[label_word],
                       num_total_classes=5, param_attr='nce.w_1',
                       bias_attr='nce.b_1',
                       num_neg_samples=3,
                       sampler="custom_dist",
                       custom_dist=dist)
5951
    """
Y
Yang Yu 已提交
5952 5953 5954
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5955 5956

    dim = input.shape[1]
Y
Yang Yu 已提交
5957 5958 5959 5960 5961 5962
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5963
    inputs = {}
C
chengduo 已提交
5964 5965 5966 5967 5968 5969 5970
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5971 5972 5973
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5974

5975 5976 5977 5978
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5979 5980 5981 5982 5983 5984 5985

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5986 5987
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5988
        custom_dist_len = num_total_classes
5989 5990 5991 5992 5993 5994
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5995
            if normal_prob - 1.0 > 0:
5996
                bigs.append((i, normal_prob))
5997
            elif 1.0 - normal_prob > 0:
5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
6013
            if big_left - 1.0 > 0:
6014
                bigs.append((big_idx, big_left))
6015
            elif 1.0 - big_left > 0:
6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
6045 6046 6047 6048
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

6049 6050 6051 6052 6053
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

6054 6055 6056 6057
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6058

Y
Yang Yu 已提交
6059 6060
    attrs = {
        'num_total_classes': int(num_total_classes),
6061 6062
        'num_neg_samples': num_neg_samples,
        'seed': seed,
6063
        'sampler': sampler,
6064 6065
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
6066
    }
Y
Yang Yu 已提交
6067 6068 6069

    helper.append_op(
        type='nce',
C
chengduo 已提交
6070
        inputs=inputs,
Y
Yang Yu 已提交
6071 6072 6073 6074 6075 6076
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
6077
    return cost / (num_neg_samples + 1)
6078 6079


C
chengduo 已提交
6080 6081
def hsigmoid(input,
             label,
6082
             num_classes,
C
chengduo 已提交
6083 6084
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
6085
             name=None,
6086 6087 6088
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
6089
             is_sparse=False):
W
weixing02 已提交
6090 6091
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
6092
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
6093
    complete binary tree, or you can use is_custom to pass your own tree to
6094
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
6095 6096 6097 6098 6099 6100
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

6101
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
6102
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
6103

6104 6105
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
6106 6107 6108 6109
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
6110
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
6111
       related to the same batch of inputs.
6112

W
weixing02 已提交
6113
    Args:
M
minqiyang 已提交
6114
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
6115 6116 6117 6118
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
6119 6120
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
6121
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
6133
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
6134
            it should be in leaf -> root order
M
minqiyang 已提交
6135 6136 6137
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
6138
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
6139
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
6140
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
6141
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
6142
             of W and input will be sparse.
W
weixing02 已提交
6143 6144

    Returns:
J
JiabinYang 已提交
6145
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
6146 6147 6148 6149 6150

    Examples:

        .. code-block:: python

6151
            import paddle.fluid as fluid
G
guosheng 已提交
6152 6153 6154
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
6155 6156 6157 6158
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6159 6160
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
6161
    dim = input.shape[1]
6162
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
6163 6164 6165
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

6166 6167 6168 6169 6170 6171 6172 6173 6174
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

6175
    if (is_custom) and (path_code is None):
6176
        raise ValueError("path_code should not be None with custom tree")
6177
    elif (is_custom) and (path_table is None):
6178
        raise ValueError("path_table should not be None with custom tree")
6179
    elif (is_custom) and (num_classes is None):
6180
        raise ValueError("num_classes should not be None with custom tree")
6181 6182 6183
    else:
        pass

J
JiabinYang 已提交
6184
    weights = None
6185 6186 6187 6188
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6189
    if not is_custom:
J
JiabinYang 已提交
6190 6191 6192 6193 6194 6195 6196 6197
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
6198
            shape=[num_classes, dim],
J
JiabinYang 已提交
6199 6200
            is_bias=False,
            dtype=input.dtype)
6201 6202 6203
    inputs = {
        "X": input,
        "W": weights,
6204
        "PathTable": path_table,
6205
        "PathCode": path_code,
6206 6207
        "Label": label
    }
W
weixing02 已提交
6208
    if helper.bias_attr:
6209
        if not is_custom:
J
JiabinYang 已提交
6210 6211
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
6212
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
6213 6214 6215 6216 6217 6218
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
6219
                shape=[num_classes, 1],
J
JiabinYang 已提交
6220 6221 6222
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
6223 6224
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
6225
        inputs=inputs,
W
weixing02 已提交
6226
        outputs={"Out": out,
6227 6228 6229 6230 6231 6232 6233
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
6234 6235 6236
    return out


Y
fix ci.  
ying 已提交
6237
def transpose(x, perm, name=None):
Y
ying 已提交
6238 6239 6240 6241 6242 6243 6244
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
6245 6246 6247
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
6248 6249 6250 6251 6252 6253 6254

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

6255
            # use append_batch_size=False to avoid prepending extra
6256
            # batch size in shape
6257
            import paddle.fluid as fluid
6258
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
6259
                            dtype='float32', append_batch_size=False)
6260
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
6261 6262
    """

Y
fix ci.  
ying 已提交
6263
    if len(perm) != len(x.shape):
Y
ying 已提交
6264 6265
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
6266
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
6267 6268 6269 6270 6271 6272
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6273 6274

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6275 6276
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6277
    helper.append_op(
6278
        type='transpose2',
Y
fix ci.  
ying 已提交
6279
        inputs={'X': [x]},
6280 6281
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6282 6283
        attrs={'axis': perm})
    return out
6284 6285


6286 6287 6288 6289 6290 6291 6292
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6293
    """
6294 6295 6296 6297 6298 6299 6300
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6301 6302 6303 6304 6305 6306 6307 6308 6309 6310

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6329 6330 6331 6332 6333 6334 6335 6336 6337
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6338 6339 6340
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6341 6342 6343 6344 6345
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6373 6374 6375
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6388
            output.dims = {8, 8}
6389

6390
            output.lod = [[4, 4]]
6391

T
Tink_Y 已提交
6392
    Examples:
6393 6394 6395

        .. code-block:: python

B
Bai Yifan 已提交
6396 6397 6398
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6399
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6400 6401
                input=data, stride=[1, 1], filter_size=[2, 2])

6402 6403

    """
L
lujun 已提交
6404
    assert not in_dygraph_mode(), (
6405
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6406 6407 6408 6409 6410 6411 6412 6413 6414 6415

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6416
    inputs = {"X": input}
6417
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6418 6419 6420 6421 6422
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6423
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6424
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6425
    helper.append_op(
6426
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6427
    return out
6428 6429


Y
yuyang18 已提交
6430
@templatedoc()
6431
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6432 6433
    """
    ${comment}
6434 6435

    Args:
Y
yuyang18 已提交
6436
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6437 6438
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6439 6440 6441 6442 6443
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6444
        ${out_comment}.
6445 6446

    Examples:
Y
yuyang18 已提交
6447 6448 6449 6450
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6451 6452 6453 6454 6455 6456
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6457
    out = helper.create_variable_for_type_inference(dtype)
6458 6459 6460 6461 6462
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6463
    return helper.append_activation(out)
6464 6465


Y
yuyang18 已提交
6466
@templatedoc()
6467 6468
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6469 6470
    ${comment}

L
lujun 已提交
6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6514 6515

    Args:
Y
yuyang18 已提交
6516 6517
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6518 6519

    Returns:
Y
yuyang18 已提交
6520
        ${out_comment}.
6521 6522
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6523 6524 6525 6526 6527

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6528
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6529 6530 6531 6532 6533 6534
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6535 6536


6537 6538 6539
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6540
                               ignore_index=kIgnoreIndex,
6541
                               numeric_stable_mode=True,
6542 6543
                               return_softmax=False,
                               axis=-1):
6544 6545
    """
    **Softmax With Cross Entropy Operator.**
6546

6547
    Cross entropy loss with softmax is used as the output layer extensively. This
6548 6549 6550
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6551

6552 6553 6554
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6555

6556 6557 6558 6559
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6560

6561
    The equation is as follows:
6562

6563
    1) Hard label (one-hot label, so every sample has exactly one class)
6564

6565 6566 6567 6568
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6569

6570 6571 6572
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6573

6574 6575 6576 6577
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6578 6579
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6580 6581

    .. math::
6582

H
haowang101779990 已提交
6583
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6584

H
haowang101779990 已提交
6585
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6586

H
haowang101779990 已提交
6587
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6588 6589 6590

    and then cross entropy loss is calculated by softmax and label.

6591
    Args:
6592 6593 6594 6595 6596 6597
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6598
        soft_label (bool): A flag to indicate whether to interpretate the given
6599
            labels as soft labels. Default False.
M
minqiyang 已提交
6600 6601
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6602 6603
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6604 6605
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6606 6607 6608 6609
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6610
                                    Note that the speed may be slower when use
6611
                                    stable algorithm. Default: True
6612
        return_softmax (bool): A flag indicating whether to return the softmax
6613
                               along with the cross entropy loss. Default: False
6614 6615 6616
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6617

6618
    Returns:
H
haowang101779990 已提交
6619 6620
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6621 6622 6623 6624
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6625 6626 6627 6628

    Examples:
        .. code-block:: python

6629 6630
            import paddle.fluid as fluid

6631 6632 6633
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6634 6635
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6636 6637
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6638 6639
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6640 6641 6642 6643 6644 6645
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6646 6647 6648
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6649 6650
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6651
        })
6652 6653 6654 6655

    if return_softmax:
        return loss, softmax

6656 6657 6658
    return loss


6659 6660 6661
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6662
                                       num_true=1,
6663
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6664 6665 6666
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6667
                                       seed=0):
X
xuezhong 已提交
6668 6669 6670 6671 6672
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6673
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6674 6675 6676 6677 6678 6679 6680 6681
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6682
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6683 6684 6685 6686 6687 6688 6689 6690
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6691
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6703
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6704 6705 6706 6707 6708
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6709
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6710
            logits.
X
xuezhong 已提交
6711 6712 6713 6714 6715
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6716 6717 6718
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6719 6720 6721 6722 6723 6724 6725
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6726 6727 6728
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
6729
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
6730
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6731
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6732
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6733 6734 6735 6736 6737 6738 6739 6740
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6741 6742
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6743 6744
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6745 6746 6747 6748 6749

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6750
            'Labels': label,
X
xuezhong 已提交
6751 6752
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6753 6754 6755 6756
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6757
            'SampledLabels': sampled_label,
6758 6759 6760
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6761 6762
        },
        attrs={
X
xuezhong 已提交
6763
            'use_customized_samples': use_customized_samples,
6764
            'uniq': True,
X
xuezhong 已提交
6765 6766 6767 6768
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6769 6770
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6771 6772 6773 6774 6775 6776
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6777 6778
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6779
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6780
                'Label': sampled_softlabel},
X
xuezhong 已提交
6781 6782 6783
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6784
            'soft_label': True,
X
xuezhong 已提交
6785 6786 6787
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6788
    return loss / num_true
X
xuezhong 已提交
6789 6790


6791 6792
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6793 6794
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6795
    For each instance, it computes the smooth L1 loss element by element first
6796
    and then sums all the losses. So the shape of ouput Variable is
6797
    [batch_size, 1].
6798

6799 6800
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6801
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6802
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6803
            L1 loss op with same shape as :attr:`x`.
6804
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6805 6806
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6807
            by this tensor element by element.
6808
        outside_weight (Variable|None): A tensor with rank at least 2. This
6809 6810
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6811
            element by element.
6812
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6813 6814
           scalar with default value 1.0.

6815
    Returns:
6816
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6817 6818 6819 6820

    Examples:
        .. code-block:: python

6821
            import paddle.fluid as fluid
6822
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6823 6824
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6825
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6826
            out = fluid.layers.smooth_l1(x=fc, y=label)
6827
    """
6828

6829
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6830 6831
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6842
        attrs={'sigma': sigma if sigma is not None else 1.0})
6843
    return loss
6844 6845


6846
def one_hot(input, depth, allow_out_of_range=False):
6847
    """
Y
Yibing Liu 已提交
6848
    This layer creates the one-hot representations for input indices.
6849 6850

    Args:
Y
Yibing Liu 已提交
6851 6852
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6853 6854 6855 6856
        allow_out_of_range(bool): A bool value indicating whether the input
            indices could be out of range [0, depth). When input indices are
            out of range, exceptions is raised if allow_out_of_range is False,
            or zero-filling representations is created if it is set True
6857 6858

    Returns:
Y
Yibing Liu 已提交
6859
        Variable: The one-hot representations of input.
6860 6861

    Examples:
C
caoying03 已提交
6862
        .. code-block:: python
6863

6864
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
6865 6866
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6867 6868
    """
    helper = LayerHelper("one_hot", **locals())
6869

X
Xin Pan 已提交
6870
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6871 6872 6873 6874 6875 6876 6877 6878 6879 6880

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6881
            depth.stop_gradient = True
6882 6883
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6884 6885
    helper.append_op(
        type="one_hot",
6886 6887
        inputs=inputs,
        attrs=attrs,
6888 6889
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6890
    return one_hot_out
Y
Yu Yang 已提交
6891 6892


Y
Yu Yang 已提交
6893
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6894
    """
Y
yi.wu 已提交
6895 6896 6897
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6898 6899 6900 6901 6902 6903

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6904 6905
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6906 6907 6908 6909

    Examples:
        .. code-block:: python

6910
           import paddle.fluid as fluid
Y
yi.wu 已提交
6911
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6912
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6913 6914
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6915 6916
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6917 6918 6919 6920 6921
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6922
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6923
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6924 6925
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6926
            outputs={'Out': [counter]},
M
minqiyang 已提交
6927 6928
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6929 6930 6931
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6932 6933


6934
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6935
    """
C
caoying03 已提交
6936 6937
    Gives a new shape to the input Tensor without changing its data.

6938 6939 6940 6941 6942
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6943

6944
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6945

6946 6947 6948 6949
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6950
    2. 0 means the actual dimension value is going to be copied from the
6951 6952 6953 6954
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6955 6956

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6957
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6958
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6959

6960
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6961 6962
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6963 6964
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6965
    dimensions.
C
caoying03 已提交
6966

6967
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6968 6969 6970 6971
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6972 6973

    Args:
6974
        x(variable): The input tensor.
C
caoying03 已提交
6975 6976
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6977 6978 6979 6980 6981
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6982 6983
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6984 6985 6986
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6987
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6988
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6989

6990
    Returns:
G
guosheng 已提交
6991 6992 6993 6994
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6995

X
Xin Pan 已提交
6996 6997 6998
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6999 7000
    Examples:
        .. code-block:: python
G
guosheng 已提交
7001

7002
            import paddle.fluid as fluid
7003
            data = fluid.layers.data(
7004
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
7005
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
7006
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
7007 7008 7009
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
7010
        raise ValueError("Input shape must be a python list or tuple.")
7011

X
Xin Pan 已提交
7012 7013 7014 7015 7016
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
7017

7018 7019
    # Validate the shape
    unk_dim_idx = -1
7020
    contain_var = False
7021
    for dim_idx, dim_size in enumerate(shape):
7022 7023 7024 7025
        if isinstance(dim_size, Variable):
            contain_var = True
            continue

7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

7038
    helper = LayerHelper("reshape2", **locals())
7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
        if contain_var:
            new_shape_tensor = []
            for dim in shape:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_shape_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = helper.create_variable_for_type_inference(
                        'int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_shape_tensor.append(temp_out)
            inputs['ShapeTensor'] = new_shape_tensor
            attrs = {}

        else:
            attrs = {'shape': shape}
7061 7062
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
7063
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
7064
    helper.append_op(
7065
        type="reshape2",
X
Xin Pan 已提交
7066
        inputs=inputs,
7067
        attrs=attrs,
7068 7069
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
7070

D
dzhwinter 已提交
7071
    return helper.append_activation(out)
7072

7073

7074
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
7075
    """
M
minqiyang 已提交
7076 7077 7078
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
7079
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
7080

H
haowang101779990 已提交
7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
7102

Y
Yibing Liu 已提交
7103
    Args:
7104
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
7105
        axes (list): List of integers, indicating the dimensions to be squeezed.
7106
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7107 7108 7109 7110 7111 7112 7113

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

7114
            import paddle.fluid as fluid
7115
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
7116
            x = layers.data(name='x', shape=[5, 1, 10])
7117
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7118
    """
L
lujun 已提交
7119
    assert not in_dygraph_mode(), (
L
lujun 已提交
7120
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
7121
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
7122 7123
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7124
    helper.append_op(
7125
        type="squeeze2",
7126
        inputs={"X": input},
Y
Yibing Liu 已提交
7127
        attrs={"axes": axes},
7128 7129
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7130

7131 7132 7133
    return out


7134
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
7135
    """
M
minqiyang 已提交
7136 7137 7138
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
7139

M
minqiyang 已提交
7140
    For example:
H
haowang101779990 已提交
7141 7142 7143

    .. code-block:: text

M
minqiyang 已提交
7144
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
7145
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
7146

Y
Yibing Liu 已提交
7147
    Args:
7148
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
7149
        axes (list): List of integers, indicating the dimensions to be inserted.
7150
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7151 7152 7153 7154 7155 7156 7157

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

7158 7159 7160
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7161 7162
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
7163 7164
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7165
    helper.append_op(
7166
        type="unsqueeze2",
7167
        inputs={"X": input},
Y
Yibing Liu 已提交
7168
        attrs={"axes": axes},
7169 7170
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7171

7172 7173
    return out

7174

Y
yangyaming 已提交
7175
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
7176
    """
Y
Yibing Liu 已提交
7177
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
7178 7179 7180 7181
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
7182
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
7183 7184 7185 7186 7187 7188

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
7189
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
7190 7191 7192
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

7193
            target_lod: [4, 2]
Y
yangyaming 已提交
7194 7195

            then we get a 1-level LoDTensor:
7196
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
7197 7198 7199 7200 7201 7202
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
7203
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7204 7205 7206 7207
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
7208
                y.data = [[2, 4]]
Y
yangyaming 已提交
7209 7210 7211
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
7212
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
7213 7214 7215 7216 7217 7218
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
7219
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7220 7221 7222 7223
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
7224
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7225 7226 7227 7228
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
7229
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7230 7231 7232 7233
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
7234
        x (Variable): Input variable which could be a Tensor or LoDTensor.
7235
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
7236
                           from :attr:`y`.
Y
yangyaming 已提交
7237
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
7238
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
7239 7240

    Returns:
Y
Yibing Liu 已提交
7241
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
7242 7243

    Raises:
Y
Yibing Liu 已提交
7244
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
7245 7246 7247 7248

    Examples:
        .. code-block:: python

7249
            import paddle.fluid as fluid
7250 7251 7252
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
7253 7254
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
7255
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
7293
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
7294 7295 7296 7297 7298 7299

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
7300

7301 7302 7303 7304 7305 7306 7307 7308 7309 7310
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
7311 7312 7313
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

7314 7315
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7316 7317 7318 7319 7320 7321 7322 7323

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
7324
    helper.append_op(
7325
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
7326
    return out
D
dragonwarrior 已提交
7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7338
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

7367
          import paddle.fluid as fluid
F
stash  
fengjiayi 已提交
7368 7369
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7382 7383 7384
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7398 7399 7400 7401


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7402
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7403
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7404

G
guosheng 已提交
7405
    Specifically, the number of values padded before the contents of :attr:`x`
7406
    in dimension :attr:`i` is indicated by :attr:`paddings[2i]`, and the number
G
guosheng 已提交
7407
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
7408
    indicated by :attr:`paddings[2i+1]`.
G
guosheng 已提交
7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7431
                         The length of :attr:paddings must be
G
guosheng 已提交
7432 7433 7434 7435 7436 7437 7438 7439 7440 7441
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7442

G
guosheng 已提交
7443
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7444 7445
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7446 7447 7448 7449 7450
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7451
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7452 7453 7454 7455 7456 7457 7458
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7459 7460


C
chengduo 已提交
7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7492 7493
		And
            pad_value = -1,
C
chengduo 已提交
7494

T
Tink_Y 已提交
7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7525 7526 7527
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7528 7529 7530 7531 7532
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7533
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7534 7535 7536 7537 7538 7539 7540 7541 7542
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7543 7544 7545 7546 7547 7548 7549
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7550 7551
    called label-smoothing regularization (LSR).

7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7575
                              be :math:`(1, class\_num)`.
7576 7577
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7578
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7579 7580 7581 7582 7583 7584 7585 7586 7587
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7588
            
7589
            import paddle.fluid as fluid
7590
            import paddle.fluid.layers as layers
7591 7592 7593 7594 7595 7596 7597 7598 7599 7600

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7601
    smooth_label = helper.create_variable_for_type_inference(dtype)
7602 7603 7604 7605 7606 7607 7608
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7609 7610


W
wopeizl 已提交
7611 7612 7613 7614 7615 7616 7617
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7618 7619 7620 7621 7622
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
W
wopeizl 已提交
7623 7624 7625 7626 7627 7628 7629 7630 7631 7632
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7663 7664


J
jerrywgz 已提交
7665 7666 7667 7668 7669 7670
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7671 7672
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7673 7674 7675 7676 7677
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7678 7679 7680 7681 7682
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates. 
J
jerrywgz 已提交
7683 7684 7685 7686 7687 7688 7689 7690 7691 7692
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

7693
            import paddle.fluid as fluid
J
jerrywgz 已提交
7694 7695 7696 7697
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7698 7699 7700
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7701 7702 7703 7704 7705 7706
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7707
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7748 7749
        .. code-block:: python

S
SunGaofeng 已提交
7750 7751 7752
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7753
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7754
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7755 7756
    """
    label = one_hot(label, depth=input.shape[-1])
7757
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7758 7759 7760 7761 7762 7763
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7764 7765


7766 7767 7768 7769
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7770
                 resample='BILINEAR',
7771 7772
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7773
                 align_mode=1):
7774
    """
Q
qiaolongfei 已提交
7775
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7776

K
Kaipeng Deng 已提交
7777 7778 7779
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w)
    or (num_batches, channels, in_d, in_h, in_w), and the resizing only applies 
    on the last two/three dimensions(depth, hight and width).
7780 7781

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7782

7783
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7784

K
Kaipeng Deng 已提交
7785 7786
        'TRILINEAR' : Trilinear interpolation

7787
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7788

7789 7790 7791 7792 7793 7794 7795 7796 7797 7798
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
7799 7800 7801 7802 7803
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tink2123 已提交
7804
    Align_corners and align_mode are optinal parameters,the calculation method 
7805 7806 7807 7808
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7809
    .. code-block:: text
7810

T
Tink_Y 已提交
7811
        For scale:
7812
          
T
Tink_Y 已提交
7813
            if align_corners = True && out_size > 1 :
7814

T
Tink_Y 已提交
7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7826

T
Tink_Y 已提交
7827 7828
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7829

T
Tink_Y 已提交
7830 7831
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7832

T
Tink_Y 已提交
7833 7834
          else:
              align_corners = True
7835

T
Tink_Y 已提交
7836 7837
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7838

T
Tink_Y 已提交
7839 7840
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7841

T
Tink_Y 已提交
7842 7843 7844 7845 7846 7847 7848 7849 7850 7851
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7852

T
Tink_Y 已提交
7853 7854 7855 7856
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7857

T
Tink_Y 已提交
7858 7859
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7860

K
Kaipeng Deng 已提交
7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
7883 7884 7885 7886 7887 7888
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
7889 7890 7891
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

7892 7893


7894
    Args:
7895
        input (Variable): The input tensor of image resize layer,
7896
                          This is a 4-D tensor of the shape
K
Kaipeng Deng 已提交
7897 7898 7899
                          (num_batches, channels, in_h, in_w) or a
                          5-D tensor of the shape
                          (num_batches, channls, in_d, in_h, in_w).
7900
        out_shape(list|tuple|Variable|None): Output shape of image resize
K
Kaipeng Deng 已提交
7901 7902 7903 7904
                                    layer, the shape is (out_h, out_w) when
                                    input is a 4-D tensor and is
                                    (out_d, out_h, out_w) when input is a
                                    5-D tensor. Default: None
D
dengkaipeng 已提交
7905
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7906
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7907
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7908
             Default: None.
7909 7910
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
7911 7912
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
7913 7914 7915
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7916
                                :attr:`out_shape` and :attr:`scale` specifying
7917 7918 7919 7920 7921 7922 7923
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7924 7925
                                constructing stage.
                                Default: None
7926 7927 7928 7929
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7930
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7931 7932
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7933 7934

    Returns:
Q
update  
qiaolongfei 已提交
7935
        Variable: The output is a 4-D tensor of the shape
K
Kaipeng Deng 已提交
7936 7937
        (num_batches, channls, out_h, out_w) or a 5-D tensor of the shape
        (num_batches, channels, out_d, out_h, out_w).
F
stash  
fengjiayi 已提交
7938

7939 7940 7941
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
7942 7943 7944 7945
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
7946
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
7947 7948
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
7949
        ValueError: scale should be greater than zero.
7950 7951
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7952

7953 7954 7955
    Examples:
        .. code-block:: python

7956
            import paddle.fluid as fluid
R
ruri 已提交
7957
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7958
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7959
    """
7960 7961
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
7962
        'TRILINEAR': 'trilinear',
7963 7964
        'NEAREST': 'nearest',
    }
7965 7966
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
7967 7968
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
7969
    resample_type = resample_methods[resample]
7970

K
Kaipeng Deng 已提交
7971 7972 7973 7974 7975
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

7976 7977 7978 7979 7980
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7981
    if out_shape is None and scale is None:
7982
        raise ValueError("One of out_shape and scale must not be None.")
7983
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7984
    dtype = helper.input_dtype()
7985 7986 7987 7988

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7989
    inputs = {"X": input}
D
dengkaipeng 已提交
7990
    attrs = {
K
Kaipeng Deng 已提交
7991
        "out_d": 0,
D
dengkaipeng 已提交
7992 7993
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7994 7995 7996 7997 7998
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7999
    if out_shape is not None:
8000 8001 8002 8003
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
8004
            inputs['OutSize'] = out_shape
8005 8006
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
8007 8008
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
K
Kaipeng Deng 已提交
8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
                out_shape = list(map(int, out_shape))
                attrs['out_h'] = out_shape[0]
                attrs['out_w'] = out_shape[1]
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
                out_shape = list(map(int, out_shape))
                attrs['out_d'] = out_shape[0]
                attrs['out_h'] = out_shape[1]
                attrs['out_w'] = out_shape[2]
8024

8025
    else:
D
dengkaipeng 已提交
8026 8027
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
8028
        attrs['scale'] = float(scale)
8029

8030 8031 8032 8033 8034
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
8035
    out = helper.create_variable_for_type_inference(dtype)
8036
    helper.append_op(
8037
        type='{}_interp'.format(resample_type),
8038
        inputs=inputs,
8039
        outputs={"Out": out},
D
dengkaipeng 已提交
8040
        attrs=attrs)
8041
    return out
F
stash  
fengjiayi 已提交
8042 8043


8044
@templatedoc(op_type="bilinear_interp")
8045 8046 8047 8048
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
8049 8050
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
8051
                    align_mode=1):
8052
    """
8053 8054
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
8055 8056
    in priority order.

8057 8058 8059 8060
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
8061 8062
    again in the other direction.

8063
    For details of bilinear interpolation, please refer to Wikipedia:
8064
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
8065

T
tink2123 已提交
8066
    Align_corners and align_mode are optinal parameters,the calculation 
8067 8068 8069 8070
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
8071
    .. code-block:: text
8072

T
Tink_Y 已提交
8073
        For scale:
8074
          
T
Tink_Y 已提交
8075
            if align_corners = True && out_size > 1 :
8076

T
Tink_Y 已提交
8077 8078 8079 8080 8081
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
8082

T
Tink_Y 已提交
8083 8084 8085 8086 8087 8088 8089 8090 8091 8092
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
8093 8094


T
Tink_Y 已提交
8095
          else:
T
tink2123 已提交
8096

T
Tink_Y 已提交
8097 8098
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8099

T
Tink_Y 已提交
8100 8101
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
8102 8103 8104



Y
yuyang18 已提交
8105
    Args:
K
Kaipeng Deng 已提交
8106
        input(${x_type}): input should be a 4-D tensor.
Y
yuyang18 已提交
8107

D
dengkaipeng 已提交
8108 8109 8110
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
8111

Y
yuyang18 已提交
8112
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8113
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8114
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8115
             Default: None.
Y
yuyang18 已提交
8116 8117

        name(str|None): The output variable name.
8118 8119 8120
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8121
                                :attr:`out_shape` and :attr:`scale` specifying
8122 8123 8124 8125 8126 8127 8128
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
8129 8130
                                constructing stage.
                                Default: None
8131 8132
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
8133 8134

    Returns:
K
Kaipeng Deng 已提交
8135
        A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
8136 8137 8138 8139

    Examples:
        .. code-block:: python

8140
            import paddle.fluid as fluid
R
ruri 已提交
8141
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
8142
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
8143 8144
    """

8145 8146
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
8147 8148


K
Kaipeng Deng 已提交
8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
                     align_mode=1):
    """
    Resize input by performing trilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

    Align_corners and align_mode are optinal parameters,the calculation 
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}



    Args:
        input(${x_type}): input should be a 4-D tensor.

        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_d, out_h, out_w).
                                    Default: None

        scale(float|None): The multiplier for the input depth, height or width.
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.

        name(str|None): The output variable name.
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
                                constructing stage.
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}

    Returns:
        A 5-D tensor in shape (num_batches, channels, out_d, out_h, out_w)

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            input = fluid.layers.data(name="input", shape=[3,6,9,11], dtype="float32")
            out = fluid.layers.resize_trilinear(input, out_shape=[12, 12, 12])
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
                        actual_shape, align_corners, align_mode)


8255
@templatedoc(op_type="nearest_interp")
8256 8257 8258 8259
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
8260 8261
                   actual_shape=None,
                   align_corners=True):
8262
    """
8263
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
8264 8265
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
8266 8267
    out_shape and scale in priority order.

8268 8269
    Example:

T
Tink_Y 已提交
8270 8271 8272 8273 8274
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
8275

T
Tink_Y 已提交
8276 8277 8278 8279 8280 8281 8282 8283
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
8284
          
T
Tink_Y 已提交
8285 8286
          if:
              align_corners = False
8287

T
Tink_Y 已提交
8288 8289
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8290

T
Tink_Y 已提交
8291 8292
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
8293

T
Tink_Y 已提交
8294 8295
          else:
              align_corners = True
8296

T
Tink_Y 已提交
8297 8298
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8299

T
Tink_Y 已提交
8300 8301
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
8302 8303


8304
    For details of nearest neighbor interpolation, please refer to Wikipedia:
8305
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
8306 8307

    Args:
K
Kaipeng Deng 已提交
8308
        input(${x_type}): input should be a 4-D tensor.
Y
yuyang18 已提交
8309

D
dengkaipeng 已提交
8310 8311 8312
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
8313

Y
yuyang18 已提交
8314
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8315
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8316
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8317
             Default: None.
Y
yuyang18 已提交
8318 8319

        name(str|None): The output variable name.
8320 8321 8322
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8323
                                :attr:`out_shape` and :attr:`scale` specifying
8324 8325 8326 8327 8328 8329 8330
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
8331 8332
                                constructing stage.
                                Default: None
8333
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
8334 8335

    Returns:
K
Kaipeng Deng 已提交
8336
        A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
8337 8338 8339 8340

    Examples:
        .. code-block:: python

8341
            import paddle.fluid as fluid
R
ruri 已提交
8342
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
8343
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
8344 8345
    """

8346 8347
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
8348 8349 8350 8351


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
8352 8353 8354
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
8355 8356 8357 8358 8359 8360 8361
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
8362
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
8363

8364
    Returns:
Q
update  
qiaolongfei 已提交
8365
        Variable: The output is a 4-D tensor of the shape
8366
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
8367 8368 8369 8370

    Examples:
        .. code-block:: python

8371
            import paddle.fluid as fluid
R
ruri 已提交
8372 8373
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
8374 8375 8376 8377 8378 8379 8380 8381 8382 8383
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
8384 8385 8386
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
8387 8388 8389
    return image_resize(input=input, out_shape=out_shape, resample=resample)


8390
def gather(input, index, overwrite=True):
W
whs 已提交
8391
    """
Q
qiaolongfei 已提交
8392 8393
    **Gather Layer**

8394
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
8395 8396 8397 8398
    of X indexed by `index` and concatenate them together.

    .. math::

8399
        Out = X[Index]
W
whs 已提交
8400 8401 8402 8403 8404 8405 8406


    .. code-block:: text


                Given:

8407 8408
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
8409 8410 8411 8412 8413 8414 8415 8416 8417 8418
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
8419
        input (Variable): The source input with rank>=1.
W
whs 已提交
8420
        index (Variable): The index input with rank=1.
8421 8422 8423 8424 8425 8426
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
8427 8428 8429 8430 8431

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
8432

W
whs 已提交
8433 8434
        .. code-block:: python

8435
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
8436 8437
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
8438 8439 8440 8441
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8442
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8443 8444 8445 8446
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
8447 8448
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
8449 8450 8451
    return out


8452
def scatter(input, index, updates, name=None, overwrite=True):
8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
8470 8471 8472 8473
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
8474 8475 8476 8477 8478 8479 8480 8481

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

8482 8483 8484 8485 8486
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
8487

8488
            output = fluid.layers.scatter(input, index, updates)
8489 8490 8491
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8492
    out = helper.create_variable_for_type_inference(dtype)
8493 8494 8495 8496 8497
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
8498
        attrs={'overwrite': overwrite},
8499 8500 8501 8502
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
8503 8504 8505 8506 8507 8508 8509 8510 8511
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
8512

Q
Qingsheng Li 已提交
8513
    Given the following input:
H
haowang101779990 已提交
8514

Q
Qingsheng Li 已提交
8515
    .. code-block:: text
H
haowang101779990 已提交
8516

Q
Qingsheng Li 已提交
8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
8529

Q
Qingsheng Li 已提交
8530
    .. code-block:: text
H
haowang101779990 已提交
8531

Q
Qingsheng Li 已提交
8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
8547
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
8548 8549 8550 8551

    Examples:

        .. code-block:: python
8552
	
8553
            import paddle.fluid as fluid
8554
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
8555

8556 8557 8558
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
8559 8560 8561
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
8562
    assert not in_dygraph_mode(), (
8563
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
8564 8565
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8566
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
8567 8568 8569 8570 8571 8572 8573 8574 8575
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8589

8590
    Examples:
8591
        >>> import paddle.fluid as fluid
8592 8593
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8594
    """
F
stash  
fengjiayi 已提交
8595
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8596
    dtype = x.dtype
X
Xin Pan 已提交
8597
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8598
    if seed is None:
8599
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8600
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8601
    if isinstance(seed, int):
F
fengjiayi 已提交
8602 8603 8604 8605 8606
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8607 8608 8609 8610
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8611
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8612 8613
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8614 8615
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8616
    return out
W
whs 已提交
8617 8618


8619
def log(x, name=None):
W
wanghaoshuang 已提交
8620 8621 8622 8623 8624
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8625
        Out = \\ln(x)
W
wanghaoshuang 已提交
8626 8627

    Args:
8628
        x (Variable): Input tensor.
8629 8630
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8631 8632 8633 8634 8635 8636 8637 8638

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8639
            import paddle.fluid as fluid
8640
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8641
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8642 8643
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8644
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8645
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8646
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8647 8648 8649
    return out


8650
def relu(x, name=None):
W
wanghaoshuang 已提交
8651 8652
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8653
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8654 8655 8656 8657
    the tensor elementwise.

    .. math::

8658
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8659 8660

    Args:
8661
        x (Variable): The input tensor.
8662 8663
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8664 8665 8666 8667 8668 8669 8670 8671

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8672
            import paddle.fluid as fluid
8673
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8674
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8675 8676
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8677
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8678
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8679 8680
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8681
    return out
8682 8683


C
chengduo 已提交
8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
8708 8709 8710 8711 8712 8713
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8729 8730 8731
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8732 8733 8734 8735
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8736
    .. math::
8737

H
haowang101779990 已提交
8738
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8739

8740
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8741 8742 8743 8744 8745
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8746
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8747
                           Its shape should be the same as input.
8748
        num_classes (int): The possible number of labels.
W
whs 已提交
8749 8750

    Returns:
M
minqiyang 已提交
8751 8752
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8753
                     Three variables:
M
minqiyang 已提交
8754

H
haowang101779990 已提交
8755 8756 8757
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8758 8759 8760 8761

    Examples:

        .. code-block:: python
8762

B
Bai Yifan 已提交
8763
            import paddle.fluid as fluid
8764 8765 8766 8767
            iou_shape = [32, 32]
            num_classes = 5
            predict = fluid.layers.data(name='predict', shape=iou_shape)
            label = fluid.layers.data(name='label', shape=iou_shape)
B
Bai Yifan 已提交
8768
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
8769
                                                          num_classes)
W
whs 已提交
8770 8771 8772
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8773 8774 8775
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8776 8777
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8778 8779
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8780
        outputs={
W
whs 已提交
8781 8782 8783
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8784 8785 8786
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8829
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8830
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8831
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8849
            import paddle.fluid as fluid
8850 8851 8852 8853 8854 8855
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8856
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8857 8858 8859 8860 8861

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8862
            isinstance(shape, Variable)):
8863 8864 8865 8866 8867
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8868
    out = helper.create_variable_for_type_inference(x.dtype)
8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8886 8887


W
whs 已提交
8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8905

W
whs 已提交
8906
              out_shape = [2, 3, 5, 5]
8907

W
whs 已提交
8908
          Step 1:
8909

W
whs 已提交
8910 8911 8912
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8913

W
whs 已提交
8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8959
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8960
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8973

S
SunGaofeng 已提交
8974
            import paddle.fluid as fluid
W
whs 已提交
8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8986
            isinstance(out_shape, Variable)):
W
whs 已提交
8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


9008 9009
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
9010

9011 9012
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
9013
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
9014 9015 9016
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
9017

9018 9019
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
9020

H
haowang101779990 已提交
9021 9022
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
9023 9024
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
9025

H
haowang101779990 已提交
9026 9027 9028 9029 9030 9031 9032 9033
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
9034 9035 9036

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

9054
            import paddle.fluid as fluid
9055 9056 9057
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
9072
    out = helper.create_variable_for_type_inference("float32")
9073 9074 9075 9076 9077 9078 9079 9080

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
9081 9082


M
minqiyang 已提交
9083 9084
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
9085
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
9086
    which compares left score and right score passed in.
M
minqiyang 已提交
9087
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
9088 9089 9090

    .. math::

H
haowang101779990 已提交
9091
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
9092 9093

    Args:
M
minqiyang 已提交
9094
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
9095 9096
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
9097
       margin (float): Indicates the given margin.
M
minqiyang 已提交
9098 9099
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
9100

M
minqiyang 已提交
9101
    Returns:
M
minqiyang 已提交
9102
       Variable: The ranking loss.
H
haowang101779990 已提交
9103

M
minqiyang 已提交
9104
    Raises:
M
minqiyang 已提交
9105
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
9106

M
minqiyang 已提交
9107
    Examples:
H
haowang101779990 已提交
9108

M
minqiyang 已提交
9109
        .. code-block:: python
H
haowang101779990 已提交
9110

9111
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
9112 9113 9114
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
9115 9116
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
9117
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
9118 9119 9120 9121 9122 9123
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
9124 9125
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
9149
        .. code-block:: text
W
whs 已提交
9150

T
Tink_Y 已提交
9151
	      Given that X is a channel of image from input:
M
minqiyang 已提交
9152

T
Tink_Y 已提交
9153 9154
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
9155

T
Tink_Y 已提交
9156
	      Case 0:
M
minqiyang 已提交
9157

T
Tink_Y 已提交
9158 9159 9160
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
9161

T
Tink_Y 已提交
9162 9163 9164
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
9165

T
Tink_Y 已提交
9166
	      Case 1:
M
minqiyang 已提交
9167

T
Tink_Y 已提交
9168 9169
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
9170

T
Tink_Y 已提交
9171 9172 9173
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
9174

T
Tink_Y 已提交
9175
	      Case 2:
M
minqiyang 已提交
9176

T
Tink_Y 已提交
9177 9178
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
9179

T
Tink_Y 已提交
9180 9181 9182
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
9183 9184


W
whs 已提交
9185 9186
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
9187
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
9205 9206 9207 9208 9209
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
9210 9211 9212 9213
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
9214
    out = helper.create_variable_for_type_inference(dtype)
9215 9216 9217 9218 9219 9220 9221 9222 9223
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
9224
    helper.append_op(
9225
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
9226 9227 9228 9229

    return out


9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9242 9243 9244 9245 9246

    Examples:

        .. code-block:: python

9247
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9248 9249
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
9250 9251
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
9252
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9273 9274 9275 9276 9277

    Examples:

        .. code-block:: python

9278
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9279 9280
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
9281 9282
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
9283
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9304 9305 9306 9307 9308

    Examples:

        .. code-block:: python

9309
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9310 9311
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
9312 9313
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
9314
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9336 9337 9338 9339 9340

    Examples:

        .. code-block:: python

9341
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9342
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
9343
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
9344 9345
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
9346
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9369 9370 9371 9372 9373

    Examples:

        .. code-block:: python

9374
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9375 9376
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
9377 9378
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
9379
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9401 9402 9403 9404 9405

    Examples:

        .. code-block:: python

9406
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9407 9408
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
9409 9410
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
9411
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9412 9413 9414 9415 9416 9417 9418 9419
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
9420 9421 9422 9423
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
9424 9425
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
9426

J
jerrywgz 已提交
9427 9428 9429 9430 9431 9432 9433 9434
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
9435 9436
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
9437
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
9438
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
9439
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
9440
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
9441
          will be named automatically.
J
jerrywgz 已提交
9442 9443 9444 9445 9446 9447 9448 9449

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
9450 9451 9452
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
9453
            mode = 'channel'
J
jerrywgz 已提交
9454 9455 9456
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
9468
        attr=helper.param_attr,
J
jerrywgz 已提交
9469 9470 9471 9472
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
9473
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
9474 9475 9476 9477 9478 9479 9480 9481 9482
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


9483 9484 9485 9486 9487 9488 9489 9490 9491 9492
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9493
    Returns:
9494
        output(${out_type}): ${out_comment}
9495 9496 9497

    Examples:

9498
    .. code-block:: python
9499

9500
            import paddle.fluid as fluid
H
haowang101779990 已提交
9501 9502
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
9503 9504
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
9505
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9524
    Returns:
9525
        output(${out_type}): ${out_comment}
9526 9527 9528 9529 9530

    Examples:

        .. code-block:: python

9531
            import paddle.fluid as fluid
H
haowang101779990 已提交
9532 9533
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
9534 9535
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9536
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9554
    Returns:
9555
        output(${out_type}): ${out_comment}
9556 9557 9558

    Examples:

9559 9560 9561 9562 9563
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
9564
            y = fluid.layers.soft_relu(x, threshold=20.0)
9565 9566
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9567
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9568 9569 9570 9571 9572 9573 9574 9575
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9576 9577 9578 9579
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
9580

H
haowang101779990 已提交
9581
    For Example:
M
minqiyang 已提交
9582

H
haowang101779990 已提交
9583
    .. code-block:: text
9584

H
haowang101779990 已提交
9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9606 9607 9608

    Args:
        x (Variable): A tensor of rank >= axis.
9609 9610
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9611 9612 9613 9614 9615 9616 9617 9618
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9619 9620 9621
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9622 9623 9624 9625
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9626
        ValueError: If axis is not in range [0, rank(x)].
9627 9628 9629 9630 9631

    Examples:

        .. code-block:: python

9632
            import paddle.fluid as fluid
9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643
            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9644 9645
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9646
    helper.append_op(
9647
        type='flatten2',
9648
        inputs={"X": x},
9649 9650
        outputs={'Out': out,
                 'XShape': x_shape},
9651 9652
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9653 9654


C
chenweihang 已提交
9655
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9656
    """
C
chenweihang 已提交
9657
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9658
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
9659 9660
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
9661

H
haowang101779990 已提交
9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
9679 9680

    Args:
C
chenweihang 已提交
9681 9682 9683
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
9684 9685 9686 9687 9688 9689 9690

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9691 9692 9693
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9694 9695
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9696
    assert not in_dygraph_mode(), (
9697
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9698
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9699 9700
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9701 9702 9703 9704 9705 9706
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9707
    return out
9708

9709

S
sneaxiy 已提交
9710 9711 9712 9713 9714 9715 9716 9717 9718
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9719

S
sneaxiy 已提交
9720
    .. math::
9721

S
sneaxiy 已提交
9722 9723 9724
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9725
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9726 9727 9728 9729
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9730 9731 9732
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9733 9734
    Returns:
        Variable: The output sequence mask.
9735

9736 9737 9738
    Examples:
        .. code-block:: python
	
9739
            import paddle.fluid as fluid
9740 9741 9742 9743 9744
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9745
    """
Q
qingqing01 已提交
9746
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9747
    if name is None:
X
Xin Pan 已提交
9748
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9749
    else:
X
Xin Pan 已提交
9750
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9751

9752 9753 9754 9755 9756 9757 9758 9759
    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

Q
qingqing01 已提交
9760
    helper.append_op(
9761 9762 9763
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
S
sneaxiy 已提交
9764
    return out
S
sneaxiy 已提交
9765 9766


X
Xin Pan 已提交
9767
def stack(x, axis=0):
S
sneaxiy 已提交
9768 9769 9770 9771
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9772 9773 9774 9775 9776 9777 9778

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9779
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9780
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9781

C
chengduozh 已提交
9782 9783
    For Example:

C
chengduozh 已提交
9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9822
    Args:
9823
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9824
        axis (int|None): The axis along which all inputs are stacked.
9825

S
sneaxiy 已提交
9826 9827
    Returns:
        Variable: The stacked variable.
9828

9829 9830 9831
    Examples:
        .. code-block:: python

9832
            import paddle.fluid as fluid
9833
            import paddle.fluid.layers as layers
9834 9835
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
9836 9837
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9838 9839
    """

X
Xin Pan 已提交
9840 9841 9842 9843 9844 9845
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9846
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9847
    helper.append_op(
S
sneaxiy 已提交
9848 9849
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9850

X
Xin Pan 已提交
9851
    return out
D
dzhwinter 已提交
9852 9853


J
Jiawei Wang 已提交
9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923
@templatedoc(op_type="filter_by_instag")
def filter_by_instag(ins, ins_tag, filter_tag, is_lod):
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
        attrs={'is_lod': is_lod})

    return [out, loss_weight]


D
dzhwinter 已提交
9924 9925 9926 9927 9928
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9929

D
dzhwinter 已提交
9930 9931 9932
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9933
    raised.
D
dzhwinter 已提交
9934 9935

    Args:
M
minqiyang 已提交
9936
        x (Variable): Input variable.
D
dzhwinter 已提交
9937 9938
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9939

D
dzhwinter 已提交
9940 9941
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9942

9943 9944 9945 9946 9947 9948
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
9949 9950 9951 9952 9953 9954 9955 9956 9957 9958
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9959
    for _ in range(num):
X
Xin Pan 已提交
9960
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9961 9962 9963 9964 9965 9966 9967 9968

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9981

W
whs 已提交
9982 9983 9984 9985
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9986

W
whs 已提交
9987
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9988

W
whs 已提交
9989
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9990

W
whs 已提交
9991 9992 9993 9994
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9995

W
whs 已提交
9996 9997 9998 9999 10000 10001 10002 10003 10004 10005
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python
W
wangchaochaohu 已提交
10006 10007 10008
          
            import paddle.fluid as fluid
            x = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
W
whs 已提交
10009 10010 10011 10012
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
10013
    out = helper.create_variable_for_type_inference(dtype)
10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030
    # check expand_times have tensor

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:

        def contain_tensor(expand_times):
            for ele in expand_times:
                if isinstance(ele, Variable):
                    return True
            return False

        if contain_tensor(expand_times):
            new_expand_times = []
            for ele in expand_times:
                if isinstance(ele, Variable):
H
Hongyu Liu 已提交
10031
                    ele.stop_gradient = True
10032 10033 10034
                    new_expand_times.append(ele)
                else:
                    assert (isinstance(ele, int))
10035 10036
                    temp_out = helper.create_variable_for_type_inference(
                        "int32")
10037 10038 10039 10040 10041 10042 10043 10044 10045
                    fill_constant(
                        [1], 'int32', ele, force_cpu=True, out=temp_out)
                    new_expand_times.append(temp_out)
            inputs = {'X': x, 'expand_times_tensor': new_expand_times}
            attrs = {}
        else:
            inputs = {'X': x}
            attrs = {'expand_times': expand_times}

W
whs 已提交
10046
    helper.append_op(
10047
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
10048
    return out
S
sneaxiy 已提交
10049 10050


G
fix  
gongweibao 已提交
10051 10052 10053
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
10054
@templatedoc()
G
fix  
gongweibao 已提交
10055 10056 10057 10058 10059 10060 10061 10062 10063
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
10064
    ${comment}
G
fix  
gongweibao 已提交
10065 10066

    Args:
G
gongweibao 已提交
10067 10068 10069
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
10070
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
10071 10072 10073
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10074 10075
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
10076
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10077

10078 10079 10080
    Examples:
        .. code-block:: python

10081
            import paddle.fluid as fluid
10082 10083
            import paddle.fluid.layers as layers 

10084 10085
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
10086 10087 10088
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
10089
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
10106 10107


G
gongweibao 已提交
10108
@templatedoc()
X
Xin Pan 已提交
10109
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
10110
    """
G
gongweibao 已提交
10111
    ${comment}
G
fix  
gongweibao 已提交
10112 10113

    Args:
G
gongweibao 已提交
10114 10115 10116 10117
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10118 10119 10120
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
10121
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10122

10123 10124 10125
    Examples:
        .. code-block:: python

10126
            import paddle.fluid as fluid
J
JesseyXujin 已提交
10127
            import paddle.fluid.layers as layers
10128
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
10129 10130 10131
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
10132
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10133 10134 10135 10136 10137 10138 10139 10140 10141 10142
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
10143
            'use_mkldnn': False
G
fix  
gongweibao 已提交
10144 10145 10146 10147 10148
        })

    return out


G
gongweibao 已提交
10149
@templatedoc()
G
fix  
gongweibao 已提交
10150
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
10151
    """
G
gongweibao 已提交
10152
    ${comment}
G
fix  
gongweibao 已提交
10153 10154

    Args:
G
gongweibao 已提交
10155 10156 10157 10158
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
10159
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
10160 10161

    Returns:
G
gongweibao 已提交
10162
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10163

10164 10165 10166
    Examples:
        .. code-block:: python

10167
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10168
            x = fluid.layers.data(
10169 10170 10171 10172 10173
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
10174
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
10175 10176 10177
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
10178
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
10190
@templatedoc()
G
fix  
gongweibao 已提交
10191 10192 10193 10194 10195 10196 10197 10198 10199
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
10200
    ${comment}
G
fix  
gongweibao 已提交
10201 10202

    Args:
G
gongweibao 已提交
10203 10204
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
10205
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
10206 10207 10208 10209
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10210
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
10211 10212

    Returns:
G
gongweibao 已提交
10213
        out (Variable): ${out_comment}
10214 10215 10216 10217

    Examples:
        .. code-block:: python

10218
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10219
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
10220

Y
Yibing Liu 已提交
10221
            out = fluid.layers.gaussian_random_batch_size_like(
10222
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
10223 10224 10225
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
10226
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
10245
@templatedoc()
X
Xin Pan 已提交
10246
def sum(x):
G
fix  
gongweibao 已提交
10247
    """
G
gongweibao 已提交
10248
    ${comment}
G
fix  
gongweibao 已提交
10249 10250

    Args:
G
gongweibao 已提交
10251
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
10252 10253

    Returns:
G
gongweibao 已提交
10254
        out (Variable): ${out_comment}
10255 10256 10257 10258

    Examples:
        .. code-block:: python

10259
            import paddle.fluid as fluid
10260 10261 10262 10263
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
10264 10265 10266
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
10267 10268
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
10269 10270 10271 10272
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
10273
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
10274 10275 10276 10277

    return out


G
gongweibao 已提交
10278
@templatedoc()
G
fix  
gongweibao 已提交
10279 10280
def slice(input, axes, starts, ends):
    """
10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
10296

10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
10314
    Args:
G
gongweibao 已提交
10315 10316 10317 10318
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
10319 10320

    Returns:
G
gongweibao 已提交
10321
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10322

10323 10324 10325
    Examples:
        .. code-block:: python

10326 10327
            import paddle.fluid as fluid
 
10328 10329 10330 10331
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

10332
            input = fluid.layers.data(
10333 10334
                name="input", shape=[3, 4, 5, 6], dtype='float32')

10335
            out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
10336 10337 10338
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
10339 10340
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
10354 10355
    **Shape Layer**

C
fix doc  
chengduozh 已提交
10356
    Get the shape of the input.
G
fix  
gongweibao 已提交
10357 10358

    Args:
C
chengduozh 已提交
10359
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
10360 10361

    Returns:
C
fix doc  
chengduozh 已提交
10362
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
10363

10364 10365 10366
    Examples:
        .. code-block:: python

10367 10368 10369
            import paddle.fluid as fluid

            input = fluid.layers.data(
10370
                name="input", shape=[3, 100, 100], dtype="float32")
10371
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
10372 10373 10374
    """

    helper = LayerHelper('shape', **locals())
10375
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
10376
    helper.append_op(
G
fix  
gongweibao 已提交
10377
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
10378 10379

    return out
G
merge  
gongweibao 已提交
10380 10381


Z
zhoukunsheng 已提交
10382 10383 10384 10385
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
10386
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
10387 10388 10389 10390 10391 10392 10393 10394 10395 10396

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

10397 10398 10399 10400
            import paddle.fluid as fluid

            input = fluid.layers.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # 4
Z
zhoukunsheng 已提交
10401 10402 10403 10404 10405 10406 10407 10408
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10438 10439 10440 10441
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
10442
    if in_dygraph_mode():
X
Xin Pan 已提交
10443 10444 10445
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
10446 10447 10448 10449
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10450 10451
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
10452
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10453 10454 10455
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10456

S
sneaxiy 已提交
10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
10468
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10469 10470 10471 10472 10473 10474 10475 10476
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
10477
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
10478
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
10479 10480 10481

    Returns:
        out(${out_type}): ${out_comment}
10482 10483 10484 10485 10486 10487 10488 10489

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
10490 10491 10492
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
10493
    if name is None:
X
Xin Pan 已提交
10494
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10495 10496 10497
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10498 10499 10500 10501 10502 10503 10504 10505 10506 10507

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
10508
    return helper.append_activation(out)
S
sneaxiy 已提交
10509 10510


X
Xin Pan 已提交
10511
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10512 10513 10514
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10515
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10516 10517 10518
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10519
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10520 10521 10522
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10523
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10524 10525 10526
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
10527
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10528 10529 10530
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
10531
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10532 10533 10534
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
10535
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10536 10537 10538
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


10539 10540 10541 10542 10543 10544 10545 10546
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
10547
for func in [
10548 10549 10550 10551 10552 10553 10554 10555 10556
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
10557 10558 10559 10560 10561
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
10562 10563
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
10564
        ])
10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
10602 10603


10604
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
10605 10606
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
10607 10608
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
10609 10610 10611

    if out is None:
        if name is None:
X
Xin Pan 已提交
10612
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
10628
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10640 10641 10642 10643

    Examples:
        .. code-block:: python

10644
            import paddle.fluid as fluid
10645
            left = fluid.layers.data(
石晓伟 已提交
10646
                name='left', shape=[1], dtype='bool')
10647
            right = fluid.layers.data(
石晓伟 已提交
10648
                name='right', shape=[1], dtype='bool')
10649
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
10650 10651 10652 10653 10654 10655 10656
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10657
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10669 10670 10671 10672

    Examples:
        .. code-block:: python

10673
            import paddle.fluid as fluid
10674
            left = fluid.layers.data(
石晓伟 已提交
10675
                name='left', shape=[1], dtype='bool')
10676
            right = fluid.layers.data(
石晓伟 已提交
10677
                name='right', shape=[1], dtype='bool')
10678
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
10679 10680 10681 10682 10683 10684 10685
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10686
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10698 10699 10700 10701

    Examples:
        .. code-block:: python

10702
            import paddle.fluid as fluid
10703
            left = fluid.layers.data(
石晓伟 已提交
10704
                name='left', shape=[1], dtype='bool')
10705
            right = fluid.layers.data(
石晓伟 已提交
10706
                name='right', shape=[1], dtype='bool')
10707
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
10708 10709 10710 10711 10712 10713 10714
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10715
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10716 10717 10718 10719 10720 10721 10722 10723 10724 10725
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10726 10727 10728 10729

    Examples:
        .. code-block:: python

10730
            import paddle.fluid as fluid
10731
            left = fluid.layers.data(
石晓伟 已提交
10732
                name='left', shape=[1], dtype='bool')
10733
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
10734 10735 10736 10737
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10753 10754 10755 10756

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10757
            import paddle.fluid as fluid
10758 10759 10760
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
10761 10762 10763 10764 10765
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
10766 10767
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10768 10769 10770

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10794 10795 10796 10797

    Examples:
        .. code-block:: python

10798
            import paddle.fluid as fluid
10799 10800 10801
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
10802 10803 10804 10805 10806
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
10807 10808
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10809 10810 10811

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10812 10813 10814 10815 10816 10817 10818 10819

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10833 10834 10835 10836

    Examples:
        .. code-block:: python

10837
            import paddle.fluid as fluid
10838 10839 10840
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
10841 10842 10843 10844 10845
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
10846
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10847 10848 10849 10850 10851 10852 10853 10854 10855 10856
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10868 10869 10870 10871

    Examples:
        .. code-block:: python

10872
            import paddle.fluid as fluid
10873 10874 10875 10876 10877
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
10916 10917 10918 10919 10920
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
10921
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10922 10923 10924 10925 10926 10927 10928 10929 10930
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
10931 10932
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
10933 10934 10935 10936 10937 10938
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
10939 10940 10941
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
10942 10943
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
10944 10945 10946 10947 10948 10949
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
10950
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
10951
        name(basestring|None): Name of the output.
10952 10953
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
10954 10955 10956

    Returns:
        out(${out_type}): ${out_comment}
10957 10958 10959 10960

    Examples:
        .. code-block:: python

10961
            import paddle.fluid as fluid
10962 10963 10964 10965 10966 10967 10968 10969 10970 10971
            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10972 10973 10974 10975 10976
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10977
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10978 10979 10980 10981 10982 10983 10984 10985
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10986 10987
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
11004 11005 11006 11007

    Examples:
        .. code-block:: python

11008
            import paddle.fluid as fluid
J
jerrywgz 已提交
11009 11010 11011 11012 11013
            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
11014 11015 11016 11017
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
11018
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11019 11020 11021 11022 11023 11024 11025 11026 11027 11028
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
11029 11030


J
JiabinYang 已提交
11031
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
11032
    """
J
JiabinYang 已提交
11033
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
11034 11035 11036

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
11037
    The attr blocksize indicates the input block size.
11038 11039

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
11040
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
11041 11042

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
11043
    (but keeping all data)
J
JiabinYang 已提交
11044

J
JiabinYang 已提交
11045
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
11046
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
11047 11048 11049 11050 11051
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
11052
    Args:
J
JiabinYang 已提交
11053
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
11054
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
11055 11056

    Returns:
J
JiabinYang 已提交
11057
        Variable: The output LoDtensor.
J
JiabinYang 已提交
11058 11059

    Raises:
J
JiabinYang 已提交
11060
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
11061 11062 11063

    Examples:
        .. code-block:: python
11064 11065 11066
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
11067 11068

            data = fluid.layers.data(
11069
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
11070
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
11071
                x=data, blocksize=2)
11072

11073
            exe = fluid.Executor(fluid.CPUPlace())
11074 11075 11076 11077
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
11078

J
JiabinYang 已提交
11079 11080
    """

J
JiabinYang 已提交
11081
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
11082

J
JiabinYang 已提交
11083 11084
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
11085 11086

    if name is None:
J
JiabinYang 已提交
11087 11088
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
11089 11090 11091 11092 11093
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
11094
        type="space_to_depth",
J
JiabinYang 已提交
11095
        inputs={"X": x},
J
JiabinYang 已提交
11096
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
11097
        outputs={"Out": out})
J
JiabinYang 已提交
11098 11099
    return out

J
JiabinYang 已提交
11100

S
sneaxiy 已提交
11101 11102
@templatedoc()
def sequence_reverse(x, name=None):
11103
    """
S
sneaxiy 已提交
11104 11105 11106 11107 11108 11109 11110 11111
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
11112 11113 11114 11115 11116 11117 11118

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
11119
    """
L
lujun 已提交
11120
    assert not in_dygraph_mode(), (
11121
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
11122 11123
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
11124
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
11125 11126 11127 11128 11129 11130 11131 11132 11133 11134
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
11135 11136


11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203
def sequence_topk_avg_pooling(input, row, col, topks, channel_num):
    """
    The :attr:`topks` is a list with incremental values in this function. For each topk,
    it will average the topk features as an output feature for each channel of every 
    input sequence. Both :attr:`row` and :attr:`col` are LodTensor, which provide height 
    and width information for :attr:`input` tensor. If feature size of input sequence is less 
    than topk, it will padding 0 at the back.

    .. code-block:: text

            If channel_num is 2 and given row LoDTensor and col LoDTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]

            input is a LoDTensor with input.lod[0][i] = channel_num * row.lod[0][i] * col.lod[0][i] 
                input.lod = [[60, 56]]  # where 60 = channel_num * 5 * 6
                input.dims = [116, 1]   # where 116 = 60 + 56

            If topks is [1, 3, 5], then we get a 1-level LoDTensor:
                out.lod =  [[5, 4]] 	# share Lod info with row LodTensor
                out.dims = [9, 6]   	# where 6 = len(topks) * channel_num

    Args:
        input (Variable): The input should be 2D LodTensor with dims[1] equals 1.
        row (Variable): The row shoud be 1-level LodTensor to provide the height information
                        of the input tensor data.
        col (Variable): The col shoud be 1-level LodTensor to provide the width information
                        of the input tensor data.
        topks (list): A list of incremental value to average the topk feature.
        channel_num (int): The number of input channel.

    Returns:
        Variable: output LodTensor specified by this layer.

    Examples:

        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = layers.sequence_topk_avg_pooling(input=x_lod_tensor,
                                                   row=row_lod_tensor,
                                                   col=col_lod_tensor,
                                                   topks=[1, 3, 5],
                                                   channel_num=5)
    """
    helper = LayerHelper('sequence_topk_avg_pooling', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    pos = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype(), stop_gradient=True)
    helper.append_op(
        type='sequence_topk_avg_pooling',
        inputs={'X': input,
                'ROW': row,
                'COLUMN': col},
        outputs={'Out': out,
                 'pos': pos},
        attrs={'topks': topks,
               'channel_num': channel_num})

    return out


11204 11205 11206 11207 11208 11209
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
11210 11211 11212 11213 11214
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
11215

11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
11228
        act (str, default None): Activation to be applied to the output of this layer.
11229 11230 11231

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

11246 11247 11248 11249
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
11250
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
11262
    return helper.append_activation(out)
11263 11264


B
barrierye 已提交
11265
def similarity_focus(input, axis, indexes, name=None):
11266
    """
B
barrierye 已提交
11267
    SimilarityFocus Operator
B
barrierye 已提交
11268 11269

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
11270

11271 11272 11273
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
11274
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
11275 11276 11277 11278 11279 11280 11281
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
11282
       each index.
B
barrierye 已提交
11283 11284 11285 11286
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
11336
    Args:
11337
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
11338
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
11339
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
11340
            1, 2 or 3.
B
barrierye 已提交
11341
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
11342 11343

    Returns:
H
haowang101779990 已提交
11344 11345
        Variable: A tensor variable with the same shape and same type \
                  as the input.
11346

B
barrierye 已提交
11347 11348
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
11349

11350
            import paddle.fluid as fluid
B
barrierye 已提交
11351
            data = fluid.layers.data(
Y
Yibing Liu 已提交
11352 11353
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
11366 11367 11368 11369 11370
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
11371 11372 11373 11374 11375 11376 11377
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
11378 11379


M
minqiyang 已提交
11380 11381
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
11382 11383
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
11384 11385
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
11386 11387 11388 11389 11390 11391 11392 11393

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
11394
        input.data = 
11395
            [[1, 2],
11396
             [3, 4]]
M
minqiyang 已提交
11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
11410 11411
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
11412 11413 11414 11415
        ]

    Args:
        input (Variable): The input variable which is a one-hot word. The
11416
            dimensions of the input variable must be 2. Both Tensor and LoDTensor are supported.
M
minqiyang 已提交
11417 11418
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
11419
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
11420
        name (str, default None): The name of this layer.
M
minqiyang 已提交
11421 11422

    Returns:
11423
       Variable: The hash result variable, which the same variable type as `input`.
M
minqiyang 已提交
11424 11425 11426

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
11427

11428 11429
            import paddle.fluid as fluid

11430 11431 11432 11433
            # titles has shape [batch, 1]
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=0)
            # hash_r has shape [batch, 2]
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
11434 11435


11436 11437 11438 11439
            # titles has shape [batch, 1] and lod information
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            # hash_r has shape [batch, 2] and inherits lod information from titles
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
M
minqiyang 已提交
11440 11441
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
11442 11443
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
11444 11445 11446 11447 11448 11449 11450
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
11451 11452


D
dengkaipeng 已提交
11453
@templatedoc()
11454 11455
def grid_sampler(x, grid, name=None):
    """
11456
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
11457
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
11458 11459 11460 11461
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
11462
    interpolation value of 4 nearest corner points.
11463

H
haowang101779990 已提交
11464
    .. code-block:: text
11465

H
haowang101779990 已提交
11466 11467
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
11468

H
haowang101779990 已提交
11469 11470
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
11471

H
haowang101779990 已提交
11472 11473 11474
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
11475

H
haowang101779990 已提交
11476 11477 11478 11479 11480 11481 11482 11483 11484
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
11485

H
haowang101779990 已提交
11486 11487 11488 11489
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
11490

H
haowang101779990 已提交
11491 11492 11493 11494
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
11495

H
haowang101779990 已提交
11496 11497 11498 11499
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
11500

H
haowang101779990 已提交
11501 11502
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
11503 11504

    Args:
11505 11506 11507
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
11508 11509

    Returns:
H
haowang101779990 已提交
11510
        Variable: Output of shape [N, C, H, W] data samples input X
11511 11512
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
11513 11514 11515 11516
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
11517 11518 11519 11520 11521
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
11522
            out = fluid.layers.grid_sampler(x=x, grid=grid)
11523

D
dengkaipeng 已提交
11524 11525 11526 11527 11528 11529 11530 11531 11532
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

11533
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
11534 11535
    ipts = {'X': x, 'Grid': grid}

11536
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
11537 11538 11539
    return out


G
gmcather 已提交
11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

11567
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11568 11569
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
11608
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
11609 11610 11611 11612 11613 11614 11615
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
11616 11617
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
11618

11619 11620 11621 11622 11623
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
11624
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
11625

H
heqiaozhi 已提交
11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
11639 11640 11641 11642
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
11643
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
11644 11645
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
11646
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
11647 11648

    .. math::
H
haowang101779990 已提交
11649 11650 11651
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
11652 11653

    Where:
H
haowang101779990 已提交
11654 11655
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

11669 11670 11671 11672 11673 11674 11675 11676 11677
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
11678

G
gmcather 已提交
11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
11695 11696 11697 11698 11699 11700 11701 11702 11703 11704


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
11705
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
11706

Q
Qiao Longfei 已提交
11707
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
11708 11709 11710
    For example:

    .. math::
H
haowang101779990 已提交
11711
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
11712

Q
Qiao Longfei 已提交
11713
    In this formula:
11714 11715
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
11716
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
11717
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
11718 11719 11720
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
11721 11722
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
11723 11724 11725
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
11726
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
11727
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
11728
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
11729 11730 11731 11732
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
11733
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
11734 11735 11736 11737

    Examples:
        .. code-block:: python

11738
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11739 11740 11741
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
11742 11743
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
11744
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
11745 11746 11747 11748

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
11749
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
11780 11781 11782 11783 11784 11785 11786 11787

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11788 11789 11790 11791 11792 11793 11794 11795 11796 11797
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11798 11799


S
shippingwang 已提交
11800
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11801 11802
    """
    **Shuffle Channel Operator**
11803

S
shippingwang 已提交
11804 11805 11806 11807 11808 11809
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11810
    
S
shippingwang 已提交
11811
    .. code-block:: text
11812

S
shippingwang 已提交
11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
11841
    Args: 
S
shippingwang 已提交
11842 11843
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
11844 11845

    Returns:
S
shippingwang 已提交
11846 11847
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
11848 11849

    Raises:
S
shippingwang 已提交
11850
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
11851 11852 11853

    Examples:
        .. code-block:: python
11854

11855
            import paddle.fluid as fluid
11856
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
11857
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
11858 11859 11860
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
11861
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
11862 11863 11864 11865 11866 11867 11868 11869 11870

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
11871
    return out
S
Add  
shippingwang 已提交
11872 11873


11874
@templatedoc()
D
dengkaipeng 已提交
11875
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
11876 11877 11878 11879 11880 11881 11882 11883
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
11884
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
11885
        name (str, default None): The name of this layer.
11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

11897
            import paddle.fluid as fluid
11898
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
11899
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
11912 11913
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
11914 11915 11916
    return out


S
sneaxiy 已提交
11917
class PyFuncRegistry(object):
S
sneaxiy 已提交
11918 11919 11920
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
11921
        if func is None or not callable(func):
S
sneaxiy 已提交
11922 11923 11924
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
11925
        # find named args using reflection
S
sneaxiy 已提交
11926 11927 11928 11929 11930 11931 11932
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
11933 11934 11935
        '''
        Why record self here?

M
minqiyang 已提交
11936 11937
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
11938
           to find the registered function corresponding
M
minqiyang 已提交
11939
           to :code:`idx`.
S
sneaxiy 已提交
11940

M
minqiyang 已提交
11941 11942
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
11943
           whose reference count is 1 would cause
M
minqiyang 已提交
11944
           segmentation fault error in C++ side.
S
sneaxiy 已提交
11945 11946
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
11947
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
11962 11963 11964 11965 11966 11967 11968 11969 11970
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
11971

S
sneaxiy 已提交
11972 11973
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
11974 11975

        ret = []
S
sneaxiy 已提交
11976 11977 11978
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
11979 11980
                continue

S
sneaxiy 已提交
11981 11982
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
11983

S
sneaxiy 已提交
11984 11985 11986
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
11987

S
sneaxiy 已提交
11988
        return tuple(ret)
S
sneaxiy 已提交
11989 11990


S
sneaxiy 已提交
11991 11992 11993 11994
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
11995

S
sneaxiy 已提交
11996 11997 11998 11999 12000 12001 12002 12003
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
12004
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
12005

S
sneaxiy 已提交
12006 12007
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
12008 12009 12010 12011
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
12012
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
12013
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
12014 12015
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
12016 12017 12018 12019 12020
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
12021
            should create :code:`out` beforehand.
S
sneaxiy 已提交
12022
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
12023
                                       None means no backward. Default None.
S
sneaxiy 已提交
12024
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
12025
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
12026 12027
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
12028
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
12029 12030 12031

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
12032 12033

    Examples:
M
minqiyang 已提交
12034

S
sneaxiy 已提交
12035 12036 12037 12038 12039
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
12040
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
12041 12042
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
12043
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
12044 12045 12046
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
12047
        >>>
S
sneaxiy 已提交
12048 12049 12050 12051 12052
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
12053
        >>>     print(x)
S
sneaxiy 已提交
12054 12055 12056 12057 12058 12059
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
12060
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
12061 12062
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
12063 12064
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
12065 12066 12067 12068 12069 12070 12071 12072
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
12073
    """
S
sneaxiy 已提交
12074
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
12075 12076 12077
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
12078
        x = [x]
S
sneaxiy 已提交
12079 12080
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12081

S
sneaxiy 已提交
12082 12083 12084
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
12085
        out_list = [out]
S
sneaxiy 已提交
12086
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
12087
        out_list = out
S
sneaxiy 已提交
12088 12089 12090
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12091

S
sneaxiy 已提交
12092 12093
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
12094
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
12095 12096

    for each_out in out_list:
S
sneaxiy 已提交
12097 12098
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
12099 12100
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
12101

S
sneaxiy 已提交
12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
12117 12118 12119 12120

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
12121 12122
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
12123 12124 12125
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
12126
        })
S
sneaxiy 已提交
12127
    return out
S
sneaxiy 已提交
12128 12129 12130


# For debug usage
S
sneaxiy 已提交
12131 12132 12133 12134
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
12148 12149 12150 12151 12152
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
12165 12166 12167 12168
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12194

M
minqiyang 已提交
12195

M
minqiyang 已提交
12196
def huber_loss(input, label, delta):
12197
    """
M
minqiyang 已提交
12198 12199 12200
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
12201 12202 12203 12204

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
12205
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
12206 12207 12208 12209

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
12210
        huber\_loss = 0.5 * (label - input) * (label - input)
12211 12212 12213 12214 12215 12216 12217


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
12218
        delta (float): The parameter of huber loss, which controls
12219 12220 12221
                       the range of outliers

    Returns:
M
minqiyang 已提交
12222
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
12223 12224 12225 12226

    Examples:
        .. code-block:: python

12227 12228 12229 12230 12231 12232 12233 12234 12235
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

12236
    """
M
minqiyang 已提交
12237
    helper = LayerHelper('huber_loss', **locals())
12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
12249 12250


D
dengkaipeng 已提交
12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

12268
            import paddle.fluid as fluid
D
dengkaipeng 已提交
12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283
            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

12314
          import paddle.fluid as fluid
T
Tao Luo 已提交
12315 12316 12317
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
12318
          # edges must be directional
T
Tao Luo 已提交
12319 12320 12321 12322
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
12323
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
12324 12325
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
12326
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
12327
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
12351 12352


C
ceci3 已提交
12353
from .ops import square
C
ceci3 已提交
12354
from .control_flow import equal
C
ceci3 已提交
12355 12356


C
ceci3 已提交
12357 12358 12359
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
12360

C
ceci3 已提交
12361
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
12362 12363

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
12364
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
12365 12366 12367 12368 12369
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
12370 12371
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
12372 12373 12374 12375 12376 12377 12378

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

12379
       import paddle.fluid as fluid
C
ceci3 已提交
12380 12381 12382 12383 12384 12385 12386 12387
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
12388 12389 12390 12391 12392 12393 12394
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
12395
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
12396 12397
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
12398 12399
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
12400 12401 12402 12403
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
12404 12405 12406
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
12407 12408 12409
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
12410 12411


R
ruri 已提交
12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

12441
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
12442 12443 12444 12445 12446 12447 12448 12449 12450

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

12451
            import paddle.fluid as fluid
R
ruri 已提交
12452
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
12503 12504 12505 12506 12507 12508
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
12509 12510 12511 12512 12513 12514 12515 12516
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
12517 12518 12519 12520


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
12521

H
heqiaozhi 已提交
12522
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
12523

H
fix doc  
heqiaozhi 已提交
12524
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
12525 12526 12527
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
12528
    
H
fix doc  
heqiaozhi 已提交
12529
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
12530

H
heqiaozhi 已提交
12531
    Args:
H
fix doc  
heqiaozhi 已提交
12532 12533

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
12534 12535
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
12536
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
12537
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
12538

H
heqiaozhi 已提交
12539
    Returns:
H
fix doc  
heqiaozhi 已提交
12540 12541 12542

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
12543
    Examples:
H
fix doc  
heqiaozhi 已提交
12544

H
heqiaozhi 已提交
12545
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
12546

12547
          import paddle.fluid as fluid
H
heqiaozhi 已提交
12548 12549 12550 12551 12552 12553 12554 12555 12556 12557
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
12558

H
heqiaozhi 已提交
12559 12560 12561 12562 12563 12564 12565 12566 12567
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
12568
    return out
Z
zhoukunsheng 已提交
12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

12587
             import paddle.fluid as fluid
12588 12589 12590
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
12591
             # condition is a tensor [True, False, True]
12592 12593 12594
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
12595 12596

             # condition is a tensor [[True, False], [False, True]]
12597 12598 12599
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
12600 12601

             # condition is a tensor [False, False, False]
12602 12603 12604 12605
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
12606 12607 12608 12609 12610 12611 12612 12613 12614
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

12632 12633 12634
          import paddle.fluid as fluid
          import numpy as np

Z
zhoukunsheng 已提交
12635
          # [1, 0, -1]
12636 12637
          data = fluid.layers.sign(np.array([3, 0, -2], dtype='int32')) 

Z
zhoukunsheng 已提交
12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
12650 12651


Z
zhoukunsheng 已提交
12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742
def unique_with_counts(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index, count). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor, \
            `count` is count of unqiue element in the `x`.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
    Refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ .
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
        offset (Variable): The input coord offset of deformable convolution layer.
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

12845
          import paddle.fluid as fluid
12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=3, padding=1)
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")
    if not isinstance(mask, Variable):
        raise TypeError("Input Mask of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='deformable_conv',
        inputs={
            'Input': input,
            'Filter': filter_param,
            'Offset': offset,
            'Mask': mask,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'deformable_groups': deformable_groups,
            'im2col_step': im2col_step,
        })

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

13077
        import paddle.fluid as fluid
C
cjt222 已提交
13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138
        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
13139 13140


K
Kevin 已提交
13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255
def var_conv_2d(input,
                row,
                col,
                input_channel,
                output_channel,
                filter_size,
                stride=1,
                param_attr=None,
                act=None,
                dtype='float32',
                name=None):
    """
    The var_conv_2d layer calculates the output base on the :attr:`input` with variable length,
    row, col, input channel, filter size and strides. Both :attr:`input`, :attr:`row`,
    and :attr:`col` are 1-level LodTensor. The covolution operation is same as conv2d layer with 
    padding. Besides, input.dims[1] should be 1. 

    .. code-block:: text
            
            If input_channel is 2 and given row lodTensor and col lodTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]
            input is a lodTensor: 
                input.lod = [[60, 56]]	# where 60 = input_channel * 5 * 6
                input.dims = [116, 1]	# where 116 = 60 + 56
            
            If set output_channel is 3, filter_size is [3, 3], stride is [1, 1]:
                output.lod = [[90, 84]] # where 90 = output_channel * [(5-1)/stride + 1] * [(6-1)/stride + 1]
                output.dims = [174, 1]  # where 174 = 90 + 84

    Args:
        input (Variable): The input shoud be 1-level LodTensor with dims[1] equals 1.
        row (Variable): The row shoud be 1-level LodTensor to provide height information.
        col (Variable): The col shoud be 1-level LodTensor to provide width information.
        input_channel (int): The number of input channel.
        output_channel (int): The number of output channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of var_conv2d. If it is set to None or one attribute of ParamAttr, var_conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
        dtype ('float32'): The data type of parameter and output.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None

    Returns:
        Variable: Output variable with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = layers.var_conv_2d(input=x_lod_tensor, 
                                     row=row_lod_tensor,
                                     col=col_lod_tensor,
                                     input_channel=3,
                                     output_channel=5,
                                     filter_size=[3, 3],
                                     stride=1)
    """
    helper = LayerHelper('var_conv_2d', **locals())
    x_shape = list(input.shape)
    assert len(x_shape) == 2

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')

    filter_shape = [
        int(output_channel),
        int(input_channel) * filter_size[0] * filter_size[1]
    ]
    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype, )

    conv_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)

    helper.append_op(
        type='var_conv_2d',
        inputs={
            'X': input,
            'ROW': row,
            'COLUMN': col,
            'W': filter_param,
        },
        outputs={"Out": conv_res,
                 "Col": tmp_res},
        attrs={
            'InputChannel': input_channel,
            'OutputChannel': output_channel,
            'StrideH': stride[0],
            'StrideW': stride[1],
            'KernelH': filter_size[0],
            'KernelW': filter_size[1],
        })

    return helper.append_activation(conv_res)


A
Aurelius84 已提交
13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337
def match_matrix_tensor(x,
                        y,
                        channel_num,
                        act=None,
                        param_attr=None,
                        dtype='float32',
                        name=None):
    """
    Calculate the semantic matching matrix of two word sequences with variable length.
    Given a query A of length `n` and a title B of length `m`, the input shape are respectively
    [n, h] and [m, h], which h is hidden_size. If :attr:`channel_num` is set to 3,
    it will generate a learnable parameter matrix W with shape [h, 3, h].
    Then the semantic matching matrix of query A and title B is calculated by 
    A * W * B.T = [n, h]*[h, 3, h]*[h, m] = [n, 3, m]. The learnable parameter matrix `W` 
    is equivalent to a fully connected layer in the calculation process. If :attr:`act` is provided, 
    the corresponding activation function will be applied to output matrix.
    The :attr:`x` and :attr:`y` should be LodTensor and only one level LoD is supported.

    .. code-block:: text

            Given a 1-level LoDTensor x:
                x.lod =  [[2,                     3,                               ]]
                x.data = [[0.3, 0.1], [0.2, 0.3], [0.5, 0.6], [0.7, 0.1], [0.3, 0.4]]
                x.dims = [5, 2]
            y is a Tensor:
                y.lod =  [[3,                                 1,       ]]
                y.data = [[0.1, 0.2], [0.3, 0.7], [0.9, 0.2], [0.4, 0.1]]
                y.dims = [4, 2]
            set channel_num 2, then we get a 1-level LoDTensor:
                out.lod =  [[12, 6]]   # where 12 = channel_num * x.lod[0][0] * y.lod[0][0]
                out.dims = [18, 1]     # where 18 = 12 + 6

    Args:
        x (Variable): Input variable x which should be 1-level LodTensor.
        y (Variable): Input variable y which should be 1-level LodTensor.
        channel_num (int): The channel number of learnable parameter W.
        act (str, default None): Activation to be applied to the output of this layer.
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        dtype ('float32'): The data type of w data.
        name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. Default: None

    Returns:
        Variable: output with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers

            x_lod_tensor = layers.data(name='x', shape=[10], lod_level=1)
            y_lod_tensor = layers.data(name='y', shape=[10], lod_level=1)
            out, out_tmp = layers.match_matrix_tensor(x=x_lod_tensor, y=y_lod_tensor, channel_num=3)
    """
    helper = LayerHelper('match_matrix_tensor', **locals())

    x_shape = list(x.shape)
    y_shape = list(y.shape)
    assert len(x_shape) == 2 and len(y_shape) == 2 and x_shape[-1] == y_shape[
        -1]

    weight_shape = [x_shape[-1], channel_num, y_shape[-1]]
    w = helper.create_parameter(
        attr=helper.param_attr, shape=weight_shape, dtype=dtype, is_bias=False)
    mm_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)
    helper.append_op(
        type='match_matrix_tensor',
        inputs={
            'X': x,
            'Y': y,
            'W': w,
        },
        outputs={"Out": mm_res,
                 "Tmp": tmp_res},
        attrs={'dim_t': channel_num})

    return helper.append_activation(mm_res), tmp_res


13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419
def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    This layer creates the sharded index for input. This layers is used in
    model- and data- parallel mixed training generally, in which the index
    data (usually the label) should be recaculated in each trainer according
    to 

    .. math::
        
        assert index_num % nshards == 0

        shard_size = index_num / nshards

        y = x % shard_size if x / shard_size == shard_id else ignore_value

    We take the distributed one-hot representation to show what this layer is
    used for. The distributed one-hot representation is seperated into multiple
    shards, and each shard is filling zeros except the one with the index
    inside. In order to create these sharded representation in each trainer,
    the original index should be recalculated (i.e. sharded) before.

    Examples:
    
        X is a Tensor of integer values:
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
        
        suppose index_num = 20 and nshards = 2, then we get shard_size = 10
        
        if shard_id == 0, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
        if shard_id == 1, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
        the default `ignore_value` -1 is used in this example.
    
    Args:
        input(Variable): Input indices, last dimension must be 1.
        index_num(scalar): An interger defining the range of the index.
        nshards(scalar): The number of shards
        shard_id(scalar): The index of the current shard
        ignore_value(scalar): An ingeter value out of sharded index range

    Returns:
        Variable: The shard index of input.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if index_num % nshards != 0:
        raise ValueError(
            'The index_num(%d) cannot be evenly divided by nshards(%d)' %
            (index_num, nshards))
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
    ${comment}
    Args:
        x(Varaible): Input of HardSwish operator.
        threshold(float): The threshold parameter of HardSwish operator. Default:threshold=6.0
        scale(float): The scale parameter of HardSwish operator. Default:scale=6.0
        offset(float): The offset parameter of HardSwish operator. Default:offset=3.0
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_swish(x)
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out