nn.py 441.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
D
dengkaipeng 已提交
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
115
    'roi_align',
X
Xin Pan 已提交
116 117 118 119
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
120
    'resize_nearest',
X
Xin Pan 已提交
121 122 123 124 125 126
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
127
    'selu',
X
Xin Pan 已提交
128 129 130
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
131
    'margin_rank_loss',
X
Xin Pan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
158 159
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
160 161 162 163 164 165 166
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
167
    'rank',
X
Xin Pan 已提交
168 169 170 171 172 173 174 175 176 177
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
178
    'space_to_depth',
W
whs 已提交
179
    'affine_grid',
S
sneaxiy 已提交
180
    'sequence_reverse',
181
    'affine_channel',
B
barrierye 已提交
182
    'similarity_focus',
M
minqiyang 已提交
183
    'hash',
D
dengkaipeng 已提交
184
    'grid_sampler',
G
gmcather 已提交
185 186
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
187
    'bilinear_tensor_product',
C
chengduo 已提交
188 189
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
190
    'lstm',
S
shippingwang 已提交
191
    'shuffle_channel',
192
    'temporal_shift',
S
sneaxiy 已提交
193
    'py_func',
194
    'psroi_pool',
H
heqiaozhi 已提交
195
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
196
    'huber_loss',
D
dengkaipeng 已提交
197
    'kldiv_loss',
Z
zhaozhehao 已提交
198
    'tree_conv',
C
ceci3 已提交
199
    'npair_loss',
R
ruri 已提交
200
    'pixel_shuffle',
201
    'fsp_matrix',
H
heqiaozhi 已提交
202
    'continuous_value_model',
Z
zhoukunsheng 已提交
203
    'where',
Z
zhoukunsheng 已提交
204
    'sign',
205
    'deformable_conv',
C
cjt222 已提交
206
    'deformable_roi_pooling',
Y
Yu Yang 已提交
207 208
]

J
jerrywgz 已提交
209 210
kIgnoreIndex = -100

Y
Yu Yang 已提交
211 212 213 214 215 216 217

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
218
       is_test=False,
219
       name=None):
Y
Yu Yang 已提交
220
    """
221
    **Fully Connected Layer**
Y
Yu Yang 已提交
222

223
    This function creates a fully connected layer in the network. It can take
224
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
225
    Args in detail). It creates a variable called weights for each input tensor,
226 227 228 229
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
230
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
231 232
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
233

234
    When the input is single tensor:
C
caoying03 已提交
235

236 237 238 239 240
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
241 242 243

    .. math::

244
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
245 246 247

    In the above equation:

248 249 250
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
251
    * :math:`b`: The bias parameter created by this layer (if needed).
252
    * :math:`Act`: The activation function.
C
caoying03 已提交
253
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
273
    Args:
R
ranqiu 已提交
274 275 276 277 278 279 280 281 282 283
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
284
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
285 286 287 288
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
289 290
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
291
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
292
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
293
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
294

295
    Returns:
F
fengjiayi 已提交
296
        Variable: The transformation result.
297 298

    Raises:
C
caoying03 已提交
299
        ValueError: If rank of the input tensor is less than 2.
300 301 302 303

    Examples:
        .. code-block:: python

304
          # when input is single tensor
F
fengjiayi 已提交
305
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
306
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
307 308 309 310 311

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
312
    """
C
caoying03 已提交
313
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
314 315 316 317

    dtype = helper.input_dtype()

    mul_results = []
318 319
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
320 321 322
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
323

Y
Yu Yang 已提交
324
        w = helper.create_parameter(
325
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
326
        tmp = helper.create_variable_for_type_inference(dtype)
327
        helper.append_op(
328 329 330
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
331
            outputs={"Out": tmp},
M
mozga-intel 已提交
332 333
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
334 335 336 337
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
338
    else:
X
Xin Pan 已提交
339
        pre_bias = helper.create_variable_for_type_inference(dtype)
340
        helper.append_op(
341 342 343
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
344
            attrs={"use_mkldnn": False})
345 346 347 348
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
349 350


351 352 353
def embedding(input,
              size,
              is_sparse=False,
354
              is_distributed=False,
355 356 357
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
358
    """
359 360
    **Embedding Layer**

361
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
362 363
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
364 365 366

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
367 368

    Args:
369 370 371 372 373
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
374
        is_distributed(bool): Whether to run lookup table from remote parameter server.
375 376
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
377
            with zeros whenever lookup encounters it in :attr:`input`. If
378
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
379 380
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
381
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
382

383 384 385
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
386

387 388
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
389

B
bdzhuxiaoning 已提交
390 391 392
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
393 394 395
    """

    helper = LayerHelper('embedding', **locals())
396
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
397 398
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
399 400
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
401
    tmp = helper.create_variable_for_type_inference(dtype)
402 403
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
404 405 406 407 408
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
409 410 411
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
412
            'remote_prefetch': remote_prefetch,
413 414
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
415 416 417
    return tmp


W
wopeizl 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
434

W
wopeizl 已提交
435 436 437 438 439 440 441 442 443 444 445
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
446

W
wopeizl 已提交
447 448 449 450
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
451

W
wopeizl 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
488 489 490
            
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
491
            hidden_dim = 512
492 493 494 495 496 497
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
498
                                           bias_attr=False)
499

W
wopeizl 已提交
500 501 502
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
503
    assert in_dygraph_mode(
504
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
548 549


P
phlrain 已提交
550 551 552 553 554 555
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
556
         dropout_prob=0.0,
P
phlrain 已提交
557 558 559 560 561
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
562
    """
P
phlrain 已提交
563
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
564 565

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
566
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
567 568
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
569
    .. math::
M
minqiyang 已提交
570 571 572 573 574 575 576

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
577
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
578 579 580 581

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
582 583

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
584 585 586 587 588 589
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
590 591 592
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
593
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
594

M
minqiyang 已提交
595
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
596 597 598 599 600
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
601
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
602 603 604 605 606
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
607
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
608 609
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
610 611
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
612 613 614 615 616 617
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
618
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
619

L
liuhongyu 已提交
620 621

    Returns:
M
minqiyang 已提交
622 623
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
624
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
625

H
haowang101779990 已提交
626 627 628 629
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
630
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
631 632
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
633
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
634 635 636 637


    Examples:
        .. code-block:: python
638 639 640 641 642 643
            
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
644 645 646 647 648 649
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
650 651 652 653 654
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
655 656 657 658
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
659 660 661
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
721 722 723 724 725 726 727 728 729 730
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
731
                  proj_activation='tanh',
732
                  dtype='float32',
X
xuezhong 已提交
733 734 735 736 737
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
738 739 740
    """
    **Dynamic LSTMP Layer**

741 742 743 744 745 746
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
747 748 749 750 751

    The formula is as follows:

    .. math::

752
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
753

754
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
755

756
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
757

758
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
759

760
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
761

762
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
763

764
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
765

Y
Yibing Liu 已提交
766 767 768 769 770 771
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
772
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
773
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
774
          bias vector).
Y
Yibing Liu 已提交
775 776 777
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
778
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
779
    * :math:`h`: The hidden state.
780
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
781 782
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
783
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
784
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
785
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
786 787
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
788 789 790 791

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
792

Y
Yibing Liu 已提交
793 794 795 796 797 798 799 800 801 802 803 804
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
805
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
806 807
                               hidden-hidden weight and projection weight.

808 809
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
810 811
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
812 813
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
814
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
815 816 817 818 819

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
820
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
821 822 823 824 825 826
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
827
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
828 829 830
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
831
                                - The shape is (1 x 7D).
C
chengduo 已提交
832 833 834 835 836

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
837 838 839 840 841 842 843 844 845
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
846
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
847 848
                              default "tanh".
        proj_activation(str): The activation for projection output.
849
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
850
                              default "tanh".
Y
Yibing Liu 已提交
851
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
852 853
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
854 855 856 857 858 859 860 861 862 863 864
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
865 866

    Returns:
867 868 869 870
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
871 872

    Examples:
873

Y
Yibing Liu 已提交
874 875
        .. code-block:: python

876 877 878 879
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
880
            hidden_dim, proj_dim = 512, 256
881
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
882
                                     act=None, bias_attr=None)
883 884 885
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
886 887 888 889
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
890
    """
891

L
lujun 已提交
892
    assert in_dygraph_mode(
893 894
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
895
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
896
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
897
    size = size // 4
Y
Yibing Liu 已提交
898 899 900 901 902 903 904 905 906 907
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
908 909 910 911 912 913
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
929

X
xuezhong 已提交
930 931 932 933 934
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
935 936
    helper.append_op(
        type='lstmp',
937
        inputs=inputs,
Y
Yibing Liu 已提交
938 939 940 941 942 943 944 945 946
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
947 948
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
949 950 951 952 953 954 955 956 957
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
958 959 960 961 962 963 964
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
965 966
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
967
    """
968
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
969

970 971 972
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
973

G
guosheng 已提交
974 975 976 977 978 979 980 981 982
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
983

G
guosheng 已提交
984
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
985

Q
Qiao Longfei 已提交
986 987 988

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
989 990 991 992 993 994 995 996 997 998 999 1000
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1001
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1002 1003
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1004 1005 1006 1007
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1008
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1009 1010

    Args:
1011 1012
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1013
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1014
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1015 1016
            is the hidden size.
        size(int): The dimension of the gru cell.
1017
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1018 1019
            hidden-hidden weight matrix. Note:

1020
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1021
              :math:`D` is the hidden size.
1022
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1023
              The first part are weights of the update gate and reset gate with
1024
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1025
              candidate hidden state with shape :math:`(D \\times D)`.
1026 1027 1028 1029 1030

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1031
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1032
            the bias in the update gate, reset gate and candidate calculations.
1033 1034 1035
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1036 1037
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1038
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1039 1040 1041
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1042
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1043
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1044 1045 1046 1047
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1048 1049

    Returns:
G
guosheng 已提交
1050
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1051
            and sequence length is the same with the input.
1052

G
guosheng 已提交
1053
    Examples:
1054

G
guosheng 已提交
1055 1056
        .. code-block:: python

1057 1058
            import paddle.fluid as fluid

1059 1060 1061 1062
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1063
            hidden_dim = 512
1064
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1065
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1066 1067
    """

L
lujun 已提交
1068
    assert in_dygraph_mode(
1069 1070
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1071 1072 1073 1074 1075 1076 1077
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1078
    batch_size = input.shape[0]
G
guosheng 已提交
1079
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1080
    if h_0:
G
guosheng 已提交
1081
        assert h_0.shape == (
Y
Yancey 已提交
1082 1083 1084
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1085

X
Xin Pan 已提交
1086 1087 1088 1089
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1103 1104
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1105 1106 1107 1108
        })
    return hidden


Y
Yu Yang 已提交
1109 1110 1111
def gru_unit(input,
             hidden,
             size,
1112 1113
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1114
             activation='tanh',
Q
Qiao Longfei 已提交
1115 1116
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1117
    """
1118 1119 1120
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1121
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1122
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1123

1124 1125
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1126

1127
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1128

1129
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1130

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1146 1147

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1148 1149 1150
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1151 1152
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1153 1154
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1155 1156 1157
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1158 1159 1160

    Args:
        input (Variable): The fc transformed input value of current step.
1161
        hidden (Variable): The hidden value of gru unit from previous step.
1162
        size (integer): The input dimension value.
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1177
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1178
            the bias in the update gate, reset gate and candidate calculations.
1179 1180 1181
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1182 1183
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1184 1185 1186 1187
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1188

1189 1190 1191 1192 1193 1194
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1219
    size = size // 3
Y
Yu Yang 已提交
1220 1221

    # create weight
1222 1223
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1224

X
Xin Pan 已提交
1225 1226 1227
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1228
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1229
    # create bias
1230
    if helper.bias_attr:
Y
Yu Yang 已提交
1231 1232 1233
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1234
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1235 1236 1237

    helper.append_op(
        type='gru_unit',
1238
        inputs=inputs,
Y
Yu Yang 已提交
1239 1240 1241 1242 1243 1244
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1245 1246
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1247 1248 1249 1250 1251
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1252
@templatedoc()
1253
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1254 1255 1256 1257 1258 1259 1260
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1261
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1262 1263 1264 1265
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1266 1267 1268
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1269

J
JesseyXujin 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1283
    """
Y
Yu Yang 已提交
1284 1285 1286 1287 1288 1289
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1290 1291 1292 1293 1294 1295 1296 1297
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1313 1314 1315 1316
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1317

W
wopeizl 已提交
1318 1319
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1320

W
wopeizl 已提交
1321
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1322

W
wopeizl 已提交
1323
        label(${label_type}): ${label_comment}
1324

W
wopeizl 已提交
1325 1326
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1327

W
wopeizl 已提交
1328 1329
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1330

Y
Yibing Liu 已提交
1331 1332 1333 1334 1335 1336 1337
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1338 1339 1340 1341 1342 1343 1344 1345
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1346
                "Transition": transition,
W
wopeizl 已提交
1347 1348
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1349

W
wopeizl 已提交
1350
    return viterbi_path
Y
Yu Yang 已提交
1351 1352


Y
yi.wu 已提交
1353
@templatedoc()
F
fengjiayi 已提交
1354
def cos_sim(X, Y):
Y
Yu Yang 已提交
1355
    """
Y
yi.wu 已提交
1356 1357 1358
    ${comment}

    Args:
1359 1360
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1361

Y
yi.wu 已提交
1362
    Returns:
1363
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1364 1365 1366 1367 1368 1369 1370

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1371
    """
F
fengjiayi 已提交
1372
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1373 1374 1375
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1386 1387 1388 1389 1390
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1391
            dropout_implementation="downgrade_in_infer"):
1392 1393 1394 1395 1396
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1397
    training. The dropout operator randomly sets (according to the given dropout
1398 1399 1400
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1401 1402
    dropout op can be removed from the program to make the program more efficient.

1403
    Args:
1404 1405
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1406 1407 1408 1409 1410 1411 1412
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1413 1414
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1415
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1416 1417

                                           - train: out = input * mask
C
ceci3 已提交
1418
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1419 1420 1421

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1422
                                        2. upscale_in_train, upscale the outcome at training time
1423

H
haowang101779990 已提交
1424 1425
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1426

H
haowang101779990 已提交
1427 1428
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1429

M
minqiyang 已提交
1430

1431
    Returns:
1432
        Variable: A tensor variable is the shape with `x`.
1433 1434

    Examples:
1435

1436 1437
        .. code-block:: python

1438 1439
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1440 1441
    """

F
fengjiayi 已提交
1442
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1443 1444
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1445
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1446 1447 1448 1449

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1450 1451 1452 1453 1454
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1455 1456 1457 1458
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1459 1460
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1461
        })
1462 1463 1464
    return out


J
jerrywgz 已提交
1465
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1466
    """
Y
Yibing Liu 已提交
1467 1468
    **Cross Entropy Layer**

1469 1470 1471
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1472 1473

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1474
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1475

Y
Yibing Liu 已提交
1476
        .. math::
Y
yangyaming 已提交
1477

Y
Yibing Liu 已提交
1478 1479 1480
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1481 1482
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1483 1484 1485 1486 1487

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1488
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1489 1490 1491
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1492 1493
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1494
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1495

Y
Yibing Liu 已提交
1496
    Args:
Y
yangyaming 已提交
1497
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1498 1499 1500 1501
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1502
        label (Variable|list): the ground truth which is a 2-D tensor. When
1503 1504 1505 1506
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1507
        soft_label (bool): a flag indicating whether to
1508
                                           interpretate the given labels as soft
1509
                                           labels. Default: `False`.
M
minqiyang 已提交
1510 1511
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1512
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1513 1514 1515 1516 1517

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1518 1519 1520
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1521

H
haowang101779990 已提交
1522 1523
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1524

H
haowang101779990 已提交
1525 1526
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1527 1528 1529 1530

    Examples:
        .. code-block:: python

L
lvmengsi 已提交
1531 1532 1533 1534
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1535
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1536
    """
S
sneaxiy 已提交
1537 1538
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1539
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1540
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1541 1542 1543 1544 1545
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1546 1547
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1548 1549 1550
    return out


S
sneaxiy 已提交
1551 1552 1553 1554
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1555
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1556 1557 1558 1559 1560
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1561
                 'MatchX': [match_x],
S
sneaxiy 已提交
1562 1563 1564 1565 1566
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1567
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1568
    """
1569
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1570

1571
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1572
    The loss at a given point in one session is defined as:
1573 1574 1575

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1576 1577

    Learn more details by reading paper <session-based recommendations with recurrent
1578
    neural networks>.
F
frankwhzhang 已提交
1579

1580 1581 1582 1583 1584 1585
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1586 1587
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1588 1589 1590
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1591 1592 1593
    Examples:
        .. code-block:: python

1594 1595 1596 1597 1598 1599 1600
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1601
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1602
    """
1603 1604 1605 1606 1607
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1608
                'Label': [label]},
1609 1610 1611 1612
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1613
def square_error_cost(input, label):
Y
Yu Yang 已提交
1614
    """
1615 1616
    **Square error cost layer**

1617 1618
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1619

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1633 1634
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1635 1636

    Returns:
G
guosheng 已提交
1637
        Variable: The tensor variable storing the element-wise squared error \
1638
                  difference of input and label.
1639 1640 1641 1642

    Examples:
        .. code-block:: python

R
ruri 已提交
1643 1644 1645
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1646

Y
Yu Yang 已提交
1647
    """
F
fengjiayi 已提交
1648
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1649
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1650 1651 1652 1653 1654 1655
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1656
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1657
    helper.append_op(
F
fengjiayi 已提交
1658 1659
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1660 1661 1662
    return square_out


Y
yi.wu 已提交
1663
@templatedoc()
Y
Yu Yang 已提交
1664 1665 1666 1667
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1668
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1669
    """
Y
yi.wu 已提交
1670
    **Chunk Evaluator**
Y
yi.wu 已提交
1671

Y
yangyaming 已提交
1672
    This function computes and outputs the precision, recall and
1673
    F1-score of chunk detection.
Y
yi.wu 已提交
1674

M
minqiyang 已提交
1675
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1676
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1677 1678 1679 1680 1681 1682

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1683

Y
yi.wu 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1709

Y
yi.wu 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1734
    Args:
1735 1736 1737 1738 1739
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1740

Y
yi.wu 已提交
1741
    Returns:
Y
update  
yi.wu 已提交
1742 1743 1744
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1745

Y
yi.wu 已提交
1746 1747 1748
    Examples:
        .. code-block:: python

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1760
            crf = fluid.layers.linear_chain_crf(
1761
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1762
            crf_decode = fluid.layers.crf_decoding(
1763
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1764 1765 1766 1767 1768
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1769
    """
F
fengjiayi 已提交
1770
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1771 1772

    # prepare output
X
Xin Pan 已提交
1773 1774 1775 1776 1777 1778 1779
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1780 1781 1782 1783 1784 1785 1786 1787

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1788 1789 1790 1791
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1792 1793 1794
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1795 1796
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1797
        })
1798 1799
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1800 1801


1802
@templatedoc()
Y
Yu Yang 已提交
1803 1804 1805 1806 1807 1808 1809
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1810 1811
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1812 1813 1814 1815
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1816 1817 1818 1819 1820 1821 1822

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1836

1837 1838
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
1839 1840 1841 1842 1843 1844 1845

    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
             x_conved = fluid.layers.sequence_conv(x,2)
Y
Yu Yang 已提交
1846 1847
    """

L
lujun 已提交
1848
    assert not in_dygraph_mode(), (
1849
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1850 1851 1852 1853 1854
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1855
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1866
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1867 1868 1869 1870 1871 1872
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1873
def sequence_softmax(input, use_cudnn=False, name=None):
1874 1875 1876
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1877
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1894 1895 1896
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1909
    assert not in_dygraph_mode(), (
1910
        "sequence layer is not supported in dygraph mode yet.")
1911 1912
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1913
    softmax_out = helper.create_variable_for_type_inference(dtype)
1914 1915 1916 1917 1918 1919 1920 1921
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1922
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1923
    """
1924
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1925
    has the same shape as the input.
Q
qiaolongfei 已提交
1926

D
dengkaipeng 已提交
1927
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1928
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1929
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1930 1931 1932
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1933
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1934
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1935 1936 1937 1938 1939 1940 1941

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1942
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1943 1944 1945 1946 1947 1948 1949 1950

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1951 1952
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1953 1954
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1955 1956 1957
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1958 1959 1960 1961 1962 1963 1964 1965

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
1966 1967
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
1968
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1969
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1970
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1971 1972
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1973 1974

    """
1975 1976
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1977
    softmax_out = helper.create_variable_for_type_inference(dtype)
1978 1979 1980 1981
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1982 1983
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1984 1985 1986
    return softmax_out


Y
Yu Yang 已提交
1987 1988 1989
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1990 1991
           stride=1,
           padding=0,
1992
           dilation=1,
Y
Yu Yang 已提交
1993 1994 1995
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1996
           use_cudnn=True,
1997 1998
           act=None,
           name=None):
Y
Yu Yang 已提交
1999
    """
C
chengduoZH 已提交
2000
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2001 2002
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2003
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2004 2005 2006 2007 2008 2009 2010
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
2011 2012 2013
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2014

2015
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2016

C
chengduoZH 已提交
2017 2018
    .. math::

C
refine  
chengduoZH 已提交
2019
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2020

T
tensor-tang 已提交
2021
    Where:
C
chengduoZH 已提交
2022

2023 2024 2025 2026 2027
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2028
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2029 2030 2031

    Example:

2032 2033
        - Input:

W
weixing02 已提交
2034
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2035

W
weixing02 已提交
2036
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2037

2038
        - Output:
T
tensor-tang 已提交
2039

W
weixing02 已提交
2040
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2041

C
chengduoZH 已提交
2042
        Where
2043 2044

        .. math::
C
chengduoZH 已提交
2045

W
weixing02 已提交
2046 2047
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2048 2049

    Args:
2050
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2051
        num_filters(int): The number of filter. It is as same as the output
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2069 2070 2071 2072 2073
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2074
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2075 2076 2077 2078 2079
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2080 2081
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2082 2083
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2084
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2085
            will be named automatically. Default: None
C
chengduoZH 已提交
2086 2087

    Returns:
G
guosheng 已提交
2088
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2089 2090
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2091
    Raises:
2092 2093
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2094

C
chengduoZH 已提交
2095 2096 2097
    Examples:
        .. code-block:: python

2098 2099
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2100 2101 2102
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2103
    assert param_attr is not False, "param_attr should not be False here."
2104
    l_type = 'conv2d'
X
xzl 已提交
2105 2106
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2107
        l_type = 'depthwise_conv2d'
2108 2109 2110 2111

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2112 2113 2114 2115 2116
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2117
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2118

C
chengduoZH 已提交
2119 2120 2121
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2122
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2123

C
chengduoZH 已提交
2124 2125
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2126 2127

    input_shape = input.shape
M
minqiyang 已提交
2128
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2129 2130

    def _get_default_param_initializer():
C
chengduo 已提交
2131 2132
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2133 2134 2135 2136 2137 2138 2139 2140
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2141
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2142

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2157
    helper.append_op(
2158
        type=l_type,
Y
Yu Yang 已提交
2159 2160 2161 2162 2163
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2164 2165 2166
        attrs={
            'strides': stride,
            'paddings': padding,
2167
            'dilations': dilation,
C
chengduoZH 已提交
2168
            'groups': groups,
2169
            'use_cudnn': use_cudnn,
2170
            'use_mkldnn': False,
2171
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2172
        })
Y
Yu Yang 已提交
2173 2174 2175 2176 2177 2178

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2196 2197 2198 2199 2200 2201
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2211 2212
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2213 2214 2215
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2216
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
2239
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2240 2241
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2242
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2243 2244
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2245
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2246 2247
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2248
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2249 2250
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2251
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2252 2253 2254 2255 2256 2257
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2268 2269
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2270 2271
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2272
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2273
            will be named automatically. Default: None.
C
chengduoZH 已提交
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2286 2287
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2288 2289 2290
    """

    l_type = 'conv3d'
C
chengduo 已提交
2291
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2302
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2316 2317 2318
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2319 2320 2321 2322 2323 2324 2325 2326
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2327
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2342
            'use_mkldnn': False
C
chengduoZH 已提交
2343 2344
        })

2345
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2346 2347 2348 2349

    return helper.append_activation(pre_act)


2350
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2351
    """
Y
yangyaming 已提交
2352 2353 2354
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2365 2366
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2367 2368 2369 2370
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2371
         out.dim = [4, 1]
2372
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2373 2374

       for different pool_type:
2375 2376 2377
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2378
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2379 2380 2381 2382 2383
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2384

L
Luo Tao 已提交
2385
    Args:
2386
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2387
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2388
            It supports average, sum, sqrt and max.
2389 2390
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2391 2392 2393 2394 2395 2396 2397

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2398

2399 2400
             import paddle.fluid as fluid

Y
yangyaming 已提交
2401
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2402 2403 2404 2405 2406
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2407 2408
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2409
    """
L
lujun 已提交
2410
    assert not in_dygraph_mode(), (
2411
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2412
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2413
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2414 2415
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2416 2417 2418 2419 2420 2421

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2422 2423 2424 2425 2426
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2427

Y
yangyaming 已提交
2428 2429 2430 2431 2432
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2433 2434 2435
    return pool_out


C
add doc  
chengduoZH 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2452 2453 2454 2455
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2456
    """
L
lujun 已提交
2457
    assert not in_dygraph_mode(), (
2458
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2459
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2460
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2461 2462 2463 2464 2465
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2466
def sequence_first_step(input):
L
Luo Tao 已提交
2467
    """
L
Luo Tao 已提交
2468
    This function gets the first step of sequence.
L
Luo Tao 已提交
2469 2470 2471 2472

    .. code-block:: text

       x is a 1-level LoDTensor:
2473
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2474 2475 2476 2477 2478
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2479
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2480
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2481

L
Luo Tao 已提交
2482 2483 2484 2485 2486 2487 2488 2489 2490
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2491

Y
yangyaming 已提交
2492
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2493 2494 2495
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2496 2497 2498
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2499
def sequence_last_step(input):
L
Luo Tao 已提交
2500
    """
L
Luo Tao 已提交
2501
    This function gets the last step of sequence.
L
Luo Tao 已提交
2502 2503 2504 2505

    .. code-block:: text

       x is a 1-level LoDTensor:
2506
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2507 2508 2509 2510 2511
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2512
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2513
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2514

L
Luo Tao 已提交
2515 2516 2517 2518 2519 2520 2521 2522 2523
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2524

Y
yangyaming 已提交
2525
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2526 2527 2528
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2529 2530 2531
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2532 2533 2534 2535
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2536
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2537 2538 2539 2540 2541
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2542

H
haowang101779990 已提交
2543
              - Case:
Y
Yibing Liu 已提交
2544

2545
            Given the input Variable **input**:
2546

2547 2548 2549
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2550

2551
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2552

2553
            the output Variable will be
2554

2555 2556 2557
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2558

M
minqiyang 已提交
2559
    Note:
H
haowang101779990 已提交
2560
          The first dimension size of **input**, **offset** and **length**
2561
          should be equal. The **offset** should start from 0.
2562

Y
Yibing Liu 已提交
2563
    Args:
2564
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2565
                         sequences.
Y
Yibing Liu 已提交
2566 2567 2568 2569 2570 2571
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2572
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2583
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2584 2585
                                                   length=length)
    """
L
lujun 已提交
2586
    assert not in_dygraph_mode(), (
2587
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2588 2589
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2590
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2605
@templatedoc()
Y
Yu Yang 已提交
2606
def pool2d(input,
C
chengduoZH 已提交
2607 2608
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2609 2610
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2611
           global_pooling=False,
C
chengduoZH 已提交
2612
           use_cudnn=True,
2613
           ceil_mode=False,
2614 2615
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2616
    """
F
fengjiayi 已提交
2617
    ${comment}
2618 2619

    Args:
2620 2621 2622
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2623
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2624
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2625 2626
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2627
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2628 2629 2630 2631 2632 2633
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2634 2635 2636
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2637
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2638
                        layer will be named automatically.
2639
        exclusive (bool): Whether to exclude padding points in average pooling
2640
                          mode, default is true
F
fengjiayi 已提交
2641

2642
    Returns:
F
fengjiayi 已提交
2643
        Variable: The pooling result.
F
fengjiayi 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2656
          pool2d = fluid.layers.pool2d(
2657 2658 2659 2660
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2661
                            global_pooling=False)
Y
Yu Yang 已提交
2662 2663 2664 2665 2666
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2667

C
chengduoZH 已提交
2668 2669 2670 2671 2672
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2673 2674 2675 2676
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2677 2678
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2679

C
Add doc  
chengduoZH 已提交
2680
    l_type = 'pool2d'
2681 2682

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2683
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2684
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2685 2686

    helper.append_op(
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2698 2699
            "use_mkldnn": False,
            "exclusive": exclusive,
2700 2701 2702 2703 2704
        })

    return pool_out


D
dengkaipeng 已提交
2705
@templatedoc()
2706 2707 2708 2709 2710 2711 2712 2713
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2714 2715
           name=None,
           exclusive=True):
2716
    """
2717
    ${comment}
2718 2719

    Args:
D
dengkaipeng 已提交
2720 2721 2722 2723 2724
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2725 2726 2727 2728 2729
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2730 2731 2732 2733 2734 2735 2736
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2737
        exclusive (bool): Whether to exclude padding points in average pooling
2738
                          mode, default is true
2739

2740
    Returns:
2741
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2755 2756 2757 2758 2759
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2760

C
chengduoZH 已提交
2761 2762 2763 2764 2765
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2766 2767 2768
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2769

C
chengduoZH 已提交
2770 2771
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2772

2773 2774
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2775
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2776
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2777 2778

    helper.append_op(
2779
        type=l_type,
Y
Yu Yang 已提交
2780 2781 2782 2783 2784 2785 2786
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2787
            "paddings": pool_padding,
2788
            "use_cudnn": use_cudnn,
2789
            "ceil_mode": ceil_mode,
2790 2791
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2792 2793 2794 2795 2796
        })

    return pool_out


2797 2798 2799 2800 2801 2802 2803
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2804 2805 2806 2807 2808 2809 2810
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2811

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2825 2826 2827 2828 2829 2830 2831 2832 2833

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2834 2835
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2850
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2851
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2852
          # of input data into m * n grids averagely and performs poolings in each
2853 2854
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2855
          #
2856 2857 2858 2859 2860 2861 2862 2863
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2864 2865
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2866
          pool_out = fluid.layers.adaptive_pool2d(
2867 2868
                            input=data,
                            pool_size=[3, 3],
2869
                            pool_type='avg')
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2880
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2906
    return (pool_out, mask) if require_index else pool_out
2907 2908 2909 2910 2911 2912 2913 2914 2915


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2916 2917 2918 2919 2920 2921 2922
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2923

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2941 2942 2943

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2944 2945 2946
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2947
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2948
            it must contain three integers, (Depth, Height, Width).
2949
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2950 2951
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2966 2967
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2968
          # of input data into l * m * n grids averagely and performs poolings in each
2969 2970
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2971
          #
2972 2973 2974 2975 2976 2977 2978 2979 2980
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2981
          #                 output[:, :, i, j, k] =
2982 2983
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2984 2985 2986

          import paddle.fluid as fluid

2987
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
2988 2989
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
2990
                            input=data,
D
dengkaipeng 已提交
2991
                            pool_size=[3, 3, 3],
2992
                            pool_type='avg')
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3003
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3029
    return (pool_out, mask) if require_index else pool_out
3030 3031


Y
Yu Yang 已提交
3032 3033 3034 3035 3036 3037 3038
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3039
               data_layout='NCHW',
Y
Yang Yang 已提交
3040
               in_place=False,
3041 3042
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3043
               moving_variance_name=None,
3044
               do_model_average_for_mean_and_var=False,
3045 3046
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3047
    """
Q
qiaolongfei 已提交
3048 3049 3050 3051
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3052

Q
qiaolongfei 已提交
3053
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3054

Q
qiaolongfei 已提交
3055 3056
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3057 3058 3059
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3072

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3086
    Args:
Q
qingqing01 已提交
3087
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3088
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3089 3090 3091 3092 3093 3094 3095 3096 3097
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3098 3099 3100 3101 3102 3103 3104 3105
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3106
        data_layout(string, default NCHW): NCHW|NHWC
3107
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3108 3109
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3110 3111 3112
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3113
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3114 3115
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3116
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3117
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3118 3119 3120 3121 3122
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3123 3124

    Returns:
Q
qiaolongfei 已提交
3125
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3126 3127 3128 3129 3130

    Examples:

        .. code-block:: python

L
lvmengsi 已提交
3131
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3132 3133
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3134
    """
C
chengduo 已提交
3135
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3136 3137 3138
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3139 3140 3141 3142
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3161
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3162

3163 3164
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3165 3166 3167
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3168
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3169
        shape=param_shape,
W
Wu Yi 已提交
3170
        dtype=dtype)
3171 3172 3173 3174 3175 3176
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3177
            trainable=False,
W
wanghaoshuang 已提交
3178
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3179
        shape=param_shape,
W
Wu Yi 已提交
3180
        dtype=dtype)
3181
    variance.stop_gradient = True
Y
Yu Yang 已提交
3182 3183 3184 3185 3186 3187

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3188 3189 3190 3191
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3192

X
Xin Pan 已提交
3193 3194
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3212 3213 3214 3215
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3216
            "data_layout": data_layout,
X
Xin Pan 已提交
3217
            "use_mkldnn": False,
3218 3219
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3220
        })
Y
Yu Yang 已提交
3221 3222 3223 3224

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3276 3277
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3278

3279 3280
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3346
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3347 3348 3349 3350

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3351
@templatedoc()
G
guosheng 已提交
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3362
    ${comment}
G
guosheng 已提交
3363 3364 3365

    The formula is as follows:

Y
yuyang18 已提交
3366
    ..  math::
G
guosheng 已提交
3367 3368 3369 3370 3371 3372 3373

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3374 3375 3376 3377 3378 3379 3380 3381
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3382

G
guosheng 已提交
3383 3384
    Args:
        input(Variable): The input tensor variable.
3385
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3386
            normalization. Default True.
3387
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3388 3389
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3390
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3391
            Default 1.
3392
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3393
            division by zero. Default 1e-05.
G
guosheng 已提交
3394
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3395 3396
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3397 3398
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3399
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3400 3401
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3402
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3403
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3404
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3405 3406 3407
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3408 3409

    Returns:
Y
yuyang18 已提交
3410
        ${y_comment}
G
guosheng 已提交
3411 3412 3413

    Examples:

Y
yuyang18 已提交
3414 3415 3416
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3417
    """
L
lujun 已提交
3418
    assert in_dygraph_mode(
L
lujun 已提交
3419
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3434
    if shift:
G
guosheng 已提交
3435 3436 3437 3438 3439 3440
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3441 3442 3443 3444 3445
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3473
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3521 3522
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3540
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3541 3542 3543
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3544
    This layer calculates the spectral normalization value of weight parameters of
3545
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3546
    Parameters. Calculations are showed as follows.
3547

D
dengkaipeng 已提交
3548 3549 3550
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3551
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3564
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3565 3566 3567 3568

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3569

D
dengkaipeng 已提交
3570
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3571 3572
                

D
dengkaipeng 已提交
3573 3574 3575 3576
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3577 3578 3579
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3580 3581 3582
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3583
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3584 3585

    Examples:
K
Kaipeng Deng 已提交
3586
       .. code-block:: python
D
dengkaipeng 已提交
3587

K
Kaipeng Deng 已提交
3588 3589 3590 3591 3592
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3593 3594
    """
    helper = LayerHelper('spectral_norm', **locals())
3595
    dtype = weight.dtype
D
dengkaipeng 已提交
3596 3597 3598

    # create intput and parameters
    inputs = {'Weight': weight}
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3617 3618

    # create output
3619
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3620 3621

    helper.append_op(
3622
        type="spectral_norm",
D
Dun 已提交
3623
        inputs=inputs,
3624 3625 3626 3627 3628 3629
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3630

3631
    return out
D
Dun 已提交
3632 3633


Y
Yu Yang 已提交
3634 3635 3636 3637
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3638 3639 3640
                     padding=0,
                     stride=1,
                     dilation=1,
3641
                     groups=None,
C
caoying03 已提交
3642
                     param_attr=None,
3643
                     bias_attr=None,
C
chengduoZH 已提交
3644
                     use_cudnn=True,
3645
                     act=None,
C
caoying03 已提交
3646
                     name=None):
Y
Yu Yang 已提交
3647
    """
3648 3649 3650 3651 3652 3653 3654 3655
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3656 3657
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3658 3659 3660
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3661 3662 3663 3664 3665

    For each input :math:`X`, the equation is:

    .. math::

3666
        Out = \sigma (W \\ast X + b)
3667

3668
    Where:
3669 3670 3671

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3672 3673 3674 3675
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3676

3677 3678 3679 3680
    Example:

        - Input:

3681
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3682

3683
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3684 3685 3686

        - Output:

3687
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3688 3689

        Where
Y
Yu Yang 已提交
3690

3691 3692
        .. math::

3693 3694
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3695 3696
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3697 3698

    Args:
3699 3700 3701 3702
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3703 3704 3705 3706
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3735
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3736 3737 3738
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3739
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3740
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3741 3742

    Returns:
3743
        Variable: The tensor variable storing the convolution transpose result.
3744 3745

    Raises:
3746 3747
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3748 3749 3750 3751

    Examples:
       .. code-block:: python

3752 3753
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3754
    """
C
chengduo 已提交
3755
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3756 3757 3758 3759 3760 3761 3762 3763
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3764 3765 3766
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3767 3768 3769
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3770

C
chengduoZH 已提交
3771 3772
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3773

Y
Yu Yang 已提交
3774 3775 3776 3777 3778
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3779

Y
Yu Yang 已提交
3780 3781
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3782

C
chengduoZH 已提交
3783
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3784
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3785
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3786
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3787
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3788 3789 3790
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3791

3792 3793 3794 3795 3796 3797 3798
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3799
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3800
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3801

Y
Yu Yang 已提交
3802 3803 3804
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3805
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3806
    helper.append_op(
3807
        type=op_type,
Y
Yu Yang 已提交
3808 3809
        inputs={'Input': [input],
                'Filter': [img_filter]},
3810
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3811
        attrs={
3812
            'output_size': output_size,
3813 3814 3815 3816 3817
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3818 3819
        })

3820 3821 3822
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3823 3824


3825
def conv3d_transpose(input,
Y
Yu Yang 已提交
3826 3827 3828
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3829 3830 3831
                     padding=0,
                     stride=1,
                     dilation=1,
3832
                     groups=None,
C
caoying03 已提交
3833
                     param_attr=None,
3834
                     bias_attr=None,
C
chengduoZH 已提交
3835
                     use_cudnn=True,
3836
                     act=None,
C
caoying03 已提交
3837
                     name=None):
Y
Yu Yang 已提交
3838
    """
3839
    **Convlution3D transpose layer**
3840

3841
    The convolution3D transpose layer calculates the output based on the input,
3842
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3843 3844 3845 3846 3847 3848
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3849 3850 3851
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3852 3853 3854 3855 3856

    For each input :math:`X`, the equation is:

    .. math::

3857
        Out = \sigma (W \\ast X + b)
3858 3859 3860

    In the above equation:

3861 3862
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3863 3864 3865 3866
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3867

3868 3869 3870 3871
    Example:

        - Input:

3872
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3873

3874
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3875 3876 3877

        - Output:

3878
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3879 3880

        Where
Y
Yu Yang 已提交
3881

3882 3883
        .. math::

3884 3885 3886
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3887 3888

    Args:
3889
        input(Variable): The input image with [N, C, D, H, W] format.
3890 3891 3892
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3893
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3894 3895
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3896
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3897 3898 3899
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3900 3901
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3902
        stride(int|tuple): The stride size. If stride is a tuple, it must
3903 3904
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3905
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3906 3907 3908
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3909 3910 3911 3912 3913
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3914 3915 3916 3917 3918 3919 3920 3921 3922
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3923 3924
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3925 3926
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3927 3928
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3929 3930

    Returns:
3931
        Variable: The tensor variable storing the convolution transpose result.
3932 3933

    Raises:
3934 3935
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3936 3937 3938 3939

    Examples:
       .. code-block:: python

3940 3941
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3942
    """
C
chengduo 已提交
3943
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3944 3945
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3946
    if not isinstance(input, Variable):
3947
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3948 3949
    input_channel = input.shape[1]

3950 3951 3952
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3953

C
chengduoZH 已提交
3954 3955 3956
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3957 3958 3959 3960 3961 3962
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3963 3964 3965
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3966

3967
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3968
                         padding[0] - 1) // dilation[0] + 1
3969
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3970
                         padding[1] - 1) // dilation[1] + 1
3971
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3972
                         padding[2] - 1) // dilation[2] + 1
3973
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3974
    else:
3975 3976
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3977

3978
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3979
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3980 3981 3982
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3983
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3984
    helper.append_op(
3985
        type=l_type,
Y
Yu Yang 已提交
3986 3987
        inputs={'Input': [input],
                'Filter': [img_filter]},
3988
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3989 3990 3991 3992
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3993
            'groups': groups,
C
chengduoZH 已提交
3994 3995
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3996

3997 3998
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3999
    return out
Y
yangyaming 已提交
4000 4001


Y
yangyaming 已提交
4002
def sequence_expand(x, y, ref_level=-1, name=None):
4003
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4004 4005 4006 4007
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4008 4009 4010 4011 4012

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4013
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4014
                x.data = [[a], [b], [c], [d]]
4015 4016 4017
                x.dims = [4, 1]

            y is a LoDTensor:
4018 4019
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4020

Y
yangyaming 已提交
4021
            ref_level: 0
4022

Y
yangyaming 已提交
4023
            then output is a 1-level LoDTensor:
4024
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4025
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4026 4027 4028 4029
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4030
                x.data = [[a], [b], [c]]
4031 4032 4033
                x.dims = [3, 1]

            y is a LoDTensor:
4034
                y.lod = [[2, 0, 3]]
4035

Y
yangyaming 已提交
4036
            ref_level: -1
4037

Y
yangyaming 已提交
4038 4039 4040
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4041 4042 4043
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4044 4045
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4046
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4047
                        will be named automatically.
4048 4049 4050 4051 4052 4053

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4054 4055
	
            import paddle.fluid.layers as layers
4056 4057 4058
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4059
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4060
    """
L
lujun 已提交
4061
    assert not in_dygraph_mode(), (
4062
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4063
    helper = LayerHelper('sequence_expand', input=x, **locals())
4064
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4065
    tmp = helper.create_variable_for_type_inference(dtype)
4066
    helper.append_op(
Y
yangyaming 已提交
4067 4068 4069 4070 4071
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4072
    return tmp
4073 4074


C
chengduo 已提交
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4123
            import paddle.fluid.layers as layers
C
chengduo 已提交
4124 4125 4126 4127 4128 4129

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4130
    assert not in_dygraph_mode(), (
4131
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4132 4133
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4134
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4135 4136 4137 4138 4139 4140 4141 4142
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4143
@templatedoc()
4144
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4145 4146 4147 4148 4149
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4150 4151 4152
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4153
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4154 4155 4156 4157
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4158 4159 4160
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4161

F
fengjiayi 已提交
4162
    Returns:
M
minqiyang 已提交
4163
        Variable: The padded sequence batch and the original lengths before
4164
                  padding. All sequences has the same length.
M
minqiyang 已提交
4165

F
fengjiayi 已提交
4166 4167 4168 4169 4170 4171 4172
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4173
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4174
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4175 4176 4177
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4178
    assert not in_dygraph_mode(), (
4179
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4180 4181
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4182 4183
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4184 4185 4186 4187

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4188 4189 4190 4191 4192 4193
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4194 4195
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4196
        attrs={'padded_length': maxlen})
4197
    return out, length
F
fengjiayi 已提交
4198 4199


4200
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4201
    """
4202
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4203

4204 4205
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4206 4207 4208 4209 4210 4211 4212 4213 4214
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4215 4216 4217
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4218
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4219 4220 4221 4222 4223 4224

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4225
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4226 4227 4228 4229 4230 4231

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4232 4233
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4246
    assert not in_dygraph_mode(), (
4247
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4248 4249
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4250
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4262 4263 4264 4265 4266 4267 4268
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4269
                is_accumulated=True,
4270 4271
                name=None,
                return_parent_idx=False):
4272
    """
4273 4274
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4275 4276 4277

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4278 4279

    This layer does the search in beams for one time step. Specifically, it
4280 4281 4282
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4294 4295 4296 4297

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4298

4299
    Args:
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4323 4324
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4325 4326
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4327 4328 4329 4330
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4331

4332
    Returns:
4333 4334 4335 4336
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4337 4338 4339 4340

    Examples:
        .. code-block:: python

4341 4342
            import paddle.fluid as fluid

4343 4344 4345
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4358
                axis=0)
4359
            selected_ids, selected_scores = fluid.layers.beam_search(
4360 4361 4362 4363 4364 4365 4366
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4367
    helper = LayerHelper('beam_search', **locals())
4368 4369 4370 4371 4372 4373
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4374

X
Xin Pan 已提交
4375 4376 4377
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4378 4379 4380 4381 4382
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4383 4384 4385

    helper.append_op(
        type='beam_search',
4386
        inputs=inputs,
Q
Qiao Longfei 已提交
4387 4388 4389
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4390
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4391 4392 4393 4394 4395 4396
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4397
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4398
        })
4399 4400 4401 4402
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4403 4404


4405 4406 4407 4408 4409 4410 4411
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4412

4413 4414 4415 4416 4417 4418 4419 4420 4421
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4422

4423 4424 4425 4426 4427 4428
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4429

4430 4431
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4432

4433 4434
            import paddle.fluid as fluid

4435 4436
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4437 4438 4439
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4440 4441 4442
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4443 4444
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4460 4461 4462 4463
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4464
              param_attr=None,
C
caoying03 已提交
4465 4466
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4467 4468 4469 4470
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4471
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4472

4473
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4474

4475
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4476

4477
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4478 4479 4480

            h_t & = o_t tanh(c_t)

4481 4482 4483 4484 4485 4486
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4487 4488 4489

        .. math::

4490
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4491 4492 4493 4494 4495 4496 4497 4498

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4499
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4500 4501

    Args:
Y
yangyaming 已提交
4502 4503 4504 4505 4506 4507
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4508
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4521 4522
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4523 4524

    Returns:
Y
yangyaming 已提交
4525
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4526 4527

    Raises:
4528 4529 4530 4531
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4532 4533 4534 4535 4536

    Examples:

        .. code-block:: python

4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4564
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4565 4566 4567 4568
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4569 4570
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4571 4572 4573
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4574
    size = cell_t_prev.shape[1]
4575
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4576 4577
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4578
                param_attr=param_attr,
4579
                bias_attr=bias_attr)
Y
yangyaming 已提交
4580
    dtype = x_t.dtype
X
Xin Pan 已提交
4581 4582
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4583 4584 4585 4586 4587 4588 4589 4590 4591

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4592
    return h, c
G
guosheng 已提交
4593 4594


C
caoying03 已提交
4595
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4596
    """
Y
yangyaming 已提交
4597
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4598 4599 4600

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4601
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4602 4603
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4604 4605
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4606
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4607
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4608
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4609 4610
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4611 4612 4613

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4614

G
guosheng 已提交
4615 4616 4617
    Examples:
        .. code-block:: python

4618
            import paddle.fluid as fluid
G
guosheng 已提交
4619 4620 4621
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4622
            # Each example is followed by the corresponding output tensor.
4623
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4624 4625 4626 4627
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4628

4629
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4630 4631
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4632
            # Each example is followed by the corresponding output tensor.
4633 4634 4635
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4636

G
guosheng 已提交
4637 4638
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4639
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4640 4641
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4642 4643 4644 4645 4646
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4647
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4648 4649 4650 4651
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4652 4653


C
caoying03 已提交
4654
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4655
    """
Y
Yibing Liu 已提交
4656
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4657 4658 4659

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4660 4661 4662
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4663
            must be in the range :math:`[-rank(input), rank(input))`. If
4664
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4665
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4666 4667
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4668
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4669
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4670
                       will be named automatically.
G
guosheng 已提交
4671 4672

    Returns:
Y
Yibing Liu 已提交
4673
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4674

G
guosheng 已提交
4675 4676 4677
    Examples:
        .. code-block:: python

4678
            import paddle.fluid as fluid
G
guosheng 已提交
4679 4680 4681 4682
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4683
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4684 4685 4686
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4687
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4688

4689
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4690 4691 4692
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4693 4694 4695
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4696 4697
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4698
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4699 4700
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4701 4702 4703 4704 4705
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4706
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4707 4708 4709 4710
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4711 4712


C
caoying03 已提交
4713
def reduce_max(input, dim=None, keep_dim=False, name=None):
4714
    """
Y
yangyaming 已提交
4715
    Computes the maximum of tensor elements over the given dimension.
4716 4717 4718

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4719
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4720 4721 4722
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4723
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4724 4725
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4726
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4727 4728
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4729 4730 4731

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4732

4733 4734 4735
    Examples:
        .. code-block:: python

4736
            import paddle.fluid as fluid
4737 4738 4739 4740
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4741
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4742 4743 4744 4745
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4746

4747
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4748 4749 4750
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4751 4752 4753
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4754 4755
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4756
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4757 4758
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4759 4760 4761 4762 4763
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4764
            'dim': dim if dim != None else [0],
4765 4766 4767 4768 4769 4770
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4771
def reduce_min(input, dim=None, keep_dim=False, name=None):
4772
    """
Y
yangyaming 已提交
4773
    Computes the minimum of tensor elements over the given dimension.
4774 4775 4776

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4777
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4778 4779 4780
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4781
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4782 4783
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4784
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4785 4786
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4787 4788 4789

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4790

4791 4792 4793
    Examples:
        .. code-block:: python

4794
            import paddle.fluid as fluid
4795 4796 4797 4798
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4799
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4800 4801 4802 4803
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4804

4805
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4806 4807 4808
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4809 4810 4811
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4812 4813
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4814
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4815 4816
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4817 4818 4819 4820 4821
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4822
            'dim': dim if dim != None else [0],
4823 4824 4825 4826
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4827 4828


4829 4830 4831 4832 4833 4834
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4835
        dim (list|int|None): The dimensions along which the product is performed. If
4836 4837
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4838 4839
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4840 4841 4842
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4843
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4844
            layer will be named automatically.
4845 4846 4847 4848 4849 4850 4851

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

4852
            import paddle.fluid as fluid
4853 4854 4855 4856
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4857
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4858 4859 4860
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4861
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4862
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4863

4864
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4865 4866 4867
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4868 4869 4870
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4871 4872
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4873
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4874 4875
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4876 4877 4878 4879 4880
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4881
            'dim': dim if dim != None else [0],
4882 4883 4884 4885 4886 4887
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4888 4889
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4890
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4910
        
Z
zhoukunsheng 已提交
4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4940
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4960

Z
zhoukunsheng 已提交
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4983 4984 4985 4986 4987
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4988
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4989
    """
C
caoying03 已提交
4990
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4991 4992 4993

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4994 4995 4996 4997 4998
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4999
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5000
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5001
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5002 5003
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5004 5005

    Returns:
D
dzhwinter 已提交
5006
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5007 5008 5009 5010

    Examples:
        .. code-block:: python

5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5026 5027 5028 5029 5030 5031 5032 5033
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5034
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5035 5036 5037
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5038
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5052 5053 5054 5055 5056 5057 5058 5059 5060


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5061
    .. math::
5062 5063

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5064 5065 5066 5067 5068

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5069
        x(Variable|list): The input tensor to l2_normalize layer.
5070
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5071 5072
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5073
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5074
            the default value is 1e-12.
5075
        name(str|None): A name for this layer(optional). If set None, the layer \
5076
            will be named automatically.
C
caoying03 已提交
5077 5078

    Returns:
5079
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5080 5081

    Examples:
5082

C
caoying03 已提交
5083 5084
        .. code-block:: python

5085 5086 5087 5088
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5089 5090
    """

F
fengjiayi 已提交
5091 5092
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5093 5094
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5095 5096
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5097
    helper.append_op(
5098 5099 5100 5101
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5102
        attrs={
5103 5104
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5105 5106
        })
    return out
5107 5108


S
sneaxiy 已提交
5109
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5110
    """
Y
ying 已提交
5111 5112 5113 5114
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5115

C
chengduoZH 已提交
5116
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5117
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5118

5119 5120 5121 5122 5123
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5124
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5125

C
chengduoZH 已提交
5126
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5127
      performs in the following way.
G
guosheng 已提交
5128

5129
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5130
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5131
        last two dimensions and a batched matrix multiply supporting broadcast
5132
        applies on the two tensors.
G
guosheng 已提交
5133

Y
ying 已提交
5134 5135
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5136
    removed after matrix multiplication.
G
guosheng 已提交
5137 5138 5139

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5140 5141 5142
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5143
        alpha (float): The scale of output. Default 1.0.
5144
        name(str|None): A name for this layer(optional). If set None, the layer
5145
            will be named automatically.
G
guosheng 已提交
5146 5147

    Returns:
5148
        Variable: The product Tensor variable.
G
guosheng 已提交
5149

G
guosheng 已提交
5150 5151 5152
    Examples:
        .. code-block:: python

5153
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5154
            # x: [B, ..., M, K], y: [B, ..., K, N]
5155
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5156

5157
            # x: [B, M, K], y: [B, K, N]
5158
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5159

5160
            # x: [B, M, K], y: [K, N]
5161
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5162

5163
            # x: [M, K], y: [K, N]
5164
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5165 5166

            # x: [B, M, K], y: [K]
5167
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5168

5169
            # x: [K], y: [K]
5170
            # fluid.layers.matmul(x, y)  # out: [1]
5171

Y
ying 已提交
5172
            # x: [M], y: [N]
5173 5174 5175 5176 5177
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5178
    """
Y
ying 已提交
5179 5180 5181 5182 5183 5184 5185

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5186
            y_shape = y_shape + [1]
Y
ying 已提交
5187 5188 5189 5190 5191 5192 5193

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5194 5195
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5196

C
chengduo 已提交
5197
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5198
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5199 5200 5201
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5202
                if dim_x != y_shape[i]:
C
chengduo 已提交
5203 5204
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5205 5206 5207

    __check_input(x, y)

5208
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5209
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5210
    helper.append_op(
5211 5212 5213 5214
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5215 5216 5217
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5218
            'alpha': float(alpha),
S
sneaxiy 已提交
5219
        })
5220
    return out
5221 5222


5223
def topk(input, k, name=None):
Q
qingqing01 已提交
5224 5225 5226 5227
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5228
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5229 5230 5231 5232 5233 5234
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5256 5257 5258
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5259
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5260
                 of input.
5261
        name(str|None): A name for this layer(optional). If set None, the layer
5262
                       will be named automatically.
F
fengjiayi 已提交
5263
                       Default: None
Q
qingqing01 已提交
5264 5265

    Returns:
5266 5267 5268
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5269
        within the last dimension of input.
Q
qingqing01 已提交
5270

F
fengjiayi 已提交
5271 5272
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5273 5274 5275 5276

    Examples:
        .. code-block:: python

5277 5278
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5279 5280 5281
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5282 5283
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5284 5285 5286 5287 5288 5289
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5290 5291
    helper.append_op(
        type="top_k",
W
whs 已提交
5292
        inputs=inputs,
Q
qingqing01 已提交
5293 5294
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5295
        attrs=attrs)
Q
qingqing01 已提交
5296 5297 5298 5299 5300
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5301
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5302
    """
5303
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5304 5305 5306 5307 5308 5309 5310 5311
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5312

Y
ying 已提交
5313
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5314

5315
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5316 5317
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5318
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5319

5320
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5321 5322
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5323

5324 5325 5326
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5327
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5328
                          the length of reference string.
5329
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5330
                                     calculating edit distance.
5331
        name (str): The name of this layer. It is optional.
5332

W
wanghaoshuang 已提交
5333
    Returns:
W
wanghaoshuang 已提交
5334
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5335 5336 5337 5338

    Examples:
        .. code-block:: python

5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[1], dtype='int64')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            cost, _ = fluid.layers.edit_distance(input=x, label=y)

            cpu = fluid.core.CPUPlace()
            exe = fluid.Executor(cpu)
            exe.run(fluid.default_startup_program())

            import numpy
            x_ = numpy.random.randint(5, size=(2, 1)).astype('int64')
            y_ = numpy.random.randint(5, size=(2, 1)).astype('int64')

            print(x_)
            print(y_)

            x = fluid.create_lod_tensor(x_, [[2]], cpu)
            y = fluid.create_lod_tensor(y_, [[2]], cpu)

            outs = exe.run(feed={'x':x, 'y':y}, fetch_list=[cost.name])

            print(outs)
5361
    """
5362
    helper = LayerHelper("edit_distance", **locals())
5363

5364
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5365
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5366 5367
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5368 5369 5370 5371 5372

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5373
            attrs={"tokens": ignored_tokens})
5374 5375 5376 5377 5378
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5379
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5380
            attrs={"tokens": ignored_tokens})
5381 5382
        label = erased_label

5383
    # edit distance op
X
Xin Pan 已提交
5384 5385
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5386 5387 5388 5389
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5390 5391
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5392 5393
        attrs={"normalized": normalized})

5394
    return edit_distance_out, sequence_num
5395 5396 5397 5398 5399


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5400

Y
ying 已提交
5401 5402 5403 5404
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5422
        input.lod = [[4, 4]]
M
minqiyang 已提交
5423

W
whs 已提交
5424
        Computation:
5425

W
whs 已提交
5426 5427 5428 5429 5430 5431
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5432 5433 5434 5435 5436

        output.data = [[2],
                       [1],
                       [3]]

5437
        output.lod = [[2, 1]]
5438

W
whs 已提交
5439

5440 5441
    Args:

Y
ying 已提交
5442 5443 5444 5445 5446 5447 5448 5449 5450
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5451
        name (str): The name of this layer. It is optional.
5452 5453

    Returns:
H
haowang101779990 已提交
5454 5455 5456
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5457
                  LoD [[]] and dims [1, 1].
5458 5459 5460 5461

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5462
            import paddle.fluid as fluid
5463 5464
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5465
    """
5466
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5467
    _, topk_indices = topk(input, k=1)
5468 5469

    # ctc align op
X
Xin Pan 已提交
5470
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5471 5472 5473
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5474
        outputs={"Output": [ctc_out]},
5475 5476
        attrs={"merge_repeated": True,
               "blank": blank})
5477
    return ctc_out
5478 5479


W
Wu Yi 已提交
5480
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5481
    """
5482 5483
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5484
    to compute Connectionist Temporal Classification (CTC) loss.
5485 5486
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5487 5488 5489
    input tensor.

    Args:
5490
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5491 5492 5493 5494
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5495
       label (Variable): The ground truth of variable-length sequence,
5496 5497 5498
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5499 5500
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5501 5502 5503
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5504
         follewed by a mean_op.
W
Wu Yi 已提交
5505
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5506 5507

    Returns:
5508 5509
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5510 5511

    Examples:
5512

W
wanghaoshuang 已提交
5513
        .. code-block:: python
5514

B
Bai Yifan 已提交
5515 5516 5517 5518 5519
            import paddle.fluid as fluid
            label = fluid.layers.data(name='label', shape=[11, 8],
                                      dtype='float32', lod_level=1)
            predict = fluid.layers.data(name='predict', shape=[11, 1],
                                        dtype='float32')
5520
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5521 5522

    """
F
fengjiayi 已提交
5523
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5524 5525
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5526 5527 5528 5529 5530 5531
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5532 5533 5534 5535 5536
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5537
    return loss_out
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5553 5554 5555
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5556 5557 5558 5559 5560
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5561

5562
            out.lod  = [[0, 1, 3]]
5563 5564 5565 5566

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5567 5568 5569 5570 5571 5572 5573
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5574 5575 5576

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5577 5578

    Returns:
5579

5580 5581 5582 5583 5584
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5585 5586 5587
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5588
    """
L
lujun 已提交
5589
    assert not in_dygraph_mode(), (
5590
        "sequence layer is not supported in dygraph mode yet.")
5591
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5592
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5593 5594 5595 5596 5597 5598
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5599 5600


5601 5602 5603 5604
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5605 5606 5607 5608 5609 5610
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5611
        num_neg_samples=None,
5612 5613 5614
        name=None,
        sampler="uniform",
        custom_dist=None,
5615 5616
        seed=0,
        is_sparse=False):
5617 5618 5619 5620 5621 5622 5623
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5624 5625
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5626
            sample is 1.0.
C
chengduo 已提交
5627 5628 5629 5630 5631 5632 5633 5634 5635
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5636
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5637 5638
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5639 5640 5641
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5642
        custom_dist (float[]): A float[] with size=num_total_classes.
5643 5644 5645 5646
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5647
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5648

5649
    Returns:
Y
Yibing Liu 已提交
5650 5651 5652 5653 5654 5655
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


Y
Yibing Liu 已提交
5656
	    import numpy as np
Y
Yibing Liu 已提交
5657

Y
Yibing Liu 已提交
5658 5659 5660 5661 5662 5663 5664 5665
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5666

Y
Yibing Liu 已提交
5667 5668 5669 5670
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5671

Y
Yibing Liu 已提交
5672 5673 5674
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5675

Y
Yibing Liu 已提交
5676 5677 5678 5679
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5680

Y
Yibing Liu 已提交
5681 5682 5683 5684 5685 5686 5687 5688
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5689
    """
Y
Yang Yu 已提交
5690 5691 5692
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5693 5694

    dim = input.shape[1]
Y
Yang Yu 已提交
5695 5696 5697 5698 5699 5700
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5701
    inputs = {}
C
chengduo 已提交
5702 5703 5704 5705 5706 5707 5708
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5709 5710 5711
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5712

5713 5714 5715 5716
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5717 5718 5719 5720 5721 5722 5723

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5724 5725
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5726
        custom_dist_len = num_total_classes
5727 5728 5729 5730 5731 5732
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5733
            if normal_prob - 1.0 > 0:
5734
                bigs.append((i, normal_prob))
5735
            elif 1.0 - normal_prob > 0:
5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5751
            if big_left - 1.0 > 0:
5752
                bigs.append((big_idx, big_left))
5753
            elif 1.0 - big_left > 0:
5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5783 5784 5785 5786
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5787 5788 5789 5790 5791
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5792 5793 5794 5795
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5796

Y
Yang Yu 已提交
5797 5798
    attrs = {
        'num_total_classes': int(num_total_classes),
5799 5800
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5801
        'sampler': sampler,
5802 5803
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5804
    }
Y
Yang Yu 已提交
5805 5806 5807

    helper.append_op(
        type='nce',
C
chengduo 已提交
5808
        inputs=inputs,
Y
Yang Yu 已提交
5809 5810 5811 5812 5813 5814
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5815
    return cost / (num_neg_samples + 1)
5816 5817


C
chengduo 已提交
5818 5819
def hsigmoid(input,
             label,
5820
             num_classes,
C
chengduo 已提交
5821 5822
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5823
             name=None,
5824 5825 5826
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5827
             is_sparse=False):
W
weixing02 已提交
5828 5829
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5830
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5831
    complete binary tree, or you can use is_custom to pass your own tree to
5832
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5833 5834 5835 5836 5837 5838
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5839
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5840
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5841

5842 5843
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5844 5845 5846 5847
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5848
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5849
       related to the same batch of inputs.
5850

W
weixing02 已提交
5851
    Args:
M
minqiyang 已提交
5852
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5853 5854 5855 5856
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5857 5858
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5859
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5871
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5872
            it should be in leaf -> root order
M
minqiyang 已提交
5873 5874 5875
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5876
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5877
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5878
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5879
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5880
             of W and input will be sparse.
W
weixing02 已提交
5881 5882

    Returns:
J
JiabinYang 已提交
5883
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5884 5885 5886 5887 5888

    Examples:

        .. code-block:: python

5889
            import paddle.fluid as fluid
G
guosheng 已提交
5890 5891 5892
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5893 5894 5895 5896
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5897 5898
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5899
    dim = input.shape[1]
5900
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5901 5902 5903
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5904 5905 5906 5907 5908 5909 5910 5911 5912
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5913
    if (is_custom) and (path_code is None):
5914
        raise ValueError("path_code should not be None with custom tree")
5915
    elif (is_custom) and (path_table is None):
5916
        raise ValueError("path_table should not be None with custom tree")
5917
    elif (is_custom) and (num_classes is None):
5918
        raise ValueError("num_classes should not be None with custom tree")
5919 5920 5921
    else:
        pass

J
JiabinYang 已提交
5922
    weights = None
5923 5924 5925 5926
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5927
    if not is_custom:
J
JiabinYang 已提交
5928 5929 5930 5931 5932 5933 5934 5935
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5936
            shape=[num_classes, dim],
J
JiabinYang 已提交
5937 5938
            is_bias=False,
            dtype=input.dtype)
5939 5940 5941
    inputs = {
        "X": input,
        "W": weights,
5942
        "PathTable": path_table,
5943
        "PathCode": path_code,
5944 5945
        "Label": label
    }
W
weixing02 已提交
5946
    if helper.bias_attr:
5947
        if not is_custom:
J
JiabinYang 已提交
5948 5949
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5950
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5951 5952 5953 5954 5955 5956
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5957
                shape=[num_classes, 1],
J
JiabinYang 已提交
5958 5959 5960
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5961 5962
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5963
        inputs=inputs,
W
weixing02 已提交
5964
        outputs={"Out": out,
5965 5966 5967 5968 5969 5970 5971
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5972 5973 5974
    return out


Y
fix ci.  
ying 已提交
5975
def transpose(x, perm, name=None):
Y
ying 已提交
5976 5977 5978 5979 5980 5981 5982
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5983 5984 5985
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5986 5987 5988 5989 5990 5991 5992

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5993
            # use append_batch_size=False to avoid prepending extra
5994
            # batch size in shape
5995
            import paddle.fluid as fluid
5996
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5997
                            dtype='float32', append_batch_size=False)
5998
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5999 6000
    """

Y
fix ci.  
ying 已提交
6001
    if len(perm) != len(x.shape):
Y
ying 已提交
6002 6003
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
6004
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
6005 6006 6007 6008 6009 6010
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6011 6012

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6013 6014
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6015
    helper.append_op(
6016
        type='transpose2',
Y
fix ci.  
ying 已提交
6017
        inputs={'X': [x]},
6018 6019
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6020 6021
        attrs={'axis': perm})
    return out
6022 6023


6024 6025 6026 6027 6028 6029 6030
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6031
    """
6032 6033 6034 6035 6036 6037 6038
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6067 6068 6069 6070 6071 6072 6073 6074 6075
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6076 6077 6078
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6079 6080 6081 6082 6083
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6111 6112 6113
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6126
            output.dims = {8, 8}
6127

6128
            output.lod = [[4, 4]]
6129

T
Tink_Y 已提交
6130
    Examples:
6131 6132 6133

        .. code-block:: python

B
Bai Yifan 已提交
6134 6135 6136
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6137
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6138 6139
                input=data, stride=[1, 1], filter_size=[2, 2])

6140 6141

    """
L
lujun 已提交
6142
    assert not in_dygraph_mode(), (
6143
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6144 6145 6146 6147 6148 6149 6150 6151 6152 6153

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6154
    inputs = {"X": input}
6155
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6156 6157 6158 6159 6160
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6161
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6162
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6163
    helper.append_op(
6164
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6165
    return out
6166 6167


Y
yuyang18 已提交
6168
@templatedoc()
6169
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6170 6171
    """
    ${comment}
6172 6173

    Args:
Y
yuyang18 已提交
6174
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6175 6176
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6177 6178 6179 6180 6181
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6182
        ${out_comment}.
6183 6184

    Examples:
Y
yuyang18 已提交
6185 6186 6187 6188
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6189 6190 6191 6192 6193 6194
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6195
    out = helper.create_variable_for_type_inference(dtype)
6196 6197 6198 6199 6200
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6201
    return helper.append_activation(out)
6202 6203


Y
yuyang18 已提交
6204
@templatedoc()
6205 6206
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6207 6208
    ${comment}

L
lujun 已提交
6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6252 6253

    Args:
Y
yuyang18 已提交
6254 6255
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6256 6257

    Returns:
Y
yuyang18 已提交
6258
        ${out_comment}.
6259 6260
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6261 6262 6263 6264 6265

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6266
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6267 6268 6269 6270 6271 6272
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6273 6274


6275 6276 6277
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6278
                               ignore_index=kIgnoreIndex,
6279
                               numeric_stable_mode=True,
6280 6281
                               return_softmax=False,
                               axis=-1):
6282 6283
    """
    **Softmax With Cross Entropy Operator.**
6284

6285
    Cross entropy loss with softmax is used as the output layer extensively. This
6286 6287 6288
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6289

6290 6291 6292
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6293

6294 6295 6296 6297
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6298

6299
    The equation is as follows:
6300

6301
    1) Hard label (one-hot label, so every sample has exactly one class)
6302

6303 6304 6305 6306
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6307

6308 6309 6310
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6311

6312 6313 6314 6315
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6316 6317
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6318 6319

    .. math::
6320

H
haowang101779990 已提交
6321
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6322

H
haowang101779990 已提交
6323
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6324

H
haowang101779990 已提交
6325
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6326 6327 6328

    and then cross entropy loss is calculated by softmax and label.

6329
    Args:
6330 6331 6332 6333 6334 6335
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6336
        soft_label (bool): A flag to indicate whether to interpretate the given
6337
            labels as soft labels. Default False.
M
minqiyang 已提交
6338 6339
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6340 6341
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6342 6343
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6344 6345 6346 6347
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6348
                                    Note that the speed may be slower when use
6349
                                    stable algorithm. Default: True
6350
        return_softmax (bool): A flag indicating whether to return the softmax
6351
                               along with the cross entropy loss. Default: False
6352 6353 6354
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6355

6356
    Returns:
H
haowang101779990 已提交
6357 6358
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6359 6360 6361 6362
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6363 6364 6365 6366 6367 6368 6369

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6370 6371
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6372 6373
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6374 6375
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6376 6377 6378 6379 6380 6381
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6382 6383 6384
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6385 6386
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6387
        })
6388 6389 6390 6391

    if return_softmax:
        return loss, softmax

6392 6393 6394
    return loss


6395 6396 6397
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6398
                                       num_true=1,
6399
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6400 6401 6402
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6403
                                       seed=0):
X
xuezhong 已提交
6404 6405 6406 6407 6408
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6409
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6410 6411 6412 6413 6414 6415 6416 6417
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6418
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6419 6420 6421 6422 6423 6424 6425 6426
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6427
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6439
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6440 6441 6442 6443 6444
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6445
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6446
            logits.
X
xuezhong 已提交
6447 6448 6449 6450 6451
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6452 6453 6454
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6455 6456 6457 6458 6459 6460 6461
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6462 6463 6464
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
X
xuezhong 已提交
6465
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
6466
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6467
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6468
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6469 6470 6471 6472 6473 6474 6475 6476
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6477 6478
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6479 6480
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6481 6482 6483 6484 6485

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6486
            'Labels': label,
X
xuezhong 已提交
6487 6488
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6489 6490 6491 6492
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6493
            'SampledLabels': sampled_label,
6494 6495 6496
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6497 6498
        },
        attrs={
X
xuezhong 已提交
6499
            'use_customized_samples': use_customized_samples,
6500
            'uniq': True,
X
xuezhong 已提交
6501 6502 6503 6504
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6505 6506
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6507 6508 6509 6510 6511 6512
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6513 6514
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6515
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6516
                'Label': sampled_softlabel},
X
xuezhong 已提交
6517 6518 6519
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6520
            'soft_label': True,
X
xuezhong 已提交
6521 6522 6523
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6524
    return loss / num_true
X
xuezhong 已提交
6525 6526


6527 6528
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6529 6530
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6531
    For each instance, it computes the smooth L1 loss element by element first
6532
    and then sums all the losses. So the shape of ouput Variable is
6533
    [batch_size, 1].
6534

6535 6536
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6537
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6538
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6539
            L1 loss op with same shape as :attr:`x`.
6540
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6541 6542
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6543
            by this tensor element by element.
6544
        outside_weight (Variable|None): A tensor with rank at least 2. This
6545 6546
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6547
            element by element.
6548
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6549 6550
           scalar with default value 1.0.

6551
    Returns:
6552
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6553 6554 6555 6556 6557

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6558 6559
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6560
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6561
            out = fluid.layers.smooth_l1(x=fc, y=label)
6562
    """
6563

6564
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6565 6566
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6567 6568 6569 6570 6571 6572 6573 6574 6575 6576
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6577
        attrs={'sigma': sigma if sigma is not None else 1.0})
6578
    return loss
6579 6580 6581 6582


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6583
    This layer creates the one-hot representations for input indices.
6584 6585

    Args:
Y
Yibing Liu 已提交
6586 6587
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6588 6589

    Returns:
Y
Yibing Liu 已提交
6590
        Variable: The one-hot representations of input.
6591 6592

    Examples:
C
caoying03 已提交
6593
        .. code-block:: python
6594

Y
Yibing Liu 已提交
6595 6596
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6597 6598
    """
    helper = LayerHelper("one_hot", **locals())
6599

X
Xin Pan 已提交
6600
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6601 6602 6603 6604 6605 6606 6607 6608 6609 6610

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6611
            depth.stop_gradient = True
6612 6613
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6614 6615
    helper.append_op(
        type="one_hot",
6616 6617
        inputs=inputs,
        attrs=attrs,
6618 6619
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6620
    return one_hot_out
Y
Yu Yang 已提交
6621 6622


Y
Yu Yang 已提交
6623
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6624
    """
Y
yi.wu 已提交
6625 6626 6627
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6628 6629 6630 6631 6632 6633

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6634 6635
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6636 6637 6638 6639 6640

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6641
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6642 6643
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6644 6645
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6646 6647 6648 6649 6650
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6651
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6652
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6653 6654
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6655
            outputs={'Out': [counter]},
M
minqiyang 已提交
6656 6657
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6658 6659 6660
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6661 6662


6663
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6664
    """
C
caoying03 已提交
6665 6666
    Gives a new shape to the input Tensor without changing its data.

6667 6668 6669 6670 6671
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6672

6673
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6674

6675 6676 6677 6678
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6679
    2. 0 means the actual dimension value is going to be copied from the
6680 6681 6682 6683
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6684 6685

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6686
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6687
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6688

6689
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6690 6691
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6692 6693
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6694
    dimensions.
C
caoying03 已提交
6695

6696
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6697 6698 6699 6700
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6701 6702

    Args:
6703
        x(variable): The input tensor.
C
caoying03 已提交
6704 6705
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6706 6707 6708 6709 6710
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6711 6712
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6713 6714 6715
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6716
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6717
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6718

6719
    Returns:
G
guosheng 已提交
6720 6721 6722 6723
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6724

X
Xin Pan 已提交
6725 6726 6727
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6728 6729
    Examples:
        .. code-block:: python
G
guosheng 已提交
6730

6731
            data = fluid.layers.data(
6732
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6733
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6734
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6735 6736 6737
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6738
        raise ValueError("Input shape must be a python list or tuple.")
6739

X
Xin Pan 已提交
6740 6741 6742 6743 6744
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6745

6746 6747
    # Validate the shape
    unk_dim_idx = -1
6748
    contain_var = False
6749
    for dim_idx, dim_size in enumerate(shape):
6750 6751 6752 6753
        if isinstance(dim_size, Variable):
            contain_var = True
            continue

6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6766
    helper = LayerHelper("reshape2", **locals())
6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
        if contain_var:
            new_shape_tensor = []
            for dim in shape:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_shape_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = helper.create_variable_for_type_inference(
                        'int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_shape_tensor.append(temp_out)
            inputs['ShapeTensor'] = new_shape_tensor
            attrs = {}

        else:
            attrs = {'shape': shape}
6789 6790
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6791
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6792
    helper.append_op(
6793
        type="reshape2",
X
Xin Pan 已提交
6794
        inputs=inputs,
6795
        attrs=attrs,
6796 6797
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6798

D
dzhwinter 已提交
6799
    return helper.append_activation(out)
6800

6801

6802
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6803
    """
M
minqiyang 已提交
6804 6805 6806
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6807
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6808

H
haowang101779990 已提交
6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6830

Y
Yibing Liu 已提交
6831
    Args:
6832
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6833
        axes (list): List of integers, indicating the dimensions to be squeezed.
6834
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6835 6836 6837 6838 6839 6840 6841

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

6842
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
6843
            x = layers.data(name='x', shape=[5, 1, 10])
6844
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6845
    """
L
lujun 已提交
6846
    assert not in_dygraph_mode(), (
L
lujun 已提交
6847
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6848
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6849 6850
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6851
    helper.append_op(
6852
        type="squeeze2",
6853
        inputs={"X": input},
Y
Yibing Liu 已提交
6854
        attrs={"axes": axes},
6855 6856
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6857

6858 6859 6860
    return out


6861
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6862
    """
M
minqiyang 已提交
6863 6864 6865
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6866

M
minqiyang 已提交
6867
    For example:
H
haowang101779990 已提交
6868 6869 6870

    .. code-block:: text

M
minqiyang 已提交
6871
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6872
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6873

Y
Yibing Liu 已提交
6874
    Args:
6875
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6876
        axes (list): List of integers, indicating the dimensions to be inserted.
6877
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6878 6879 6880 6881 6882 6883 6884

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

6885 6886 6887
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6888 6889
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6890 6891
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6892
    helper.append_op(
6893
        type="unsqueeze2",
6894
        inputs={"X": input},
Y
Yibing Liu 已提交
6895
        attrs={"axes": axes},
6896 6897
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6898

6899 6900
    return out

6901

Y
yangyaming 已提交
6902
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6903
    """
Y
Yibing Liu 已提交
6904
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6905 6906 6907 6908
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6909
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6910 6911 6912 6913 6914 6915

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6916
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6917 6918 6919
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6920
            target_lod: [4, 2]
Y
yangyaming 已提交
6921 6922

            then we get a 1-level LoDTensor:
6923
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6924 6925 6926 6927 6928 6929
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6930
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6931 6932 6933 6934
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6935
                y.data = [[2, 4]]
Y
yangyaming 已提交
6936 6937 6938
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6939
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6940 6941 6942 6943 6944 6945
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6946
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6947 6948 6949 6950
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6951
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6952 6953 6954 6955
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6956
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6957 6958 6959 6960 6961
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6962
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6963
                           from :attr:`y`.
Y
yangyaming 已提交
6964
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6965
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6966 6967

    Returns:
Y
Yibing Liu 已提交
6968
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6969 6970

    Raises:
Y
Yibing Liu 已提交
6971
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6972 6973 6974 6975

    Examples:
        .. code-block:: python

6976 6977 6978
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
6979 6980
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6981
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7007
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
7036 7037
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7050 7051 7052
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7066 7067 7068 7069


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7070
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7071
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7072

G
guosheng 已提交
7073 7074 7075 7076
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7099
                         The length of :attr:paddings must be
G
guosheng 已提交
7100 7101 7102 7103 7104 7105 7106 7107 7108 7109
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7110

G
guosheng 已提交
7111
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7112 7113
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7114 7115 7116 7117 7118
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7119
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7120 7121 7122 7123 7124 7125 7126
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7127 7128


C
chengduo 已提交
7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7160 7161
		And
            pad_value = -1,
C
chengduo 已提交
7162

T
Tink_Y 已提交
7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7193 7194 7195
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7196 7197 7198 7199 7200
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7201
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7202 7203 7204 7205 7206 7207 7208 7209 7210
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7211 7212 7213 7214 7215 7216 7217
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7218 7219
    called label-smoothing regularization (LSR).

7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7243
                              be :math:`(1, class\_num)`.
7244 7245
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7246
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7247 7248 7249 7250 7251 7252 7253 7254 7255
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7256 7257
            
            import paddle.fluid.layers as layers
7258 7259 7260 7261 7262 7263 7264 7265 7266 7267

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7268
    smooth_label = helper.create_variable_for_type_inference(dtype)
7269 7270 7271 7272 7273 7274 7275
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7276 7277


W
wopeizl 已提交
7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7326 7327


J
jerrywgz 已提交
7328 7329 7330 7331 7332 7333
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7334 7335
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
7352 7353 7354 7355
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7356 7357 7358
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7359 7360 7361 7362 7363 7364
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7365
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7406 7407
        .. code-block:: python

S
SunGaofeng 已提交
7408 7409 7410
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7411
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7412
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7413 7414
    """
    label = one_hot(label, depth=input.shape[-1])
7415
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7416 7417 7418 7419 7420 7421
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7422 7423


7424 7425 7426 7427
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7428
                 resample='BILINEAR',
7429 7430
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7431
                 align_mode=1):
7432
    """
Q
qiaolongfei 已提交
7433
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7434

7435
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7436 7437 7438
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7439

7440
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7441

7442
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7443

7444 7445 7446 7447 7448 7449 7450 7451 7452 7453
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7454
    Align_corners and align_mode are optinal parameters,the calculation method 
7455 7456 7457 7458
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7459
    .. code-block:: text
7460

T
Tink_Y 已提交
7461
        For scale:
7462
          
T
Tink_Y 已提交
7463
            if align_corners = True && out_size > 1 :
7464

T
Tink_Y 已提交
7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7476

T
Tink_Y 已提交
7477 7478
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7479

T
Tink_Y 已提交
7480 7481
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7482

T
Tink_Y 已提交
7483 7484
          else:
              align_corners = True
7485

T
Tink_Y 已提交
7486 7487
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7488

T
Tink_Y 已提交
7489 7490
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7491

T
Tink_Y 已提交
7492 7493 7494 7495 7496 7497 7498 7499 7500 7501
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7502

T
Tink_Y 已提交
7503 7504 7505 7506
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7507

T
Tink_Y 已提交
7508 7509
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7510 7511 7512 7513 7514 7515 7516 7517 7518

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7519
    Args:
7520
        input (Variable): The input tensor of image resize layer,
7521 7522
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7523
        out_shape(list|tuple|Variable|None): Output shape of image resize
7524 7525
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7526
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7527
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7528
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7529
             Default: None.
7530 7531
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7532
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7533
                       currently.
7534
                       Default: 'BILINEAR'
7535 7536 7537
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7538
                                :attr:`out_shape` and :attr:`scale` specifying
7539 7540 7541 7542 7543 7544 7545
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7546 7547
                                constructing stage.
                                Default: None
7548 7549 7550 7551
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7552
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7553 7554
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7555 7556

    Returns:
Q
update  
qiaolongfei 已提交
7557 7558
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7559

7560 7561 7562
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7563
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7564 7565 7566
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7567
        ValueError: scale should be greater than zero.
7568 7569
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7570

7571 7572 7573
    Examples:
        .. code-block:: python

R
ruri 已提交
7574
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7575
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7576
    """
7577 7578 7579 7580
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7581 7582
    if resample not in resample_methods:
        raise ValueError(
7583
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7584
        )
7585
    resample_type = resample_methods[resample]
7586 7587 7588 7589 7590 7591

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7592
    if out_shape is None and scale is None:
7593
        raise ValueError("One of out_shape and scale must not be None.")
7594
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7595
    dtype = helper.input_dtype()
7596 7597 7598 7599

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7600
    inputs = {"X": input}
D
dengkaipeng 已提交
7601
    attrs = {
D
dengkaipeng 已提交
7602 7603
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7604 7605 7606 7607 7608
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7609
    if out_shape is not None:
7610 7611 7612 7613
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7614
            inputs['OutSize'] = out_shape
7615 7616
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7617 7618
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7619 7620 7621 7622 7623 7624 7625
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7626
    else:
D
dengkaipeng 已提交
7627 7628
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7629
        attrs['scale'] = float(scale)
7630

7631 7632 7633 7634 7635
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7636
    out = helper.create_variable_for_type_inference(dtype)
7637
    helper.append_op(
7638
        type='{}_interp'.format(resample_type),
7639
        inputs=inputs,
7640
        outputs={"Out": out},
D
dengkaipeng 已提交
7641
        attrs=attrs)
7642
    return out
F
stash  
fengjiayi 已提交
7643 7644


7645
@templatedoc(op_type="bilinear_interp")
7646 7647 7648 7649
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7650 7651
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7652
                    align_mode=1):
7653
    """
7654 7655
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7656 7657
    in priority order.

7658 7659 7660 7661
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7662 7663
    again in the other direction.

7664
    For details of bilinear interpolation, please refer to Wikipedia:
7665
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7666

T
tink2123 已提交
7667
    Align_corners and align_mode are optinal parameters,the calculation 
7668 7669 7670 7671
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7672
    .. code-block:: text
7673

T
Tink_Y 已提交
7674
        For scale:
7675
          
T
Tink_Y 已提交
7676
            if align_corners = True && out_size > 1 :
7677

T
Tink_Y 已提交
7678 7679 7680 7681 7682
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7683

T
Tink_Y 已提交
7684 7685 7686 7687 7688 7689 7690 7691 7692 7693
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7694 7695


T
Tink_Y 已提交
7696
          else:
T
tink2123 已提交
7697

T
Tink_Y 已提交
7698 7699
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7700

T
Tink_Y 已提交
7701 7702
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7703 7704 7705



Y
yuyang18 已提交
7706 7707 7708
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7709 7710 7711
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7712

Y
yuyang18 已提交
7713
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7714
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7715
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7716
             Default: None.
Y
yuyang18 已提交
7717 7718

        name(str|None): The output variable name.
7719 7720 7721
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7722
                                :attr:`out_shape` and :attr:`scale` specifying
7723 7724 7725 7726 7727 7728 7729
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7730 7731
                                constructing stage.
                                Default: None
7732 7733
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7734 7735 7736

    Returns:
        ${out_comment}.
7737 7738 7739 7740

    Examples:
        .. code-block:: python

R
ruri 已提交
7741
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7742
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7743 7744
    """

7745 7746
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7747 7748


7749
@templatedoc(op_type="nearest_interp")
7750 7751 7752 7753
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7754 7755
                   actual_shape=None,
                   align_corners=True):
7756
    """
7757
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7758 7759
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7760 7761
    out_shape and scale in priority order.

7762 7763
    Example:

T
Tink_Y 已提交
7764 7765 7766 7767 7768
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7769

T
Tink_Y 已提交
7770 7771 7772 7773 7774 7775 7776 7777
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7778
          
T
Tink_Y 已提交
7779 7780
          if:
              align_corners = False
7781

T
Tink_Y 已提交
7782 7783
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7784

T
Tink_Y 已提交
7785 7786
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7787

T
Tink_Y 已提交
7788 7789
          else:
              align_corners = True
7790

T
Tink_Y 已提交
7791 7792
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7793

T
Tink_Y 已提交
7794 7795
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7796 7797


7798
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7799
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7800 7801 7802 7803

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7804 7805 7806
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7807

Y
yuyang18 已提交
7808
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7809
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7810
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7811
             Default: None.
Y
yuyang18 已提交
7812 7813

        name(str|None): The output variable name.
7814 7815 7816
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7817
                                :attr:`out_shape` and :attr:`scale` specifying
7818 7819 7820 7821 7822 7823 7824
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7825 7826
                                constructing stage.
                                Default: None
7827
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7828 7829 7830

    Returns:
        ${out_comment}.
7831 7832 7833 7834

    Examples:
        .. code-block:: python

R
ruri 已提交
7835
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7836
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7837 7838
    """

7839 7840
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7841 7842 7843 7844


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7845 7846 7847
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7848 7849 7850 7851 7852 7853 7854
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7855
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7856

7857
    Returns:
Q
update  
qiaolongfei 已提交
7858
        Variable: The output is a 4-D tensor of the shape
7859
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7860 7861 7862 7863 7864 7865

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7866 7867 7868 7869 7870 7871 7872 7873 7874 7875
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7876 7877 7878
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7879 7880 7881
    return image_resize(input=input, out_shape=out_shape, resample=resample)


7882
def gather(input, index, overwrite=True):
W
whs 已提交
7883
    """
Q
qiaolongfei 已提交
7884 7885
    **Gather Layer**

7886
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7887 7888 7889 7890
    of X indexed by `index` and concatenate them together.

    .. math::

7891
        Out = X[Index]
W
whs 已提交
7892 7893 7894 7895 7896 7897 7898


    .. code-block:: text


                Given:

7899 7900
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7901 7902 7903 7904 7905 7906 7907 7908 7909 7910
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7911
        input (Variable): The source input with rank>=1.
W
whs 已提交
7912
        index (Variable): The index input with rank=1.
7913 7914 7915 7916 7917 7918
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
7919 7920 7921 7922 7923

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7924

W
whs 已提交
7925 7926
        .. code-block:: python

Y
Yibing Liu 已提交
7927 7928
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7929 7930 7931 7932
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7933
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7934 7935 7936 7937
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
7938 7939
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
7940 7941 7942
    return out


7943
def scatter(input, index, updates, name=None, overwrite=True):
7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
7961 7962 7963 7964
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
7965 7966 7967 7968 7969 7970 7971 7972

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

7973 7974 7975 7976 7977
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
7978

7979
            output = fluid.layers.scatter(input, index, updates)
7980 7981 7982
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7983
    out = helper.create_variable_for_type_inference(dtype)
7984 7985 7986 7987 7988
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
7989
        attrs={'overwrite': overwrite},
7990 7991 7992 7993
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7994 7995 7996 7997 7998 7999 8000 8001 8002
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
8003

Q
Qingsheng Li 已提交
8004
    Given the following input:
H
haowang101779990 已提交
8005

Q
Qingsheng Li 已提交
8006
    .. code-block:: text
H
haowang101779990 已提交
8007

Q
Qingsheng Li 已提交
8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
8020

Q
Qingsheng Li 已提交
8021
    .. code-block:: text
H
haowang101779990 已提交
8022

Q
Qingsheng Li 已提交
8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
8038
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
8039 8040 8041 8042

    Examples:

        .. code-block:: python
8043 8044
	
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
8045

8046 8047 8048
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
8049 8050 8051
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
8052
    assert not in_dygraph_mode(), (
8053
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
8054 8055
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8056
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
8057 8058 8059 8060 8061 8062 8063 8064 8065
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8079

8080 8081 8082
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8083
    """
F
stash  
fengjiayi 已提交
8084
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8085
    dtype = x.dtype
X
Xin Pan 已提交
8086
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8087
    if seed is None:
8088
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8089
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8090
    if isinstance(seed, int):
F
fengjiayi 已提交
8091 8092 8093 8094 8095
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8096 8097 8098 8099
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8100
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8101 8102
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8103 8104
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8105
    return out
W
whs 已提交
8106 8107


8108
def log(x, name=None):
W
wanghaoshuang 已提交
8109 8110 8111 8112 8113
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8114
        Out = \\ln(x)
W
wanghaoshuang 已提交
8115 8116

    Args:
8117
        x (Variable): Input tensor.
8118 8119
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8120 8121 8122 8123 8124 8125 8126 8127

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8128
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8129
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8130 8131
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8132
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8133
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8134
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8135 8136 8137
    return out


8138
def relu(x, name=None):
W
wanghaoshuang 已提交
8139 8140
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8141
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8142 8143 8144 8145
    the tensor elementwise.

    .. math::

8146
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8147 8148

    Args:
8149
        x (Variable): The input tensor.
8150 8151
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8152 8153 8154 8155 8156 8157 8158 8159

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8160
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8161
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8162 8163
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8164
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8165
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8166 8167
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8168
    return out
8169 8170


C
chengduo 已提交
8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
8195 8196 8197 8198 8199 8200
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8216 8217 8218
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8219 8220 8221 8222
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8223
    .. math::
8224

H
haowang101779990 已提交
8225
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8226

8227
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8228 8229 8230 8231 8232
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8233
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8234
                           Its shape should be the same as input.
8235
        num_classes (int): The possible number of labels.
W
whs 已提交
8236 8237

    Returns:
M
minqiyang 已提交
8238 8239
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8240
                     Three variables:
M
minqiyang 已提交
8241

H
haowang101779990 已提交
8242 8243 8244
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8245 8246 8247 8248

    Examples:

        .. code-block:: python
8249

B
Bai Yifan 已提交
8250 8251 8252 8253 8254
            import paddle.fluid as fluid
            predict = fluid.layers.data(name='predict', shape=[3, 32, 32])
            label = fluid.layers.data(name='label', shape=[1])
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
                                                          num_classes=5)
W
whs 已提交
8255 8256 8257
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8258 8259 8260
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8261 8262
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8263 8264
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8265
        outputs={
W
whs 已提交
8266 8267 8268
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8269 8270 8271
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8314
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8315
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8316
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8334
            import paddle.fluid as fluid
8335 8336 8337 8338 8339 8340
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8341
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8342 8343 8344 8345 8346

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8347
            isinstance(shape, Variable)):
8348 8349 8350 8351 8352
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8353
    out = helper.create_variable_for_type_inference(x.dtype)
8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8371 8372


W
whs 已提交
8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8390

W
whs 已提交
8391
              out_shape = [2, 3, 5, 5]
8392

W
whs 已提交
8393
          Step 1:
8394

W
whs 已提交
8395 8396 8397
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8398

W
whs 已提交
8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8444
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8445
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8458

S
SunGaofeng 已提交
8459
            import paddle.fluid as fluid
W
whs 已提交
8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8471
            isinstance(out_shape, Variable)):
W
whs 已提交
8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8493 8494
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8495

8496 8497
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8498
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8499 8500 8501
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8502

8503 8504
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8505

H
haowang101779990 已提交
8506 8507
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8508 8509
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8510

H
haowang101779990 已提交
8511 8512 8513 8514 8515 8516 8517 8518
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8519 8520 8521

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

8539 8540 8541
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8556
    out = helper.create_variable_for_type_inference("float32")
8557 8558 8559 8560 8561 8562 8563 8564

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8565 8566


M
minqiyang 已提交
8567 8568
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8569
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8570
    which compares left score and right score passed in.
M
minqiyang 已提交
8571
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8572 8573 8574

    .. math::

H
haowang101779990 已提交
8575
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8576 8577

    Args:
M
minqiyang 已提交
8578
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8579 8580
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8581
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8582 8583
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8584

M
minqiyang 已提交
8585
    Returns:
M
minqiyang 已提交
8586
       Variable: The ranking loss.
H
haowang101779990 已提交
8587

M
minqiyang 已提交
8588
    Raises:
M
minqiyang 已提交
8589
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8590

M
minqiyang 已提交
8591
    Examples:
H
haowang101779990 已提交
8592

M
minqiyang 已提交
8593
        .. code-block:: python
H
haowang101779990 已提交
8594

Y
Yibing Liu 已提交
8595 8596 8597
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8598 8599
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8600
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8601 8602 8603 8604 8605 8606
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8607 8608
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8632
        .. code-block:: text
W
whs 已提交
8633

T
Tink_Y 已提交
8634
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8635

T
Tink_Y 已提交
8636 8637
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8638

T
Tink_Y 已提交
8639
	      Case 0:
M
minqiyang 已提交
8640

T
Tink_Y 已提交
8641 8642 8643
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8644

T
Tink_Y 已提交
8645 8646 8647
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8648

T
Tink_Y 已提交
8649
	      Case 1:
M
minqiyang 已提交
8650

T
Tink_Y 已提交
8651 8652
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8653

T
Tink_Y 已提交
8654 8655 8656
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8657

T
Tink_Y 已提交
8658
	      Case 2:
M
minqiyang 已提交
8659

T
Tink_Y 已提交
8660 8661
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8662

T
Tink_Y 已提交
8663 8664 8665
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8666 8667


W
whs 已提交
8668 8669
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8670
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
8688 8689 8690 8691 8692
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8693 8694 8695 8696
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8697
    out = helper.create_variable_for_type_inference(dtype)
8698 8699 8700 8701 8702 8703 8704 8705 8706
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8707
    helper.append_op(
8708
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8709 8710 8711 8712

    return out


8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8725 8726 8727 8728 8729

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8730 8731
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8732 8733
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8734
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8755 8756 8757 8758 8759

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8760 8761
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8762 8763
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8764
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8785 8786 8787 8788 8789

    Examples:

        .. code-block:: python

8790
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8791 8792
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8793 8794
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8795
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8817 8818 8819 8820 8821

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8822
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8823
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8824 8825
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8826
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8849 8850 8851 8852 8853

    Examples:

        .. code-block:: python

8854
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8855 8856
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8857 8858
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8859
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8881 8882 8883 8884 8885

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8886 8887
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8888 8889
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8890
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8891 8892 8893 8894 8895 8896 8897 8898
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8899 8900 8901 8902
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8903 8904
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8905

J
jerrywgz 已提交
8906 8907 8908 8909 8910 8911 8912 8913
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
8914 8915
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8916
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
8917
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
8918
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
8919
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8920
          will be named automatically.
J
jerrywgz 已提交
8921 8922 8923 8924 8925 8926 8927 8928

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8929 8930 8931
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
8932
            mode = 'channel'
J
jerrywgz 已提交
8933 8934 8935
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8947
        attr=helper.param_attr,
J
jerrywgz 已提交
8948 8949 8950 8951
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8952
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8953 8954 8955 8956 8957 8958 8959 8960 8961
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8962 8963 8964 8965 8966 8967 8968 8969 8970 8971
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8972
    Returns:
8973
        output(${out_type}): ${out_comment}
8974 8975 8976

    Examples:

8977
    .. code-block:: python
8978

H
haowang101779990 已提交
8979 8980
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8981 8982
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8983
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9002
    Returns:
9003
        output(${out_type}): ${out_comment}
9004 9005 9006 9007 9008

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
9009 9010
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
9011 9012
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9013
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9031
    Returns:
9032
        output(${out_type}): ${out_comment}
9033 9034 9035

    Examples:

9036 9037 9038 9039 9040
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
9041
            y = fluid.layers.soft_relu(x, threshold=20.0)
9042 9043
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9044
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9045 9046 9047 9048 9049 9050 9051 9052
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9053 9054 9055 9056
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
9057

H
haowang101779990 已提交
9058
    For Example:
M
minqiyang 已提交
9059

H
haowang101779990 已提交
9060
    .. code-block:: text
9061

H
haowang101779990 已提交
9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9083 9084 9085

    Args:
        x (Variable): A tensor of rank >= axis.
9086 9087
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9088 9089 9090 9091 9092 9093 9094 9095
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9096 9097 9098
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9099 9100 9101 9102
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9103
        ValueError: If axis is not in range [0, rank(x)].
9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9120 9121
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9122
    helper.append_op(
9123
        type='flatten2',
9124
        inputs={"X": x},
9125 9126
        outputs={'Out': out,
                 'XShape': x_shape},
9127 9128
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9129 9130


C
chenweihang 已提交
9131
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9132
    """
C
chenweihang 已提交
9133
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9134
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
9135 9136
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
9137

H
haowang101779990 已提交
9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
9155 9156

    Args:
C
chenweihang 已提交
9157 9158 9159
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
9160 9161 9162 9163 9164 9165 9166

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9167
            x = fluid.layers.data(shape[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9168 9169
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9170
    assert not in_dygraph_mode(), (
9171
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9172
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9173 9174
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9175 9176 9177 9178 9179 9180
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9181
    return out
9182

9183

S
sneaxiy 已提交
9184 9185 9186 9187 9188 9189 9190 9191 9192
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9193

S
sneaxiy 已提交
9194
    .. math::
9195

S
sneaxiy 已提交
9196 9197 9198
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9199
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9200 9201 9202 9203
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9204 9205 9206
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9207 9208
    Returns:
        Variable: The output sequence mask.
9209

9210 9211 9212 9213 9214 9215 9216 9217
    Examples:
        .. code-block:: python
	
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9218
    """
L
lujun 已提交
9219
    assert not in_dygraph_mode(), (
9220
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9221

Q
qingqing01 已提交
9222
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9223
    if name is None:
X
Xin Pan 已提交
9224
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9225
    else:
X
Xin Pan 已提交
9226
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9227

Q
qingqing01 已提交
9228 9229 9230
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
9231 9232
        outputs={'Y': out},
        attrs={
9233
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
9234 9235 9236
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
9237 9238


X
Xin Pan 已提交
9239
def stack(x, axis=0):
S
sneaxiy 已提交
9240 9241 9242 9243
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9244 9245 9246 9247 9248 9249 9250

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9251
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9252
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9253

C
chengduozh 已提交
9254 9255
    For Example:

C
chengduozh 已提交
9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9294
    Args:
9295
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9296
        axis (int|None): The axis along which all inputs are stacked.
9297

S
sneaxiy 已提交
9298 9299
    Returns:
        Variable: The stacked variable.
9300

9301 9302 9303 9304
    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers
9305 9306
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
9307 9308
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9309 9310
    """

X
Xin Pan 已提交
9311 9312 9313 9314 9315 9316
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9317
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9318
    helper.append_op(
S
sneaxiy 已提交
9319 9320
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9321

X
Xin Pan 已提交
9322
    return out
D
dzhwinter 已提交
9323 9324 9325 9326 9327 9328 9329


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9330

D
dzhwinter 已提交
9331 9332 9333
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9334
    raised.
D
dzhwinter 已提交
9335 9336

    Args:
M
minqiyang 已提交
9337
        x (Variable): Input variable.
D
dzhwinter 已提交
9338 9339
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9340

D
dzhwinter 已提交
9341 9342
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9343

9344 9345 9346 9347 9348 9349
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
9350 9351 9352 9353 9354 9355 9356 9357 9358 9359
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9360
    for _ in range(num):
X
Xin Pan 已提交
9361
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9362 9363 9364 9365 9366 9367 9368 9369

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9382

W
whs 已提交
9383 9384 9385 9386
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9387

W
whs 已提交
9388
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9389

W
whs 已提交
9390
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9391

W
whs 已提交
9392 9393 9394 9395
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9396

W
whs 已提交
9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9413
    out = helper.create_variable_for_type_inference(dtype)
9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430
    # check expand_times have tensor

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:

        def contain_tensor(expand_times):
            for ele in expand_times:
                if isinstance(ele, Variable):
                    return True
            return False

        if contain_tensor(expand_times):
            new_expand_times = []
            for ele in expand_times:
                if isinstance(ele, Variable):
H
Hongyu Liu 已提交
9431
                    ele.stop_gradient = True
9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444
                    new_expand_times.append(ele)
                else:
                    assert (isinstance(ele, int))
                    temp_out = helper.create_variable_for_type_inference(dtype)
                    fill_constant(
                        [1], 'int32', ele, force_cpu=True, out=temp_out)
                    new_expand_times.append(temp_out)
            inputs = {'X': x, 'expand_times_tensor': new_expand_times}
            attrs = {}
        else:
            inputs = {'X': x}
            attrs = {'expand_times': expand_times}

W
whs 已提交
9445
    helper.append_op(
9446
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9447
    return out
S
sneaxiy 已提交
9448 9449


G
fix  
gongweibao 已提交
9450 9451 9452
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9453
@templatedoc()
G
fix  
gongweibao 已提交
9454 9455 9456 9457 9458 9459 9460 9461 9462
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9463
    ${comment}
G
fix  
gongweibao 已提交
9464 9465

    Args:
G
gongweibao 已提交
9466 9467 9468
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9469
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9470 9471 9472
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9473 9474
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9475
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9476

9477 9478 9479
    Examples:
        .. code-block:: python

9480 9481
            import paddle.fluid.layers as layers 

9482 9483
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9484 9485 9486
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9487
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9504 9505


G
gongweibao 已提交
9506
@templatedoc()
X
Xin Pan 已提交
9507
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9508
    """
G
gongweibao 已提交
9509
    ${comment}
G
fix  
gongweibao 已提交
9510 9511

    Args:
G
gongweibao 已提交
9512 9513 9514 9515
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9516 9517 9518
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9519
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9520

9521 9522 9523
    Examples:
        .. code-block:: python

J
JesseyXujin 已提交
9524
            import paddle.fluid.layers as layers
9525
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9526 9527 9528
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9529
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9530 9531 9532 9533 9534 9535 9536 9537 9538 9539
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9540
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9541 9542 9543 9544 9545
        })

    return out


G
gongweibao 已提交
9546
@templatedoc()
G
fix  
gongweibao 已提交
9547
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9548
    """
G
gongweibao 已提交
9549
    ${comment}
G
fix  
gongweibao 已提交
9550 9551

    Args:
G
gongweibao 已提交
9552 9553 9554 9555
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9556
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9557 9558

    Returns:
G
gongweibao 已提交
9559
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9560

9561 9562 9563
    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9564
            x = fluid.layers.data(
9565 9566 9567 9568 9569
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9570
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9571 9572 9573
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9574
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9586
@templatedoc()
G
fix  
gongweibao 已提交
9587 9588 9589 9590 9591 9592 9593 9594 9595
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9596
    ${comment}
G
fix  
gongweibao 已提交
9597 9598

    Args:
G
gongweibao 已提交
9599 9600
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9601
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9602 9603 9604 9605
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9606
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9607 9608

    Returns:
G
gongweibao 已提交
9609
        out (Variable): ${out_comment}
9610 9611 9612 9613

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9614
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9615

Y
Yibing Liu 已提交
9616
            out = fluid.layers.gaussian_random_batch_size_like(
9617
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9618 9619 9620
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9621
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9640
@templatedoc()
X
Xin Pan 已提交
9641
def sum(x):
G
fix  
gongweibao 已提交
9642
    """
G
gongweibao 已提交
9643
    ${comment}
G
fix  
gongweibao 已提交
9644 9645

    Args:
G
gongweibao 已提交
9646
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9647 9648

    Returns:
G
gongweibao 已提交
9649
        out (Variable): ${out_comment}
9650 9651 9652 9653

    Examples:
        .. code-block:: python

9654 9655 9656 9657
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
9658 9659 9660
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9661 9662
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9663 9664 9665 9666
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9667
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9668 9669 9670 9671

    return out


G
gongweibao 已提交
9672
@templatedoc()
G
fix  
gongweibao 已提交
9673 9674
def slice(input, axes, starts, ends):
    """
9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
9690

9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
9708
    Args:
G
gongweibao 已提交
9709 9710 9711 9712
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9713 9714

    Returns:
G
gongweibao 已提交
9715
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9716

9717 9718 9719
    Examples:
        .. code-block:: python

9720 9721
            import paddle.fluid as fluid
 
9722 9723 9724 9725
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

9726
            input = fluid.layers.data(
9727 9728
                name="input", shape=[3, 4, 5, 6], dtype='float32')

9729
            out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9730 9731 9732
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9733 9734
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9748 9749
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9750
    Get the shape of the input.
G
fix  
gongweibao 已提交
9751 9752

    Args:
C
chengduozh 已提交
9753
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9754 9755

    Returns:
C
fix doc  
chengduozh 已提交
9756
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9757

9758 9759 9760
    Examples:
        .. code-block:: python

9761 9762 9763
            import paddle.fluid as fluid

            input = fluid.layers.data(
9764
                name="input", shape=[3, 100, 100], dtype="float32")
9765
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
9766 9767 9768
    """

    helper = LayerHelper('shape', **locals())
9769
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9770
    helper.append_op(
G
fix  
gongweibao 已提交
9771
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9772 9773

    return out
G
merge  
gongweibao 已提交
9774 9775


Z
zhoukunsheng 已提交
9776 9777 9778 9779
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9780
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9802 9803 9804 9805
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9806
    if in_dygraph_mode():
X
Xin Pan 已提交
9807 9808 9809
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9810 9811 9812 9813
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9814 9815
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9816
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9817 9818 9819
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9820

S
sneaxiy 已提交
9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9832
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9833 9834 9835 9836 9837 9838 9839 9840
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9841
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9842
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9843 9844 9845

    Returns:
        out(${out_type}): ${out_comment}
9846 9847 9848 9849 9850 9851 9852 9853

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
9854 9855 9856
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9857
    if name is None:
X
Xin Pan 已提交
9858
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9859 9860 9861
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9862 9863 9864 9865 9866 9867 9868 9869 9870 9871

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9872
    return helper.append_activation(out)
S
sneaxiy 已提交
9873 9874


X
Xin Pan 已提交
9875
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9876 9877 9878
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9879
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9880 9881 9882
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9883
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9884 9885 9886
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9887
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9888 9889 9890
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9891
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9892 9893 9894
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9895
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9896 9897 9898
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9899
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9900 9901 9902
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9903 9904 9905 9906 9907 9908 9909 9910
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9911
for func in [
9912 9913 9914 9915 9916 9917 9918 9919 9920
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9921 9922 9923 9924 9925
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9926 9927
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9928
        ])
9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
9966 9967


9968
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9969 9970
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9971 9972
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9973 9974 9975

    if out is None:
        if name is None:
X
Xin Pan 已提交
9976
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9992
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10004 10005 10006 10007 10008 10009 10010 10011 10012

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
10013 10014 10015 10016 10017 10018 10019
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10020
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10032 10033 10034 10035 10036 10037 10038 10039 10040

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
10041 10042 10043 10044 10045 10046 10047
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10048
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10060 10061 10062 10063 10064 10065 10066 10067 10068

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
10069 10070 10071 10072 10073 10074 10075
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10076
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10077 10078 10079 10080 10081 10082 10083 10084 10085 10086
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10087 10088 10089 10090 10091 10092 10093

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
10094 10095 10096 10097
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10113 10114 10115 10116

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10117
            import paddle.fluid as fluid
10118 10119 10120
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
10121 10122 10123 10124 10125
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
10126 10127
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10128 10129 10130

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10154 10155 10156 10157 10158 10159 10160

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
10161 10162 10163 10164 10165
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
10166 10167
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10168 10169 10170

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10171 10172 10173 10174 10175 10176 10177 10178

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10192 10193 10194 10195 10196 10197 10198

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
10199 10200 10201 10202 10203
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
10204
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10205 10206 10207 10208 10209 10210 10211 10212 10213 10214
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10226 10227 10228 10229 10230 10231 10232 10233 10234

    Examples:
        .. code-block:: python

            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
10273 10274 10275 10276 10277
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
10278
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10279 10280 10281 10282 10283 10284 10285 10286 10287
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
10288 10289
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
10290 10291 10292 10293 10294 10295
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
10296 10297 10298
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
10299 10300
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
10301 10302 10303 10304 10305 10306
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
10307
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
10308
        name(basestring|None): Name of the output.
10309 10310
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
10311 10312 10313

    Returns:
        out(${out_type}): ${out_comment}
10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10328 10329 10330 10331 10332
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10333
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10334 10335 10336 10337 10338 10339 10340 10341
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10342 10343
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
10360 10361 10362 10363 10364 10365 10366 10367 10368

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
10369 10370 10371 10372
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10373
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10374 10375 10376 10377 10378 10379 10380 10381 10382 10383
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10384 10385


J
JiabinYang 已提交
10386
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10387
    """
J
JiabinYang 已提交
10388
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10389 10390 10391

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10392
    The attr blocksize indicates the input block size.
10393 10394

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10395
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10396 10397

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10398
    (but keeping all data)
J
JiabinYang 已提交
10399

J
JiabinYang 已提交
10400
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10401
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10402 10403 10404 10405 10406
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10407
    Args:
J
JiabinYang 已提交
10408
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10409
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10410 10411

    Returns:
J
JiabinYang 已提交
10412
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10413 10414

    Raises:
J
JiabinYang 已提交
10415
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10416 10417 10418

    Examples:
        .. code-block:: python
10419 10420 10421
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
10422 10423

            data = fluid.layers.data(
10424
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10425
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10426
                x=data, blocksize=2)
10427 10428 10429 10430 10431 10432

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
10433

J
JiabinYang 已提交
10434 10435
    """

J
JiabinYang 已提交
10436
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10437

J
JiabinYang 已提交
10438 10439
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10440 10441

    if name is None:
J
JiabinYang 已提交
10442 10443
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10444 10445 10446 10447 10448
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10449
        type="space_to_depth",
J
JiabinYang 已提交
10450
        inputs={"X": x},
J
JiabinYang 已提交
10451
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10452
        outputs={"Out": out})
J
JiabinYang 已提交
10453 10454
    return out

J
JiabinYang 已提交
10455

S
sneaxiy 已提交
10456 10457
@templatedoc()
def sequence_reverse(x, name=None):
10458
    """
S
sneaxiy 已提交
10459 10460 10461 10462 10463 10464 10465 10466
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
10467 10468 10469 10470 10471 10472 10473

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
10474
    """
L
lujun 已提交
10475
    assert not in_dygraph_mode(), (
10476
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10477 10478
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10479
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10480 10481 10482 10483 10484 10485 10486 10487 10488 10489
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10490 10491


10492 10493 10494 10495 10496 10497
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10498 10499 10500 10501 10502
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10503

10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10516
        act (str, default None): Activation to be applied to the output of this layer.
10517 10518 10519

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

10534 10535 10536 10537
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10538
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10550
    return helper.append_activation(out)
10551 10552


B
barrierye 已提交
10553
def similarity_focus(input, axis, indexes, name=None):
10554
    """
B
barrierye 已提交
10555
    SimilarityFocus Operator
B
barrierye 已提交
10556 10557

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10558

10559 10560 10561
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10562
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10563 10564 10565 10566 10567 10568 10569
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10570
       each index.
B
barrierye 已提交
10571 10572 10573 10574
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10624
    Args:
10625
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10626
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10627
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10628
            1, 2 or 3.
B
barrierye 已提交
10629
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10630 10631

    Returns:
H
haowang101779990 已提交
10632 10633
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10634

B
barrierye 已提交
10635 10636
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10637

B
barrierye 已提交
10638
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10639 10640
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10653 10654 10655 10656 10657
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10658 10659 10660 10661 10662 10663 10664
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10665 10666


M
minqiyang 已提交
10667 10668
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10669 10670
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10671 10672
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10673 10674 10675 10676 10677 10678 10679 10680 10681

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
10682 10683
            [[1, 2],
             [3, 4]],
M
minqiyang 已提交
10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
10700 10701
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
10702 10703 10704 10705 10706 10707 10708 10709 10710
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10711
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10712
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10713 10714 10715 10716 10717 10718

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10719

10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np

            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=1, hash_size=1000)

            place = fluid.core.CPUPlace()
            exece = fluid.Executor(place)
            exece.run(fluid.default_startup_program()) 

            # Init Tensor
            tensor = fluid.core.LoDTensor() 
            tensor.set(np.random.randint(0, 10, (3, 1)).astype("int32"), place)
            # Set LoD
            tensor.set_recursive_sequence_lengths([[1, 1, 1]])

            out = exece.run(feed={'titles': tensor}, fetch_list=[hash_r], return_numpy=False)
M
minqiyang 已提交
10738 10739
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10740 10741
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10742 10743 10744 10745 10746 10747 10748
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10749 10750


D
dengkaipeng 已提交
10751
@templatedoc()
10752 10753
def grid_sampler(x, grid, name=None):
    """
10754
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10755
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10756 10757 10758 10759
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10760
    interpolation value of 4 nearest corner points.
10761

H
haowang101779990 已提交
10762
    .. code-block:: text
10763

H
haowang101779990 已提交
10764 10765
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10766

H
haowang101779990 已提交
10767 10768
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10769

H
haowang101779990 已提交
10770 10771 10772
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10773

H
haowang101779990 已提交
10774 10775 10776 10777 10778 10779 10780 10781 10782
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10783

H
haowang101779990 已提交
10784 10785 10786 10787
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10788

H
haowang101779990 已提交
10789 10790 10791 10792
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10793

H
haowang101779990 已提交
10794 10795 10796 10797
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10798

H
haowang101779990 已提交
10799 10800
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10801 10802

    Args:
10803 10804 10805
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10806 10807

    Returns:
H
haowang101779990 已提交
10808
        Variable: Output of shape [N, C, H, W] data samples input X
10809 10810
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10811 10812 10813 10814
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
10815 10816 10817 10818 10819
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
10820
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10821

D
dengkaipeng 已提交
10822 10823 10824 10825 10826 10827 10828 10829 10830
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10831
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10832 10833
    ipts = {'X': x, 'Grid': grid}

10834
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10835 10836 10837
    return out


G
gmcather 已提交
10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10865 10866
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10905
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10906 10907 10908 10909 10910 10911 10912
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
10913 10914
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
10915

10916 10917 10918 10919 10920
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
10921
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
10922

H
heqiaozhi 已提交
10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10936 10937 10938 10939
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10940
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10941 10942
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10943
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10944 10945

    .. math::
H
haowang101779990 已提交
10946 10947 10948
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10949 10950

    Where:
H
haowang101779990 已提交
10951 10952
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

10966 10967 10968 10969 10970 10971 10972 10973 10974
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
10975

G
gmcather 已提交
10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10992 10993 10994 10995 10996 10997 10998 10999 11000 11001


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
11002
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
11003

Q
Qiao Longfei 已提交
11004
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
11005 11006 11007
    For example:

    .. math::
H
haowang101779990 已提交
11008
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
11009

Q
Qiao Longfei 已提交
11010
    In this formula:
11011 11012
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
11013
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
11014
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
11015 11016 11017
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
11018 11019
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
11020 11021 11022
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
11023
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
11024
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
11025
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
11026 11027 11028 11029
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
11030
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
11031 11032 11033 11034

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
11035 11036 11037
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
11038 11039
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
11040
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
11041 11042 11043 11044

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
11045
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
11076 11077 11078 11079 11080 11081 11082 11083

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11084 11085 11086 11087 11088 11089 11090 11091 11092 11093
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11094 11095


S
shippingwang 已提交
11096
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11097 11098
    """
    **Shuffle Channel Operator**
11099

S
shippingwang 已提交
11100 11101 11102 11103 11104 11105
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11106
    
S
shippingwang 已提交
11107
    .. code-block:: text
11108

S
shippingwang 已提交
11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
11137
    Args: 
S
shippingwang 已提交
11138 11139
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
11140 11141

    Returns:
S
shippingwang 已提交
11142 11143
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
11144 11145

    Raises:
S
shippingwang 已提交
11146
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
11147 11148 11149

    Examples:
        .. code-block:: python
11150 11151

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
11152
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
11153 11154 11155
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
11156
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
11157 11158 11159 11160 11161 11162 11163 11164 11165

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
11166
    return out
S
Add  
shippingwang 已提交
11167 11168


11169
@templatedoc()
D
dengkaipeng 已提交
11170
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
11171 11172 11173 11174 11175 11176 11177 11178
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
11179
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
11180
        name (str, default None): The name of this layer.
11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
11193
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
11206 11207
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
11208 11209 11210
    return out


S
sneaxiy 已提交
11211
class PyFuncRegistry(object):
S
sneaxiy 已提交
11212 11213 11214
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
11215
        if func is None or not callable(func):
S
sneaxiy 已提交
11216 11217 11218
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
11219
        # find named args using reflection
S
sneaxiy 已提交
11220 11221 11222 11223 11224 11225 11226
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
11227 11228 11229
        '''
        Why record self here?

M
minqiyang 已提交
11230 11231
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
11232
           to find the registered function corresponding
M
minqiyang 已提交
11233
           to :code:`idx`.
S
sneaxiy 已提交
11234

M
minqiyang 已提交
11235 11236
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
11237
           whose reference count is 1 would cause
M
minqiyang 已提交
11238
           segmentation fault error in C++ side.
S
sneaxiy 已提交
11239 11240
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
11241
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
11256 11257 11258 11259 11260 11261 11262 11263 11264
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
11265

S
sneaxiy 已提交
11266 11267
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
11268 11269

        ret = []
S
sneaxiy 已提交
11270 11271 11272
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
11273 11274
                continue

S
sneaxiy 已提交
11275 11276
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
11277

S
sneaxiy 已提交
11278 11279 11280
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
11281

S
sneaxiy 已提交
11282
        return tuple(ret)
S
sneaxiy 已提交
11283 11284


S
sneaxiy 已提交
11285 11286 11287 11288
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
11289

S
sneaxiy 已提交
11290 11291 11292 11293 11294 11295 11296 11297
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
11298
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
11299

S
sneaxiy 已提交
11300 11301
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
11302 11303 11304 11305
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
11306
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
11307
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
11308 11309
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
11310 11311 11312 11313 11314
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
11315
            should create :code:`out` beforehand.
S
sneaxiy 已提交
11316
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
11317
                                       None means no backward. Default None.
S
sneaxiy 已提交
11318
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
11319
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
11320 11321
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
11322
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
11323 11324 11325

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
11326 11327

    Examples:
M
minqiyang 已提交
11328

S
sneaxiy 已提交
11329 11330 11331 11332 11333
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
11334
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
11335 11336
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
11337
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
11338 11339 11340
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
11341
        >>>
S
sneaxiy 已提交
11342 11343 11344 11345 11346
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
11347
        >>>     print(x)
S
sneaxiy 已提交
11348 11349 11350 11351 11352 11353
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
11354
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
11355 11356
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
11357 11358
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
11359 11360 11361 11362 11363 11364 11365 11366
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
11367
    """
S
sneaxiy 已提交
11368
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
11369 11370 11371
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
11372
        x = [x]
S
sneaxiy 已提交
11373 11374
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11375

S
sneaxiy 已提交
11376 11377 11378
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
11379
        out_list = [out]
S
sneaxiy 已提交
11380
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
11381
        out_list = out
S
sneaxiy 已提交
11382 11383 11384
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11385

S
sneaxiy 已提交
11386 11387
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
11388
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
11389 11390

    for each_out in out_list:
S
sneaxiy 已提交
11391 11392
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
11393 11394
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
11395

S
sneaxiy 已提交
11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
11411 11412 11413 11414

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
11415 11416
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
11417 11418 11419
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
11420
        })
S
sneaxiy 已提交
11421
    return out
S
sneaxiy 已提交
11422 11423 11424


# For debug usage
S
sneaxiy 已提交
11425 11426 11427 11428
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
11442 11443 11444 11445 11446
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11459 11460 11461 11462
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
11488

M
minqiyang 已提交
11489

M
minqiyang 已提交
11490
def huber_loss(input, label, delta):
11491
    """
M
minqiyang 已提交
11492 11493 11494
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11495 11496 11497 11498

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11499
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11500 11501 11502 11503

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11504
        huber\_loss = 0.5 * (label - input) * (label - input)
11505 11506 11507 11508 11509 11510 11511


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11512
        delta (float): The parameter of huber loss, which controls
11513 11514 11515
                       the range of outliers

    Returns:
M
minqiyang 已提交
11516
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11517 11518 11519 11520

    Examples:
        .. code-block:: python

11521 11522 11523 11524 11525 11526 11527 11528 11529
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

11530
    """
M
minqiyang 已提交
11531
    helper = LayerHelper('huber_loss', **locals())
11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11543 11544


D
dengkaipeng 已提交
11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

T
Tao Luo 已提交
11607 11608 11609
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11610
          # edges must be directional
T
Tao Luo 已提交
11611 11612 11613 11614
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11615
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11616 11617
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11618
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11619
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11643 11644


C
ceci3 已提交
11645
from .ops import square
C
ceci3 已提交
11646
from .control_flow import equal
C
ceci3 已提交
11647 11648


C
ceci3 已提交
11649 11650 11651
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11652

C
ceci3 已提交
11653
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11654 11655

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11656
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11657 11658 11659 11660 11661
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11662 11663
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11664 11665 11666 11667 11668 11669 11670

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
11671 11672 11673 11674 11675 11676 11677 11678
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11679 11680 11681 11682 11683 11684 11685
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11686
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11687 11688
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11689 11690
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11691 11692 11693 11694
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11695 11696 11697
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11698 11699 11700
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11701 11702


R
ruri 已提交
11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11732
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11733 11734 11735 11736 11737 11738 11739 11740 11741

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

R
ruri 已提交
11742
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
11793 11794 11795 11796 11797 11798
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
11799 11800 11801 11802 11803 11804 11805 11806
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11807 11808 11809 11810


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11811

H
heqiaozhi 已提交
11812
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11813

H
fix doc  
heqiaozhi 已提交
11814
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11815 11816 11817
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11818
    
H
fix doc  
heqiaozhi 已提交
11819
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11820

H
heqiaozhi 已提交
11821
    Args:
H
fix doc  
heqiaozhi 已提交
11822 11823

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11824 11825
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11826
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
11827
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11828

H
heqiaozhi 已提交
11829
    Returns:
H
fix doc  
heqiaozhi 已提交
11830 11831 11832

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11833
    Examples:
H
fix doc  
heqiaozhi 已提交
11834

H
heqiaozhi 已提交
11835
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11836

H
heqiaozhi 已提交
11837 11838 11839 11840 11841 11842 11843 11844 11845 11846
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11847

H
heqiaozhi 已提交
11848 11849 11850 11851 11852 11853 11854 11855 11856
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11857
    return out
Z
zhoukunsheng 已提交
11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

             # condition is a tensor [True, False, True]
             out = fluid.layers.where(condition) # [[0], [2]]

             # condition is a tensor [[True, False], [False, True]]
             out = fluid.layers.where(condition) # [[0, 0], [1, 1]]

             # condition is a tensor [False, False, False]
             out = fluid.layers.where(condition) # [[]]
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

          # [1, 0, -1]
          data = fluid.layers.sign(np.array([3, 0, -2])) 
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095


def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
    Refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ .
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
        offset (Variable): The input coord offset of deformable convolution layer.
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=3, padding=1)
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")
    if not isinstance(mask, Variable):
        raise TypeError("Input Mask of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='deformable_conv',
        inputs={
            'Input': input,
            'Filter': filter_param,
            'Offset': offset,
            'Mask': mask,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'deformable_groups': deformable_groups,
            'im2col_step': im2col_step,
        })

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
C
cjt222 已提交
12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output