nn.py 441.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
D
dengkaipeng 已提交
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
115
    'roi_align',
X
Xin Pan 已提交
116 117 118 119
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
120
    'resize_nearest',
X
Xin Pan 已提交
121 122 123 124 125 126
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
127
    'selu',
X
Xin Pan 已提交
128 129 130
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
131
    'margin_rank_loss',
X
Xin Pan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
158 159
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
160 161 162 163 164 165 166
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
167
    'rank',
X
Xin Pan 已提交
168 169 170 171 172 173 174 175 176 177
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
178
    'space_to_depth',
W
whs 已提交
179
    'affine_grid',
S
sneaxiy 已提交
180
    'sequence_reverse',
181
    'affine_channel',
B
barrierye 已提交
182
    'similarity_focus',
M
minqiyang 已提交
183
    'hash',
D
dengkaipeng 已提交
184
    'grid_sampler',
G
gmcather 已提交
185 186
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
187
    'bilinear_tensor_product',
C
chengduo 已提交
188 189
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
190
    'lstm',
S
shippingwang 已提交
191
    'shuffle_channel',
192
    'temporal_shift',
S
sneaxiy 已提交
193
    'py_func',
194
    'psroi_pool',
H
heqiaozhi 已提交
195
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
196
    'huber_loss',
D
dengkaipeng 已提交
197
    'kldiv_loss',
Z
zhaozhehao 已提交
198
    'tree_conv',
C
ceci3 已提交
199
    'npair_loss',
R
ruri 已提交
200
    'pixel_shuffle',
201
    'fsp_matrix',
H
heqiaozhi 已提交
202
    'continuous_value_model',
Z
zhoukunsheng 已提交
203
    'where',
Z
zhoukunsheng 已提交
204
    'sign',
205
    'deformable_conv',
C
cjt222 已提交
206
    'deformable_roi_pooling',
Y
Yu Yang 已提交
207 208
]

J
jerrywgz 已提交
209 210
kIgnoreIndex = -100

Y
Yu Yang 已提交
211 212 213 214 215 216 217

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
218
       is_test=False,
219
       name=None):
Y
Yu Yang 已提交
220
    """
221
    **Fully Connected Layer**
Y
Yu Yang 已提交
222

223
    This function creates a fully connected layer in the network. It can take
224
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
225
    Args in detail). It creates a variable called weights for each input tensor,
226 227 228 229
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
230
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
231 232
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
233

234
    When the input is single tensor:
C
caoying03 已提交
235

236 237 238 239 240
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
241 242 243

    .. math::

244
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
245 246 247

    In the above equation:

248 249 250
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
251
    * :math:`b`: The bias parameter created by this layer (if needed).
252
    * :math:`Act`: The activation function.
C
caoying03 已提交
253
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
273
    Args:
R
ranqiu 已提交
274 275 276 277 278 279 280 281 282 283
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
284
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
285 286 287 288
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
289 290
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
291
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
292
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
293
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
294

295
    Returns:
F
fengjiayi 已提交
296
        Variable: The transformation result.
297 298

    Raises:
C
caoying03 已提交
299
        ValueError: If rank of the input tensor is less than 2.
300 301 302 303

    Examples:
        .. code-block:: python

304
          # when input is single tensor
F
fengjiayi 已提交
305
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
306
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
307 308 309 310 311

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
312
    """
C
caoying03 已提交
313
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
314 315 316 317

    dtype = helper.input_dtype()

    mul_results = []
318 319
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
320 321 322
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
323

Y
Yu Yang 已提交
324
        w = helper.create_parameter(
325
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
326
        tmp = helper.create_variable_for_type_inference(dtype)
327
        helper.append_op(
328 329 330
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
331
            outputs={"Out": tmp},
M
mozga-intel 已提交
332 333
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
334 335 336 337
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
338
    else:
X
Xin Pan 已提交
339
        pre_bias = helper.create_variable_for_type_inference(dtype)
340
        helper.append_op(
341 342 343
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
344
            attrs={"use_mkldnn": False})
345 346 347 348
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
349 350


351 352 353
def embedding(input,
              size,
              is_sparse=False,
354
              is_distributed=False,
355 356 357
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
358
    """
359 360
    **Embedding Layer**

361
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
362 363
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
364 365 366

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
367 368

    Args:
369 370 371 372 373
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
374
        is_distributed(bool): Whether to run lookup table from remote parameter server.
375 376
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
377
            with zeros whenever lookup encounters it in :attr:`input`. If
378
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
379 380
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
381
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
382

383 384 385
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
386

387 388
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
389

B
bdzhuxiaoning 已提交
390 391 392
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
393 394 395
    """

    helper = LayerHelper('embedding', **locals())
396
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
397 398
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
399 400
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
401
    tmp = helper.create_variable_for_type_inference(dtype)
402 403
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
404 405 406 407 408
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
409 410 411
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
412
            'remote_prefetch': remote_prefetch,
413 414
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
415 416 417
    return tmp


W
wopeizl 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
434

W
wopeizl 已提交
435 436 437 438 439 440 441 442 443 444 445
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
446

W
wopeizl 已提交
447 448 449 450
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
451

W
wopeizl 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
488 489 490
            
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
491
            hidden_dim = 512
492 493 494 495 496 497
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
498
                                           bias_attr=False)
499

W
wopeizl 已提交
500 501 502
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
503
    assert in_dygraph_mode(
504
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
548 549


P
phlrain 已提交
550 551 552 553 554 555
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
556
         dropout_prob=0.0,
P
phlrain 已提交
557 558 559 560 561
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
562
    """
P
phlrain 已提交
563
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
564 565

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
566
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
567 568
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
569
    .. math::
M
minqiyang 已提交
570 571 572 573 574 575 576

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
577
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
578 579 580 581

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
582 583

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
584 585 586 587 588 589
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
590 591 592
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
593
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
594

M
minqiyang 已提交
595
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
596 597 598 599 600
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
601
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
602 603 604 605 606
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
607
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
608 609
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
610 611
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
612 613 614 615 616 617
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
618
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
619

L
liuhongyu 已提交
620 621

    Returns:
M
minqiyang 已提交
622 623
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
624
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
625

H
haowang101779990 已提交
626 627 628 629
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
630
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
631 632
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
633
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
634 635 636 637


    Examples:
        .. code-block:: python
638 639 640 641 642 643
            
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
644 645 646 647 648 649
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
650 651 652 653 654
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
655 656 657 658
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
659 660 661
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
721 722 723 724 725 726 727 728 729 730
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
731
                  proj_activation='tanh',
732
                  dtype='float32',
X
xuezhong 已提交
733 734 735 736 737
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
738 739 740
    """
    **Dynamic LSTMP Layer**

741 742 743 744 745 746
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
747 748 749 750 751

    The formula is as follows:

    .. math::

752
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
753

754
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
755

756
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
757

758
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
759

760
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
761

762
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
763

764
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
765

Y
Yibing Liu 已提交
766 767 768 769 770 771
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
772
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
773
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
774
          bias vector).
Y
Yibing Liu 已提交
775 776 777
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
778
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
779
    * :math:`h`: The hidden state.
780
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
781 782
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
783
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
784
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
785
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
786 787
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
788 789 790 791

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
792

Y
Yibing Liu 已提交
793 794 795 796 797 798 799 800 801 802 803 804
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
805
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
806 807
                               hidden-hidden weight and projection weight.

808 809
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
810 811
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
812 813
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
814
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
815 816 817 818 819

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
820
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
821 822 823 824 825 826
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
827
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
828 829 830
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
831
                                - The shape is (1 x 7D).
C
chengduo 已提交
832 833 834 835 836

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
837 838 839 840 841 842 843 844 845
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
846
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
847 848
                              default "tanh".
        proj_activation(str): The activation for projection output.
849
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
850
                              default "tanh".
Y
Yibing Liu 已提交
851
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
852 853
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
854 855 856 857 858 859 860 861 862 863 864
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
865 866

    Returns:
867 868 869 870
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
871 872

    Examples:
873

Y
Yibing Liu 已提交
874 875
        .. code-block:: python

876 877 878 879
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
880
            hidden_dim, proj_dim = 512, 256
881
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
882
                                     act=None, bias_attr=None)
883 884 885
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
886 887 888 889
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
890
    """
891

L
lujun 已提交
892
    assert in_dygraph_mode(
893 894
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
895
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
896
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
897
    size = size // 4
Y
Yibing Liu 已提交
898 899 900 901 902 903 904 905 906 907
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
908 909 910 911 912 913
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
929

X
xuezhong 已提交
930 931 932 933 934
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
935 936
    helper.append_op(
        type='lstmp',
937
        inputs=inputs,
Y
Yibing Liu 已提交
938 939 940 941 942 943 944 945 946
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
947 948
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
949 950 951 952 953 954 955 956 957
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
958 959 960 961 962 963 964
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
965 966
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
967
    """
968
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
969

970 971 972
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
973

G
guosheng 已提交
974 975 976 977 978 979 980 981 982
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
983

G
guosheng 已提交
984
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
985

Q
Qiao Longfei 已提交
986 987 988

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
989 990 991 992 993 994 995 996 997 998 999 1000
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1001
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1002 1003
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1004 1005 1006 1007
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1008
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1009 1010

    Args:
1011 1012
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1013
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1014
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1015 1016
            is the hidden size.
        size(int): The dimension of the gru cell.
1017
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1018 1019
            hidden-hidden weight matrix. Note:

1020
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1021
              :math:`D` is the hidden size.
1022
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1023
              The first part are weights of the update gate and reset gate with
1024
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1025
              candidate hidden state with shape :math:`(D \\times D)`.
1026 1027 1028 1029 1030

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1031
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1032
            the bias in the update gate, reset gate and candidate calculations.
1033 1034 1035
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1036 1037
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1038
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1039 1040 1041
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1042
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1043
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1044 1045 1046 1047
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1048 1049

    Returns:
G
guosheng 已提交
1050
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1051
            and sequence length is the same with the input.
1052

G
guosheng 已提交
1053
    Examples:
1054

G
guosheng 已提交
1055 1056
        .. code-block:: python

1057 1058
            import paddle.fluid as fluid

1059 1060 1061 1062
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1063
            hidden_dim = 512
1064
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1065
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1066 1067
    """

L
lujun 已提交
1068
    assert in_dygraph_mode(
1069 1070
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1071 1072 1073 1074 1075 1076 1077
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1078
    batch_size = input.shape[0]
G
guosheng 已提交
1079
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1080
    if h_0:
G
guosheng 已提交
1081
        assert h_0.shape == (
Y
Yancey 已提交
1082 1083 1084
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1085

X
Xin Pan 已提交
1086 1087 1088 1089
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1103 1104
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1105 1106 1107 1108
        })
    return hidden


Y
Yu Yang 已提交
1109 1110 1111
def gru_unit(input,
             hidden,
             size,
1112 1113
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1114
             activation='tanh',
Q
Qiao Longfei 已提交
1115 1116
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1117
    """
1118 1119 1120
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1121
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1122
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1123

1124 1125
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1126

1127
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1128

1129
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1130

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1146 1147

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1148 1149 1150
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1151 1152
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1153 1154
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1155 1156 1157
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1158 1159 1160

    Args:
        input (Variable): The fc transformed input value of current step.
1161
        hidden (Variable): The hidden value of gru unit from previous step.
1162
        size (integer): The input dimension value.
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1177
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1178
            the bias in the update gate, reset gate and candidate calculations.
1179 1180 1181
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1182 1183
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1184 1185 1186 1187
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1188

1189 1190 1191 1192 1193 1194
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1219
    size = size // 3
Y
Yu Yang 已提交
1220 1221

    # create weight
1222 1223
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1224

X
Xin Pan 已提交
1225 1226 1227
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1228
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1229
    # create bias
1230
    if helper.bias_attr:
Y
Yu Yang 已提交
1231 1232 1233
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1234
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1235 1236 1237

    helper.append_op(
        type='gru_unit',
1238
        inputs=inputs,
Y
Yu Yang 已提交
1239 1240 1241 1242 1243 1244
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1245 1246
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1247 1248 1249 1250 1251
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1252
@templatedoc()
1253
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1254 1255 1256 1257 1258 1259 1260
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1261
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1262 1263 1264 1265
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1266 1267 1268
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1269

J
JesseyXujin 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1283
    """
Y
Yu Yang 已提交
1284 1285 1286 1287 1288 1289
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1290 1291 1292 1293 1294 1295 1296 1297
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1313 1314 1315 1316
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1317

W
wopeizl 已提交
1318 1319
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1320

W
wopeizl 已提交
1321
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1322

W
wopeizl 已提交
1323
        label(${label_type}): ${label_comment}
1324

W
wopeizl 已提交
1325 1326
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1327

W
wopeizl 已提交
1328 1329
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1330

Y
Yibing Liu 已提交
1331 1332 1333 1334 1335 1336 1337
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1338 1339 1340 1341 1342 1343 1344 1345
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1346
                "Transition": transition,
W
wopeizl 已提交
1347 1348
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1349

W
wopeizl 已提交
1350
    return viterbi_path
Y
Yu Yang 已提交
1351 1352


Y
yi.wu 已提交
1353
@templatedoc()
F
fengjiayi 已提交
1354
def cos_sim(X, Y):
Y
Yu Yang 已提交
1355
    """
Y
yi.wu 已提交
1356 1357 1358
    ${comment}

    Args:
1359 1360
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1361

Y
yi.wu 已提交
1362
    Returns:
1363
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1364 1365 1366 1367 1368 1369 1370

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1371
    """
F
fengjiayi 已提交
1372
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1373 1374 1375
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1386 1387 1388 1389 1390
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1391
            dropout_implementation="downgrade_in_infer"):
1392 1393 1394 1395 1396
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1397
    training. The dropout operator randomly sets (according to the given dropout
1398 1399 1400
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1401 1402
    dropout op can be removed from the program to make the program more efficient.

1403
    Args:
1404 1405
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1406 1407 1408 1409 1410 1411 1412
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1413 1414
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1415
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1416 1417

                                           - train: out = input * mask
C
ceci3 已提交
1418
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1419 1420 1421

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1422
                                        2. upscale_in_train, upscale the outcome at training time
1423

H
haowang101779990 已提交
1424 1425
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1426

H
haowang101779990 已提交
1427 1428
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1429

M
minqiyang 已提交
1430

1431
    Returns:
1432
        Variable: A tensor variable is the shape with `x`.
1433 1434

    Examples:
1435

1436 1437
        .. code-block:: python

1438 1439
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1440 1441
    """

F
fengjiayi 已提交
1442
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1443 1444
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1445
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1446 1447 1448 1449

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1450 1451 1452 1453 1454
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1455 1456 1457 1458
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1459 1460
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1461
        })
1462 1463 1464
    return out


J
jerrywgz 已提交
1465
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1466
    """
Y
Yibing Liu 已提交
1467 1468
    **Cross Entropy Layer**

1469 1470 1471
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1472 1473

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1474
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1475

Y
Yibing Liu 已提交
1476
        .. math::
Y
yangyaming 已提交
1477

Y
Yibing Liu 已提交
1478 1479 1480
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1481 1482
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1483 1484 1485 1486 1487

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1488
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1489 1490 1491
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1492 1493
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1494
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1495

Y
Yibing Liu 已提交
1496
    Args:
Y
yangyaming 已提交
1497
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1498 1499 1500 1501
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1502
        label (Variable|list): the ground truth which is a 2-D tensor. When
1503 1504 1505 1506
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1507
        soft_label (bool): a flag indicating whether to
1508
                                           interpretate the given labels as soft
1509
                                           labels. Default: `False`.
M
minqiyang 已提交
1510 1511
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1512
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1513 1514 1515 1516 1517

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1518 1519 1520
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1521

H
haowang101779990 已提交
1522 1523
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1524

H
haowang101779990 已提交
1525 1526
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1527 1528 1529 1530

    Examples:
        .. code-block:: python

L
lvmengsi 已提交
1531 1532 1533 1534
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1535
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1536
    """
S
sneaxiy 已提交
1537 1538
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1539
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1540
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1541 1542 1543 1544 1545
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1546 1547
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1548 1549 1550
    return out


S
sneaxiy 已提交
1551 1552 1553 1554
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1555
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1556 1557 1558 1559 1560
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1561
                 'MatchX': [match_x],
S
sneaxiy 已提交
1562 1563 1564 1565 1566
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1567
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1568
    """
1569
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1570

1571
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1572
    The loss at a given point in one session is defined as:
1573 1574 1575

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1576 1577

    Learn more details by reading paper <session-based recommendations with recurrent
1578
    neural networks>.
F
frankwhzhang 已提交
1579

1580 1581 1582 1583 1584 1585
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1586 1587
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1588 1589 1590
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1591 1592 1593
    Examples:
        .. code-block:: python

1594 1595 1596 1597 1598 1599 1600
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1601
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1602
    """
1603 1604 1605 1606 1607
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1608
                'Label': [label]},
1609 1610 1611 1612
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1613
def square_error_cost(input, label):
Y
Yu Yang 已提交
1614
    """
1615 1616
    **Square error cost layer**

1617 1618
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1619

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1633 1634
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1635 1636

    Returns:
G
guosheng 已提交
1637
        Variable: The tensor variable storing the element-wise squared error \
1638
                  difference of input and label.
1639 1640 1641 1642

    Examples:
        .. code-block:: python

R
ruri 已提交
1643 1644 1645
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1646

Y
Yu Yang 已提交
1647
    """
F
fengjiayi 已提交
1648
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1649
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1650 1651 1652 1653 1654 1655
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1656
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1657
    helper.append_op(
F
fengjiayi 已提交
1658 1659
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1660 1661 1662
    return square_out


Y
yi.wu 已提交
1663
@templatedoc()
Y
Yu Yang 已提交
1664 1665 1666 1667
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1668
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1669
    """
Y
yi.wu 已提交
1670
    **Chunk Evaluator**
Y
yi.wu 已提交
1671

Y
yangyaming 已提交
1672
    This function computes and outputs the precision, recall and
1673
    F1-score of chunk detection.
Y
yi.wu 已提交
1674

M
minqiyang 已提交
1675
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1676
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1677 1678 1679 1680 1681 1682

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1683

Y
yi.wu 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1709

Y
yi.wu 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1734
    Args:
1735 1736 1737 1738 1739
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1740

Y
yi.wu 已提交
1741
    Returns:
Y
update  
yi.wu 已提交
1742 1743 1744
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1745

Y
yi.wu 已提交
1746 1747 1748
    Examples:
        .. code-block:: python

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1760
            crf = fluid.layers.linear_chain_crf(
1761
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1762
            crf_decode = fluid.layers.crf_decoding(
1763
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1764 1765 1766 1767 1768
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1769
    """
F
fengjiayi 已提交
1770
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1771 1772

    # prepare output
X
Xin Pan 已提交
1773 1774 1775 1776 1777 1778 1779
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1780 1781 1782 1783 1784 1785 1786 1787

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1788 1789 1790 1791
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1792 1793 1794
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1795 1796
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1797
        })
1798 1799
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1800 1801


1802
@templatedoc()
Y
Yu Yang 已提交
1803 1804 1805 1806 1807 1808 1809
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1810 1811
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1812 1813 1814 1815
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1816 1817 1818 1819 1820 1821 1822

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1836

1837 1838
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
1839 1840 1841 1842 1843 1844 1845

    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
             x_conved = fluid.layers.sequence_conv(x,2)
Y
Yu Yang 已提交
1846 1847
    """

L
lujun 已提交
1848
    assert not in_dygraph_mode(), (
1849
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1850 1851 1852 1853 1854
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1855
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1866
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1867 1868 1869 1870 1871 1872
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1873
def sequence_softmax(input, use_cudnn=False, name=None):
1874 1875 1876
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1877
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1894 1895 1896
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1909
    assert not in_dygraph_mode(), (
1910
        "sequence layer is not supported in dygraph mode yet.")
1911 1912
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1913
    softmax_out = helper.create_variable_for_type_inference(dtype)
1914 1915 1916 1917 1918 1919 1920 1921
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1922
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1923
    """
1924
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1925
    has the same shape as the input.
Q
qiaolongfei 已提交
1926

D
dengkaipeng 已提交
1927
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1928
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1929
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1930 1931 1932
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1933
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1934
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1935 1936 1937 1938 1939 1940 1941

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1942
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1943 1944 1945 1946 1947 1948 1949 1950

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1951 1952
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1953 1954
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1955 1956 1957
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1958 1959 1960 1961 1962 1963 1964 1965

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
1966 1967
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
1968
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1969
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1970
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1971 1972
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1973 1974

    """
1975 1976
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1977
    softmax_out = helper.create_variable_for_type_inference(dtype)
1978 1979 1980 1981
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1982 1983
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1984 1985 1986
    return softmax_out


Y
Yu Yang 已提交
1987 1988 1989
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1990 1991
           stride=1,
           padding=0,
1992
           dilation=1,
Y
Yu Yang 已提交
1993 1994 1995
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1996
           use_cudnn=True,
1997 1998
           act=None,
           name=None):
Y
Yu Yang 已提交
1999
    """
C
chengduoZH 已提交
2000
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2001 2002
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2003
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2004 2005 2006 2007 2008 2009 2010
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
2011 2012 2013
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2014

2015
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2016

C
chengduoZH 已提交
2017 2018
    .. math::

C
refine  
chengduoZH 已提交
2019
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2020

T
tensor-tang 已提交
2021
    Where:
C
chengduoZH 已提交
2022

2023 2024 2025 2026 2027
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2028
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2029 2030 2031

    Example:

2032 2033
        - Input:

W
weixing02 已提交
2034
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2035

W
weixing02 已提交
2036
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2037

2038
        - Output:
T
tensor-tang 已提交
2039

W
weixing02 已提交
2040
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2041

C
chengduoZH 已提交
2042
        Where
2043 2044

        .. math::
C
chengduoZH 已提交
2045

W
weixing02 已提交
2046 2047
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2048 2049

    Args:
2050
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2051
        num_filters(int): The number of filter. It is as same as the output
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2069 2070 2071 2072 2073
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2074
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2075 2076 2077 2078 2079
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2080 2081
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2082 2083
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2084
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2085
            will be named automatically. Default: None
C
chengduoZH 已提交
2086 2087

    Returns:
G
guosheng 已提交
2088
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2089 2090
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2091
    Raises:
2092 2093
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2094

C
chengduoZH 已提交
2095 2096 2097
    Examples:
        .. code-block:: python

2098 2099
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2100 2101 2102
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2103
    assert param_attr is not False, "param_attr should not be False here."
2104
    l_type = 'conv2d'
X
xzl 已提交
2105 2106
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2107
        l_type = 'depthwise_conv2d'
2108 2109 2110 2111

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2112 2113 2114 2115 2116
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2117
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2118

C
chengduoZH 已提交
2119 2120 2121
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2122
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2123

C
chengduoZH 已提交
2124 2125
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2126 2127

    input_shape = input.shape
M
minqiyang 已提交
2128
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2129 2130

    def _get_default_param_initializer():
C
chengduo 已提交
2131 2132
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2133 2134 2135 2136 2137 2138 2139 2140
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2141
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2142

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2157
    helper.append_op(
2158
        type=l_type,
Y
Yu Yang 已提交
2159 2160 2161 2162 2163
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2164 2165 2166
        attrs={
            'strides': stride,
            'paddings': padding,
2167
            'dilations': dilation,
C
chengduoZH 已提交
2168
            'groups': groups,
2169
            'use_cudnn': use_cudnn,
2170
            'use_mkldnn': False,
2171
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2172
        })
Y
Yu Yang 已提交
2173 2174 2175 2176 2177 2178

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2196 2197 2198 2199 2200 2201
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2211 2212
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2213 2214 2215
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2216
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2242
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2243 2244
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2245
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2246 2247
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2248
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2249 2250
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2251
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2252 2253 2254 2255 2256 2257
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2268 2269
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2270 2271
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2272
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2273
            will be named automatically. Default: None.
C
chengduoZH 已提交
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2286 2287
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2288 2289 2290
    """

    l_type = 'conv3d'
C
chengduo 已提交
2291
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2302
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2316 2317 2318
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2319 2320 2321 2322 2323 2324 2325 2326
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2327
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2342
            'use_mkldnn': False
C
chengduoZH 已提交
2343 2344
        })

2345
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2346 2347 2348 2349

    return helper.append_activation(pre_act)


2350
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2351
    """
Y
yangyaming 已提交
2352 2353 2354
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2365 2366
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2367 2368 2369 2370
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2371
         out.dim = [4, 1]
2372
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2373 2374

       for different pool_type:
2375 2376 2377
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2378
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2379 2380 2381 2382 2383
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2384

L
Luo Tao 已提交
2385
    Args:
2386
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2387
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2388
            It supports average, sum, sqrt and max.
2389 2390
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2391 2392 2393 2394 2395 2396 2397

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2398

2399 2400
             import paddle.fluid as fluid

Y
yangyaming 已提交
2401
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2402 2403 2404 2405 2406
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2407 2408
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2409
    """
L
lujun 已提交
2410
    assert not in_dygraph_mode(), (
2411
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2412
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2413
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2414 2415
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2416 2417 2418 2419 2420 2421

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2422 2423 2424 2425 2426
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2427

Y
yangyaming 已提交
2428 2429 2430 2431 2432
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2433 2434 2435
    return pool_out


C
add doc  
chengduoZH 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2452 2453 2454 2455
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2456
    """
L
lujun 已提交
2457
    assert not in_dygraph_mode(), (
2458
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2459
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2460
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2461 2462 2463 2464 2465
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2466
def sequence_first_step(input):
L
Luo Tao 已提交
2467
    """
L
Luo Tao 已提交
2468
    This function gets the first step of sequence.
L
Luo Tao 已提交
2469 2470 2471 2472

    .. code-block:: text

       x is a 1-level LoDTensor:
2473
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2474 2475 2476 2477 2478
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2479
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2480
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2481

L
Luo Tao 已提交
2482 2483 2484 2485 2486 2487 2488 2489 2490
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2491

Y
yangyaming 已提交
2492
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2493 2494 2495
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2496 2497 2498
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2499
def sequence_last_step(input):
L
Luo Tao 已提交
2500
    """
L
Luo Tao 已提交
2501
    This function gets the last step of sequence.
L
Luo Tao 已提交
2502 2503 2504 2505

    .. code-block:: text

       x is a 1-level LoDTensor:
2506
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2507 2508 2509 2510 2511
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2512
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2513
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2514

L
Luo Tao 已提交
2515 2516 2517 2518 2519 2520 2521 2522 2523
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2524

Y
yangyaming 已提交
2525
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2526 2527 2528
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2529 2530 2531
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2532 2533 2534 2535
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2536
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2537 2538 2539 2540 2541
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2542

H
haowang101779990 已提交
2543
              - Case:
Y
Yibing Liu 已提交
2544

2545
            Given the input Variable **input**:
2546

2547 2548 2549
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2550

2551
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2552

2553
            the output Variable will be
2554

2555 2556 2557
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2558

M
minqiyang 已提交
2559
    Note:
H
haowang101779990 已提交
2560
          The first dimension size of **input**, **offset** and **length**
2561
          should be equal. The **offset** should start from 0.
2562

Y
Yibing Liu 已提交
2563
    Args:
2564
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2565
                         sequences.
Y
Yibing Liu 已提交
2566 2567 2568 2569 2570 2571
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2572
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2583
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2584 2585
                                                   length=length)
    """
L
lujun 已提交
2586
    assert not in_dygraph_mode(), (
2587
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2588 2589
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2590
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2605
@templatedoc()
Y
Yu Yang 已提交
2606
def pool2d(input,
C
chengduoZH 已提交
2607 2608
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2609 2610
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2611
           global_pooling=False,
C
chengduoZH 已提交
2612
           use_cudnn=True,
2613
           ceil_mode=False,
2614 2615
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2616
    """
F
fengjiayi 已提交
2617
    ${comment}
2618 2619

    Args:
2620 2621 2622
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2623
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2624
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2625 2626
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2627
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2628 2629 2630 2631 2632 2633
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2634 2635 2636
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2637
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2638
                        layer will be named automatically.
2639
        exclusive (bool): Whether to exclude padding points in average pooling
2640
                          mode, default is true
F
fengjiayi 已提交
2641

2642
    Returns:
F
fengjiayi 已提交
2643
        Variable: The pooling result.
F
fengjiayi 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2656
          pool2d = fluid.layers.pool2d(
2657 2658 2659 2660
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2661
                            global_pooling=False)
Y
Yu Yang 已提交
2662 2663 2664 2665 2666
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2667

C
chengduoZH 已提交
2668 2669 2670 2671 2672
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2673 2674 2675 2676
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2677 2678
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2679

C
Add doc  
chengduoZH 已提交
2680
    l_type = 'pool2d'
2681 2682

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2683
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2684
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2685 2686

    helper.append_op(
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2698 2699
            "use_mkldnn": False,
            "exclusive": exclusive,
2700 2701 2702 2703 2704
        })

    return pool_out


D
dengkaipeng 已提交
2705
@templatedoc()
2706 2707 2708 2709 2710 2711 2712 2713
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2714 2715
           name=None,
           exclusive=True):
2716
    """
2717
    ${comment}
2718 2719

    Args:
D
dengkaipeng 已提交
2720 2721 2722 2723 2724
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2725 2726 2727 2728 2729
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2730 2731 2732 2733 2734 2735 2736
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2737
        exclusive (bool): Whether to exclude padding points in average pooling
2738
                          mode, default is true
2739

2740
    Returns:
2741
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2755 2756 2757 2758 2759
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2760

C
chengduoZH 已提交
2761 2762 2763 2764 2765
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2766 2767 2768
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2769

C
chengduoZH 已提交
2770 2771
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2772

2773 2774
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2775
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2776
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2777 2778

    helper.append_op(
2779
        type=l_type,
Y
Yu Yang 已提交
2780 2781 2782 2783 2784 2785 2786
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2787
            "paddings": pool_padding,
2788
            "use_cudnn": use_cudnn,
2789
            "ceil_mode": ceil_mode,
2790 2791
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2792 2793 2794 2795 2796
        })

    return pool_out


2797 2798 2799 2800 2801 2802 2803
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2804 2805 2806 2807 2808 2809 2810
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2811

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2825 2826 2827 2828 2829 2830 2831 2832 2833

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2834 2835
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2850
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2851
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2852
          # of input data into m * n grids averagely and performs poolings in each
2853 2854
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2855
          #
2856 2857 2858 2859 2860 2861 2862 2863
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2864 2865
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2866
          pool_out = fluid.layers.adaptive_pool2d(
2867 2868
                            input=data,
                            pool_size=[3, 3],
2869
                            pool_type='avg')
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2880
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2906
    return (pool_out, mask) if require_index else pool_out
2907 2908 2909 2910 2911 2912 2913 2914 2915


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2916 2917 2918 2919 2920 2921 2922
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2923

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2941 2942 2943

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2944 2945 2946
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2947
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2948
            it must contain three integers, (Depth, Height, Width).
2949
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2950 2951
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2966 2967
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2968
          # of input data into l * m * n grids averagely and performs poolings in each
2969 2970
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2971
          #
2972 2973 2974 2975 2976 2977 2978 2979 2980
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2981
          #                 output[:, :, i, j, k] =
2982 2983
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2984 2985 2986

          import paddle.fluid as fluid

2987
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
2988 2989
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
2990
                            input=data,
D
dengkaipeng 已提交
2991
                            pool_size=[3, 3, 3],
2992
                            pool_type='avg')
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3003
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3029
    return (pool_out, mask) if require_index else pool_out
3030 3031


Y
Yu Yang 已提交
3032 3033 3034 3035 3036 3037 3038
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3039
               data_layout='NCHW',
Y
Yang Yang 已提交
3040
               in_place=False,
3041 3042
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3043
               moving_variance_name=None,
3044
               do_model_average_for_mean_and_var=False,
3045 3046
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3047
    """
Q
qiaolongfei 已提交
3048 3049 3050 3051
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3052

Q
qiaolongfei 已提交
3053
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3054

Q
qiaolongfei 已提交
3055 3056
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3057 3058 3059
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3072

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3086
    Args:
Q
qingqing01 已提交
3087
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3088
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3089 3090 3091 3092 3093 3094 3095 3096 3097
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3098 3099 3100 3101 3102 3103 3104 3105
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3106
        data_layout(string, default NCHW): NCHW|NHWC
3107
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3108 3109 3110 3111
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3112
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3113
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3114 3115 3116 3117 3118
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3119 3120

    Returns:
Q
qiaolongfei 已提交
3121
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3122 3123 3124 3125 3126

    Examples:

        .. code-block:: python

L
lvmengsi 已提交
3127
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3128 3129
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3130
    """
C
chengduo 已提交
3131
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3132 3133 3134
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3135 3136 3137 3138
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3157
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3158

3159 3160
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3161 3162 3163
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3164
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3165
        shape=param_shape,
W
Wu Yi 已提交
3166
        dtype=dtype)
3167 3168 3169 3170 3171 3172
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3173
            trainable=False,
W
wanghaoshuang 已提交
3174
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3175
        shape=param_shape,
W
Wu Yi 已提交
3176
        dtype=dtype)
3177
    variance.stop_gradient = True
Y
Yu Yang 已提交
3178 3179 3180 3181 3182 3183

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3184 3185 3186 3187
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3188

X
Xin Pan 已提交
3189 3190
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3208 3209 3210 3211
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3212
            "data_layout": data_layout,
X
Xin Pan 已提交
3213
            "use_mkldnn": False,
3214 3215
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3216
        })
Y
Yu Yang 已提交
3217 3218 3219 3220

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3272 3273
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3274

3275 3276
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3342
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3343 3344 3345 3346

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3347
@templatedoc()
G
guosheng 已提交
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3358
    ${comment}
G
guosheng 已提交
3359 3360 3361

    The formula is as follows:

Y
yuyang18 已提交
3362
    ..  math::
G
guosheng 已提交
3363 3364 3365 3366 3367 3368 3369

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3370 3371 3372 3373 3374 3375 3376 3377
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3378

G
guosheng 已提交
3379 3380
    Args:
        input(Variable): The input tensor variable.
3381
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3382
            normalization. Default True.
3383
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3384 3385
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3386
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3387
            Default 1.
3388
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3389
            division by zero. Default 1e-05.
G
guosheng 已提交
3390
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3391 3392
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3393 3394
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3395
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3396 3397
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3398
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3399
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3400
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3401 3402 3403
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3404 3405

    Returns:
Y
yuyang18 已提交
3406
        ${y_comment}
G
guosheng 已提交
3407 3408 3409

    Examples:

Y
yuyang18 已提交
3410 3411 3412
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3413
    """
L
lujun 已提交
3414
    assert in_dygraph_mode(
L
lujun 已提交
3415
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3430
    if shift:
G
guosheng 已提交
3431 3432 3433 3434 3435 3436
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3437 3438 3439 3440 3441
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3469
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3517 3518
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3536
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3537 3538 3539
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3540
    This layer calculates the spectral normalization value of weight parameters of
3541
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3542
    Parameters. Calculations are showed as follows.
3543

D
dengkaipeng 已提交
3544 3545 3546
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3547
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3560
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3561 3562 3563 3564

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3565

D
dengkaipeng 已提交
3566
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3567 3568
                

D
dengkaipeng 已提交
3569 3570 3571 3572
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3573 3574 3575
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3576 3577 3578
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3579
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3580 3581

    Examples:
K
Kaipeng Deng 已提交
3582
       .. code-block:: python
D
dengkaipeng 已提交
3583

K
Kaipeng Deng 已提交
3584 3585 3586 3587 3588
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3589 3590
    """
    helper = LayerHelper('spectral_norm', **locals())
3591
    dtype = weight.dtype
D
dengkaipeng 已提交
3592 3593 3594

    # create intput and parameters
    inputs = {'Weight': weight}
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3613 3614

    # create output
3615
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3616 3617

    helper.append_op(
3618
        type="spectral_norm",
D
Dun 已提交
3619
        inputs=inputs,
3620 3621 3622 3623 3624 3625
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3626

3627
    return out
D
Dun 已提交
3628 3629


Y
Yu Yang 已提交
3630 3631 3632 3633
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3634 3635 3636
                     padding=0,
                     stride=1,
                     dilation=1,
3637
                     groups=None,
C
caoying03 已提交
3638
                     param_attr=None,
3639
                     bias_attr=None,
C
chengduoZH 已提交
3640
                     use_cudnn=True,
3641
                     act=None,
C
caoying03 已提交
3642
                     name=None):
Y
Yu Yang 已提交
3643
    """
3644 3645 3646 3647 3648 3649 3650 3651
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3652 3653
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3654 3655 3656
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3657 3658 3659 3660 3661

    For each input :math:`X`, the equation is:

    .. math::

3662
        Out = \sigma (W \\ast X + b)
3663

3664
    Where:
3665 3666 3667

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3668 3669 3670 3671
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3672

3673 3674 3675 3676
    Example:

        - Input:

3677
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3678

3679
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3680 3681 3682

        - Output:

3683
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3684 3685

        Where
Y
Yu Yang 已提交
3686

3687 3688
        .. math::

3689 3690
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3691 3692
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3693 3694

    Args:
3695 3696 3697 3698
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3699 3700 3701 3702
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3731
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3732 3733 3734
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3735
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3736
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3737 3738

    Returns:
3739
        Variable: The tensor variable storing the convolution transpose result.
3740 3741

    Raises:
3742 3743
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3744 3745 3746 3747

    Examples:
       .. code-block:: python

3748 3749
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3750
    """
C
chengduo 已提交
3751
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3752 3753 3754 3755 3756 3757 3758 3759
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3760 3761 3762
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3763 3764 3765
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3766

C
chengduoZH 已提交
3767 3768
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3769

Y
Yu Yang 已提交
3770 3771 3772 3773 3774
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3775

Y
Yu Yang 已提交
3776 3777
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3778

C
chengduoZH 已提交
3779
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3780
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3781
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3782
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3783
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3784 3785 3786
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3787

3788 3789 3790 3791 3792 3793 3794
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3795
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3796
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3797

Y
Yu Yang 已提交
3798 3799 3800
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3801
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3802
    helper.append_op(
3803
        type=op_type,
Y
Yu Yang 已提交
3804 3805
        inputs={'Input': [input],
                'Filter': [img_filter]},
3806
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3807
        attrs={
3808
            'output_size': output_size,
3809 3810 3811 3812 3813
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3814 3815
        })

3816 3817 3818
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3819 3820


3821
def conv3d_transpose(input,
Y
Yu Yang 已提交
3822 3823 3824
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3825 3826 3827
                     padding=0,
                     stride=1,
                     dilation=1,
3828
                     groups=None,
C
caoying03 已提交
3829
                     param_attr=None,
3830
                     bias_attr=None,
C
chengduoZH 已提交
3831
                     use_cudnn=True,
3832
                     act=None,
C
caoying03 已提交
3833
                     name=None):
Y
Yu Yang 已提交
3834
    """
3835
    **Convlution3D transpose layer**
3836

3837
    The convolution3D transpose layer calculates the output based on the input,
3838
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3839 3840 3841 3842 3843 3844
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3845 3846 3847
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3848 3849 3850 3851 3852

    For each input :math:`X`, the equation is:

    .. math::

3853
        Out = \sigma (W \\ast X + b)
3854 3855 3856

    In the above equation:

3857 3858
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3859 3860 3861 3862
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3863

3864 3865 3866 3867
    Example:

        - Input:

3868
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3869

3870
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3871 3872 3873

        - Output:

3874
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3875 3876

        Where
Y
Yu Yang 已提交
3877

3878 3879
        .. math::

3880 3881 3882
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3883 3884

    Args:
3885
        input(Variable): The input image with [N, C, D, H, W] format.
3886 3887 3888
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3889
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3890 3891
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3892
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3893 3894 3895
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3896 3897
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3898
        stride(int|tuple): The stride size. If stride is a tuple, it must
3899 3900
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3901
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3902 3903 3904
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3905 3906 3907 3908 3909
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3910 3911 3912 3913 3914 3915 3916 3917 3918
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3919 3920
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3921 3922
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3923 3924
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3925 3926

    Returns:
3927
        Variable: The tensor variable storing the convolution transpose result.
3928 3929

    Raises:
3930 3931
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3932 3933 3934 3935

    Examples:
       .. code-block:: python

3936 3937
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3938
    """
C
chengduo 已提交
3939
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3940 3941
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3942
    if not isinstance(input, Variable):
3943
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3944 3945
    input_channel = input.shape[1]

3946 3947 3948
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3949

C
chengduoZH 已提交
3950 3951 3952
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3953 3954 3955 3956 3957 3958
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3959 3960 3961
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3962

3963
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3964
                         padding[0] - 1) // dilation[0] + 1
3965
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3966
                         padding[1] - 1) // dilation[1] + 1
3967
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3968
                         padding[2] - 1) // dilation[2] + 1
3969
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3970
    else:
3971 3972
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3973

3974
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3975
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3976 3977 3978
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3979
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3980
    helper.append_op(
3981
        type=l_type,
Y
Yu Yang 已提交
3982 3983
        inputs={'Input': [input],
                'Filter': [img_filter]},
3984
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3985 3986 3987 3988
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3989
            'groups': groups,
C
chengduoZH 已提交
3990 3991
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3992

3993 3994
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3995
    return out
Y
yangyaming 已提交
3996 3997


Y
yangyaming 已提交
3998
def sequence_expand(x, y, ref_level=-1, name=None):
3999
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4000 4001 4002 4003
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4004 4005 4006 4007 4008

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4009
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4010
                x.data = [[a], [b], [c], [d]]
4011 4012 4013
                x.dims = [4, 1]

            y is a LoDTensor:
4014 4015
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4016

Y
yangyaming 已提交
4017
            ref_level: 0
4018

Y
yangyaming 已提交
4019
            then output is a 1-level LoDTensor:
4020
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4021
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4022 4023 4024 4025
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4026
                x.data = [[a], [b], [c]]
4027 4028 4029
                x.dims = [3, 1]

            y is a LoDTensor:
4030
                y.lod = [[2, 0, 3]]
4031

Y
yangyaming 已提交
4032
            ref_level: -1
4033

Y
yangyaming 已提交
4034 4035 4036
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4037 4038 4039
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4040 4041
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4042
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4043
                        will be named automatically.
4044 4045 4046 4047 4048 4049

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4050 4051
	
            import paddle.fluid.layers as layers
4052 4053 4054
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4055
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4056
    """
L
lujun 已提交
4057
    assert not in_dygraph_mode(), (
4058
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4059
    helper = LayerHelper('sequence_expand', input=x, **locals())
4060
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4061
    tmp = helper.create_variable_for_type_inference(dtype)
4062
    helper.append_op(
Y
yangyaming 已提交
4063 4064 4065 4066 4067
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4068
    return tmp
4069 4070


C
chengduo 已提交
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4119
            import paddle.fluid.layers as layers
C
chengduo 已提交
4120 4121 4122 4123 4124 4125

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4126
    assert not in_dygraph_mode(), (
4127
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4128 4129
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4130
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4131 4132 4133 4134 4135 4136 4137 4138
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4139
@templatedoc()
4140
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4141 4142 4143 4144 4145
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4146 4147 4148
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4149
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4150 4151 4152 4153
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4154 4155 4156
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4157

F
fengjiayi 已提交
4158
    Returns:
M
minqiyang 已提交
4159
        Variable: The padded sequence batch and the original lengths before
4160
                  padding. All sequences has the same length.
M
minqiyang 已提交
4161

F
fengjiayi 已提交
4162 4163 4164 4165 4166 4167 4168
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4169
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4170
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4171 4172 4173
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4174
    assert not in_dygraph_mode(), (
4175
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4176 4177
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4178 4179
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4180 4181 4182 4183

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4184 4185 4186 4187 4188 4189
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4190 4191
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4192
        attrs={'padded_length': maxlen})
4193
    return out, length
F
fengjiayi 已提交
4194 4195


4196
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4197
    """
4198
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4199

4200 4201
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4202 4203 4204 4205 4206 4207 4208 4209 4210
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4211 4212 4213
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4214
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4215 4216 4217 4218 4219 4220

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4221
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4222 4223 4224 4225 4226 4227

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4228 4229
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4242
    assert not in_dygraph_mode(), (
4243
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4244 4245
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4246
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4258 4259 4260 4261 4262 4263 4264
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4265
                is_accumulated=True,
4266 4267
                name=None,
                return_parent_idx=False):
4268
    """
4269 4270
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4271 4272 4273

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4274 4275

    This layer does the search in beams for one time step. Specifically, it
4276 4277 4278
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4290 4291 4292 4293

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4294

4295
    Args:
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4319 4320
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4321 4322
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4323 4324 4325 4326
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4327

4328
    Returns:
4329 4330 4331 4332
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4333 4334 4335 4336

    Examples:
        .. code-block:: python

4337 4338
            import paddle.fluid as fluid

4339 4340 4341
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4354
                axis=0)
4355
            selected_ids, selected_scores = fluid.layers.beam_search(
4356 4357 4358 4359 4360 4361 4362
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4363
    helper = LayerHelper('beam_search', **locals())
4364 4365 4366 4367 4368 4369
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4370

X
Xin Pan 已提交
4371 4372 4373
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4374 4375 4376 4377 4378
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4379 4380 4381

    helper.append_op(
        type='beam_search',
4382
        inputs=inputs,
Q
Qiao Longfei 已提交
4383 4384 4385
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4386
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4387 4388 4389 4390 4391 4392
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4393
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4394
        })
4395 4396 4397 4398
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4399 4400


4401 4402 4403 4404 4405 4406 4407
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4408

4409 4410 4411 4412 4413 4414 4415 4416 4417
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4418

4419 4420 4421 4422 4423 4424
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4425

4426 4427
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4428

4429 4430
            import paddle.fluid as fluid

4431 4432
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4433 4434 4435
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4436 4437 4438
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4439 4440
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4456 4457 4458 4459
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4460
              param_attr=None,
C
caoying03 已提交
4461 4462
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4463 4464 4465 4466
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4467
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4468

4469
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4470

4471
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4472

4473
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4474 4475 4476

            h_t & = o_t tanh(c_t)

4477 4478 4479 4480 4481 4482
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4483 4484 4485

        .. math::

4486
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4487 4488 4489 4490 4491 4492 4493 4494

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4495
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4496 4497

    Args:
Y
yangyaming 已提交
4498 4499 4500 4501 4502 4503
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4504
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4517 4518
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4519 4520

    Returns:
Y
yangyaming 已提交
4521
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4522 4523

    Raises:
4524 4525 4526 4527
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4528 4529 4530 4531 4532

    Examples:

        .. code-block:: python

4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4560
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4561 4562 4563 4564
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4565 4566
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4567 4568 4569
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4570
    size = cell_t_prev.shape[1]
4571
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4572 4573
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4574
                param_attr=param_attr,
4575
                bias_attr=bias_attr)
Y
yangyaming 已提交
4576
    dtype = x_t.dtype
X
Xin Pan 已提交
4577 4578
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4579 4580 4581 4582 4583 4584 4585 4586 4587

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4588
    return h, c
G
guosheng 已提交
4589 4590


C
caoying03 已提交
4591
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4592
    """
Y
yangyaming 已提交
4593
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4594 4595 4596

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4597
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4598 4599
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4600 4601
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4602
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4603
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4604
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4605 4606
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4607 4608 4609

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4610

G
guosheng 已提交
4611 4612 4613
    Examples:
        .. code-block:: python

4614
            import paddle.fluid as fluid
G
guosheng 已提交
4615 4616 4617
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4618
            # Each example is followed by the corresponding output tensor.
4619
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4620 4621 4622 4623
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4624

4625
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4626 4627
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4628
            # Each example is followed by the corresponding output tensor.
4629 4630 4631
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4632

G
guosheng 已提交
4633 4634
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4635
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4636 4637
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4638 4639 4640 4641 4642
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4643
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4644 4645 4646 4647
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4648 4649


C
caoying03 已提交
4650
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4651
    """
Y
Yibing Liu 已提交
4652
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4653 4654 4655

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4656 4657 4658
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4659
            must be in the range :math:`[-rank(input), rank(input))`. If
4660
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4661
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4662 4663
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4664
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4665
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4666
                       will be named automatically.
G
guosheng 已提交
4667 4668

    Returns:
Y
Yibing Liu 已提交
4669
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4670

G
guosheng 已提交
4671 4672 4673
    Examples:
        .. code-block:: python

4674
            import paddle.fluid as fluid
G
guosheng 已提交
4675 4676 4677 4678
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4679
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4680 4681 4682
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4683
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4684

4685
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4686 4687 4688
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4689 4690 4691
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4692 4693
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4694
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4695 4696
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4697 4698 4699 4700 4701
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4702
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4703 4704 4705 4706
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4707 4708


C
caoying03 已提交
4709
def reduce_max(input, dim=None, keep_dim=False, name=None):
4710
    """
Y
yangyaming 已提交
4711
    Computes the maximum of tensor elements over the given dimension.
4712 4713 4714

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4715
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4716 4717 4718
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4719
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4720 4721
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4722
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4723 4724
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4725 4726 4727

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4728

4729 4730 4731
    Examples:
        .. code-block:: python

4732
            import paddle.fluid as fluid
4733 4734 4735 4736
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4737
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4738 4739 4740 4741
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4742

4743
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4744 4745 4746
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4747 4748 4749
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4750 4751
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4752
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4753 4754
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4755 4756 4757 4758 4759
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4760
            'dim': dim if dim != None else [0],
4761 4762 4763 4764 4765 4766
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4767
def reduce_min(input, dim=None, keep_dim=False, name=None):
4768
    """
Y
yangyaming 已提交
4769
    Computes the minimum of tensor elements over the given dimension.
4770 4771 4772

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4773
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4774 4775 4776
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4777
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4778 4779
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4780
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4781 4782
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4783 4784 4785

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4786

4787 4788 4789
    Examples:
        .. code-block:: python

4790
            import paddle.fluid as fluid
4791 4792 4793 4794
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4795
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4796 4797 4798 4799
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4800

4801
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4802 4803 4804
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4805 4806 4807
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4808 4809
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4810
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4811 4812
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4813 4814 4815 4816 4817
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4818
            'dim': dim if dim != None else [0],
4819 4820 4821 4822
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4823 4824


4825 4826 4827 4828 4829 4830
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4831
        dim (list|int|None): The dimensions along which the product is performed. If
4832 4833
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4834 4835
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4836 4837 4838
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4839
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4840
            layer will be named automatically.
4841 4842 4843 4844 4845 4846 4847

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

4848
            import paddle.fluid as fluid
4849 4850 4851 4852
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4853
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4854 4855 4856
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4857
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4858
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4859

4860
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4861 4862 4863
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4864 4865 4866
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4867 4868
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4869
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4870 4871
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4872 4873 4874 4875 4876
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4877
            'dim': dim if dim != None else [0],
4878 4879 4880 4881 4882 4883
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4884 4885
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4886
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4906
        
Z
zhoukunsheng 已提交
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4936
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4956

Z
zhoukunsheng 已提交
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4979 4980 4981 4982 4983
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4984
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4985
    """
C
caoying03 已提交
4986
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4987 4988 4989

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4990 4991 4992 4993 4994
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4995
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4996
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4997
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4998 4999
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5000 5001

    Returns:
D
dzhwinter 已提交
5002
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5003 5004 5005 5006

    Examples:
        .. code-block:: python

5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5022 5023 5024 5025 5026 5027 5028 5029
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5030
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5031 5032 5033
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5034
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5048 5049 5050 5051 5052 5053 5054 5055 5056


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5057
    .. math::
5058 5059

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5060 5061 5062 5063 5064

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5065
        x(Variable|list): The input tensor to l2_normalize layer.
5066
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5067 5068
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5069
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5070
            the default value is 1e-12.
5071
        name(str|None): A name for this layer(optional). If set None, the layer \
5072
            will be named automatically.
C
caoying03 已提交
5073 5074

    Returns:
5075
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5076 5077

    Examples:
5078

C
caoying03 已提交
5079 5080
        .. code-block:: python

5081 5082 5083 5084
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5085 5086
    """

F
fengjiayi 已提交
5087 5088
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5089 5090
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5091 5092
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5093
    helper.append_op(
5094 5095 5096 5097
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5098
        attrs={
5099 5100
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5101 5102
        })
    return out
5103 5104


S
sneaxiy 已提交
5105
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5106
    """
Y
ying 已提交
5107 5108 5109 5110
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5111

C
chengduoZH 已提交
5112
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5113
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5114

5115 5116 5117 5118 5119
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5120
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5121

C
chengduoZH 已提交
5122
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5123
      performs in the following way.
G
guosheng 已提交
5124

5125
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5126
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5127
        last two dimensions and a batched matrix multiply supporting broadcast
5128
        applies on the two tensors.
G
guosheng 已提交
5129

Y
ying 已提交
5130 5131
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5132
    removed after matrix multiplication.
G
guosheng 已提交
5133 5134 5135

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5136 5137 5138
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5139
        alpha (float): The scale of output. Default 1.0.
5140
        name(str|None): A name for this layer(optional). If set None, the layer
5141
            will be named automatically.
G
guosheng 已提交
5142 5143

    Returns:
5144
        Variable: The product Tensor variable.
G
guosheng 已提交
5145

G
guosheng 已提交
5146 5147 5148
    Examples:
        .. code-block:: python

5149
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5150
            # x: [B, ..., M, K], y: [B, ..., K, N]
5151
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5152

5153
            # x: [B, M, K], y: [B, K, N]
5154
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5155

5156
            # x: [B, M, K], y: [K, N]
5157
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5158

5159
            # x: [M, K], y: [K, N]
5160
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5161 5162

            # x: [B, M, K], y: [K]
5163
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5164

5165
            # x: [K], y: [K]
5166
            # fluid.layers.matmul(x, y)  # out: [1]
5167

Y
ying 已提交
5168
            # x: [M], y: [N]
5169 5170 5171 5172 5173
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5174
    """
Y
ying 已提交
5175 5176 5177 5178 5179 5180 5181

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5182
            y_shape = y_shape + [1]
Y
ying 已提交
5183 5184 5185 5186 5187 5188 5189

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5190 5191
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5192

C
chengduo 已提交
5193
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5194
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5195 5196 5197
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5198
                if dim_x != y_shape[i]:
C
chengduo 已提交
5199 5200
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5201 5202 5203

    __check_input(x, y)

5204
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5205
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5206
    helper.append_op(
5207 5208 5209 5210
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5211 5212 5213
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5214
            'alpha': float(alpha),
S
sneaxiy 已提交
5215
        })
5216
    return out
5217 5218


5219
def topk(input, k, name=None):
Q
qingqing01 已提交
5220 5221 5222 5223
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5224
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5225 5226 5227 5228 5229 5230
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5252 5253 5254
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5255
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5256
                 of input.
5257
        name(str|None): A name for this layer(optional). If set None, the layer
5258
                       will be named automatically.
F
fengjiayi 已提交
5259
                       Default: None
Q
qingqing01 已提交
5260 5261

    Returns:
5262 5263 5264
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5265
        within the last dimension of input.
Q
qingqing01 已提交
5266

F
fengjiayi 已提交
5267 5268
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5269 5270 5271 5272

    Examples:
        .. code-block:: python

5273 5274
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5275 5276 5277
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5278 5279
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5280 5281 5282 5283 5284 5285
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5286 5287
    helper.append_op(
        type="top_k",
W
whs 已提交
5288
        inputs=inputs,
Q
qingqing01 已提交
5289 5290
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5291
        attrs=attrs)
Q
qingqing01 已提交
5292 5293 5294 5295 5296
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5297
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5298
    """
5299
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5300 5301 5302 5303 5304 5305 5306 5307
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5308

Y
ying 已提交
5309
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5310

5311
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5312 5313
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5314
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5315

5316
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5317 5318
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5319

5320 5321 5322
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5323
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5324
                          the length of reference string.
5325
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5326
                                     calculating edit distance.
5327
        name (str): The name of this layer. It is optional.
5328

W
wanghaoshuang 已提交
5329
    Returns:
W
wanghaoshuang 已提交
5330
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5331 5332 5333 5334

    Examples:
        .. code-block:: python

5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[1], dtype='int64')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            cost, _ = fluid.layers.edit_distance(input=x, label=y)

            cpu = fluid.core.CPUPlace()
            exe = fluid.Executor(cpu)
            exe.run(fluid.default_startup_program())

            import numpy
            x_ = numpy.random.randint(5, size=(2, 1)).astype('int64')
            y_ = numpy.random.randint(5, size=(2, 1)).astype('int64')

            print(x_)
            print(y_)

            x = fluid.create_lod_tensor(x_, [[2]], cpu)
            y = fluid.create_lod_tensor(y_, [[2]], cpu)

            outs = exe.run(feed={'x':x, 'y':y}, fetch_list=[cost.name])

            print(outs)
5357
    """
5358
    helper = LayerHelper("edit_distance", **locals())
5359

5360
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5361
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5362 5363
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5364 5365 5366 5367 5368

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5369
            attrs={"tokens": ignored_tokens})
5370 5371 5372 5373 5374
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5375
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5376
            attrs={"tokens": ignored_tokens})
5377 5378
        label = erased_label

5379
    # edit distance op
X
Xin Pan 已提交
5380 5381
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5382 5383 5384 5385
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5386 5387
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5388 5389
        attrs={"normalized": normalized})

5390
    return edit_distance_out, sequence_num
5391 5392 5393 5394 5395


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5396

Y
ying 已提交
5397 5398 5399 5400
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5418
        input.lod = [[4, 4]]
M
minqiyang 已提交
5419

W
whs 已提交
5420
        Computation:
5421

W
whs 已提交
5422 5423 5424 5425 5426 5427
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5428 5429 5430 5431 5432

        output.data = [[2],
                       [1],
                       [3]]

5433
        output.lod = [[2, 1]]
5434

W
whs 已提交
5435

5436 5437
    Args:

Y
ying 已提交
5438 5439 5440 5441 5442 5443 5444 5445 5446
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5447
        name (str): The name of this layer. It is optional.
5448 5449

    Returns:
H
haowang101779990 已提交
5450 5451 5452
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5453
                  LoD [[]] and dims [1, 1].
5454 5455 5456 5457

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5458
            import paddle.fluid as fluid
5459 5460
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5461
    """
5462
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5463
    _, topk_indices = topk(input, k=1)
5464 5465

    # ctc align op
X
Xin Pan 已提交
5466
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5467 5468 5469
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5470
        outputs={"Output": [ctc_out]},
5471 5472
        attrs={"merge_repeated": True,
               "blank": blank})
5473
    return ctc_out
5474 5475


W
Wu Yi 已提交
5476
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5477
    """
5478 5479
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5480
    to compute Connectionist Temporal Classification (CTC) loss.
5481 5482
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5483 5484 5485
    input tensor.

    Args:
5486
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5487 5488 5489 5490
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5491
       label (Variable): The ground truth of variable-length sequence,
5492 5493 5494
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5495 5496
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5497 5498 5499
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5500
         follewed by a mean_op.
W
Wu Yi 已提交
5501
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5502 5503

    Returns:
5504 5505
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5506 5507

    Examples:
5508

W
wanghaoshuang 已提交
5509
        .. code-block:: python
5510

B
Bai Yifan 已提交
5511 5512 5513 5514 5515
            import paddle.fluid as fluid
            label = fluid.layers.data(name='label', shape=[11, 8],
                                      dtype='float32', lod_level=1)
            predict = fluid.layers.data(name='predict', shape=[11, 1],
                                        dtype='float32')
5516
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5517 5518

    """
F
fengjiayi 已提交
5519
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5520 5521
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5522 5523 5524 5525 5526 5527
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5528 5529 5530 5531 5532
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5533
    return loss_out
5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5549 5550 5551
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5552 5553 5554 5555 5556
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5557

5558
            out.lod  = [[0, 1, 3]]
5559 5560 5561 5562

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5563 5564 5565 5566 5567 5568 5569
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5570 5571 5572

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5573 5574

    Returns:
5575

5576 5577 5578 5579 5580
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5581 5582 5583
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5584
    """
L
lujun 已提交
5585
    assert not in_dygraph_mode(), (
5586
        "sequence layer is not supported in dygraph mode yet.")
5587
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5588
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5589 5590 5591 5592 5593 5594
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5595 5596


5597 5598 5599 5600
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5601 5602 5603 5604 5605 5606
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5607
        num_neg_samples=None,
5608 5609 5610
        name=None,
        sampler="uniform",
        custom_dist=None,
5611 5612
        seed=0,
        is_sparse=False):
5613 5614 5615 5616 5617 5618 5619
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5620 5621
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5622
            sample is 1.0.
C
chengduo 已提交
5623 5624 5625 5626 5627 5628 5629 5630 5631
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5632
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5633 5634
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5635 5636 5637
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5638
        custom_dist (float[]): A float[] with size=num_total_classes.
5639 5640 5641 5642
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5643
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5644

5645
    Returns:
Y
Yibing Liu 已提交
5646 5647 5648 5649 5650 5651
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


Y
Yibing Liu 已提交
5652
	    import numpy as np
Y
Yibing Liu 已提交
5653

Y
Yibing Liu 已提交
5654 5655 5656 5657 5658 5659 5660 5661
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5662

Y
Yibing Liu 已提交
5663 5664 5665 5666
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5667

Y
Yibing Liu 已提交
5668 5669 5670
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5671

Y
Yibing Liu 已提交
5672 5673 5674 5675
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5676

Y
Yibing Liu 已提交
5677 5678 5679 5680 5681 5682 5683 5684
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5685
    """
Y
Yang Yu 已提交
5686 5687 5688
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5689 5690

    dim = input.shape[1]
Y
Yang Yu 已提交
5691 5692 5693 5694 5695 5696
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5697
    inputs = {}
C
chengduo 已提交
5698 5699 5700 5701 5702 5703 5704
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5705 5706 5707
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5708

5709 5710 5711 5712
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5713 5714 5715 5716 5717 5718 5719

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5720 5721
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5722
        custom_dist_len = num_total_classes
5723 5724 5725 5726 5727 5728
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5729
            if normal_prob - 1.0 > 0:
5730
                bigs.append((i, normal_prob))
5731
            elif 1.0 - normal_prob > 0:
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5747
            if big_left - 1.0 > 0:
5748
                bigs.append((big_idx, big_left))
5749
            elif 1.0 - big_left > 0:
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5779 5780 5781 5782
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5783 5784 5785 5786 5787
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5788 5789 5790 5791
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5792

Y
Yang Yu 已提交
5793 5794
    attrs = {
        'num_total_classes': int(num_total_classes),
5795 5796
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5797
        'sampler': sampler,
5798 5799
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5800
    }
Y
Yang Yu 已提交
5801 5802 5803

    helper.append_op(
        type='nce',
C
chengduo 已提交
5804
        inputs=inputs,
Y
Yang Yu 已提交
5805 5806 5807 5808 5809 5810
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5811
    return cost / (num_neg_samples + 1)
5812 5813


C
chengduo 已提交
5814 5815
def hsigmoid(input,
             label,
5816
             num_classes,
C
chengduo 已提交
5817 5818
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5819
             name=None,
5820 5821 5822
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5823
             is_sparse=False):
W
weixing02 已提交
5824 5825
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5826
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5827
    complete binary tree, or you can use is_custom to pass your own tree to
5828
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5829 5830 5831 5832 5833 5834
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5835
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5836
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5837

5838 5839
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5840 5841 5842 5843
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5844
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5845
       related to the same batch of inputs.
5846

W
weixing02 已提交
5847
    Args:
M
minqiyang 已提交
5848
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5849 5850 5851 5852
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5853 5854
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5855
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5867
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5868
            it should be in leaf -> root order
M
minqiyang 已提交
5869 5870 5871
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5872
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5873
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5874
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5875
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5876
             of W and input will be sparse.
W
weixing02 已提交
5877 5878

    Returns:
J
JiabinYang 已提交
5879
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5880 5881 5882 5883 5884

    Examples:

        .. code-block:: python

5885
            import paddle.fluid as fluid
G
guosheng 已提交
5886 5887 5888
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5889 5890 5891 5892
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5893 5894
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5895
    dim = input.shape[1]
5896
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5897 5898 5899
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5900 5901 5902 5903 5904 5905 5906 5907 5908
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5909
    if (is_custom) and (path_code is None):
5910
        raise ValueError("path_code should not be None with custom tree")
5911
    elif (is_custom) and (path_table is None):
5912
        raise ValueError("path_table should not be None with custom tree")
5913
    elif (is_custom) and (num_classes is None):
5914
        raise ValueError("num_classes should not be None with custom tree")
5915 5916 5917
    else:
        pass

J
JiabinYang 已提交
5918
    weights = None
5919 5920 5921 5922
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5923
    if not is_custom:
J
JiabinYang 已提交
5924 5925 5926 5927 5928 5929 5930 5931
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5932
            shape=[num_classes, dim],
J
JiabinYang 已提交
5933 5934
            is_bias=False,
            dtype=input.dtype)
5935 5936 5937
    inputs = {
        "X": input,
        "W": weights,
5938
        "PathTable": path_table,
5939
        "PathCode": path_code,
5940 5941
        "Label": label
    }
W
weixing02 已提交
5942
    if helper.bias_attr:
5943
        if not is_custom:
J
JiabinYang 已提交
5944 5945
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5946
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5947 5948 5949 5950 5951 5952
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5953
                shape=[num_classes, 1],
J
JiabinYang 已提交
5954 5955 5956
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5957 5958
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5959
        inputs=inputs,
W
weixing02 已提交
5960
        outputs={"Out": out,
5961 5962 5963 5964 5965 5966 5967
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5968 5969 5970
    return out


Y
fix ci.  
ying 已提交
5971
def transpose(x, perm, name=None):
Y
ying 已提交
5972 5973 5974 5975 5976 5977 5978
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5979 5980 5981
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5982 5983 5984 5985 5986 5987 5988

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5989
            # use append_batch_size=False to avoid prepending extra
5990
            # batch size in shape
5991
            import paddle.fluid as fluid
5992
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5993
                            dtype='float32', append_batch_size=False)
5994
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5995 5996
    """

Y
fix ci.  
ying 已提交
5997
    if len(perm) != len(x.shape):
Y
ying 已提交
5998 5999 6000
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
6001 6002 6003 6004 6005 6006
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6007 6008

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6009 6010
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6011
    helper.append_op(
6012
        type='transpose2',
Y
fix ci.  
ying 已提交
6013
        inputs={'X': [x]},
6014 6015
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6016 6017
        attrs={'axis': perm})
    return out
6018 6019


6020 6021 6022 6023 6024 6025 6026
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6027
    """
6028 6029 6030 6031 6032 6033 6034
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6063 6064 6065 6066 6067 6068 6069 6070 6071
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6072 6073 6074
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6075 6076 6077 6078 6079
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6107 6108 6109
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6122
            output.dims = {8, 8}
6123

6124
            output.lod = [[4, 4]]
6125

T
Tink_Y 已提交
6126
    Examples:
6127 6128 6129

        .. code-block:: python

B
Bai Yifan 已提交
6130 6131 6132
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6133
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6134 6135
                input=data, stride=[1, 1], filter_size=[2, 2])

6136 6137

    """
L
lujun 已提交
6138
    assert not in_dygraph_mode(), (
6139
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6140 6141 6142 6143 6144 6145 6146 6147 6148 6149

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6150
    inputs = {"X": input}
6151
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6152 6153 6154 6155 6156
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6157
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6158
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6159
    helper.append_op(
6160
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6161
    return out
6162 6163


Y
yuyang18 已提交
6164
@templatedoc()
6165
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6166 6167
    """
    ${comment}
6168 6169

    Args:
Y
yuyang18 已提交
6170
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6171 6172
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6173 6174 6175 6176 6177
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6178
        ${out_comment}.
6179 6180

    Examples:
Y
yuyang18 已提交
6181 6182 6183 6184
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6185 6186 6187 6188 6189 6190
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6191
    out = helper.create_variable_for_type_inference(dtype)
6192 6193 6194 6195 6196
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6197
    return helper.append_activation(out)
6198 6199


Y
yuyang18 已提交
6200
@templatedoc()
6201 6202
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6203 6204
    ${comment}

L
lujun 已提交
6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6248 6249

    Args:
Y
yuyang18 已提交
6250 6251
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6252 6253

    Returns:
Y
yuyang18 已提交
6254
        ${out_comment}.
6255 6256
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6257 6258 6259 6260 6261

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6262
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6263 6264 6265 6266 6267 6268
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6269 6270


6271 6272 6273
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6274
                               ignore_index=kIgnoreIndex,
6275
                               numeric_stable_mode=True,
6276 6277
                               return_softmax=False,
                               axis=-1):
6278 6279
    """
    **Softmax With Cross Entropy Operator.**
6280

6281
    Cross entropy loss with softmax is used as the output layer extensively. This
6282 6283 6284
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6285

6286 6287 6288
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6289

6290 6291 6292 6293
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6294

6295
    The equation is as follows:
6296

6297
    1) Hard label (one-hot label, so every sample has exactly one class)
6298

6299 6300 6301 6302
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6303

6304 6305 6306
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6307

6308 6309 6310 6311
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6312 6313
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6314 6315

    .. math::
6316

H
haowang101779990 已提交
6317
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6318

H
haowang101779990 已提交
6319
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6320

H
haowang101779990 已提交
6321
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6322 6323 6324

    and then cross entropy loss is calculated by softmax and label.

6325
    Args:
6326 6327 6328 6329 6330 6331
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6332
        soft_label (bool): A flag to indicate whether to interpretate the given
6333
            labels as soft labels. Default False.
M
minqiyang 已提交
6334 6335
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6336 6337
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6338 6339
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6340 6341 6342 6343
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6344
                                    Note that the speed may be slower when use
6345
                                    stable algorithm. Default: True
6346
        return_softmax (bool): A flag indicating whether to return the softmax
6347
                               along with the cross entropy loss. Default: False
6348 6349 6350
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6351

6352
    Returns:
H
haowang101779990 已提交
6353 6354
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6355 6356 6357 6358
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6359 6360 6361 6362 6363 6364 6365

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6366 6367
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6368 6369
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6370 6371
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6372 6373 6374 6375 6376 6377
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6378 6379 6380
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6381 6382
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6383
        })
6384 6385 6386 6387

    if return_softmax:
        return loss, softmax

6388 6389 6390
    return loss


6391 6392 6393
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6394
                                       num_true=1,
6395
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6396 6397 6398
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6399
                                       seed=0):
X
xuezhong 已提交
6400 6401 6402 6403 6404
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6405
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6406 6407 6408 6409 6410 6411 6412 6413
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6414
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6415 6416 6417 6418 6419 6420 6421 6422
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6423
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6435
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6436 6437 6438 6439 6440
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6441
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6442
            logits.
X
xuezhong 已提交
6443 6444 6445 6446 6447
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6448 6449 6450
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6451 6452 6453 6454 6455 6456 6457
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6458 6459 6460
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
X
xuezhong 已提交
6461
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
6462
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6463
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6464
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6465 6466 6467 6468 6469 6470 6471 6472
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6473 6474
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6475 6476
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6477 6478 6479 6480 6481

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6482
            'Labels': label,
X
xuezhong 已提交
6483 6484
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6485 6486 6487 6488
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6489
            'SampledLabels': sampled_label,
6490 6491 6492
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6493 6494
        },
        attrs={
X
xuezhong 已提交
6495
            'use_customized_samples': use_customized_samples,
6496
            'uniq': True,
X
xuezhong 已提交
6497 6498 6499 6500
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6501 6502
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6503 6504 6505 6506 6507 6508
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6509 6510
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6511
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6512
                'Label': sampled_softlabel},
X
xuezhong 已提交
6513 6514 6515
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6516
            'soft_label': True,
X
xuezhong 已提交
6517 6518 6519
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6520
    return loss / num_true
X
xuezhong 已提交
6521 6522


6523 6524
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6525 6526
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6527
    For each instance, it computes the smooth L1 loss element by element first
6528
    and then sums all the losses. So the shape of ouput Variable is
6529
    [batch_size, 1].
6530

6531 6532
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6533
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6534
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6535
            L1 loss op with same shape as :attr:`x`.
6536
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6537 6538
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6539
            by this tensor element by element.
6540
        outside_weight (Variable|None): A tensor with rank at least 2. This
6541 6542
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6543
            element by element.
6544
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6545 6546
           scalar with default value 1.0.

6547
    Returns:
6548
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6549 6550 6551 6552 6553

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6554 6555
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6556
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6557
            out = fluid.layers.smooth_l1(x=fc, y=label)
6558
    """
6559

6560
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6561 6562
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6563 6564 6565 6566 6567 6568 6569 6570 6571 6572
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6573
        attrs={'sigma': sigma if sigma is not None else 1.0})
6574
    return loss
6575 6576 6577 6578


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6579
    This layer creates the one-hot representations for input indices.
6580 6581

    Args:
Y
Yibing Liu 已提交
6582 6583
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6584 6585

    Returns:
Y
Yibing Liu 已提交
6586
        Variable: The one-hot representations of input.
6587 6588

    Examples:
C
caoying03 已提交
6589
        .. code-block:: python
6590

Y
Yibing Liu 已提交
6591 6592
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6593 6594
    """
    helper = LayerHelper("one_hot", **locals())
6595

X
Xin Pan 已提交
6596
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6597 6598 6599 6600 6601 6602 6603 6604 6605 6606

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6607
            depth.stop_gradient = True
6608 6609
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6610 6611
    helper.append_op(
        type="one_hot",
6612 6613
        inputs=inputs,
        attrs=attrs,
6614 6615
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6616
    return one_hot_out
Y
Yu Yang 已提交
6617 6618


Y
Yu Yang 已提交
6619
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6620
    """
Y
yi.wu 已提交
6621 6622 6623
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6624 6625 6626 6627 6628 6629

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6630 6631
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6632 6633 6634 6635 6636

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6637
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6638 6639
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6640 6641
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6642 6643 6644 6645 6646
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6647
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6648
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6649 6650
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6651
            outputs={'Out': [counter]},
M
minqiyang 已提交
6652 6653
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6654 6655 6656
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6657 6658


6659
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6660
    """
C
caoying03 已提交
6661 6662
    Gives a new shape to the input Tensor without changing its data.

6663 6664 6665 6666 6667
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6668

6669
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6670

6671 6672 6673 6674
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6675
    2. 0 means the actual dimension value is going to be copied from the
6676 6677 6678 6679
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6680 6681

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6682
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6683
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6684

6685
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6686 6687
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6688 6689
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6690
    dimensions.
C
caoying03 已提交
6691

6692
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6693 6694 6695 6696
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6697 6698

    Args:
6699
        x(variable): The input tensor.
C
caoying03 已提交
6700 6701
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6702 6703 6704 6705 6706
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6707 6708
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6709 6710 6711
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6712
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6713
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6714

6715
    Returns:
G
guosheng 已提交
6716 6717 6718 6719
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6720

X
Xin Pan 已提交
6721 6722 6723
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6724 6725
    Examples:
        .. code-block:: python
G
guosheng 已提交
6726

6727
            data = fluid.layers.data(
6728
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6729
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6730
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6731 6732 6733
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6734
        raise ValueError("Input shape must be a python list or tuple.")
6735

X
Xin Pan 已提交
6736 6737 6738 6739 6740
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6741

6742 6743
    # Validate the shape
    unk_dim_idx = -1
6744
    contain_var = False
6745
    for dim_idx, dim_size in enumerate(shape):
6746 6747 6748 6749
        if isinstance(dim_size, Variable):
            contain_var = True
            continue

6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6762
    helper = LayerHelper("reshape2", **locals())
6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
        if contain_var:
            new_shape_tensor = []
            for dim in shape:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_shape_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = helper.create_variable_for_type_inference(
                        'int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_shape_tensor.append(temp_out)
            inputs['ShapeTensor'] = new_shape_tensor
            attrs = {}

        else:
            attrs = {'shape': shape}
6785 6786
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6787
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6788
    helper.append_op(
6789
        type="reshape2",
X
Xin Pan 已提交
6790
        inputs=inputs,
6791
        attrs=attrs,
6792 6793
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6794

D
dzhwinter 已提交
6795
    return helper.append_activation(out)
6796

6797

6798
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6799
    """
M
minqiyang 已提交
6800 6801 6802
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6803
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6804

H
haowang101779990 已提交
6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6826

Y
Yibing Liu 已提交
6827
    Args:
6828
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6829
        axes (list): List of integers, indicating the dimensions to be squeezed.
6830
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6831 6832 6833 6834 6835 6836 6837

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

6838
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
6839
            x = layers.data(name='x', shape=[5, 1, 10])
6840
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6841
    """
L
lujun 已提交
6842
    assert not in_dygraph_mode(), (
L
lujun 已提交
6843
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6844
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6845 6846
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6847
    helper.append_op(
6848
        type="squeeze2",
6849
        inputs={"X": input},
Y
Yibing Liu 已提交
6850
        attrs={"axes": axes},
6851 6852
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6853

6854 6855 6856
    return out


6857
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6858
    """
M
minqiyang 已提交
6859 6860 6861
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6862

M
minqiyang 已提交
6863
    For example:
H
haowang101779990 已提交
6864 6865 6866

    .. code-block:: text

M
minqiyang 已提交
6867
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6868
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6869

Y
Yibing Liu 已提交
6870
    Args:
6871
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6872
        axes (list): List of integers, indicating the dimensions to be inserted.
6873
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6874 6875 6876 6877 6878 6879 6880

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

6881 6882 6883
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6884 6885
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6886 6887
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6888
    helper.append_op(
6889
        type="unsqueeze2",
6890
        inputs={"X": input},
Y
Yibing Liu 已提交
6891
        attrs={"axes": axes},
6892 6893
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6894

6895 6896
    return out

6897

Y
yangyaming 已提交
6898
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6899
    """
Y
Yibing Liu 已提交
6900
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6901 6902 6903 6904
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6905
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6906 6907 6908 6909 6910 6911

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6912
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6913 6914 6915
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6916
            target_lod: [4, 2]
Y
yangyaming 已提交
6917 6918

            then we get a 1-level LoDTensor:
6919
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6920 6921 6922 6923 6924 6925
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6926
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6927 6928 6929 6930
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6931
                y.data = [[2, 4]]
Y
yangyaming 已提交
6932 6933 6934
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6935
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6936 6937 6938 6939 6940 6941
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6942
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6943 6944 6945 6946
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6947
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6948 6949 6950 6951
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6952
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6953 6954 6955 6956 6957
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6958
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6959
                           from :attr:`y`.
Y
yangyaming 已提交
6960
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6961
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6962 6963

    Returns:
Y
Yibing Liu 已提交
6964
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6965 6966

    Raises:
Y
Yibing Liu 已提交
6967
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6968 6969 6970 6971

    Examples:
        .. code-block:: python

6972 6973 6974
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
6975 6976
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6977
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7003
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
7032 7033
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7046 7047 7048
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7062 7063 7064 7065


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7066
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7067
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7068

G
guosheng 已提交
7069 7070 7071 7072
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7095
                         The length of :attr:paddings must be
G
guosheng 已提交
7096 7097 7098 7099 7100 7101 7102 7103 7104 7105
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7106

G
guosheng 已提交
7107
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7108 7109
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7110 7111 7112 7113 7114
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7115
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7116 7117 7118 7119 7120 7121 7122
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7123 7124


C
chengduo 已提交
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7156 7157
		And
            pad_value = -1,
C
chengduo 已提交
7158

T
Tink_Y 已提交
7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7189 7190 7191
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7192 7193 7194 7195 7196
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7197
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7198 7199 7200 7201 7202 7203 7204 7205 7206
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7207 7208 7209 7210 7211 7212 7213
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7214 7215
    called label-smoothing regularization (LSR).

7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7239
                              be :math:`(1, class\_num)`.
7240 7241
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7242
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7243 7244 7245 7246 7247 7248 7249 7250 7251
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7252 7253
            
            import paddle.fluid.layers as layers
7254 7255 7256 7257 7258 7259 7260 7261 7262 7263

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7264
    smooth_label = helper.create_variable_for_type_inference(dtype)
7265 7266 7267 7268 7269 7270 7271
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7272 7273


W
wopeizl 已提交
7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7322 7323


J
jerrywgz 已提交
7324 7325 7326 7327 7328 7329
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7330 7331
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
7348 7349 7350 7351
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7352 7353 7354
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7355 7356 7357 7358 7359 7360
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7361
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7402 7403
        .. code-block:: python

S
SunGaofeng 已提交
7404 7405 7406
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7407
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7408
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7409 7410
    """
    label = one_hot(label, depth=input.shape[-1])
7411
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7412 7413 7414 7415 7416 7417
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7418 7419


7420 7421 7422 7423
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7424
                 resample='BILINEAR',
7425 7426
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7427
                 align_mode=1):
7428
    """
Q
qiaolongfei 已提交
7429
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7430

7431
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7432 7433 7434
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7435

7436
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7437

7438
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7439

7440 7441 7442 7443 7444 7445 7446 7447 7448 7449
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7450
    Align_corners and align_mode are optinal parameters,the calculation method 
7451 7452 7453 7454
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7455
    .. code-block:: text
7456

T
Tink_Y 已提交
7457
        For scale:
7458
          
T
Tink_Y 已提交
7459
            if align_corners = True && out_size > 1 :
7460

T
Tink_Y 已提交
7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7472

T
Tink_Y 已提交
7473 7474
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7475

T
Tink_Y 已提交
7476 7477
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7478

T
Tink_Y 已提交
7479 7480
          else:
              align_corners = True
7481

T
Tink_Y 已提交
7482 7483
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7484

T
Tink_Y 已提交
7485 7486
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7487

T
Tink_Y 已提交
7488 7489 7490 7491 7492 7493 7494 7495 7496 7497
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7498

T
Tink_Y 已提交
7499 7500 7501 7502
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7503

T
Tink_Y 已提交
7504 7505
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7506 7507 7508 7509 7510 7511 7512 7513 7514

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7515
    Args:
7516
        input (Variable): The input tensor of image resize layer,
7517 7518
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7519
        out_shape(list|tuple|Variable|None): Output shape of image resize
7520 7521
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7522
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7523
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7524
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7525
             Default: None.
7526 7527
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7528
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7529
                       currently.
7530
                       Default: 'BILINEAR'
7531 7532 7533
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7534
                                :attr:`out_shape` and :attr:`scale` specifying
7535 7536 7537 7538 7539 7540 7541
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7542 7543
                                constructing stage.
                                Default: None
7544 7545 7546 7547
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7548
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7549 7550
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7551 7552

    Returns:
Q
update  
qiaolongfei 已提交
7553 7554
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7555

7556 7557 7558
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7559
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7560 7561 7562
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7563
        ValueError: scale should be greater than zero.
7564 7565
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7566

7567 7568 7569
    Examples:
        .. code-block:: python

R
ruri 已提交
7570
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7571
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7572
    """
7573 7574 7575 7576
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7577 7578
    if resample not in resample_methods:
        raise ValueError(
7579
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7580
        )
7581
    resample_type = resample_methods[resample]
7582 7583 7584 7585 7586 7587

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7588
    if out_shape is None and scale is None:
7589
        raise ValueError("One of out_shape and scale must not be None.")
7590
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7591
    dtype = helper.input_dtype()
7592 7593 7594 7595

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7596
    inputs = {"X": input}
D
dengkaipeng 已提交
7597
    attrs = {
D
dengkaipeng 已提交
7598 7599
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7600 7601 7602 7603 7604
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7605
    if out_shape is not None:
7606 7607 7608 7609
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7610
            inputs['OutSize'] = out_shape
7611 7612
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7613 7614
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7615 7616 7617 7618 7619 7620 7621
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7622
    else:
D
dengkaipeng 已提交
7623 7624
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7625
        attrs['scale'] = float(scale)
7626

7627 7628 7629 7630 7631
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7632
    out = helper.create_variable_for_type_inference(dtype)
7633
    helper.append_op(
7634
        type='{}_interp'.format(resample_type),
7635
        inputs=inputs,
7636
        outputs={"Out": out},
D
dengkaipeng 已提交
7637
        attrs=attrs)
7638
    return out
F
stash  
fengjiayi 已提交
7639 7640


7641
@templatedoc(op_type="bilinear_interp")
7642 7643 7644 7645
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7646 7647
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7648
                    align_mode=1):
7649
    """
7650 7651
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7652 7653
    in priority order.

7654 7655 7656 7657
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7658 7659
    again in the other direction.

7660
    For details of bilinear interpolation, please refer to Wikipedia:
7661
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7662

T
tink2123 已提交
7663
    Align_corners and align_mode are optinal parameters,the calculation 
7664 7665 7666 7667
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7668
    .. code-block:: text
7669

T
Tink_Y 已提交
7670
        For scale:
7671
          
T
Tink_Y 已提交
7672
            if align_corners = True && out_size > 1 :
7673

T
Tink_Y 已提交
7674 7675 7676 7677 7678
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7679

T
Tink_Y 已提交
7680 7681 7682 7683 7684 7685 7686 7687 7688 7689
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7690 7691


T
Tink_Y 已提交
7692
          else:
T
tink2123 已提交
7693

T
Tink_Y 已提交
7694 7695
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7696

T
Tink_Y 已提交
7697 7698
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7699 7700 7701



Y
yuyang18 已提交
7702 7703 7704
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7705 7706 7707
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7708

Y
yuyang18 已提交
7709
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7710
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7711
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7712
             Default: None.
Y
yuyang18 已提交
7713 7714

        name(str|None): The output variable name.
7715 7716 7717
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7718
                                :attr:`out_shape` and :attr:`scale` specifying
7719 7720 7721 7722 7723 7724 7725
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7726 7727
                                constructing stage.
                                Default: None
7728 7729
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7730 7731 7732

    Returns:
        ${out_comment}.
7733 7734 7735 7736

    Examples:
        .. code-block:: python

R
ruri 已提交
7737
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7738
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7739 7740
    """

7741 7742
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7743 7744


7745
@templatedoc(op_type="nearest_interp")
7746 7747 7748 7749
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7750 7751
                   actual_shape=None,
                   align_corners=True):
7752
    """
7753
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7754 7755
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7756 7757
    out_shape and scale in priority order.

7758 7759
    Example:

T
Tink_Y 已提交
7760 7761 7762 7763 7764
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7765

T
Tink_Y 已提交
7766 7767 7768 7769 7770 7771 7772 7773
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7774
          
T
Tink_Y 已提交
7775 7776
          if:
              align_corners = False
7777

T
Tink_Y 已提交
7778 7779
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7780

T
Tink_Y 已提交
7781 7782
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7783

T
Tink_Y 已提交
7784 7785
          else:
              align_corners = True
7786

T
Tink_Y 已提交
7787 7788
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7789

T
Tink_Y 已提交
7790 7791
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7792 7793


7794
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7795
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7796 7797 7798 7799

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7800 7801 7802
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7803

Y
yuyang18 已提交
7804
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7805
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7806
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7807
             Default: None.
Y
yuyang18 已提交
7808 7809

        name(str|None): The output variable name.
7810 7811 7812
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7813
                                :attr:`out_shape` and :attr:`scale` specifying
7814 7815 7816 7817 7818 7819 7820
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7821 7822
                                constructing stage.
                                Default: None
7823
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7824 7825 7826

    Returns:
        ${out_comment}.
7827 7828 7829 7830

    Examples:
        .. code-block:: python

R
ruri 已提交
7831
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7832
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7833 7834
    """

7835 7836
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7837 7838 7839 7840


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7841 7842 7843
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7844 7845 7846 7847 7848 7849 7850
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7851
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7852

7853
    Returns:
Q
update  
qiaolongfei 已提交
7854
        Variable: The output is a 4-D tensor of the shape
7855
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7856 7857 7858 7859 7860 7861

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7862 7863 7864 7865 7866 7867 7868 7869 7870 7871
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7872 7873 7874
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7875 7876 7877
    return image_resize(input=input, out_shape=out_shape, resample=resample)


7878
def gather(input, index, overwrite=True):
W
whs 已提交
7879
    """
Q
qiaolongfei 已提交
7880 7881
    **Gather Layer**

7882
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7883 7884 7885 7886
    of X indexed by `index` and concatenate them together.

    .. math::

7887
        Out = X[Index]
W
whs 已提交
7888 7889 7890 7891 7892 7893 7894


    .. code-block:: text


                Given:

7895 7896
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7897 7898 7899 7900 7901 7902 7903 7904 7905 7906
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7907
        input (Variable): The source input with rank>=1.
W
whs 已提交
7908
        index (Variable): The index input with rank=1.
7909 7910 7911 7912 7913 7914
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
7915 7916 7917 7918 7919

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7920

W
whs 已提交
7921 7922
        .. code-block:: python

Y
Yibing Liu 已提交
7923 7924
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7925 7926 7927 7928
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7929
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7930 7931 7932 7933
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
7934 7935
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
7936 7937 7938
    return out


7939
def scatter(input, index, updates, name=None, overwrite=True):
7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
7957 7958 7959 7960
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
7961 7962 7963 7964 7965 7966 7967 7968

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

7969 7970 7971 7972 7973
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
7974

7975
            output = fluid.layers.scatter(input, index, updates)
7976 7977 7978
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7979
    out = helper.create_variable_for_type_inference(dtype)
7980 7981 7982 7983 7984
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
7985
        attrs={'overwrite': overwrite},
7986 7987 7988 7989
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7990 7991 7992 7993 7994 7995 7996 7997 7998
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7999

Q
Qingsheng Li 已提交
8000
    Given the following input:
H
haowang101779990 已提交
8001

Q
Qingsheng Li 已提交
8002
    .. code-block:: text
H
haowang101779990 已提交
8003

Q
Qingsheng Li 已提交
8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
8016

Q
Qingsheng Li 已提交
8017
    .. code-block:: text
H
haowang101779990 已提交
8018

Q
Qingsheng Li 已提交
8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
8034
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
8035 8036 8037 8038

    Examples:

        .. code-block:: python
8039 8040
	
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
8041

8042 8043 8044
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
8045 8046 8047
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
8048
    assert not in_dygraph_mode(), (
8049
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
8050 8051
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8052
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
8053 8054 8055 8056 8057 8058 8059 8060 8061
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8075

8076 8077 8078
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8079
    """
F
stash  
fengjiayi 已提交
8080
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8081
    dtype = x.dtype
X
Xin Pan 已提交
8082
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8083
    if seed is None:
8084
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8085
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8086
    if isinstance(seed, int):
F
fengjiayi 已提交
8087 8088 8089 8090 8091
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8092 8093 8094 8095
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8096
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8097 8098
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8099 8100
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8101
    return out
W
whs 已提交
8102 8103


8104
def log(x, name=None):
W
wanghaoshuang 已提交
8105 8106 8107 8108 8109
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8110
        Out = \\ln(x)
W
wanghaoshuang 已提交
8111 8112

    Args:
8113
        x (Variable): Input tensor.
8114 8115
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8116 8117 8118 8119 8120 8121 8122 8123

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8124
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8125
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8126 8127
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8128
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8129
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8130
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8131 8132 8133
    return out


8134
def relu(x, name=None):
W
wanghaoshuang 已提交
8135 8136
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8137
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8138 8139 8140 8141
    the tensor elementwise.

    .. math::

8142
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8143 8144

    Args:
8145
        x (Variable): The input tensor.
8146 8147
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8148 8149 8150 8151 8152 8153 8154 8155

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8156
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8157
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8158 8159
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8160
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8161
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8162 8163
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8164
    return out
8165 8166


C
chengduo 已提交
8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
8191 8192 8193 8194 8195 8196
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8212 8213 8214
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8215 8216 8217 8218
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8219
    .. math::
8220

H
haowang101779990 已提交
8221
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8222

8223
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8224 8225 8226 8227 8228
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8229
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8230
                           Its shape should be the same as input.
8231
        num_classes (int): The possible number of labels.
W
whs 已提交
8232 8233

    Returns:
M
minqiyang 已提交
8234 8235
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8236
                     Three variables:
M
minqiyang 已提交
8237

H
haowang101779990 已提交
8238 8239 8240
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8241 8242 8243 8244

    Examples:

        .. code-block:: python
8245

B
Bai Yifan 已提交
8246 8247 8248 8249 8250
            import paddle.fluid as fluid
            predict = fluid.layers.data(name='predict', shape=[3, 32, 32])
            label = fluid.layers.data(name='label', shape=[1])
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
                                                          num_classes=5)
W
whs 已提交
8251 8252 8253
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8254 8255 8256
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8257 8258
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8259 8260
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8261
        outputs={
W
whs 已提交
8262 8263 8264
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8265 8266 8267
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8310
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8311
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8312
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8330
            import paddle.fluid as fluid
8331 8332 8333 8334 8335 8336
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8337
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8338 8339 8340 8341 8342

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8343
            isinstance(shape, Variable)):
8344 8345 8346 8347 8348
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8349
    out = helper.create_variable_for_type_inference(x.dtype)
8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8367 8368


W
whs 已提交
8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8386

W
whs 已提交
8387
              out_shape = [2, 3, 5, 5]
8388

W
whs 已提交
8389
          Step 1:
8390

W
whs 已提交
8391 8392 8393
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8394

W
whs 已提交
8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8440
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8441
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8454

S
SunGaofeng 已提交
8455
            import paddle.fluid as fluid
W
whs 已提交
8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8467
            isinstance(out_shape, Variable)):
W
whs 已提交
8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8489 8490
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8491

8492 8493
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8494
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8495 8496 8497
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8498

8499 8500
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8501

H
haowang101779990 已提交
8502 8503
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8504 8505
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8506

H
haowang101779990 已提交
8507 8508 8509 8510 8511 8512 8513 8514
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8515 8516 8517

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

8535 8536 8537
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8552
    out = helper.create_variable_for_type_inference("float32")
8553 8554 8555 8556 8557 8558 8559 8560

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8561 8562


M
minqiyang 已提交
8563 8564
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8565
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8566
    which compares left score and right score passed in.
M
minqiyang 已提交
8567
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8568 8569 8570

    .. math::

H
haowang101779990 已提交
8571
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8572 8573

    Args:
M
minqiyang 已提交
8574
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8575 8576
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8577
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8578 8579
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8580

M
minqiyang 已提交
8581
    Returns:
M
minqiyang 已提交
8582
       Variable: The ranking loss.
H
haowang101779990 已提交
8583

M
minqiyang 已提交
8584
    Raises:
M
minqiyang 已提交
8585
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8586

M
minqiyang 已提交
8587
    Examples:
H
haowang101779990 已提交
8588

M
minqiyang 已提交
8589
        .. code-block:: python
H
haowang101779990 已提交
8590

Y
Yibing Liu 已提交
8591 8592 8593
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8594 8595
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8596
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8597 8598 8599 8600 8601 8602
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8603 8604
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8628
        .. code-block:: text
W
whs 已提交
8629

T
Tink_Y 已提交
8630
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8631

T
Tink_Y 已提交
8632 8633
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8634

T
Tink_Y 已提交
8635
	      Case 0:
M
minqiyang 已提交
8636

T
Tink_Y 已提交
8637 8638 8639
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8640

T
Tink_Y 已提交
8641 8642 8643
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8644

T
Tink_Y 已提交
8645
	      Case 1:
M
minqiyang 已提交
8646

T
Tink_Y 已提交
8647 8648
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8649

T
Tink_Y 已提交
8650 8651 8652
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8653

T
Tink_Y 已提交
8654
	      Case 2:
M
minqiyang 已提交
8655

T
Tink_Y 已提交
8656 8657
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8658

T
Tink_Y 已提交
8659 8660 8661
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8662 8663


W
whs 已提交
8664 8665
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8666
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
8684 8685 8686 8687 8688
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8689 8690 8691 8692
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8693
    out = helper.create_variable_for_type_inference(dtype)
8694 8695 8696 8697 8698 8699 8700 8701 8702
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8703
    helper.append_op(
8704
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8705 8706 8707 8708

    return out


8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8721 8722 8723 8724 8725

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8726 8727
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8728 8729
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8730
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8751 8752 8753 8754 8755

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8756 8757
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8758 8759
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8760
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8781 8782 8783 8784 8785

    Examples:

        .. code-block:: python

8786
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8787 8788
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8789 8790
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8791
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8813 8814 8815 8816 8817

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8818
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8819
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8820 8821
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8822
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8845 8846 8847 8848 8849

    Examples:

        .. code-block:: python

8850
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8851 8852
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8853 8854
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8855
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8877 8878 8879 8880 8881

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8882 8883
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8884 8885
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8886
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8887 8888 8889 8890 8891 8892 8893 8894
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8895 8896 8897 8898
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8899 8900
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8901

J
jerrywgz 已提交
8902 8903 8904 8905 8906 8907 8908 8909
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
8910 8911
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8912
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
8913
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
8914
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
8915
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8916
          will be named automatically.
J
jerrywgz 已提交
8917 8918 8919 8920 8921 8922 8923 8924

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8925 8926 8927
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
8928
            mode = 'channel'
J
jerrywgz 已提交
8929 8930 8931
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8943
        attr=helper.param_attr,
J
jerrywgz 已提交
8944 8945 8946 8947
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8948
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8949 8950 8951 8952 8953 8954 8955 8956 8957
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8958 8959 8960 8961 8962 8963 8964 8965 8966 8967
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8968
    Returns:
8969
        output(${out_type}): ${out_comment}
8970 8971 8972

    Examples:

8973
    .. code-block:: python
8974

H
haowang101779990 已提交
8975 8976
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8977 8978
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8979
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8998
    Returns:
8999
        output(${out_type}): ${out_comment}
9000 9001 9002 9003 9004

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
9005 9006
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
9007 9008
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9009
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9027
    Returns:
9028
        output(${out_type}): ${out_comment}
9029 9030 9031

    Examples:

9032 9033 9034 9035 9036
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
9037
            y = fluid.layers.soft_relu(x, threshold=20.0)
9038 9039
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9040
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9041 9042 9043 9044 9045 9046 9047 9048
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9049 9050 9051 9052
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
9053

H
haowang101779990 已提交
9054
    For Example:
M
minqiyang 已提交
9055

H
haowang101779990 已提交
9056
    .. code-block:: text
9057

H
haowang101779990 已提交
9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9079 9080 9081

    Args:
        x (Variable): A tensor of rank >= axis.
9082 9083
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9084 9085 9086 9087 9088 9089 9090 9091
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9092 9093 9094
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9095 9096 9097 9098
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9099
        ValueError: If axis is not in range [0, rank(x)].
9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9116 9117
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9118
    helper.append_op(
9119
        type='flatten2',
9120
        inputs={"X": x},
9121 9122
        outputs={'Out': out,
                 'XShape': x_shape},
9123 9124
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9125 9126


C
chenweihang 已提交
9127
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9128
    """
C
chenweihang 已提交
9129
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9130
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
9131 9132
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
9133

H
haowang101779990 已提交
9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
9151 9152

    Args:
C
chenweihang 已提交
9153 9154 9155
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
9156 9157 9158 9159 9160 9161 9162

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9163
            x = fluid.layers.data(shape[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9164 9165
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9166
    assert not in_dygraph_mode(), (
9167
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9168
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9169 9170
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9171 9172 9173 9174 9175 9176
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9177
    return out
9178

9179

S
sneaxiy 已提交
9180 9181 9182 9183 9184 9185 9186 9187 9188
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9189

S
sneaxiy 已提交
9190
    .. math::
9191

S
sneaxiy 已提交
9192 9193 9194
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9195
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9196 9197 9198 9199
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9200 9201 9202
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9203 9204
    Returns:
        Variable: The output sequence mask.
9205

9206 9207 9208 9209 9210 9211 9212 9213
    Examples:
        .. code-block:: python
	
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9214
    """
L
lujun 已提交
9215
    assert not in_dygraph_mode(), (
9216
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9217

Q
qingqing01 已提交
9218
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9219
    if name is None:
X
Xin Pan 已提交
9220
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9221
    else:
X
Xin Pan 已提交
9222
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9223

Q
qingqing01 已提交
9224 9225 9226
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
9227 9228
        outputs={'Y': out},
        attrs={
9229
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
9230 9231 9232
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
9233 9234


X
Xin Pan 已提交
9235
def stack(x, axis=0):
S
sneaxiy 已提交
9236 9237 9238 9239
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9240 9241 9242 9243 9244 9245 9246

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9247
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9248
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9249

C
chengduozh 已提交
9250 9251
    For Example:

C
chengduozh 已提交
9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9290
    Args:
9291
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9292
        axis (int|None): The axis along which all inputs are stacked.
9293

S
sneaxiy 已提交
9294 9295
    Returns:
        Variable: The stacked variable.
9296

9297 9298 9299 9300
    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers
9301 9302
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
9303 9304
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9305 9306
    """

X
Xin Pan 已提交
9307 9308 9309 9310 9311 9312
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9313
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9314
    helper.append_op(
S
sneaxiy 已提交
9315 9316
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9317

X
Xin Pan 已提交
9318
    return out
D
dzhwinter 已提交
9319 9320 9321 9322 9323 9324 9325


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9326

D
dzhwinter 已提交
9327 9328 9329
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9330
    raised.
D
dzhwinter 已提交
9331 9332

    Args:
M
minqiyang 已提交
9333
        x (Variable): Input variable.
D
dzhwinter 已提交
9334 9335
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9336

D
dzhwinter 已提交
9337 9338
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9339

9340 9341 9342 9343 9344 9345
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
9346 9347 9348 9349 9350 9351 9352 9353 9354 9355
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9356
    for _ in range(num):
X
Xin Pan 已提交
9357
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9358 9359 9360 9361 9362 9363 9364 9365

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9378

W
whs 已提交
9379 9380 9381 9382
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9383

W
whs 已提交
9384
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9385

W
whs 已提交
9386
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9387

W
whs 已提交
9388 9389 9390 9391
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9392

W
whs 已提交
9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9409
    out = helper.create_variable_for_type_inference(dtype)
9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426
    # check expand_times have tensor

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:

        def contain_tensor(expand_times):
            for ele in expand_times:
                if isinstance(ele, Variable):
                    return True
            return False

        if contain_tensor(expand_times):
            new_expand_times = []
            for ele in expand_times:
                if isinstance(ele, Variable):
H
Hongyu Liu 已提交
9427
                    ele.stop_gradient = True
9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440
                    new_expand_times.append(ele)
                else:
                    assert (isinstance(ele, int))
                    temp_out = helper.create_variable_for_type_inference(dtype)
                    fill_constant(
                        [1], 'int32', ele, force_cpu=True, out=temp_out)
                    new_expand_times.append(temp_out)
            inputs = {'X': x, 'expand_times_tensor': new_expand_times}
            attrs = {}
        else:
            inputs = {'X': x}
            attrs = {'expand_times': expand_times}

W
whs 已提交
9441
    helper.append_op(
9442
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9443
    return out
S
sneaxiy 已提交
9444 9445


G
fix  
gongweibao 已提交
9446 9447 9448
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9449
@templatedoc()
G
fix  
gongweibao 已提交
9450 9451 9452 9453 9454 9455 9456 9457 9458
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9459
    ${comment}
G
fix  
gongweibao 已提交
9460 9461

    Args:
G
gongweibao 已提交
9462 9463 9464
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9465
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9466 9467 9468
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9469 9470
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9471
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9472

9473 9474 9475
    Examples:
        .. code-block:: python

9476 9477
            import paddle.fluid.layers as layers 

9478 9479
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9480 9481 9482
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9483
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9500 9501


G
gongweibao 已提交
9502
@templatedoc()
X
Xin Pan 已提交
9503
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9504
    """
G
gongweibao 已提交
9505
    ${comment}
G
fix  
gongweibao 已提交
9506 9507

    Args:
G
gongweibao 已提交
9508 9509 9510 9511
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9512 9513 9514
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9515
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9516

9517 9518 9519
    Examples:
        .. code-block:: python

J
JesseyXujin 已提交
9520
            import paddle.fluid.layers as layers
9521
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9522 9523 9524
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9525
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9526 9527 9528 9529 9530 9531 9532 9533 9534 9535
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9536
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9537 9538 9539 9540 9541
        })

    return out


G
gongweibao 已提交
9542
@templatedoc()
G
fix  
gongweibao 已提交
9543
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9544
    """
G
gongweibao 已提交
9545
    ${comment}
G
fix  
gongweibao 已提交
9546 9547

    Args:
G
gongweibao 已提交
9548 9549 9550 9551
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9552
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9553 9554

    Returns:
G
gongweibao 已提交
9555
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9556

9557 9558 9559
    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9560
            x = fluid.layers.data(
9561 9562 9563 9564 9565
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9566
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9567 9568 9569
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9570
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9582
@templatedoc()
G
fix  
gongweibao 已提交
9583 9584 9585 9586 9587 9588 9589 9590 9591
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9592
    ${comment}
G
fix  
gongweibao 已提交
9593 9594

    Args:
G
gongweibao 已提交
9595 9596
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9597
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9598 9599 9600 9601
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9602
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9603 9604

    Returns:
G
gongweibao 已提交
9605
        out (Variable): ${out_comment}
9606 9607 9608 9609

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9610
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9611

Y
Yibing Liu 已提交
9612
            out = fluid.layers.gaussian_random_batch_size_like(
9613
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9614 9615 9616
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9617
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9636
@templatedoc()
X
Xin Pan 已提交
9637
def sum(x):
G
fix  
gongweibao 已提交
9638
    """
G
gongweibao 已提交
9639
    ${comment}
G
fix  
gongweibao 已提交
9640 9641

    Args:
G
gongweibao 已提交
9642
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9643 9644

    Returns:
G
gongweibao 已提交
9645
        out (Variable): ${out_comment}
9646 9647 9648 9649

    Examples:
        .. code-block:: python

9650 9651 9652 9653
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
9654 9655 9656
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9657 9658
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9659 9660 9661 9662
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9663
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9664 9665 9666 9667

    return out


G
gongweibao 已提交
9668
@templatedoc()
G
fix  
gongweibao 已提交
9669 9670
def slice(input, axes, starts, ends):
    """
9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
9686

9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
9704
    Args:
G
gongweibao 已提交
9705 9706 9707 9708
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9709 9710

    Returns:
G
gongweibao 已提交
9711
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9712

9713 9714 9715
    Examples:
        .. code-block:: python

9716 9717
            import paddle.fluid as fluid
 
9718 9719 9720 9721
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

9722
            input = fluid.layers.data(
9723 9724
                name="input", shape=[3, 4, 5, 6], dtype='float32')

9725
            out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9726 9727 9728
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9729 9730
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9744 9745
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9746
    Get the shape of the input.
G
fix  
gongweibao 已提交
9747 9748

    Args:
C
chengduozh 已提交
9749
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9750 9751

    Returns:
C
fix doc  
chengduozh 已提交
9752
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9753

9754 9755 9756
    Examples:
        .. code-block:: python

9757 9758 9759
            import paddle.fluid as fluid

            input = fluid.layers.data(
9760
                name="input", shape=[3, 100, 100], dtype="float32")
9761
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
9762 9763 9764
    """

    helper = LayerHelper('shape', **locals())
9765
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9766
    helper.append_op(
G
fix  
gongweibao 已提交
9767
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9768 9769

    return out
G
merge  
gongweibao 已提交
9770 9771


Z
zhoukunsheng 已提交
9772 9773 9774 9775
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9776
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9798 9799 9800 9801
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9802
    if in_dygraph_mode():
X
Xin Pan 已提交
9803 9804 9805
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9806 9807 9808 9809
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9810 9811
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9812
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9813 9814 9815
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9816

S
sneaxiy 已提交
9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9828
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9829 9830 9831 9832 9833 9834 9835 9836
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9837
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9838
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9839 9840 9841

    Returns:
        out(${out_type}): ${out_comment}
9842 9843 9844 9845 9846 9847 9848 9849

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
9850 9851 9852
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9853
    if name is None:
X
Xin Pan 已提交
9854
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9855 9856 9857
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9858 9859 9860 9861 9862 9863 9864 9865 9866 9867

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9868
    return helper.append_activation(out)
S
sneaxiy 已提交
9869 9870


X
Xin Pan 已提交
9871
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9872 9873 9874
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9875
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9876 9877 9878
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9879
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9880 9881 9882
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9883
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9884 9885 9886
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9887
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9888 9889 9890
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9891
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9892 9893 9894
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9895
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9896 9897 9898
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9899 9900 9901 9902 9903 9904 9905 9906
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9907
for func in [
9908 9909 9910 9911 9912 9913 9914 9915 9916
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9917 9918 9919 9920 9921
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9922 9923
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9924
        ])
9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
9962 9963


9964
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9965 9966
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9967 9968
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9969 9970 9971

    if out is None:
        if name is None:
X
Xin Pan 已提交
9972
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9988
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10000 10001 10002 10003 10004 10005 10006 10007 10008

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
10009 10010 10011 10012 10013 10014 10015
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10016
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10028 10029 10030 10031 10032 10033 10034 10035 10036

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
10037 10038 10039 10040 10041 10042 10043
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10044
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10056 10057 10058 10059 10060 10061 10062 10063 10064

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
10065 10066 10067 10068 10069 10070 10071
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10072
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10073 10074 10075 10076 10077 10078 10079 10080 10081 10082
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10083 10084 10085 10086 10087 10088 10089

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
10090 10091 10092 10093
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10109 10110 10111 10112

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10113
            import paddle.fluid as fluid
10114 10115 10116
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
10117 10118 10119 10120 10121
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
10122 10123
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10124 10125 10126

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10150 10151 10152 10153 10154 10155 10156

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
10157 10158 10159 10160 10161
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
10162 10163
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10164 10165 10166

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10167 10168 10169 10170 10171 10172 10173 10174

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10188 10189 10190 10191 10192 10193 10194

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
10195 10196 10197 10198 10199
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
10200
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10201 10202 10203 10204 10205 10206 10207 10208 10209 10210
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10222 10223 10224 10225 10226 10227 10228 10229 10230

    Examples:
        .. code-block:: python

            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
10269 10270 10271 10272 10273
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
10274
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10275 10276 10277 10278 10279 10280 10281 10282 10283
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
10284 10285
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
10286 10287 10288 10289 10290 10291
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
10292 10293 10294
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
10295 10296
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
10297 10298 10299 10300 10301 10302
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
10303
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
10304
        name(basestring|None): Name of the output.
10305 10306
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
10307 10308 10309

    Returns:
        out(${out_type}): ${out_comment}
10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10324 10325 10326 10327 10328
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10329
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10330 10331 10332 10333 10334 10335 10336 10337
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10338 10339
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
10356 10357 10358 10359 10360 10361 10362 10363 10364

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
10365 10366 10367 10368
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10369
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10370 10371 10372 10373 10374 10375 10376 10377 10378 10379
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10380 10381


J
JiabinYang 已提交
10382
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10383
    """
J
JiabinYang 已提交
10384
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10385 10386 10387

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10388
    The attr blocksize indicates the input block size.
10389 10390

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10391
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10392 10393

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10394
    (but keeping all data)
J
JiabinYang 已提交
10395

J
JiabinYang 已提交
10396
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10397
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10398 10399 10400 10401 10402
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10403
    Args:
J
JiabinYang 已提交
10404
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10405
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10406 10407

    Returns:
J
JiabinYang 已提交
10408
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10409 10410

    Raises:
J
JiabinYang 已提交
10411
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10412 10413 10414

    Examples:
        .. code-block:: python
10415 10416 10417
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
10418 10419

            data = fluid.layers.data(
10420
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10421
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10422
                x=data, blocksize=2)
10423 10424 10425 10426 10427 10428

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
10429

J
JiabinYang 已提交
10430 10431
    """

J
JiabinYang 已提交
10432
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10433

J
JiabinYang 已提交
10434 10435
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10436 10437

    if name is None:
J
JiabinYang 已提交
10438 10439
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10440 10441 10442 10443 10444
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10445
        type="space_to_depth",
J
JiabinYang 已提交
10446
        inputs={"X": x},
J
JiabinYang 已提交
10447
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10448
        outputs={"Out": out})
J
JiabinYang 已提交
10449 10450
    return out

J
JiabinYang 已提交
10451

S
sneaxiy 已提交
10452 10453
@templatedoc()
def sequence_reverse(x, name=None):
10454
    """
S
sneaxiy 已提交
10455 10456 10457 10458 10459 10460 10461 10462
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
10463 10464 10465 10466 10467 10468 10469

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
10470
    """
L
lujun 已提交
10471
    assert not in_dygraph_mode(), (
10472
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10473 10474
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10475
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10476 10477 10478 10479 10480 10481 10482 10483 10484 10485
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10486 10487


10488 10489 10490 10491 10492 10493
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10494 10495 10496 10497 10498
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10499

10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10512
        act (str, default None): Activation to be applied to the output of this layer.
10513 10514 10515

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

10530 10531 10532 10533
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10534
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10546
    return helper.append_activation(out)
10547 10548


B
barrierye 已提交
10549
def similarity_focus(input, axis, indexes, name=None):
10550
    """
B
barrierye 已提交
10551
    SimilarityFocus Operator
B
barrierye 已提交
10552 10553

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10554

10555 10556 10557
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10558
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10559 10560 10561 10562 10563 10564 10565
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10566
       each index.
B
barrierye 已提交
10567 10568 10569 10570
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10620
    Args:
10621
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10622
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10623
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10624
            1, 2 or 3.
B
barrierye 已提交
10625
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10626 10627

    Returns:
H
haowang101779990 已提交
10628 10629
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10630

B
barrierye 已提交
10631 10632
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10633

B
barrierye 已提交
10634
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10635 10636
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10649 10650 10651 10652 10653
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10654 10655 10656 10657 10658 10659 10660
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10661 10662


M
minqiyang 已提交
10663 10664
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10665 10666
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10667 10668
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10669 10670 10671 10672 10673 10674 10675 10676 10677

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
10678 10679
            [[1, 2],
             [3, 4]],
M
minqiyang 已提交
10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
10696 10697
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
10698 10699 10700 10701 10702 10703 10704 10705 10706
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10707
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10708
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10709 10710 10711 10712 10713 10714

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10715

10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np

            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=1, hash_size=1000)

            place = fluid.core.CPUPlace()
            exece = fluid.Executor(place)
            exece.run(fluid.default_startup_program()) 

            # Init Tensor
            tensor = fluid.core.LoDTensor() 
            tensor.set(np.random.randint(0, 10, (3, 1)).astype("int32"), place)
            # Set LoD
            tensor.set_recursive_sequence_lengths([[1, 1, 1]])

            out = exece.run(feed={'titles': tensor}, fetch_list=[hash_r], return_numpy=False)
M
minqiyang 已提交
10734 10735
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10736 10737
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10738 10739 10740 10741 10742 10743 10744
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10745 10746


D
dengkaipeng 已提交
10747
@templatedoc()
10748 10749
def grid_sampler(x, grid, name=None):
    """
10750
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10751
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10752 10753 10754 10755
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10756
    interpolation value of 4 nearest corner points.
10757

H
haowang101779990 已提交
10758
    .. code-block:: text
10759

H
haowang101779990 已提交
10760 10761
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10762

H
haowang101779990 已提交
10763 10764
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10765

H
haowang101779990 已提交
10766 10767 10768
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10769

H
haowang101779990 已提交
10770 10771 10772 10773 10774 10775 10776 10777 10778
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10779

H
haowang101779990 已提交
10780 10781 10782 10783
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10784

H
haowang101779990 已提交
10785 10786 10787 10788
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10789

H
haowang101779990 已提交
10790 10791 10792 10793
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10794

H
haowang101779990 已提交
10795 10796
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10797 10798

    Args:
10799 10800 10801
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10802 10803

    Returns:
H
haowang101779990 已提交
10804
        Variable: Output of shape [N, C, H, W] data samples input X
10805 10806
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10807 10808 10809 10810
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
10811 10812 10813 10814 10815
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
10816
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10817

D
dengkaipeng 已提交
10818 10819 10820 10821 10822 10823 10824 10825 10826
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10827
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10828 10829
    ipts = {'X': x, 'Grid': grid}

10830
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10831 10832 10833
    return out


G
gmcather 已提交
10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10861 10862
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10901
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10902 10903 10904 10905 10906 10907 10908
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
10909 10910
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
10911

10912 10913 10914 10915 10916
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
10917
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
10918

H
heqiaozhi 已提交
10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10932 10933 10934 10935
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10936
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10937 10938
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10939
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10940 10941

    .. math::
H
haowang101779990 已提交
10942 10943 10944
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10945 10946

    Where:
H
haowang101779990 已提交
10947 10948
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

10962 10963 10964 10965 10966 10967 10968 10969 10970
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
10971

G
gmcather 已提交
10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10988 10989 10990 10991 10992 10993 10994 10995 10996 10997


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10998
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10999

Q
Qiao Longfei 已提交
11000
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
11001 11002 11003
    For example:

    .. math::
H
haowang101779990 已提交
11004
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
11005

Q
Qiao Longfei 已提交
11006
    In this formula:
11007 11008
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
11009
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
11010
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
11011 11012 11013
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
11014 11015
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
11016 11017 11018
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
11019
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
11020
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
11021
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
11022 11023 11024 11025
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
11026
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
11027 11028 11029 11030

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
11031 11032 11033
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
11034 11035
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
11036
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
11037 11038 11039 11040

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
11041
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
11072 11073 11074 11075 11076 11077 11078 11079

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11080 11081 11082 11083 11084 11085 11086 11087 11088 11089
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11090 11091


S
shippingwang 已提交
11092
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11093 11094
    """
    **Shuffle Channel Operator**
11095

S
shippingwang 已提交
11096 11097 11098 11099 11100 11101
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11102
    
S
shippingwang 已提交
11103
    .. code-block:: text
11104

S
shippingwang 已提交
11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
11133
    Args: 
S
shippingwang 已提交
11134 11135
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
11136 11137

    Returns:
S
shippingwang 已提交
11138 11139
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
11140 11141

    Raises:
S
shippingwang 已提交
11142
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
11143 11144 11145

    Examples:
        .. code-block:: python
11146 11147

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
11148
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
11149 11150 11151
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
11152
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
11153 11154 11155 11156 11157 11158 11159 11160 11161

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
11162
    return out
S
Add  
shippingwang 已提交
11163 11164


11165
@templatedoc()
D
dengkaipeng 已提交
11166
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
11167 11168 11169 11170 11171 11172 11173 11174
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
11175
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
11176
        name (str, default None): The name of this layer.
11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
11189
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
11202 11203
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
11204 11205 11206
    return out


S
sneaxiy 已提交
11207
class PyFuncRegistry(object):
S
sneaxiy 已提交
11208 11209 11210
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
11211
        if func is None or not callable(func):
S
sneaxiy 已提交
11212 11213 11214
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
11215
        # find named args using reflection
S
sneaxiy 已提交
11216 11217 11218 11219 11220 11221 11222
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
11223 11224 11225
        '''
        Why record self here?

M
minqiyang 已提交
11226 11227
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
11228
           to find the registered function corresponding
M
minqiyang 已提交
11229
           to :code:`idx`.
S
sneaxiy 已提交
11230

M
minqiyang 已提交
11231 11232
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
11233
           whose reference count is 1 would cause
M
minqiyang 已提交
11234
           segmentation fault error in C++ side.
S
sneaxiy 已提交
11235 11236
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
11237
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
11252 11253 11254 11255 11256 11257 11258 11259 11260
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
11261

S
sneaxiy 已提交
11262 11263
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
11264 11265

        ret = []
S
sneaxiy 已提交
11266 11267 11268
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
11269 11270
                continue

S
sneaxiy 已提交
11271 11272
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
11273

S
sneaxiy 已提交
11274 11275 11276
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
11277

S
sneaxiy 已提交
11278
        return tuple(ret)
S
sneaxiy 已提交
11279 11280


S
sneaxiy 已提交
11281 11282 11283 11284
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
11285

S
sneaxiy 已提交
11286 11287 11288 11289 11290 11291 11292 11293
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
11294
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
11295

S
sneaxiy 已提交
11296 11297
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
11298 11299 11300 11301
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
11302
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
11303
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
11304 11305
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
11306 11307 11308 11309 11310
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
11311
            should create :code:`out` beforehand.
S
sneaxiy 已提交
11312
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
11313
                                       None means no backward. Default None.
S
sneaxiy 已提交
11314
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
11315
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
11316 11317
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
11318
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
11319 11320 11321

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
11322 11323

    Examples:
M
minqiyang 已提交
11324

S
sneaxiy 已提交
11325 11326 11327 11328 11329
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
11330
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
11331 11332
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
11333
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
11334 11335 11336
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
11337
        >>>
S
sneaxiy 已提交
11338 11339 11340 11341 11342
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
11343
        >>>     print(x)
S
sneaxiy 已提交
11344 11345 11346 11347 11348 11349
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
11350
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
11351 11352
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
11353 11354
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
11355 11356 11357 11358 11359 11360 11361 11362
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
11363
    """
S
sneaxiy 已提交
11364
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
11365 11366 11367
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
11368
        x = [x]
S
sneaxiy 已提交
11369 11370
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11371

S
sneaxiy 已提交
11372 11373 11374
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
11375
        out_list = [out]
S
sneaxiy 已提交
11376
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
11377
        out_list = out
S
sneaxiy 已提交
11378 11379 11380
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11381

S
sneaxiy 已提交
11382 11383
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
11384
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
11385 11386

    for each_out in out_list:
S
sneaxiy 已提交
11387 11388
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
11389 11390
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
11391

S
sneaxiy 已提交
11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
11407 11408 11409 11410

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
11411 11412
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
11413 11414 11415
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
11416
        })
S
sneaxiy 已提交
11417
    return out
S
sneaxiy 已提交
11418 11419 11420


# For debug usage
S
sneaxiy 已提交
11421 11422 11423 11424
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
11438 11439 11440 11441 11442
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11455 11456 11457 11458
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
11484

M
minqiyang 已提交
11485

M
minqiyang 已提交
11486
def huber_loss(input, label, delta):
11487
    """
M
minqiyang 已提交
11488 11489 11490
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11491 11492 11493 11494

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11495
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11496 11497 11498 11499

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11500
        huber\_loss = 0.5 * (label - input) * (label - input)
11501 11502 11503 11504 11505 11506 11507


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11508
        delta (float): The parameter of huber loss, which controls
11509 11510 11511
                       the range of outliers

    Returns:
M
minqiyang 已提交
11512
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11513 11514 11515 11516

    Examples:
        .. code-block:: python

11517 11518 11519 11520 11521 11522 11523 11524 11525
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

11526
    """
M
minqiyang 已提交
11527
    helper = LayerHelper('huber_loss', **locals())
11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11539 11540


D
dengkaipeng 已提交
11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

T
Tao Luo 已提交
11603 11604 11605
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11606
          # edges must be directional
T
Tao Luo 已提交
11607 11608 11609 11610
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11611
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11612 11613
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11614
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11615
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11639 11640


C
ceci3 已提交
11641
from .ops import square
C
ceci3 已提交
11642
from .control_flow import equal
C
ceci3 已提交
11643 11644


C
ceci3 已提交
11645 11646 11647
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11648

C
ceci3 已提交
11649
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11650 11651

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11652
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11653 11654 11655 11656 11657
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11658 11659
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11660 11661 11662 11663 11664 11665 11666

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
11667 11668 11669 11670 11671 11672 11673 11674
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11675 11676 11677 11678 11679 11680 11681
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11682
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11683 11684
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11685 11686
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11687 11688 11689 11690
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11691 11692 11693
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11694 11695 11696
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11697 11698


R
ruri 已提交
11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11728
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11729 11730 11731 11732 11733 11734 11735 11736 11737

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

R
ruri 已提交
11738
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
11789 11790 11791 11792 11793 11794
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
11795 11796 11797 11798 11799 11800 11801 11802
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11803 11804 11805 11806


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11807

H
heqiaozhi 已提交
11808
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11809

H
fix doc  
heqiaozhi 已提交
11810
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11811 11812 11813
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11814
    
H
fix doc  
heqiaozhi 已提交
11815
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11816

H
heqiaozhi 已提交
11817
    Args:
H
fix doc  
heqiaozhi 已提交
11818 11819

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11820 11821
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11822
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
11823
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11824

H
heqiaozhi 已提交
11825
    Returns:
H
fix doc  
heqiaozhi 已提交
11826 11827 11828

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11829
    Examples:
H
fix doc  
heqiaozhi 已提交
11830

H
heqiaozhi 已提交
11831
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11832

H
heqiaozhi 已提交
11833 11834 11835 11836 11837 11838 11839 11840 11841 11842
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11843

H
heqiaozhi 已提交
11844 11845 11846 11847 11848 11849 11850 11851 11852
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11853
    return out
Z
zhoukunsheng 已提交
11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

             # condition is a tensor [True, False, True]
             out = fluid.layers.where(condition) # [[0], [2]]

             # condition is a tensor [[True, False], [False, True]]
             out = fluid.layers.where(condition) # [[0, 0], [1, 1]]

             # condition is a tensor [False, False, False]
             out = fluid.layers.where(condition) # [[]]
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

          # [1, 0, -1]
          data = fluid.layers.sign(np.array([3, 0, -2])) 
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091


def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
    Refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ .
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
        offset (Variable): The input coord offset of deformable convolution layer.
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=3, padding=1)
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")
    if not isinstance(mask, Variable):
        raise TypeError("Input Mask of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='deformable_conv',
        inputs={
            'Input': input,
            'Filter': filter_param,
            'Offset': offset,
            'Mask': mask,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'deformable_groups': deformable_groups,
            'im2col_step': im2col_step,
        })

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
C
cjt222 已提交
12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output