framework.py 147.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
Y
Yu Yang 已提交
37

38
__all__ = [
39 40 41 42
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
43
    'name_scope',
S
sneaxiy 已提交
44 45 46
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
47
    'in_dygraph_mode',
C
chengduo 已提交
48
    'is_compiled_with_cuda',
49
    'Variable',
50
    'load_op_library',
51
]
Y
Yu Yang 已提交
52

Q
qiaolongfei 已提交
53 54 55 56
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
57 58
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
59 60
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
61 62


L
lujun 已提交
63
def in_dygraph_mode():
L
lujun 已提交
64 65 66 67 68 69 70 71 72
    """
    Check program status(tracer), Whether it runs in dygraph mode or not

    Returns:
        out (boolean): True if the program is running in dynamic graph mode

    Examples:
        .. code-block:: python

73
            import paddle.fluid as fluid
L
lujun 已提交
74 75 76 77
            if fluid.in_dygraph_mode():
                pass

    """
L
lujun 已提交
78
    return _dygraph_tracer_ is not None
79 80


81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
103 104
def _dygraph_tracer():
    return _dygraph_tracer_
105

W
Wu Yi 已提交
106

M
minqiyang 已提交
107
def _current_expected_place():
L
lujun 已提交
108
    return _dygraph_current_expected_place_
M
minqiyang 已提交
109 110


S
sneaxiy 已提交
111
def _cpu_num():
112
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
113 114 115 116 117 118 119 120
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
121
        os.environ['CPU_NUM'] = str(1)
122
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
123 124 125 126 127 128 129 130 131 132
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
133 134


C
chengduo 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
150
def cuda_places(device_ids=None):
L
lujun 已提交
151
    """
S
add doc  
sneaxiy 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
171 172 173 174

    Examples:
        .. code-block:: python

175
            import paddle.fluid as fluid
L
lujun 已提交
176 177 178
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
179 180 181
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
182
        device_ids = _cuda_ids()
S
sneaxiy 已提交
183 184 185 186 187 188
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
189
    """
S
add doc  
sneaxiy 已提交
190 191 192 193
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
194 195
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
S
add doc  
sneaxiy 已提交
196 197 198 199 200 201

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
202 203 204 205

    Examples:
        .. code-block:: python

206
            import paddle.fluid as fluid
L
lujun 已提交
207 208 209
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
210 211 212 213 214 215
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
216
    """
S
add doc  
sneaxiy 已提交
217 218 219 220 221 222 223 224 225 226 227 228
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
229 230 231 232

    Examples:
        .. code-block:: python

233
            import paddle.fluid as fluid
L
lujun 已提交
234 235 236 237 238
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
239 240 241 242 243 244 245
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
272
@signature_safe_contextmanager
273 274 275 276 277 278 279 280 281 282 283 284
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
285

286
          import paddle.fluid as fluid
287 288 289 290 291 292 293 294 295 296 297
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
298 299
    """
    # TODO(panyx0718): Only [0-9a-z].
300 301 302 303 304 305 306 307 308
    # in dygraph we don't need namescope since it will cause mem leak
    if not in_dygraph_mode():
        assert prefix, "namescope prefix cannot be empty."
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
    else:
        yield
309 310 311 312 313 314 315 316 317 318 319 320


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
321 322 323
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
324 325 326 327


def grad_var_name(var_name):
    """
328 329
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
330 331 332
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
333

334
def convert_np_dtype_to_dtype_(np_dtype):
335 336
    """
    Convert the data type in numpy to the data type in Paddle
337

338
    Args:
339
        np_dtype(np.dtype): the data type in numpy.
340

341 342
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
343 344

    """
345 346
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
347
        return core.VarDesc.VarType.FP32
348
    elif dtype == np.float64:
349
        return core.VarDesc.VarType.FP64
350
    elif dtype == np.float16:
351
        return core.VarDesc.VarType.FP16
352
    elif dtype == np.int32:
353
        return core.VarDesc.VarType.INT32
354
    elif dtype == np.int16:
355
        return core.VarDesc.VarType.INT16
356
    elif dtype == np.int64:
357
        return core.VarDesc.VarType.INT64
358
    elif dtype == np.bool:
359
        return core.VarDesc.VarType.BOOL
360 361
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
362 363
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
364 365
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
366
    else:
M
minqiyang 已提交
367
        raise ValueError("Not supported numpy dtype %s" % dtype)
368 369 370


def dtype_is_floating(dtype):
371 372 373
    """
    Check the data type is floating or not.
    Args:
374
        dtype(np.dtype|core.VarDesc.VarType): data type.
375 376 377 378 379
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
380
    if not isinstance(dtype, core.VarDesc.VarType):
381 382
        dtype = convert_np_dtype_to_dtype_(dtype)

383 384 385 386
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
387 388


Y
Yang Yang(Tony) 已提交
389
def _debug_string_(proto, throw_on_error=True):
390 391 392 393 394 395 396 397 398 399 400
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
401
    error_fields = list()
Y
Yang Yang(Tony) 已提交
402
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
403 404
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
405 406 407
    return proto.__str__()


X
Xin Pan 已提交
408
class Variable(object):
409
    """
410 411 412 413 414
    **Notes:**
        **The constructor of Variable should not be invoked directly.**
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**
        **In Dygraph Mode: Please use** `fluid.dygraph.to_variable()` **to create a dygraph variable with real data**

415 416 417
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
418
    two variables in different blocks could have the same name.
419

420
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
421
    and usages. Please refer to the framework.proto for details.
422

423
    Most of a Variable's member variables can be setted to be None. It mean
424
    it is not available or will be specified later.
425

426
    Examples:
427 428
        In Static Graph Mode:

429 430
        .. code-block:: python

431
            import paddle.fluid as fluid
432
            cur_program = fluid.Program()
433 434 435 436
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
437 438 439 440 441 442 443 444 445 446
        In Dygraph Mode:

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

447 448
    """

Y
Yu Yang 已提交
449 450
    def __init__(self,
                 block,
Y
Yu Yang 已提交
451
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
452 453 454 455
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
456
                 capacity=None,
Q
QI JUN 已提交
457
                 persistable=None,
F
fengjiayi 已提交
458
                 error_clip=None,
Y
Yu Yang 已提交
459
                 stop_gradient=False,
F
fengjiayi 已提交
460
                 is_data=False,
H
Huihuang Zheng 已提交
461
                 need_check_feed=False,
Y
Yu Yang 已提交
462
                 **kwargs):
Y
Yu Yang 已提交
463 464
        self.block = block
        if name is None:
Y
Yu Yang 已提交
465
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
466

Y
Yu Yang 已提交
467
        if dtype is not None:
468
            if not isinstance(dtype, core.VarDesc.VarType):
469
                dtype = convert_np_dtype_to_dtype_(dtype)
470

L
lujun 已提交
471
        if in_dygraph_mode():
M
minqiyang 已提交
472
            # record vars in tracer rather than blocks
M
minqiyang 已提交
473
            self._ivar = kwargs.get("ivar", None)
474
            self.stop_gradient_ = kwargs.get("stop_gradient", True)
M
minqiyang 已提交
475
            if not self._ivar:
476
                self._ivar = core.VarBase(
J
Jiabin Yang 已提交
477 478 479
                    name, type
                    if type else core.VarDesc.VarType.LOD_TENSOR, dtype
                    if dtype else core.VarDesc.VarType.FP32,
480
                    list(shape) if shape else [], True
X
fix  
Xin Pan 已提交
481
                    if persistable else False)
M
minqiyang 已提交
482
            if persistable:
L
lujun 已提交
483
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
484
            self.op = None
M
minqiyang 已提交
485
        else:
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

H
Huihuang Zheng 已提交
550 551 552
            if need_check_feed and is_new_var:
                self.desc.set_need_check_feed(need_check_feed)

553 554 555 556 557 558 559 560
            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
561
            self.block.vars[name] = self
562
            self.op = None
563
            self._stop_gradient = stop_gradient
564
            self.is_data = is_data
Y
Yu Yang 已提交
565

566
    @dygraph_only
567 568
    def detach(self):
        """
569 570
        **Notes: This API is ONLY avaliable in Dygraph mode**

571
        Returns a new Variable, detached from the current graph.
572

573 574 575
        Returns:
            Variable: The detached Variable.

576 577 578
        Returns type:
            Variable(Tensor|LoDTensor) dtype is same as current Variable

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    y = x.detach()

        """
        if in_dygraph_mode():
            new_var = self._cloneVar()
            self.block.append_op(
                type="assign",
                inputs={'X': [self]},
                outputs={'Out': [new_var]},
                stop_gradient=True)
            return new_var
        else:
            raise AttributeError("static graph model DO NOT supprt detach")

606
    @dygraph_only
607
    def numpy(self):
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
        """
        **Notes: This API is ONLY avaliable in Dygraph mode**

        Returns a numpy array shows the value of current :ref:`api_guide_Variable`

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
            ndarray dtype is same as current Variable

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    print(x.numpy())

        """

        if not self._ivar.value().get_tensor()._is_initialized():
            raise ValueError("%s is Empty, Please check if it has no data in" %
                             self.name)
M
minqiyang 已提交
639
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
640
        return np.array(new_ivar.value().get_tensor())
641

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
    @dygraph_only
    def set_value(self, value):
        """
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.ones([3, 32, 32], dtype='float32')
                with fluid.dygraph.guard():
                    fc = fluid.dygraph.FC("fc", 4)
                    t = to_variable(data)
                    fc(t)  # call with default weight
                    custom_weight = np.random.randn(1024, 4).astype("float32")
                    fc.weight.set_value(custom_weight)  # change existing weight
                    out = fc(t)  # call with different weight

        """
        assert isinstance(value, (Variable, np.ndarray))
        if list(value.shape) != list(self.shape):
            raise ValueError(
                "The shape of the new value must be the same as that of the original Variable."
            )
        self_tensor = self._ivar.value().get_tensor()
        if isinstance(value, Variable):
            value = value._ivar.value().get_tensor().__array__()
        self_tensor.set(value, _current_expected_place())

681
    @dygraph_only
682
    def backward(self, backward_strategy=None):
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
        """
        **Notes: This API is ONLY avaliable in Dygraph mode**

        Run backward of current Graph which starts from current Variable

        Parameter:
            - **backward_strategy** : ( :ref:`api_fluid_dygraph_BackwardStrategy` ) - The Backward Strategy to run backward

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
J
Jiabin Yang 已提交
713 714 715 716 717
        if in_dygraph_mode():
            from .dygraph import BackwardStrategy
            if backward_strategy is None:
                backward_strategy = BackwardStrategy()
                backward_strategy.sort_sum_gradient = False
718

J
Jiabin Yang 已提交
719 720 721 722
            self._ivar._run_backward(backward_strategy, _dygraph_tracer())
        else:
            raise ValueError(
                "Variable.backward() is only avaliable in DyGraph mode")
723

724
    @dygraph_only
725
    def gradient(self):
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
        """
        **Notes: This API is ONLY avaliable in Dygraph mode**

        Get the Gradient of Current Variable

        Returns:  Numpy value of the gradient of current Variable

        Returns type: ndarray

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

        """
        if self._ivar._grad_ivar() is None:
            raise ValueError("%s has no grad, Please set Variable.stop_gradient=False, or " \
                             "check if this is the first and only variable need grad, if so, please set its pre-Variable's " \
                             "stop_gradient=False, to make sure it has gradient " % self.name)
        if not self._ivar._grad_ivar().value().get_tensor()._is_initialized():
            raise ValueError(
                "%s's Grad is Empty, Please check if it has no data in" %
                self.name)
764 765
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
766

767
    @dygraph_only
768
    def clear_gradient(self):
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
        """
        **Notes: This API is ONLY avaliable in Dygraph mode**

        Clear  (set to zero) the Gradient of Current Variable

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
X
Xin Pan 已提交
799
        self._ivar._clear_gradient()
X
Xin Pan 已提交
800

801
    def __str__(self):
Y
Yang Yang(Tony) 已提交
802 803
        return self.to_string(True)

F
update  
fengjiayi 已提交
804
    def to_string(self, throw_on_error, with_details=False):
805 806 807
        """
        Get debug string.

808 809
        Parameters:
            - **throw_on_error** (bool): True if raise an exception when self is
810
                not initialized.
811
            - **with_details** (bool): more details about variables and parameters
812 813
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
814

815 816
        Returns:
            str: The debug string.
817

818 819 820
        Returns Type:
            str

821 822 823 824
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
825

826 827 828 829 830
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
831 832 833
                print(new_variable.to_string(True))
                print("\n=============with detail===============\n")
                print(new_variable.to_string(True, True))
834
        """
L
lujun 已提交
835
        if in_dygraph_mode():
L
lujun 已提交
836
            # TODO(panyx0718): add more dygraph debug info.
J
Jiabin Yang 已提交
837 838 839 840 841 842 843
            tensor = self._ivar.value().get_tensor()
            if tensor._is_initialized():
                return 'name %s, dtype: %s shape: %s %s' % (
                    self.name, self.dtype, self.shape, str(tensor))
            else:
                return 'name %s, shape: %s, not inited' % (self.name,
                                                           self.shape)
844

F
update  
fengjiayi 已提交
845 846
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
847
        protostr = self.desc.serialize_to_string()
848
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
849 850 851 852
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
853 854 855
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
856
        return res_str
857 858 859

    __repr__ = __str__

860
    @property
861
    def stop_gradient(self):
L
lujun 已提交
862
        if in_dygraph_mode():
M
minqiyang 已提交
863 864
            return self._ivar.stop_gradient
        else:
865
            return self._stop_gradient
866

867 868
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
869
        if in_dygraph_mode():
M
minqiyang 已提交
870
            self._ivar.stop_gradient = s
871
        else:
872
            self._stop_gradient = s
873

874 875
    @property
    def persistable(self):
L
lujun 已提交
876
        if in_dygraph_mode():
877 878 879
            return self._ivar.persistable
        else:
            return self.desc.persistable()
880

Y
Yu Yang 已提交
881 882
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
883
        if in_dygraph_mode():
884 885 886
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
887 888
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
889

Y
Yu Yang 已提交
890 891
    @property
    def name(self):
L
lujun 已提交
892
        if in_dygraph_mode():
893 894 895
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
896

T
typhoonzero 已提交
897 898
    @name.setter
    def name(self, new_name):
L
lujun 已提交
899
        if in_dygraph_mode():
900 901 902
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
903

Y
Yu Yang 已提交
904 905 906
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
907
        if in_dygraph_mode():
908 909 910
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
911 912

    @property
F
fengjiayi 已提交
913
    def dtype(self):
L
lujun 已提交
914
        if in_dygraph_mode():
915 916 917
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
918 919

    @property
920
    @dygraph_not_support
Y
Yu Yang 已提交
921
    def lod_level(self):
L
lujun 已提交
922
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
923 924
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
925
        return self.desc.lod_level()
Y
Yu Yang 已提交
926

Y
Yu Yang 已提交
927 928
    @property
    def type(self):
L
lujun 已提交
929
        if in_dygraph_mode():
J
Jiabin Yang 已提交
930
            return self._ivar.type
931 932
        else:
            return self.desc.type()
Y
Yu Yang 已提交
933

W
Wu Yi 已提交
934
    def _set_error_clip(self, error_clip):
935 936 937 938 939 940 941 942 943
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
944 945
        self.error_clip = error_clip

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1033
    def _cloneVar(self, copy=False):
1034 1035
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1036 1037
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1038 1039 1040 1041
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1042
        new_var = self._cloneVar()
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1053
        new_var = self._cloneVar()
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1064
                return self._cloneVar(True)
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1083
                return self._cloneVar(True)
1084
            index = int(item)
1085
            if (index > 0 and index >= self.shape[axis]) \
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
        reverse_axis = []

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
        def fill_constant(shape, dtype, value, force_cpu=False, out=None):
            self.block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [out]},
                attrs={
                    'shape': shape,
                    'dtype': out.dtype,
                    'value': float(value),
                    'force_cpu': force_cpu or force_init_on_cpu()
                },
                stop_gradient=True)
            out.stop_gradient = True
            return out

H
Hongyu Liu 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step if slice_item.step else 1

                assert (step == 1 or step == -1)

                if step == -1:
                    reverse_axis.append(dim)
                    assert (start is None and end is None)

                if start is None and end is None:
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
1151
            else:
H
Hongyu Liu 已提交
1152 1153 1154
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
                if isinstance(slice_item, Variable):
                    temp_1 = self.block.create_var(dtype='int32')
                    fill_constant([1], 'int32', 1, force_cpu=True, out=temp_1)
                    temp_end = self.block.create_var(dtype='int32')
                    self.block.append_op(
                        type='elementwise_add',
                        inputs={'X': slice_item,
                                'Y': temp_1},
                        outputs={'Out': temp_end},
                        attrs={'axis': -1})
                    slice_end.append(temp_end)
                else:
                    slice_end.append(slice_item + 1
                                     if slice_item != -1 else 10000000)

        def contain_var(one_list):
            for ele in one_list:
                if isinstance(ele, Variable):
                    return True
            return False

        def get_new_list_tensor(old_list):
            new_list_tensor = []
            for dim in old_list:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_list_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = self.block.create_var(dtype='int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_list_tensor.append(temp_out)
            return new_list_tensor

        inputs = {'Input': [self]}
        attrs = {
            'axes': slice_axis,
            'starts': [],
            'ends': [],
            'decrease_axis': decrease_axis
        }
        infer_flags = list(1 for i in range(len(slice_axis)))

        # starts
        if not contain_var(slice_start):
            attrs['starts'] = slice_start
        else:
            inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
            for i, dim in enumerate(slice_start):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        # ends
        if not contain_var(slice_end):
            attrs['ends'] = slice_end
        else:
            inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
            for i, dim in enumerate(slice_end):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        # infer_flags
        attrs['infer_flags'] = infer_flags
H
Hongyu Liu 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

        out = self
        if len(slice_axis) > 0:
            # append slice_op here
            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
1234
                inputs=inputs,
H
Hongyu Liu 已提交
1235
                outputs={'Out': [slice_out_var]},
1236
                attrs=attrs)
H
Hongyu Liu 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

            out = slice_out_var

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
1254

Y
Yu Yang 已提交
1255

F
fengjiayi 已提交
1256 1257 1258
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1259

1260 1261
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1262 1263 1264 1265
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1266
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1267 1268 1269 1270 1271
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1272 1273 1274 1275
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1285
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1286 1287 1288 1289 1290 1291
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1292 1293 1294 1295 1296 1297 1298 1299
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1300 1301
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1302 1303
        return self.op_proto_map[type]

1304 1305 1306 1307 1308 1309
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1310 1311 1312 1313
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1314
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1315 1316
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
1317 1318
        }

F
fengjiayi 已提交
1319

X
Xin Pan 已提交
1320
class Operator(object):
1321
    """
1322 1323 1324 1325 1326 1327 1328
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1329
        type(str): The type of operator. Default None.
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1350
        Block.append_op or Block._prepend_op instead.
1351 1352 1353 1354

    Examples:
        .. code-block:: python

1355
            import paddle.fluid as fluid
1356
            cur_program = fluid.Program()
1357 1358 1359 1360 1361
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1362
    """
1363
    OP_WITHOUT_KERNEL_SET = {
1364 1365
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1366 1367
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1368
        'c_sync_comm_stream'
1369
    }
1370

Y
Yu Yang 已提交
1371 1372
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1373
                 desc,
Y
Yu Yang 已提交
1374 1375 1376
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1377
                 attrs=None):
L
lujun 已提交
1378
        if in_dygraph_mode():
1379 1380
            if type is None:
                raise ValueError(
1381
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1382
            self._type = type
M
minqiyang 已提交
1383
            self.attrs = attrs if attrs else {}
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1398
                )] = self.block.program._op_role
1399 1400 1401

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1402 1403
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1404 1405 1406 1407 1408 1409 1410 1411

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1412
                    "`type` to initialized an Operator can not be None.")
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1444
                        for index, arg in enumerate(in_args):
1445 1446 1447 1448
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1449
                            elif isinstance(arg, Variable):
1450
                                in_arg_names.append(cpt.to_text(arg.name))
1451 1452 1453 1454
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1481
                        if not in_dygraph_mode():
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1501
    def _has_kernel(self, op_type):
1502 1503
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1504
    def to_string(self, throw_on_error):
1505
        """
1506 1507
        Get debug string.

1508
        Args:
1509 1510
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1511

1512 1513
        Returns:
            str: The debug string.
1514 1515

        """
1516
        protostr = self.desc.serialize_to_string()
1517
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1518 1519 1520 1521
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1522 1523 1524

    __repr__ = __str__

F
fengjiayi 已提交
1525 1526
    @property
    def type(self):
L
lujun 已提交
1527
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1528
            return self._type
1529 1530
        else:
            return self.desc.type()
F
fengjiayi 已提交
1531 1532

    def input(self, name):
1533
        """
1534
        Get the input arguments according to the input parameter name.
1535

1536 1537
        Args:
            name(str): The input parameter name.
1538

1539 1540 1541
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1542
        """
F
fengjiayi 已提交
1543 1544
        return self.desc.input(name)

W
Wu Yi 已提交
1545
    def _rename_input(self, old_name, new_name):
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1556
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1557

W
Wu Yi 已提交
1558
    def _rename_output(self, old_name, new_name):
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1569
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1570

F
fengjiayi 已提交
1571 1572 1573 1574
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1575 1576 1577 1578 1579 1580 1581 1582
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1583
    def output(self, name):
1584
        """
1585
        Get output arguments by the output parameter name.
1586

1587 1588
        Args:
            name(str): The output parameter name.
1589

1590 1591 1592
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1593
        """
F
fengjiayi 已提交
1594 1595 1596 1597 1598 1599
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1600 1601 1602 1603 1604 1605 1606 1607
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1608
    def has_attr(self, name):
1609
        """
1610 1611
        Whether this Operator has the attribute with name or not.

1612
        Args:
1613
            name(str): the attribute name.
1614

1615 1616
        Returns:
            bool: True if has this attribute.
1617 1618

        """
F
fengjiayi 已提交
1619 1620 1621
        return self.desc.has_attr(name)

    def attr_type(self, name):
1622
        """
1623
        Get the type of attribute by attribute's name.
1624

1625 1626
        Args:
            name(str): the attribute name.
1627

1628 1629
        Returns:
            core.AttrType: the attribute type.
1630
        """
F
fengjiayi 已提交
1631 1632
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1633
    def _set_attr(self, name, val):
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1644 1645
        self._update_desc_attr(name, val)

1646 1647 1648
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1660 1661
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1662 1663
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1664
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1665 1666 1667 1668
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1669
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1670

F
fengjiayi 已提交
1671 1672 1673 1674 1675
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1676
        """
1677 1678
        Get the attribute by name.

1679
        Args:
1680
            name(str): the attribute name.
1681

1682 1683
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1684 1685
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1686
        return self.desc.attr(name)
Y
Yu Yang 已提交
1687

W
Wu Yi 已提交
1688
    def _block_attr_id(self, name):
1689
        """
G
gongweibao 已提交
1690
        Get the block attribute's id by name.
1691

1692 1693
        Args:
            name(str): the attribute name.
1694

1695 1696
        Returns:
            int: the block index.
1697
        """
W
Wu Yi 已提交
1698
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1699

W
Wu Yi 已提交
1700
    def _block_attr(self, name):
G
gongweibao 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1711
        id = self._block_attr_id(name)
G
gongweibao 已提交
1712 1713 1714
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1715
    def _blocks_attr(self, name):
G
gongweibao 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1726
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1727 1728 1729 1730 1731
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1732
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1743
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1744

J
JiayiFeng 已提交
1745
    def all_attrs(self):
F
fengjiayi 已提交
1746
        """
1747 1748 1749
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1750
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1751 1752 1753 1754
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1755 1756
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1757
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1758 1759 1760
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1761
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1762 1763 1764 1765
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1766 1767
        return attr_map

Y
Yu Yang 已提交
1768

Y
Yu Yang 已提交
1769
class Block(object):
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1784
        use `Program._create_block()` to create a block.
1785 1786 1787 1788

    Examples:
        .. code-block:: python

1789 1790 1791
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1792 1793 1794 1795 1796 1797 1798 1799 1800
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1801
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1802
        self.desc = program.desc.block(idx)
1803
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1804
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1805
        self.program = program
1806
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1807

1808
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1809 1810
        return self.to_string(True)

F
fengjiayi 已提交
1811 1812
    def to_string(self, throw_on_error, with_details=False):
        """
1813 1814
        Get debug string.

F
fengjiayi 已提交
1815 1816
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1817
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1818
            with_details(bool): more details about variables and parameters
1819 1820
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1821

1822 1823
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1824 1825 1826 1827
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1828
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1829 1830
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1831
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1832
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1833
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1834
            for op in self.ops:
F
fengjiayi 已提交
1835 1836
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1837 1838 1839
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1840 1841
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1842 1843
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1844 1845 1846

    __repr__ = __str__

Y
Yu Yang 已提交
1847 1848
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1849
        return self.desc.parent
Y
Yu Yang 已提交
1850

Y
Yu Yang 已提交
1851 1852 1853 1854
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1855
    def _set_forward_block_idx(self, idx):
1856 1857 1858 1859 1860 1861 1862 1863 1864
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1865
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1866

Y
Yu Yang 已提交
1867 1868
    @property
    def idx(self):
Y
Yu Yang 已提交
1869
        return self.desc.id
Y
Yu Yang 已提交
1870

Q
Qiao Longfei 已提交
1871
    def var(self, name):
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1885
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1886 1887 1888
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1889 1890
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1891
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1892
        return v
Q
Qiao Longfei 已提交
1893

X
Xin Pan 已提交
1894
    def _find_var_recursive(self, name):
1895 1896 1897 1898 1899 1900 1901
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1902
            Variable: the Variable with the giving name. Or None if not found.
1903
        """
Y
Yu Yang 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1928
        return None
Y
Yu Yang 已提交
1929

X
Xin Pan 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1949

Q
Qiao Longfei 已提交
1950
    def all_parameters(self):
1951
        return list(self.iter_parameters())
1952

1953
    def iter_parameters(self):
M
minqiyang 已提交
1954
        return (item[1] for item in six.iteritems(self.vars)
1955
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1956

Y
Yu Yang 已提交
1957
    def create_var(self, *args, **kwargs):
1958
        var = Variable(block=self, *args, **kwargs)
1959 1960
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1961
        return var
Y
Yu Yang 已提交
1962

Q
Qiao Longfei 已提交
1963 1964 1965
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1966
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1967 1968
        """
        Rename variable in vars and ops' inputs and outputs
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1981
        """
M
minqiyang 已提交
1982 1983
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1984

T
typhoonzero 已提交
1985
        if not self.has_var(name):
1986
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1987 1988
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1989
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1990 1991 1992 1993 1994 1995 1996
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1997
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1998 1999 2000 2001
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2002
        orig_var_type = v.type
M
minqiyang 已提交
2003
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2004
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2005
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2006
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
2007 2008 2009 2010
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
2011
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2012 2013 2014 2015 2016 2017 2018
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
2019
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2020 2021
            var = Variable(
                self,
T
typhoonzero 已提交
2022
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2023 2024 2025 2026
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2027
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2028 2029 2030
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2031
        self._sync_with_cpp()
2032
        return var
T
typhoonzero 已提交
2033

W
Wu Yi 已提交
2034 2035
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2036
        self.desc._remove_var(cpt.to_bytes(name))
2037 2038
        del self.vars[name]

Y
Yu Yang 已提交
2039 2040
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
2041
        param = Parameter(global_block, *args, **kwargs)
2042
        if 'initializer' in kwargs:
2043 2044 2045 2046 2047

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2048 2049 2050 2051 2052
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
2068
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2069
        return param
Y
Yu Yang 已提交
2070

Y
Yu Yang 已提交
2071
    def append_op(self, *args, **kwargs):
2072 2073 2074 2075 2076 2077
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2078
        if in_dygraph_mode():
2079 2080 2081
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
2082 2083 2084 2085 2086
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
2087

J
Jiabin Yang 已提交
2088 2089
            type = kwargs.get("type", None)

2090 2091 2092
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2093
                type=type,
M
minqiyang 已提交
2094 2095
                inputs=None,
                outputs=None,
2096
                attrs=attrs)
2097

M
minqiyang 已提交
2098 2099 2100
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2101
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2102 2103

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2104
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2105 2106
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2107
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2108
        else:
2109 2110 2111 2112 2113 2114 2115 2116 2117
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2118
            self.ops.append(op)
M
minqiyang 已提交
2119

2120 2121
        return op

W
Wu Yi 已提交
2122
    def _insert_op(self, index, *args, **kwargs):
2123 2124 2125 2126 2127 2128 2129 2130 2131
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2132 2133
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2134 2135 2136 2137
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2138
    def _remove_op(self, index):
2139 2140 2141 2142 2143 2144 2145 2146 2147
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2148 2149
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2150 2151
        del self.ops[index]

W
Wu Yi 已提交
2152
    def _slice_ops(self, start, end):
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2163
        return self.ops[start:end]
Y
Yancey1989 已提交
2164

W
Wu Yi 已提交
2165
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2166
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2167 2168
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2169
            op = Operator(
J
Jiabin Yang 已提交
2170
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2171

J
Jiabin Yang 已提交
2172
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2173
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2174 2175
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2176
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2177
        else:
2178 2179 2180 2181 2182 2183 2184 2185
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2186
            self.ops.insert(0, op)
2187

Y
Yu Yang 已提交
2188 2189
        return op

W
Wu Yi 已提交
2190
    def _sync_with_cpp(self):
2191
        """
2192 2193
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2194
        """
Q
Qiao Longfei 已提交
2195 2196 2197 2198 2199
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2200
        # sync variables removed from c++ end
2201
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2202
            if not self.desc.find_var(cpt.to_bytes(var)):
2203 2204
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2205
        # sync operators from cpp
2206 2207 2208 2209
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2226 2227 2228 2229 2230

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2231
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2232 2233 2234 2235 2236 2237 2238

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2252 2253 2254 2255
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2256
    def _copy_param_info_from(self, other):
2257
        """
2258 2259
        Copy the information of parameters from the other block.

2260
        Args:
2261 2262 2263 2264 2265
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2266 2267 2268 2269 2270

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2271 2272
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2273
        for p in other.iter_parameters():
2274 2275 2276
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
2277
                raise ValueError("_copy_param_info_from should be invoked with "
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
2290
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
2291
                error_clip=p.error_clip,
2292 2293 2294
                name=v.name)
            self.vars[new_p.name] = new_p

2295
    def _clone_variable(self, var, force_persistable=True):
2296 2297
        """
        Clone a variable into current block.
2298

2299 2300
        Args:
            var: the variable to be cloned.
2301 2302 2303
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2304 2305

        Returns:
2306
            Variable: the new  variable cloned from 'var' in current block.
2307 2308
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2309 2310 2311 2312 2313
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2314 2315
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2316
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2317 2318 2319 2320 2321 2322
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2323
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2324 2325
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2326 2327 2328 2329 2330 2331 2332
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2333
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2334 2335
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2336
        return ret_var
2337

Y
Yu Yang 已提交
2338

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2434
    def remove_input_by_id(self, node_id):
2435 2436 2437 2438 2439 2440
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2441
        self.node.remove_input(node_id)
2442

2443
    def remove_input(self, node):
2444 2445 2446 2447
        """
        Remove a node from inputs.

        Args:
2448
            node(IrNode): the node being removed.
2449
        """
2450
        self.node.remove_input(node.node)
2451

2452
    def append_input(self, node):
2453 2454 2455 2456
        """
        Append a node in inputs.

        Args:
2457
            node(IrNode): the node being appended.
2458
        """
2459
        self.node.append_input(node.node)
2460 2461 2462 2463 2464 2465 2466 2467

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2468
    def remove_output_by_id(self, node_id):
2469 2470 2471 2472 2473 2474
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2475
        self.node.remove_output(node_id)
2476

2477
    def remove_output(self, node):
2478 2479 2480 2481
        """
        Remove a node from outputs.

        Args:
2482
            node(IrNode): the node being removed.
2483
        """
2484
        self.node.remove_output(node.node)
2485

2486
    def append_output(self, node):
2487 2488 2489 2490
        """
        Append a node in outputs.

        Args:
2491
            node(IrNode): the node being appended.
2492
        """
2493
        self.node.append_output(node.node)
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
2711
                all(isinstance(v, Block) for v in val):
2712 2713
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
2714
                isinstance(val, core.ProgramDesc):
2715 2716 2717 2718
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2762 2763
class IrGraph(object):
    """
2764
    Python IrGraph. Beneath it is a core.Graph, which is used for
2765
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2766 2767
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2768 2769 2770 2771
    """

    def __init__(self, graph, for_test=False):
        """
2772 2773
        Construct an IrGraph using core.Graph.

2774 2775 2776 2777 2778 2779 2780 2781 2782
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2783 2784 2785 2786
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2787 2788 2789
        Warns:
            The method only clones the graph structure, not its attributes.

2790 2791 2792
        Returns:
            IrGraph: A new and duplicated graph.
        """
2793
        g = self.graph.clone()
2794 2795
        return IrGraph(g, self._for_test)

2796
    def is_test(self):
2797 2798 2799
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2800 2801
        return self._for_test

W
WangZhen 已提交
2802
    def all_nodes(self):
2803 2804 2805
        """
        Return all nodes included in the graph as a set.
        """
2806
        return {IrNode(node) for node in self.graph.nodes()}
2807

2808
    def all_var_nodes(self):
2809 2810 2811
        """
        Return all variable nodes included in the graph as a set.
        """
2812
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2813

2814
    def all_persistable_nodes(self):
2815 2816 2817
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2818 2819 2820 2821 2822
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2823
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2824

2825
    def all_op_nodes(self):
2826 2827 2828
        """
        Return all operator nodes included in the graph as a set.
        """
2829
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2830

2831
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2843
            IrVarNode: the created persistable variable node.
2844
        """
2845 2846 2847 2848 2849
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2850
        return IrVarNode(self.graph.create_var_node(var_desc))
2851 2852

    def create_var_node(self, name, var_type, shape, var_dtype):
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2864
            IrVarNode: the created variable node.
2865 2866
        """

2867 2868 2869 2870
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2871
        return IrVarNode(self.graph.create_var_node(var_desc))
2872 2873

    def create_var_node_from_desc(self, var_desc):
2874 2875 2876 2877 2878 2879 2880 2881
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2882
            IrVarNode: the created variable node.
2883
        """
2884
        return IrVarNode(self.graph.create_var_node(var_desc))
2885 2886

    def create_op_node(self, op_type, attrs, inputs, outputs):
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2897
            IrOpNode: the created operator node.
2898
        """
2899 2900
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2901
        for attr, value in six.iteritems(attrs):
2902
            self._update_desc_attr(op_desc, attr, value)
2903
        for input_name, var_nodes in six.iteritems(inputs):
2904 2905 2906 2907
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2908
        for output_name, var_nodes in six.iteritems(outputs):
2909 2910 2911 2912
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2913
        return IrOpNode(self.graph.create_op_node(op_desc))
2914 2915

    def create_op_node_from_desc(self, op_desc):
2916 2917 2918 2919 2920 2921 2922
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2923
            IrOpNode: the created operator node.
2924
        """
2925
        return IrOpNode(self.graph.create_op_node(op_desc))
2926 2927

    def update_input_link(self, old_input_node, new_input_node, op_node):
2928 2929 2930 2931
        """
        Update the input's link of a operator node.

        Args:
2932 2933 2934
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2935
        """
2936
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
2937 2938
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2939 2940 2941 2942
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2943
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2944

2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
        'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

2963
    def link_to(self, node_in, node_out):
2964 2965 2966 2967
        """
        Connect two nodes.

        Args:
2968 2969
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2970
        """
2971
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2972
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2973 2974
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2975 2976

    def safe_remove_nodes(self, remove_nodes):
2977 2978 2979 2980 2981 2982 2983
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2984
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2985 2986 2987 2988
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2989 2990
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2991

Z
Zhen Wang 已提交
2992 2993 2994 2995 2996 2997 2998 2999
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3000
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3001 3002 3003 3004
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3005
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3006 3007 3008
                        ]
                    else:
                        var_nodes[each_var_name].append(
3009 3010
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3011 3012
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3013
    def has_circle(self):
3014 3015 3016 3017 3018 3019
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3020 3021 3022
        return core.has_circle(self.graph)

    def graph_num(self):
3023 3024 3025 3026 3027 3028
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3029 3030 3031
        return core.graph_num(self.graph)

    def topology_sort(self):
3032 3033 3034 3035 3036 3037
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
3038
            list(IrNode): nodes in topology order.
3039
        """
3040
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3041
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3042 3043

    def build_adjacency_list(self):
3044 3045 3046 3047
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3048
            dict{IrNode: set(IrNode)}: the adjacency list.
3049
        """
3050 3051 3052 3053 3054
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3055

3056 3057 3058 3059 3060 3061 3062 3063
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3064
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3065 3066 3067 3068 3069
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3070 3071 3072
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3073
                                          + ' -o ' + pdf_save_path, shell=True)
3074 3075 3076 3077 3078
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3079
        remove_ctr_vars = set()
3080
        if remove_ctr_var:
3081
            for node in self.all_var_nodes():
3082 3083 3084
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3085 3086
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3087 3088
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3089 3090 3091 3092 3093 3094
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3095 3096 3097 3098
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3099 3100
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3101 3102 3103 3104 3105 3106 3107
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3108 3109 3110
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3111
        WARN: When the graph includes backward operator nodes, the
3112 3113 3114 3115 3116 3117
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3118
        convert_pass = core.get_pass('graph_to_program_pass')
3119 3120
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3121 3122 3123 3124
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3152
class Program(object):
D
dzhwinter 已提交
3153
    """
3154 3155
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3156
    it will contain nested block.
3157

D
dzhwinter 已提交
3158 3159
    Please reference the framework.proto for details.

J
Jiabin Yang 已提交
3160 3161 3162 3163 3164 3165 3166 3167 3168
    A set of Program usually contains startup program and main program.
    A startup program is set to contain some initial work , and the main
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

D
dzhwinter 已提交
3169 3170 3171
    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
3172
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
3173 3174

    Returns:
3175 3176 3177
        An empty Program.

    Return type: Program
D
dzhwinter 已提交
3178 3179

    Examples:
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3193 3194 3195

    """

3196 3197
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3198 3199
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
3200
        self._seed = 0
Y
yuyang18 已提交
3201
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3202
        self.__op_role_var = []
T
tangwei12 已提交
3203

3204 3205
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3206
        self._is_distributed = False
3207
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3208
        self._is_chief = False
3209 3210 3211
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3212
        self._endpoints = []
3213 3214 3215
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3216
        self._trainers_endpoints = []
3217
        # the distributed lookup table names
T
tangwei12 已提交
3218
        self._distributed_lookup_table = None
3219 3220 3221

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3222 3223
        self._use_lamb = False

3224 3225 3226
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3227

3228 3229 3230
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3231
        self._program_config = None
3232

H
hutuxian 已提交
3233 3234 3235
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3236 3237 3238
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
3239
    @property
3240
    def _op_role(self):
Y
yuyang18 已提交
3241 3242 3243 3244 3245 3246 3247 3248
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3249
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3250 3251 3252 3253
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3254 3255
        return self._current_role

3256 3257
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3258 3259 3260
        self._current_role = role

    @property
3261
    def _op_role_var(self):
Y
yuyang18 已提交
3262
        """
3263
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3264

3265
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3266 3267 3268

        Notes: This is a very low-level API. Users should not use it directly.
        """
3269
        return self.__op_role_var
Y
yuyang18 已提交
3270

3271 3272 3273 3274 3275 3276 3277 3278 3279
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3280
    @signature_safe_contextmanager
W
Wu Yi 已提交
3281
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3282 3283 3284 3285 3286 3287 3288
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3289
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3290 3291 3292

        Examples:

3293
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3294
            >>> p, g = backward(...)
W
Wu Yi 已提交
3295
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3296 3297
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3298
        tmp_role = self._current_role
3299
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3300

Y
yuyang18 已提交
3301 3302
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3303
        self.__op_role_var = [
3304 3305 3306
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3307
        yield
3308
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3309
        self._current_role = tmp_role
Y
Yu Yang 已提交
3310

S
rename  
sneaxiy 已提交
3311
    @signature_safe_contextmanager
X
Xin Pan 已提交
3312
    def _lr_schedule_guard(self, is_with_opt=False):
3313 3314 3315 3316 3317 3318 3319
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3320 3321 3322 3323
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3324 3325 3326

        Examples:

3327
            >>> import paddle.fluid as fluid
3328 3329 3330 3331
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3332 3333

        tmp_role = self._current_role
3334
        tmp_var = self.__op_role_var
3335

3336 3337
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3338 3339
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3340
        # TODO(typhoonzero): how to set target learning rate var
3341
        self.__op_role_var = []
3342
        yield
3343
        self.__op_role_var = tmp_var
3344
        self._current_role = tmp_role
3345

3346
    def __str__(self):
Y
yuyang18 已提交
3347 3348 3349 3350 3351 3352 3353 3354 3355
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3356 3357
        return self.to_string(True)

F
fengjiayi 已提交
3358 3359 3360
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3361

3362 3363
        Parameters:
            - **throw_on_error** (bool): raise Value error when any of required fields
Y
yuyang18 已提交
3364
                is not set.
F
fengjiayi 已提交
3365

3366
            - **with_details** (bool): True if more details about variables and
Y
yuyang18 已提交
3367 3368 3369
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
3370
        Returns:
3371
            The debug string describe current Program.
Y
yuyang18 已提交
3372 3373 3374 3375

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
3376

3377 3378 3379 3380 3381 3382 3383 3384 3385
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
3386 3387 3388 3389 3390 3391 3392 3393 3394
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3395 3396
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3397 3398
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3399

W
Wu Yi 已提交
3400
    def _get_desc(self):
Y
yuyang18 已提交
3401 3402 3403 3404 3405 3406 3407
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3408 3409
        return self.desc

X
version  
Xin Pan 已提交
3410 3411 3412
    def _version(self):
        return self.desc._version()

3413
    @dygraph_not_support
3414
    def clone(self, for_test=False):
Y
yuyang18 已提交
3415
        """
3416 3417 3418 3419
        **Notes**:
            **1.** :code:`Program.clone()` **method DOES NOT clone** :code:`py_reader`.
            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.**
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3420

3421 3422
        Create a new Program with forward content of original one when ``for_test=True``.
        Create a new Program as the same as original one when ``for_test=False``
3423

3424 3425

        Some operators, e.g., :ref:`cn_api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3426 3427 3428
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3429

Y
yuyang18 已提交
3430
        * Set for_test to False when we want to clone the program for training.
3431
        * Set for_test to True when we want to clone the program for testing.
3432 3433
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
3434
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`. For example:
Y
yuyang18 已提交
3435

L
Luo Tao 已提交
3436

3437 3438 3439
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
3440
            # Here we use clone before Momentum
3441 3442
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
3443

3444 3445
        Parameters:
            - **for_test** (bool) - True if change the :code:`is_test` attribute of
Y
yuyang18 已提交
3446
                operators to :code:`True`.
3447

3448 3449 3450
        Returns:   A new Program with forward content of original one when ``for_test=True``.  A new Program as the same as original one when ``for_test=False``

        Return type: Program
Y
yuyang18 已提交
3451 3452 3453

        Examples:

3454
        Notes: The Program's order maybe different after :code:`clone` and
3455 3456 3457 3458 3459
        this will not affect your training or testing progress. In the following
        example we give you an simple method :code:`print_prog(program)` to
        print Program Descs inorder to make sure you have same print result
        after :code:`clone`:

3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3497 3498 3499

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3511 3512 3513 3514 3515 3516 3517 3518 3519

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3567 3568
        """
        if for_test:
3569
            if self._appending_grad_times > 0:
3570 3571 3572 3573 3574 3575 3576
                forward_prog = Program()
                forward_prog.desc = core.prune_backward(self.desc)
                forward_prog.blocks = [
                    Block(forward_prog, i)
                    for i in six.moves.range(forward_prog.desc.num_blocks())
                ]
                forward_prog._sync_with_cpp()
3577 3578 3579
                p = forward_prog._inference_optimize(prune_read_op=False)
            else:
                p = self._inference_optimize(prune_read_op=False)
3580
        else:
3581
            p = Program()
G
gongweibao 已提交
3582 3583
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3584
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3585 3586 3587
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3588 3589

            p._current_role = self._current_role
3590
            p.__op_role_var = self.__op_role_var
3591
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3592

W
Wu Yi 已提交
3593
            p._sync_with_cpp()
3594

W
Wu Yi 已提交
3595
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3596
        p._copy_data_info_from(self)
3597
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3598
        return p
3599

3600
    def _prune(self, targets):
Y
yuyang18 已提交
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
3614 3615 3616 3617
        """

        if not isinstance(targets, list):
            targets = [targets]
Y
yuyang18 已提交
3618

3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
                    # and we need to find the current op that generate this
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

                    t = t.op
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
                else:
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, set(), targets_idx)
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()
        return res

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
3653
        """
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

3671 3672
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
3673 3674
        if not isinstance(targets, list):
            targets = [targets]
3675 3676 3677 3678 3679 3680

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

3681 3682 3683 3684
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3685 3686
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3687
                    # and we need to find the current op that generate this
3688 3689 3690 3691 3692 3693 3694 3695
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3696
                    t = t.op
3697 3698 3699 3700
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3701
                else:
3702 3703
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3704 3705 3706

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
3707
        res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
3708 3709 3710
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3711
        res._sync_with_cpp()
3712 3713
        return res

X
Xin Pan 已提交
3714
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3715
        """
F
fengjiayi 已提交
3716 3717 3718 3719 3720
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3721
        3. change the :code:`is_test`
Y
yuyang18 已提交
3722 3723 3724
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3725
        Args:
X
Xin Pan 已提交
3726 3727
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3728

Y
yuyang18 已提交
3729 3730 3731 3732 3733 3734
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3735
        res = Program()
3736
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3737 3738 3739 3740

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3741
        if prune_read_op:
3742 3743 3744 3745 3746 3747 3748 3749 3750
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3751
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3752 3753

        # change all `is_test` attributes to True
M
minqiyang 已提交
3754
        for i in six.moves.range(res.desc.num_blocks()):
3755
            block = res.desc.block(i)
M
minqiyang 已提交
3756
            for j in six.moves.range(block.op_size()):
3757 3758
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3759
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3760 3761 3762
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3763
        res._sync_with_cpp()
3764 3765
        return res

3766 3767
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3768
        """
3769 3770 3771
        **Notes:**
            **- All information about parameters will be lost after serialization**
            **- This API has no effect in Dygraph mode**
Y
yuyang18 已提交
3772

3773 3774
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
3775

3776 3777
        Parameters:
            - **binary_str_type** (str) - the binary prootbuf string.
Y
yuyang18 已提交
3778

3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
        Returns: Program: A deserialized Program.

        Return type: Program

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
3804
        """
3805 3806
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3807
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3808
        p._sync_with_cpp()
3809
        return p
Y
Yu Yang 已提交
3810

3811
    @staticmethod
3812
    def _construct_from_desc(desc):
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3828 3829
    @property
    def random_seed(self):
Y
yuyang18 已提交
3830
        """
3831 3832
        **Notes: It must be set before the operators have been added.**

Y
yuyang18 已提交
3833 3834 3835
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

3836 3837 3838
        Returns: random seed in current Program

        Return type: int64
3839 3840 3841 3842 3843 3844 3845 3846

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
3847 3848 3849
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)

                # Here we need to set random seed before we use fluid.layers.dropout
3850 3851
                print(random_seed)
                prog.random_seed = 1
3852 3853
                z_var = fluid.layers.dropout(x_var, 0.7)

3854
                print(prog.random_seed)
Y
yuyang18 已提交
3855
        """
D
dzhwinter 已提交
3856 3857
        return self._seed

Q
qiaolongfei 已提交
3858 3859
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3860
        """
3861 3862 3863 3864 3865 3866 3867
        **Notes: This API has no effect in Dygraph mode**

        The number of :ref:`api_guide_Block_en`  in this Program.

        Returns: num of :ref:`api_guide_Block_en`  in current Program

        Return type: int(Platform-dependent size)
3868 3869 3870 3871 3872 3873 3874 3875 3876

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
3877 3878


Y
yuyang18 已提交
3879
        """
Q
qiaolongfei 已提交
3880 3881
        return self.desc.num_blocks()

D
dzhwinter 已提交
3882 3883 3884 3885 3886 3887
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3888
    def __repr__(self):
3889
        return self.__str__()
3890

Y
Yu Yang 已提交
3891
    def global_block(self):
Y
yuyang18 已提交
3892
        """
3893 3894 3895 3896 3897 3898 3899
        **Notes: This API has no effect in Dygraph mode**

        Get the first :ref:`api_guide_Block_en` of this Program.

        Returns: The first  :ref:`api_guide_Block_en`  of this Program.

        Return type: :ref:`api_guide_Block_en`
3900 3901 3902 3903 3904 3905 3906 3907 3908

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
3909

Y
yuyang18 已提交
3910
        """
Y
Yu Yang 已提交
3911 3912
        return self.blocks[0]

Q
Qiao Longfei 已提交
3913
    def block(self, index):
Y
yuyang18 已提交
3914
        """
3915
        **Notes: This API has no effect in Dygraph mode**
Y
yuyang18 已提交
3916

3917 3918 3919 3920 3921 3922 3923 3924
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

        Parameter:
            - **index** (int) - The index of  :ref:`api_guide_Block_en`  to get

        Returns: The :code:`index` block

        Return type:  :ref:`api_guide_Block_en`
3925 3926 3927 3928 3929 3930 3931 3932 3933

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3934
        """
Q
Qiao Longfei 已提交
3935 3936
        return self.blocks[index]

Y
Yu Yang 已提交
3937
    def current_block(self):
Y
yuyang18 已提交
3938
        """
3939 3940
        **Notes: This API has no effect in Dygraph mode**

Y
yuyang18 已提交
3941 3942
        Get the current block. The :code:`current` block is the block to append
        operators.
3943

3944 3945 3946 3947
        Returns: The :code:`index` block

        Return type: Block

3948 3949 3950 3951 3952 3953 3954 3955
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3956
        """
Y
Yu Yang 已提交
3957 3958
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3959
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3970
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3971 3972 3973
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3974 3975 3976 3977
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3978
    def _rollback(self):
Y
yuyang18 已提交
3979 3980 3981 3982 3983
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3984 3985
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3986
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3997 3998 3999
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4000
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4001

W
Wu Yi 已提交
4002
    def _copy_param_info_from(self, other):
4003
        """
4004
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4005

Y
yuyang18 已提交
4006 4007 4008
        Notes: This is a very low level API. Users should not invoke it
        directly.

4009 4010 4011 4012 4013 4014 4015
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4016
            raise TypeError("_copy_param_info_from should be invoked with "
4017 4018 4019
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4020
            raise ValueError("_copy_param_info_from should be invoked with two "
4021
                             "program, with represent the same topology")
W
Wu Yi 已提交
4022
        self.global_block()._copy_param_info_from(other.global_block())
4023

4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4039
        self._parameters_on_pservers = other._parameters_on_pservers
4040
        self._endpoints = other._endpoints
4041
        self._ps_endpoint = other._ps_endpoint
4042 4043
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
4044
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
4045 4046
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4047

Y
yuyang18 已提交
4048 4049 4050
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4051 4052 4053 4054 4055 4056 4057
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4058
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
4059 4060 4061
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4062
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
4063
                             "program, with represent the same topology")
4064
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
4065 4066
            if var.is_data:
                self.global_block().var(var.name).is_data = True
H
Huihuang Zheng 已提交
4067 4068
            if var.desc.need_check_feed():
                self.global_block().var(var.name).desc.set_need_check_feed(True)
F
fengjiayi 已提交
4069

4070
    @dygraph_not_support
4071
    def list_vars(self):
Y
yuyang18 已提交
4072
        """
4073
        Get all :ref:`api_guide_Variable` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4074

4075 4076 4077
        Returns: The Generator will yield every variable in this program.

        Return type: iterable :ref:`api_guide_Variable_en`
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4089
        """
4090
        for each_block in self.blocks:
4091
            for each_var in list(each_block.vars.values()):
4092 4093
                yield each_var

Y
Yu Yang 已提交
4094

Y
Yu Yang 已提交
4095
class Parameter(Variable):
4096
    """
4097
    Parameter is derived from Variable. A parameter is a persistable
4098
    Variable, and will be updated by optimizers after each iteration.
4099
    The training of a neural network is essentially the updating of
4100 4101
    its parameters.

4102
    Relative to a general Variable, a Parameter has several its own
4103 4104
    member variables:

4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4117 4118
    """

Y
Yu Yang 已提交
4119
    def __init__(self, block, shape, dtype, **kwargs):
4120 4121 4122 4123 4124
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4125
        if len(shape) == 0:
4126 4127
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4128 4129 4130

        for each in shape:
            if each < 0:
4131 4132 4133
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
4134 4135 4136

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
4137 4138 4139 4140
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4141 4142
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
4143
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
4144

W
wanghaoshuang 已提交
4145
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4146

4147 4148
        self.is_distributed = False

F
fengjiayi 已提交
4149 4150 4151
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4152 4153 4154
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4155

F
update  
fengjiayi 已提交
4156 4157 4158 4159 4160 4161 4162 4163
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4164 4165 4166 4167 4168 4169 4170 4171 4172
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4173 4174 4175 4176 4177 4178
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
4179
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
4180
            for attr_name in additional_attr:
4181 4182
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4183 4184
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4185 4186 4187 4188
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4189

Y
Yu Yang 已提交
4190
# program is a global instance.
Y
Yu Yang 已提交
4191 4192
_main_program_ = Program()
_startup_program_ = Program()
4193

4194

4195
def default_startup_program():
Y
Yu Yang 已提交
4196
    """
Y
yuyang18 已提交
4197 4198 4199 4200 4201 4202 4203 4204 4205
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
4206

4207 4208 4209
    Returns: current default startup program

    Returns type: Program
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4225
    """
Y
Yu Yang 已提交
4226
    return _startup_program_
4227

4228

4229
def default_main_program():
Y
Yu Yang 已提交
4230
    """
Y
yuyang18 已提交
4231 4232 4233 4234 4235 4236 4237 4238 4239
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
4240

Y
Yu Yang 已提交
4241 4242
    Returns:
        Program: main program
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
4271 4272
            print(fluid.default_main_program().num_blocks)
            print(fluid.default_main_program().blocks[0].var('image'))
Y
Yu Yang 已提交
4273
    """
Y
Yu Yang 已提交
4274
    return _main_program_
Y
Yu Yang 已提交
4275 4276 4277 4278 4279


def switch_main_program(program):
    """
    Switch the main program to a new program.
4280

Y
Yu Yang 已提交
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
4295
    Switch the startup program to a new program
Y
Yu Yang 已提交
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
4308
@signature_safe_contextmanager
Y
Yu Yang 已提交
4309 4310
def program_guard(main_program, startup_program=None):
    """
4311 4312
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
4313
    variables to the new main programs.
4314

Y
Yu Yang 已提交
4315
    Examples:
4316 4317 4318
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
4319

4320 4321 4322 4323 4324
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
4325 4326 4327

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
4328

Y
Yu Yang 已提交
4329
    Examples:
4330
       .. code-block:: python
Y
yuyang18 已提交
4331

4332 4333 4334 4335 4336 4337
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
4338

Y
Yu Yang 已提交
4339
    Args:
4340 4341 4342
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
4355 4356


W
Wu Yi 已提交
4357
def _get_var(name, program=None):
X
xuwei06 已提交
4358
    """
Y
yuyang18 已提交
4359
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
4360

X
xuwei06 已提交
4361 4362 4363
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
4364
        If None, default_global_program() will be used.
X
xuwei06 已提交
4365 4366 4367 4368 4369 4370 4371

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
4372
    assert isinstance(program, Program)
X
xuwei06 已提交
4373 4374

    return program.global_block().var(name)
4375 4376


S
rename  
sneaxiy 已提交
4377
@signature_safe_contextmanager
L
lujun 已提交
4378 4379 4380 4381
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
4382

4383
    yield
P
Paddle CI 已提交
4384

L
lujun 已提交
4385
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
4386 4387


S
rename  
sneaxiy 已提交
4388
@signature_safe_contextmanager
L
lujun 已提交
4389 4390 4391 4392
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
4393

4394
    yield
M
minqiyang 已提交
4395

L
lujun 已提交
4396
    _dygraph_current_expected_place_ = tmp_place
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
    Please note, the type of custom operators cann't have the same type
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()