framework.py 147.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
Y
Yu Yang 已提交
37

38
__all__ = [
39 40 41 42
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
43
    'name_scope',
S
sneaxiy 已提交
44 45 46
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
47
    'in_dygraph_mode',
C
chengduo 已提交
48
    'is_compiled_with_cuda',
49
    'Variable',
50
    'load_op_library',
51
]
Y
Yu Yang 已提交
52

Q
qiaolongfei 已提交
53 54 55 56
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
57 58
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
59 60
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
61 62


L
lujun 已提交
63
def in_dygraph_mode():
L
lujun 已提交
64
    """
Y
Youwei Song 已提交
65 66
    This function checks whether the program runs in dynamic graph mode or not.
    You can turn on dynamic graph mode with :ref:`api_fluid_dygraph_guard` api.
L
lujun 已提交
67 68

    Returns:
Y
Youwei Song 已提交
69
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
70 71 72 73

    Examples:
        .. code-block:: python

74
            import paddle.fluid as fluid
L
lujun 已提交
75
            if fluid.in_dygraph_mode():
Y
Youwei Song 已提交
76 77 78
                print('running in dygraph mode')
            else:
                print('not running in dygraph mode')
L
lujun 已提交
79 80

    """
L
lujun 已提交
81
    return _dygraph_tracer_ is not None
82 83


84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
106 107
def _dygraph_tracer():
    return _dygraph_tracer_
108

W
Wu Yi 已提交
109

M
minqiyang 已提交
110
def _current_expected_place():
L
lujun 已提交
111
    return _dygraph_current_expected_place_
M
minqiyang 已提交
112 113


S
sneaxiy 已提交
114
def _cpu_num():
115
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
116 117 118 119 120 121 122 123
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
124
        os.environ['CPU_NUM'] = str(1)
125
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
126 127 128 129 130 131 132 133 134 135
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
136 137


C
chengduo 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
153
def cuda_places(device_ids=None):
L
lujun 已提交
154
    """
S
add doc  
sneaxiy 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
174 175 176 177

    Examples:
        .. code-block:: python

178
            import paddle.fluid as fluid
L
lujun 已提交
179 180 181
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
182 183 184
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
185
        device_ids = _cuda_ids()
S
sneaxiy 已提交
186 187 188 189 190 191
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
192
    """
S
add doc  
sneaxiy 已提交
193 194 195 196
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
197 198
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
S
add doc  
sneaxiy 已提交
199 200 201 202 203 204

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
205 206 207 208

    Examples:
        .. code-block:: python

209
            import paddle.fluid as fluid
L
lujun 已提交
210 211 212
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
213 214 215 216 217 218
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
219
    """
S
add doc  
sneaxiy 已提交
220 221 222 223 224 225 226 227 228 229 230 231
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
232 233 234 235

    Examples:
        .. code-block:: python

236
            import paddle.fluid as fluid
L
lujun 已提交
237 238 239 240 241
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
242 243 244 245 246 247 248
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
275
@signature_safe_contextmanager
276 277 278 279 280 281 282 283 284 285 286 287
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
288

289
          import paddle.fluid as fluid
290 291 292 293 294 295 296 297 298 299 300
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
301 302
    """
    # TODO(panyx0718): Only [0-9a-z].
303 304 305 306 307 308 309 310 311
    # in dygraph we don't need namescope since it will cause mem leak
    if not in_dygraph_mode():
        assert prefix, "namescope prefix cannot be empty."
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
    else:
        yield
312 313 314 315 316 317 318 319 320 321 322 323


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
324 325 326
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
327 328 329 330


def grad_var_name(var_name):
    """
331 332
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
333 334 335
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
336

337
def convert_np_dtype_to_dtype_(np_dtype):
338 339
    """
    Convert the data type in numpy to the data type in Paddle
340

341
    Args:
342
        np_dtype(np.dtype): the data type in numpy.
343

344 345
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
346 347

    """
348 349
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
350
        return core.VarDesc.VarType.FP32
351
    elif dtype == np.float64:
352
        return core.VarDesc.VarType.FP64
353
    elif dtype == np.float16:
354
        return core.VarDesc.VarType.FP16
355
    elif dtype == np.int32:
356
        return core.VarDesc.VarType.INT32
357
    elif dtype == np.int16:
358
        return core.VarDesc.VarType.INT16
359
    elif dtype == np.int64:
360
        return core.VarDesc.VarType.INT64
361
    elif dtype == np.bool:
362
        return core.VarDesc.VarType.BOOL
363 364
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
365 366
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
367 368
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
369
    else:
M
minqiyang 已提交
370
        raise ValueError("Not supported numpy dtype %s" % dtype)
371 372 373


def dtype_is_floating(dtype):
374 375 376
    """
    Check the data type is floating or not.
    Args:
377
        dtype(np.dtype|core.VarDesc.VarType): data type.
378 379 380 381 382
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
383
    if not isinstance(dtype, core.VarDesc.VarType):
384 385
        dtype = convert_np_dtype_to_dtype_(dtype)

386 387 388 389
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
390 391


Y
Yang Yang(Tony) 已提交
392
def _debug_string_(proto, throw_on_error=True):
393 394 395 396 397 398 399 400 401 402 403
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
404
    error_fields = list()
Y
Yang Yang(Tony) 已提交
405
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
406 407
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
408 409 410
    return proto.__str__()


X
Xin Pan 已提交
411
class Variable(object):
412
    """
413 414 415 416 417
    **Notes:**
        **The constructor of Variable should not be invoked directly.**
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**
        **In Dygraph Mode: Please use** `fluid.dygraph.to_variable()` **to create a dygraph variable with real data**

418 419 420
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
421
    two variables in different blocks could have the same name.
422

423
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
424
    and usages. Please refer to the framework.proto for details.
425

426
    Most of a Variable's member variables can be setted to be None. It mean
427
    it is not available or will be specified later.
428

429
    Examples:
430 431
        In Static Graph Mode:

432 433
        .. code-block:: python

434
            import paddle.fluid as fluid
435
            cur_program = fluid.Program()
436 437 438 439
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
440 441 442 443 444 445 446 447 448 449
        In Dygraph Mode:

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

450 451
    """

Y
Yu Yang 已提交
452 453
    def __init__(self,
                 block,
Y
Yu Yang 已提交
454
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
455 456 457 458
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
459
                 capacity=None,
Q
QI JUN 已提交
460
                 persistable=None,
F
fengjiayi 已提交
461
                 error_clip=None,
Y
Yu Yang 已提交
462
                 stop_gradient=False,
F
fengjiayi 已提交
463
                 is_data=False,
H
Huihuang Zheng 已提交
464
                 need_check_feed=False,
Y
Yu Yang 已提交
465
                 **kwargs):
Y
Yu Yang 已提交
466 467
        self.block = block
        if name is None:
Y
Yu Yang 已提交
468
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
469

Y
Yu Yang 已提交
470
        if dtype is not None:
471
            if not isinstance(dtype, core.VarDesc.VarType):
472
                dtype = convert_np_dtype_to_dtype_(dtype)
473

L
lujun 已提交
474
        if in_dygraph_mode():
M
minqiyang 已提交
475
            # record vars in tracer rather than blocks
M
minqiyang 已提交
476
            self._ivar = kwargs.get("ivar", None)
477
            self.stop_gradient_ = kwargs.get("stop_gradient", True)
M
minqiyang 已提交
478
            if not self._ivar:
479
                self._ivar = core.VarBase(
J
Jiabin Yang 已提交
480 481 482
                    name, type
                    if type else core.VarDesc.VarType.LOD_TENSOR, dtype
                    if dtype else core.VarDesc.VarType.FP32,
483
                    list(shape) if shape else [], True
X
fix  
Xin Pan 已提交
484
                    if persistable else False)
M
minqiyang 已提交
485
            if persistable:
L
lujun 已提交
486
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
487
            self.op = None
M
minqiyang 已提交
488
        else:
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

H
Huihuang Zheng 已提交
553 554 555
            if need_check_feed and is_new_var:
                self.desc.set_need_check_feed(need_check_feed)

556 557 558 559 560 561 562 563
            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
564
            self.block.vars[name] = self
565
            self.op = None
566
            self._stop_gradient = stop_gradient
567
            self.is_data = is_data
Y
Yu Yang 已提交
568

569
    @dygraph_only
570 571
    def detach(self):
        """
572 573
        **Notes: This API is ONLY avaliable in Dygraph mode**

574
        Returns a new Variable, detached from the current graph.
575

576 577 578
        Returns:
            Variable: The detached Variable.

579 580 581
        Returns type:
            Variable(Tensor|LoDTensor) dtype is same as current Variable

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    y = x.detach()

        """
        if in_dygraph_mode():
            new_var = self._cloneVar()
            self.block.append_op(
                type="assign",
                inputs={'X': [self]},
                outputs={'Out': [new_var]},
                stop_gradient=True)
            return new_var
        else:
            raise AttributeError("static graph model DO NOT supprt detach")

609
    @dygraph_only
610
    def numpy(self):
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
        """
        **Notes: This API is ONLY avaliable in Dygraph mode**

        Returns a numpy array shows the value of current :ref:`api_guide_Variable`

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
            ndarray dtype is same as current Variable

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    print(x.numpy())

        """

        if not self._ivar.value().get_tensor()._is_initialized():
            raise ValueError("%s is Empty, Please check if it has no data in" %
                             self.name)
M
minqiyang 已提交
642
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
643
        return np.array(new_ivar.value().get_tensor())
644

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
    @dygraph_only
    def set_value(self, value):
        """
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.ones([3, 32, 32], dtype='float32')
                with fluid.dygraph.guard():
                    fc = fluid.dygraph.FC("fc", 4)
                    t = to_variable(data)
                    fc(t)  # call with default weight
                    custom_weight = np.random.randn(1024, 4).astype("float32")
                    fc.weight.set_value(custom_weight)  # change existing weight
                    out = fc(t)  # call with different weight

        """
        assert isinstance(value, (Variable, np.ndarray))
        if list(value.shape) != list(self.shape):
            raise ValueError(
                "The shape of the new value must be the same as that of the original Variable."
            )
        self_tensor = self._ivar.value().get_tensor()
        if isinstance(value, Variable):
            value = value._ivar.value().get_tensor().__array__()
        self_tensor.set(value, _current_expected_place())

684
    @dygraph_only
685
    def backward(self, backward_strategy=None):
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
        """
        **Notes: This API is ONLY avaliable in Dygraph mode**

        Run backward of current Graph which starts from current Variable

        Parameter:
            - **backward_strategy** : ( :ref:`api_fluid_dygraph_BackwardStrategy` ) - The Backward Strategy to run backward

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
J
Jiabin Yang 已提交
716 717 718 719 720
        if in_dygraph_mode():
            from .dygraph import BackwardStrategy
            if backward_strategy is None:
                backward_strategy = BackwardStrategy()
                backward_strategy.sort_sum_gradient = False
721

J
Jiabin Yang 已提交
722 723 724 725
            self._ivar._run_backward(backward_strategy, _dygraph_tracer())
        else:
            raise ValueError(
                "Variable.backward() is only avaliable in DyGraph mode")
726

727
    @dygraph_only
728
    def gradient(self):
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
        """
        **Notes: This API is ONLY avaliable in Dygraph mode**

        Get the Gradient of Current Variable

        Returns:  Numpy value of the gradient of current Variable

        Returns type: ndarray

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

        """
        if self._ivar._grad_ivar() is None:
            raise ValueError("%s has no grad, Please set Variable.stop_gradient=False, or " \
                             "check if this is the first and only variable need grad, if so, please set its pre-Variable's " \
                             "stop_gradient=False, to make sure it has gradient " % self.name)
        if not self._ivar._grad_ivar().value().get_tensor()._is_initialized():
            raise ValueError(
                "%s's Grad is Empty, Please check if it has no data in" %
                self.name)
767 768
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
769

770
    @dygraph_only
771
    def clear_gradient(self):
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
        """
        **Notes: This API is ONLY avaliable in Dygraph mode**

        Clear  (set to zero) the Gradient of Current Variable

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
X
Xin Pan 已提交
802
        self._ivar._clear_gradient()
X
Xin Pan 已提交
803

804
    def __str__(self):
Y
Yang Yang(Tony) 已提交
805 806
        return self.to_string(True)

F
update  
fengjiayi 已提交
807
    def to_string(self, throw_on_error, with_details=False):
808 809 810
        """
        Get debug string.

811 812
        Parameters:
            - **throw_on_error** (bool): True if raise an exception when self is
813
                not initialized.
814
            - **with_details** (bool): more details about variables and parameters
815 816
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
817

818 819
        Returns:
            str: The debug string.
820

821 822 823
        Returns Type:
            str

824 825 826 827
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
828

829 830 831 832 833
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
834 835 836
                print(new_variable.to_string(True))
                print("\n=============with detail===============\n")
                print(new_variable.to_string(True, True))
837
        """
L
lujun 已提交
838
        if in_dygraph_mode():
L
lujun 已提交
839
            # TODO(panyx0718): add more dygraph debug info.
J
Jiabin Yang 已提交
840 841 842 843 844 845 846
            tensor = self._ivar.value().get_tensor()
            if tensor._is_initialized():
                return 'name %s, dtype: %s shape: %s %s' % (
                    self.name, self.dtype, self.shape, str(tensor))
            else:
                return 'name %s, shape: %s, not inited' % (self.name,
                                                           self.shape)
847

F
update  
fengjiayi 已提交
848 849
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
850
        protostr = self.desc.serialize_to_string()
851
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
852 853 854 855
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
856 857 858
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
859
        return res_str
860 861 862

    __repr__ = __str__

863
    @property
864
    def stop_gradient(self):
L
lujun 已提交
865
        if in_dygraph_mode():
M
minqiyang 已提交
866 867
            return self._ivar.stop_gradient
        else:
868
            return self._stop_gradient
869

870 871
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
872
        if in_dygraph_mode():
M
minqiyang 已提交
873
            self._ivar.stop_gradient = s
874
        else:
875
            self._stop_gradient = s
876

877 878
    @property
    def persistable(self):
L
lujun 已提交
879
        if in_dygraph_mode():
880 881 882
            return self._ivar.persistable
        else:
            return self.desc.persistable()
883

Y
Yu Yang 已提交
884 885
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
886
        if in_dygraph_mode():
887 888 889
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
890 891
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
892

Y
Yu Yang 已提交
893 894
    @property
    def name(self):
L
lujun 已提交
895
        if in_dygraph_mode():
896 897 898
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
899

T
typhoonzero 已提交
900 901
    @name.setter
    def name(self, new_name):
L
lujun 已提交
902
        if in_dygraph_mode():
903 904 905
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
906

Y
Yu Yang 已提交
907 908 909
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
910
        if in_dygraph_mode():
911 912 913
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
914 915

    @property
F
fengjiayi 已提交
916
    def dtype(self):
L
lujun 已提交
917
        if in_dygraph_mode():
918 919 920
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
921 922

    @property
923
    @dygraph_not_support
Y
Yu Yang 已提交
924
    def lod_level(self):
L
lujun 已提交
925
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
926 927
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
928
        return self.desc.lod_level()
Y
Yu Yang 已提交
929

Y
Yu Yang 已提交
930 931
    @property
    def type(self):
L
lujun 已提交
932
        if in_dygraph_mode():
J
Jiabin Yang 已提交
933
            return self._ivar.type
934 935
        else:
            return self.desc.type()
Y
Yu Yang 已提交
936

W
Wu Yi 已提交
937
    def _set_error_clip(self, error_clip):
938 939 940 941 942 943 944 945 946
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
947 948
        self.error_clip = error_clip

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1036
    def _cloneVar(self, copy=False):
1037 1038
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1039 1040
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1041 1042 1043 1044
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1045
        new_var = self._cloneVar()
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1056
        new_var = self._cloneVar()
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1067
                return self._cloneVar(True)
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1086
                return self._cloneVar(True)
1087
            index = int(item)
1088
            if (index > 0 and index >= self.shape[axis]) \
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
        reverse_axis = []

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        def fill_constant(shape, dtype, value, force_cpu=False, out=None):
            self.block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [out]},
                attrs={
                    'shape': shape,
                    'dtype': out.dtype,
                    'value': float(value),
                    'force_cpu': force_cpu or force_init_on_cpu()
                },
                stop_gradient=True)
            out.stop_gradient = True
            return out

H
Hongyu Liu 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step if slice_item.step else 1

                assert (step == 1 or step == -1)

                if step == -1:
                    reverse_axis.append(dim)
                    assert (start is None and end is None)

                if start is None and end is None:
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
1154
            else:
H
Hongyu Liu 已提交
1155 1156 1157
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
                if isinstance(slice_item, Variable):
                    temp_1 = self.block.create_var(dtype='int32')
                    fill_constant([1], 'int32', 1, force_cpu=True, out=temp_1)
                    temp_end = self.block.create_var(dtype='int32')
                    self.block.append_op(
                        type='elementwise_add',
                        inputs={'X': slice_item,
                                'Y': temp_1},
                        outputs={'Out': temp_end},
                        attrs={'axis': -1})
                    slice_end.append(temp_end)
                else:
                    slice_end.append(slice_item + 1
                                     if slice_item != -1 else 10000000)

        def contain_var(one_list):
            for ele in one_list:
                if isinstance(ele, Variable):
                    return True
            return False

        def get_new_list_tensor(old_list):
            new_list_tensor = []
            for dim in old_list:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_list_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = self.block.create_var(dtype='int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_list_tensor.append(temp_out)
            return new_list_tensor

        inputs = {'Input': [self]}
        attrs = {
            'axes': slice_axis,
            'starts': [],
            'ends': [],
            'decrease_axis': decrease_axis
        }
        infer_flags = list(1 for i in range(len(slice_axis)))

        # starts
        if not contain_var(slice_start):
            attrs['starts'] = slice_start
        else:
            inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
            for i, dim in enumerate(slice_start):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        # ends
        if not contain_var(slice_end):
            attrs['ends'] = slice_end
        else:
            inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
            for i, dim in enumerate(slice_end):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        # infer_flags
        attrs['infer_flags'] = infer_flags
H
Hongyu Liu 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

        out = self
        if len(slice_axis) > 0:
            # append slice_op here
            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
1237
                inputs=inputs,
H
Hongyu Liu 已提交
1238
                outputs={'Out': [slice_out_var]},
1239
                attrs=attrs)
H
Hongyu Liu 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

            out = slice_out_var

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
1257

Y
Yu Yang 已提交
1258

F
fengjiayi 已提交
1259 1260 1261
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1262

1263 1264
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1265 1266 1267 1268
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1269
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1270 1271 1272 1273 1274
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1275 1276 1277 1278
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1288
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1289 1290 1291 1292 1293 1294
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1295 1296 1297 1298 1299 1300 1301 1302
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1303 1304
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1305 1306
        return self.op_proto_map[type]

1307 1308 1309 1310 1311 1312
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1313 1314 1315 1316
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1317
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1318 1319
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
1320 1321
        }

F
fengjiayi 已提交
1322

X
Xin Pan 已提交
1323
class Operator(object):
1324
    """
1325 1326 1327 1328 1329 1330 1331
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1332
        type(str): The type of operator. Default None.
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1353
        Block.append_op or Block._prepend_op instead.
1354 1355 1356 1357

    Examples:
        .. code-block:: python

1358
            import paddle.fluid as fluid
1359
            cur_program = fluid.Program()
1360 1361 1362 1363 1364
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1365
    """
1366
    OP_WITHOUT_KERNEL_SET = {
1367 1368
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1369 1370
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1371
        'c_sync_comm_stream'
1372
    }
1373

Y
Yu Yang 已提交
1374 1375
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1376
                 desc,
Y
Yu Yang 已提交
1377 1378 1379
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1380
                 attrs=None):
L
lujun 已提交
1381
        if in_dygraph_mode():
1382 1383
            if type is None:
                raise ValueError(
1384
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1385
            self._type = type
M
minqiyang 已提交
1386
            self.attrs = attrs if attrs else {}
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1401
                )] = self.block.program._op_role
1402 1403 1404

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1405 1406
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1407 1408 1409 1410 1411 1412 1413 1414

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1415
                    "`type` to initialized an Operator can not be None.")
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1447
                        for index, arg in enumerate(in_args):
1448 1449 1450 1451
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1452
                            elif isinstance(arg, Variable):
1453
                                in_arg_names.append(cpt.to_text(arg.name))
1454 1455 1456 1457
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1484
                        if not in_dygraph_mode():
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1504
    def _has_kernel(self, op_type):
1505 1506
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1507
    def to_string(self, throw_on_error):
1508
        """
1509 1510
        Get debug string.

1511
        Args:
1512 1513
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1514

1515 1516
        Returns:
            str: The debug string.
1517 1518

        """
1519
        protostr = self.desc.serialize_to_string()
1520
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1521 1522 1523 1524
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1525 1526 1527

    __repr__ = __str__

F
fengjiayi 已提交
1528 1529
    @property
    def type(self):
L
lujun 已提交
1530
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1531
            return self._type
1532 1533
        else:
            return self.desc.type()
F
fengjiayi 已提交
1534 1535

    def input(self, name):
1536
        """
1537
        Get the input arguments according to the input parameter name.
1538

1539 1540
        Args:
            name(str): The input parameter name.
1541

1542 1543 1544
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1545
        """
F
fengjiayi 已提交
1546 1547
        return self.desc.input(name)

W
Wu Yi 已提交
1548
    def _rename_input(self, old_name, new_name):
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1559
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1560

W
Wu Yi 已提交
1561
    def _rename_output(self, old_name, new_name):
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1572
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1573

F
fengjiayi 已提交
1574 1575 1576 1577
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1578 1579 1580 1581 1582 1583 1584 1585
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1586
    def output(self, name):
1587
        """
1588
        Get output arguments by the output parameter name.
1589

1590 1591
        Args:
            name(str): The output parameter name.
1592

1593 1594 1595
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1596
        """
F
fengjiayi 已提交
1597 1598 1599 1600 1601 1602
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1603 1604 1605 1606 1607 1608 1609 1610
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1611
    def has_attr(self, name):
1612
        """
1613 1614
        Whether this Operator has the attribute with name or not.

1615
        Args:
1616
            name(str): the attribute name.
1617

1618 1619
        Returns:
            bool: True if has this attribute.
1620 1621

        """
F
fengjiayi 已提交
1622 1623 1624
        return self.desc.has_attr(name)

    def attr_type(self, name):
1625
        """
1626
        Get the type of attribute by attribute's name.
1627

1628 1629
        Args:
            name(str): the attribute name.
1630

1631 1632
        Returns:
            core.AttrType: the attribute type.
1633
        """
F
fengjiayi 已提交
1634 1635
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1636
    def _set_attr(self, name, val):
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1647 1648
        self._update_desc_attr(name, val)

1649 1650 1651
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1663 1664
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1665 1666
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1667
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1668 1669 1670 1671
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1672
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1673

F
fengjiayi 已提交
1674 1675 1676 1677 1678
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1679
        """
1680 1681
        Get the attribute by name.

1682
        Args:
1683
            name(str): the attribute name.
1684

1685 1686
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1687 1688
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1689
        return self.desc.attr(name)
Y
Yu Yang 已提交
1690

W
Wu Yi 已提交
1691
    def _block_attr_id(self, name):
1692
        """
G
gongweibao 已提交
1693
        Get the block attribute's id by name.
1694

1695 1696
        Args:
            name(str): the attribute name.
1697

1698 1699
        Returns:
            int: the block index.
1700
        """
W
Wu Yi 已提交
1701
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1702

W
Wu Yi 已提交
1703
    def _block_attr(self, name):
G
gongweibao 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1714
        id = self._block_attr_id(name)
G
gongweibao 已提交
1715 1716 1717
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1718
    def _blocks_attr(self, name):
G
gongweibao 已提交
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1729
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1730 1731 1732 1733 1734
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1735
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1746
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1747

J
JiayiFeng 已提交
1748
    def all_attrs(self):
F
fengjiayi 已提交
1749
        """
1750 1751 1752
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1753
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1754 1755 1756 1757
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1758 1759
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1760
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1761 1762 1763
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1764
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1765 1766 1767 1768
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1769 1770
        return attr_map

Y
Yu Yang 已提交
1771

Y
Yu Yang 已提交
1772
class Block(object):
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1787
        use `Program._create_block()` to create a block.
1788 1789 1790 1791

    Examples:
        .. code-block:: python

1792 1793 1794
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1795 1796 1797 1798 1799 1800 1801 1802 1803
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1804
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1805
        self.desc = program.desc.block(idx)
1806
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1807
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1808
        self.program = program
1809
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1810

1811
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1812 1813
        return self.to_string(True)

F
fengjiayi 已提交
1814 1815
    def to_string(self, throw_on_error, with_details=False):
        """
1816 1817
        Get debug string.

F
fengjiayi 已提交
1818 1819
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1820
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1821
            with_details(bool): more details about variables and parameters
1822 1823
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1824

1825 1826
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1827 1828 1829 1830
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1831
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1832 1833
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1834
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1835
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1836
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1837
            for op in self.ops:
F
fengjiayi 已提交
1838 1839
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1840 1841 1842
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1843 1844
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1845 1846
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1847 1848 1849

    __repr__ = __str__

Y
Yu Yang 已提交
1850 1851
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1852
        return self.desc.parent
Y
Yu Yang 已提交
1853

Y
Yu Yang 已提交
1854 1855 1856 1857
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1858
    def _set_forward_block_idx(self, idx):
1859 1860 1861 1862 1863 1864 1865 1866 1867
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1868
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1869

Y
Yu Yang 已提交
1870 1871
    @property
    def idx(self):
Y
Yu Yang 已提交
1872
        return self.desc.id
Y
Yu Yang 已提交
1873

Q
Qiao Longfei 已提交
1874
    def var(self, name):
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1888
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1889 1890 1891
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1892 1893
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1894
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1895
        return v
Q
Qiao Longfei 已提交
1896

X
Xin Pan 已提交
1897
    def _find_var_recursive(self, name):
1898 1899 1900 1901 1902 1903 1904
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1905
            Variable: the Variable with the giving name. Or None if not found.
1906
        """
Y
Yu Yang 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1931
        return None
Y
Yu Yang 已提交
1932

X
Xin Pan 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1952

Q
Qiao Longfei 已提交
1953
    def all_parameters(self):
1954
        return list(self.iter_parameters())
1955

1956
    def iter_parameters(self):
M
minqiyang 已提交
1957
        return (item[1] for item in six.iteritems(self.vars)
1958
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1959

Y
Yu Yang 已提交
1960
    def create_var(self, *args, **kwargs):
1961
        var = Variable(block=self, *args, **kwargs)
1962 1963
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1964
        return var
Y
Yu Yang 已提交
1965

Q
Qiao Longfei 已提交
1966 1967 1968
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1969
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1970 1971
        """
        Rename variable in vars and ops' inputs and outputs
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1984
        """
M
minqiyang 已提交
1985 1986
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1987

T
typhoonzero 已提交
1988
        if not self.has_var(name):
1989
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1990 1991
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1992
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1993 1994 1995 1996 1997 1998 1999
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2000
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2001 2002 2003 2004
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2005
        orig_var_type = v.type
M
minqiyang 已提交
2006
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2007
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2008
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2009
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
2010 2011 2012 2013
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
2014
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2015 2016 2017 2018 2019 2020 2021
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
2022
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2023 2024
            var = Variable(
                self,
T
typhoonzero 已提交
2025
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2026 2027 2028 2029
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2030
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2031 2032 2033
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2034
        self._sync_with_cpp()
2035
        return var
T
typhoonzero 已提交
2036

W
Wu Yi 已提交
2037 2038
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2039
        self.desc._remove_var(cpt.to_bytes(name))
2040 2041
        del self.vars[name]

Y
Yu Yang 已提交
2042 2043
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
2044
        param = Parameter(global_block, *args, **kwargs)
2045
        if 'initializer' in kwargs:
2046 2047 2048 2049 2050

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2051 2052 2053 2054 2055
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
2071
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2072
        return param
Y
Yu Yang 已提交
2073

Y
Yu Yang 已提交
2074
    def append_op(self, *args, **kwargs):
2075 2076 2077 2078 2079 2080
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2081
        if in_dygraph_mode():
2082 2083 2084
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
2085 2086 2087 2088 2089
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
2090

J
Jiabin Yang 已提交
2091 2092
            type = kwargs.get("type", None)

2093 2094 2095
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2096
                type=type,
M
minqiyang 已提交
2097 2098
                inputs=None,
                outputs=None,
2099
                attrs=attrs)
2100

M
minqiyang 已提交
2101 2102 2103
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2104
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2105 2106

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2107
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2108 2109
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2110
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2111
        else:
2112 2113 2114 2115 2116 2117 2118 2119 2120
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2121
            self.ops.append(op)
M
minqiyang 已提交
2122

2123 2124
        return op

W
Wu Yi 已提交
2125
    def _insert_op(self, index, *args, **kwargs):
2126 2127 2128 2129 2130 2131 2132 2133 2134
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2135 2136
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2137 2138 2139 2140
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2141
    def _remove_op(self, index):
2142 2143 2144 2145 2146 2147 2148 2149 2150
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2151 2152
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2153 2154
        del self.ops[index]

W
Wu Yi 已提交
2155
    def _slice_ops(self, start, end):
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2166
        return self.ops[start:end]
Y
Yancey1989 已提交
2167

W
Wu Yi 已提交
2168
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2169
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2170 2171
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2172
            op = Operator(
J
Jiabin Yang 已提交
2173
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2174

J
Jiabin Yang 已提交
2175
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2176
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2177 2178
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2179
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2180
        else:
2181 2182 2183 2184 2185 2186 2187 2188
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2189
            self.ops.insert(0, op)
2190

Y
Yu Yang 已提交
2191 2192
        return op

W
Wu Yi 已提交
2193
    def _sync_with_cpp(self):
2194
        """
2195 2196
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2197
        """
Q
Qiao Longfei 已提交
2198 2199 2200 2201 2202
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2203
        # sync variables removed from c++ end
2204
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2205
            if not self.desc.find_var(cpt.to_bytes(var)):
2206 2207
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2208
        # sync operators from cpp
2209 2210 2211 2212
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2229 2230 2231 2232 2233

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2234
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2235 2236 2237 2238 2239 2240 2241

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2255 2256 2257 2258
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2259
    def _copy_param_info_from(self, other):
2260
        """
2261 2262
        Copy the information of parameters from the other block.

2263
        Args:
2264 2265 2266 2267 2268
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2269 2270 2271 2272 2273

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2274 2275
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2276
        for p in other.iter_parameters():
2277 2278 2279
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
2280
                raise ValueError("_copy_param_info_from should be invoked with "
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
2293
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
2294
                error_clip=p.error_clip,
2295 2296 2297
                name=v.name)
            self.vars[new_p.name] = new_p

2298
    def _clone_variable(self, var, force_persistable=True):
2299 2300
        """
        Clone a variable into current block.
2301

2302 2303
        Args:
            var: the variable to be cloned.
2304 2305 2306
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2307 2308

        Returns:
2309
            Variable: the new  variable cloned from 'var' in current block.
2310 2311
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2312 2313 2314 2315 2316
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2317 2318
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2319
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2320 2321 2322 2323 2324 2325
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2326
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2327 2328
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2329 2330 2331 2332 2333 2334 2335
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2336
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2337 2338
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2339
        return ret_var
2340

Y
Yu Yang 已提交
2341

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2437
    def remove_input_by_id(self, node_id):
2438 2439 2440 2441 2442 2443
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2444
        self.node.remove_input(node_id)
2445

2446
    def remove_input(self, node):
2447 2448 2449 2450
        """
        Remove a node from inputs.

        Args:
2451
            node(IrNode): the node being removed.
2452
        """
2453
        self.node.remove_input(node.node)
2454

2455
    def append_input(self, node):
2456 2457 2458 2459
        """
        Append a node in inputs.

        Args:
2460
            node(IrNode): the node being appended.
2461
        """
2462
        self.node.append_input(node.node)
2463 2464 2465 2466 2467 2468 2469 2470

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2471
    def remove_output_by_id(self, node_id):
2472 2473 2474 2475 2476 2477
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2478
        self.node.remove_output(node_id)
2479

2480
    def remove_output(self, node):
2481 2482 2483 2484
        """
        Remove a node from outputs.

        Args:
2485
            node(IrNode): the node being removed.
2486
        """
2487
        self.node.remove_output(node.node)
2488

2489
    def append_output(self, node):
2490 2491 2492 2493
        """
        Append a node in outputs.

        Args:
2494
            node(IrNode): the node being appended.
2495
        """
2496
        self.node.append_output(node.node)
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
2714
                all(isinstance(v, Block) for v in val):
2715 2716
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
2717
                isinstance(val, core.ProgramDesc):
2718 2719 2720 2721
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2765 2766
class IrGraph(object):
    """
2767
    Python IrGraph. Beneath it is a core.Graph, which is used for
2768
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2769 2770
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2771 2772 2773 2774
    """

    def __init__(self, graph, for_test=False):
        """
2775 2776
        Construct an IrGraph using core.Graph.

2777 2778 2779 2780 2781 2782 2783 2784 2785
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2786 2787 2788 2789
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2790 2791 2792
        Warns:
            The method only clones the graph structure, not its attributes.

2793 2794 2795
        Returns:
            IrGraph: A new and duplicated graph.
        """
2796
        g = self.graph.clone()
2797 2798
        return IrGraph(g, self._for_test)

2799
    def is_test(self):
2800 2801 2802
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2803 2804
        return self._for_test

W
WangZhen 已提交
2805
    def all_nodes(self):
2806 2807 2808
        """
        Return all nodes included in the graph as a set.
        """
2809
        return {IrNode(node) for node in self.graph.nodes()}
2810

2811
    def all_var_nodes(self):
2812 2813 2814
        """
        Return all variable nodes included in the graph as a set.
        """
2815
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2816

2817
    def all_persistable_nodes(self):
2818 2819 2820
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2821 2822 2823 2824 2825
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2826
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2827

2828
    def all_op_nodes(self):
2829 2830 2831
        """
        Return all operator nodes included in the graph as a set.
        """
2832
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2833

2834
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2846
            IrVarNode: the created persistable variable node.
2847
        """
2848 2849 2850 2851 2852
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2853
        return IrVarNode(self.graph.create_var_node(var_desc))
2854 2855

    def create_var_node(self, name, var_type, shape, var_dtype):
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2867
            IrVarNode: the created variable node.
2868 2869
        """

2870 2871 2872 2873
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2874
        return IrVarNode(self.graph.create_var_node(var_desc))
2875 2876

    def create_var_node_from_desc(self, var_desc):
2877 2878 2879 2880 2881 2882 2883 2884
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2885
            IrVarNode: the created variable node.
2886
        """
2887
        return IrVarNode(self.graph.create_var_node(var_desc))
2888 2889

    def create_op_node(self, op_type, attrs, inputs, outputs):
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2900
            IrOpNode: the created operator node.
2901
        """
2902 2903
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2904
        for attr, value in six.iteritems(attrs):
2905
            self._update_desc_attr(op_desc, attr, value)
2906
        for input_name, var_nodes in six.iteritems(inputs):
2907 2908 2909 2910
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2911
        for output_name, var_nodes in six.iteritems(outputs):
2912 2913 2914 2915
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2916
        return IrOpNode(self.graph.create_op_node(op_desc))
2917 2918

    def create_op_node_from_desc(self, op_desc):
2919 2920 2921 2922 2923 2924 2925
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2926
            IrOpNode: the created operator node.
2927
        """
2928
        return IrOpNode(self.graph.create_op_node(op_desc))
2929 2930

    def update_input_link(self, old_input_node, new_input_node, op_node):
2931 2932 2933 2934
        """
        Update the input's link of a operator node.

        Args:
2935 2936 2937
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2938
        """
2939
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
2940 2941
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2942 2943 2944 2945
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2946
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2947

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
        'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

2966
    def link_to(self, node_in, node_out):
2967 2968 2969 2970
        """
        Connect two nodes.

        Args:
2971 2972
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2973
        """
2974
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2975
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2976 2977
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2978 2979

    def safe_remove_nodes(self, remove_nodes):
2980 2981 2982 2983 2984 2985 2986
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2987
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2988 2989 2990 2991
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2992 2993
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2994

Z
Zhen Wang 已提交
2995 2996 2997 2998 2999 3000 3001 3002
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3003
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3004 3005 3006 3007
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3008
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3009 3010 3011
                        ]
                    else:
                        var_nodes[each_var_name].append(
3012 3013
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3014 3015
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3016
    def has_circle(self):
3017 3018 3019 3020 3021 3022
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3023 3024 3025
        return core.has_circle(self.graph)

    def graph_num(self):
3026 3027 3028 3029 3030 3031
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3032 3033 3034
        return core.graph_num(self.graph)

    def topology_sort(self):
3035 3036 3037 3038 3039 3040
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
3041
            list(IrNode): nodes in topology order.
3042
        """
3043
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3044
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3045 3046

    def build_adjacency_list(self):
3047 3048 3049 3050
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3051
            dict{IrNode: set(IrNode)}: the adjacency list.
3052
        """
3053 3054 3055 3056 3057
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3058

3059 3060 3061 3062 3063 3064 3065 3066
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3067
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3068 3069 3070 3071 3072
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3073 3074 3075
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3076
                                          + ' -o ' + pdf_save_path, shell=True)
3077 3078 3079 3080 3081
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3082
        remove_ctr_vars = set()
3083
        if remove_ctr_var:
3084
            for node in self.all_var_nodes():
3085 3086 3087
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3088 3089
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3090 3091
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3092 3093 3094 3095 3096 3097
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3098 3099 3100 3101
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3102 3103
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3104 3105 3106 3107 3108 3109 3110
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3111 3112 3113
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3114
        WARN: When the graph includes backward operator nodes, the
3115 3116 3117 3118 3119 3120
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3121
        convert_pass = core.get_pass('graph_to_program_pass')
3122 3123
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3124 3125 3126 3127
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3155
class Program(object):
D
dzhwinter 已提交
3156
    """
3157 3158
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3159
    it will contain nested block.
3160

D
dzhwinter 已提交
3161 3162
    Please reference the framework.proto for details.

J
Jiabin Yang 已提交
3163 3164 3165 3166 3167 3168 3169 3170 3171
    A set of Program usually contains startup program and main program.
    A startup program is set to contain some initial work , and the main
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

D
dzhwinter 已提交
3172 3173 3174
    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
3175
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
3176 3177

    Returns:
3178 3179 3180
        An empty Program.

    Return type: Program
D
dzhwinter 已提交
3181 3182

    Examples:
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3196 3197 3198

    """

3199 3200
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3201 3202
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
3203
        self._seed = 0
Y
yuyang18 已提交
3204
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3205
        self.__op_role_var = []
T
tangwei12 已提交
3206

3207 3208
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3209
        self._is_distributed = False
3210
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3211
        self._is_chief = False
3212 3213 3214
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3215
        self._endpoints = []
3216 3217 3218
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3219
        self._trainers_endpoints = []
3220
        # the distributed lookup table names
T
tangwei12 已提交
3221
        self._distributed_lookup_table = None
3222 3223 3224

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3225 3226
        self._use_lamb = False

3227 3228 3229
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3230

3231 3232 3233
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3234
        self._program_config = None
3235

H
hutuxian 已提交
3236 3237 3238
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3239 3240 3241
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
3242
    @property
3243
    def _op_role(self):
Y
yuyang18 已提交
3244 3245 3246 3247 3248 3249 3250 3251
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3252
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3253 3254 3255 3256
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3257 3258
        return self._current_role

3259 3260
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3261 3262 3263
        self._current_role = role

    @property
3264
    def _op_role_var(self):
Y
yuyang18 已提交
3265
        """
3266
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3267

3268
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3269 3270 3271

        Notes: This is a very low-level API. Users should not use it directly.
        """
3272
        return self.__op_role_var
Y
yuyang18 已提交
3273

3274 3275 3276 3277 3278 3279 3280 3281 3282
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3283
    @signature_safe_contextmanager
W
Wu Yi 已提交
3284
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3285 3286 3287 3288 3289 3290 3291
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3292
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3293 3294 3295

        Examples:

3296
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3297
            >>> p, g = backward(...)
W
Wu Yi 已提交
3298
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3299 3300
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3301
        tmp_role = self._current_role
3302
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3303

Y
yuyang18 已提交
3304 3305
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3306
        self.__op_role_var = [
3307 3308 3309
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3310
        yield
3311
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3312
        self._current_role = tmp_role
Y
Yu Yang 已提交
3313

S
rename  
sneaxiy 已提交
3314
    @signature_safe_contextmanager
X
Xin Pan 已提交
3315
    def _lr_schedule_guard(self, is_with_opt=False):
3316 3317 3318 3319 3320 3321 3322
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3323 3324 3325 3326
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3327 3328 3329

        Examples:

3330
            >>> import paddle.fluid as fluid
3331 3332 3333 3334
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3335 3336

        tmp_role = self._current_role
3337
        tmp_var = self.__op_role_var
3338

3339 3340
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3341 3342
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3343
        # TODO(typhoonzero): how to set target learning rate var
3344
        self.__op_role_var = []
3345
        yield
3346
        self.__op_role_var = tmp_var
3347
        self._current_role = tmp_role
3348

3349
    def __str__(self):
Y
yuyang18 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3359 3360
        return self.to_string(True)

F
fengjiayi 已提交
3361 3362 3363
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3364

3365 3366
        Parameters:
            - **throw_on_error** (bool): raise Value error when any of required fields
Y
yuyang18 已提交
3367
                is not set.
F
fengjiayi 已提交
3368

3369
            - **with_details** (bool): True if more details about variables and
Y
yuyang18 已提交
3370 3371 3372
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
3373
        Returns:
3374
            The debug string describe current Program.
Y
yuyang18 已提交
3375 3376 3377 3378

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
3379

3380 3381 3382 3383 3384 3385 3386 3387 3388
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
3389 3390 3391 3392 3393 3394 3395 3396 3397
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3398 3399
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3400 3401
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3402

W
Wu Yi 已提交
3403
    def _get_desc(self):
Y
yuyang18 已提交
3404 3405 3406 3407 3408 3409 3410
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3411 3412
        return self.desc

X
version  
Xin Pan 已提交
3413 3414 3415
    def _version(self):
        return self.desc._version()

3416
    @dygraph_not_support
3417
    def clone(self, for_test=False):
Y
yuyang18 已提交
3418
        """
3419 3420 3421 3422
        **Notes**:
            **1.** :code:`Program.clone()` **method DOES NOT clone** :code:`py_reader`.
            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.**
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3423

3424 3425
        Create a new Program with forward content of original one when ``for_test=True``.
        Create a new Program as the same as original one when ``for_test=False``
3426

3427 3428

        Some operators, e.g., :ref:`cn_api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3429 3430 3431
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3432

Y
yuyang18 已提交
3433
        * Set for_test to False when we want to clone the program for training.
3434
        * Set for_test to True when we want to clone the program for testing.
3435 3436
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
3437
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`. For example:
Y
yuyang18 已提交
3438

L
Luo Tao 已提交
3439

3440 3441 3442
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
3443
            # Here we use clone before Momentum
3444 3445
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
3446

3447 3448
        Parameters:
            - **for_test** (bool) - True if change the :code:`is_test` attribute of
Y
yuyang18 已提交
3449
                operators to :code:`True`.
3450

3451 3452 3453
        Returns:   A new Program with forward content of original one when ``for_test=True``.  A new Program as the same as original one when ``for_test=False``

        Return type: Program
Y
yuyang18 已提交
3454 3455 3456

        Examples:

3457
        Notes: The Program's order maybe different after :code:`clone` and
3458 3459 3460 3461 3462
        this will not affect your training or testing progress. In the following
        example we give you an simple method :code:`print_prog(program)` to
        print Program Descs inorder to make sure you have same print result
        after :code:`clone`:

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3500 3501 3502

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3514 3515 3516 3517 3518 3519 3520 3521 3522

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3570 3571
        """
        if for_test:
3572
            if self._appending_grad_times > 0:
3573 3574 3575 3576 3577 3578 3579
                forward_prog = Program()
                forward_prog.desc = core.prune_backward(self.desc)
                forward_prog.blocks = [
                    Block(forward_prog, i)
                    for i in six.moves.range(forward_prog.desc.num_blocks())
                ]
                forward_prog._sync_with_cpp()
3580 3581 3582
                p = forward_prog._inference_optimize(prune_read_op=False)
            else:
                p = self._inference_optimize(prune_read_op=False)
3583
        else:
3584
            p = Program()
G
gongweibao 已提交
3585 3586
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3587
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3588 3589 3590
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3591 3592

            p._current_role = self._current_role
3593
            p.__op_role_var = self.__op_role_var
3594
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3595

W
Wu Yi 已提交
3596
            p._sync_with_cpp()
3597

W
Wu Yi 已提交
3598
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3599
        p._copy_data_info_from(self)
3600
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3601
        return p
3602

3603
    def _prune(self, targets):
Y
yuyang18 已提交
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
3617 3618 3619 3620
        """

        if not isinstance(targets, list):
            targets = [targets]
Y
yuyang18 已提交
3621

3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
                    # and we need to find the current op that generate this
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

                    t = t.op
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
                else:
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, set(), targets_idx)
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()
        return res

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
3656
        """
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

3674 3675
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
3676 3677
        if not isinstance(targets, list):
            targets = [targets]
3678 3679 3680 3681 3682 3683

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

3684 3685 3686 3687
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3688 3689
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3690
                    # and we need to find the current op that generate this
3691 3692 3693 3694 3695 3696 3697 3698
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3699
                    t = t.op
3700 3701 3702 3703
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3704
                else:
3705 3706
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3707 3708 3709

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
3710
        res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
3711 3712 3713
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3714
        res._sync_with_cpp()
3715 3716
        return res

X
Xin Pan 已提交
3717
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3718
        """
F
fengjiayi 已提交
3719 3720 3721 3722 3723
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3724
        3. change the :code:`is_test`
Y
yuyang18 已提交
3725 3726 3727
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3728
        Args:
X
Xin Pan 已提交
3729 3730
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3731

Y
yuyang18 已提交
3732 3733 3734 3735 3736 3737
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3738
        res = Program()
3739
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3740 3741 3742 3743

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3744
        if prune_read_op:
3745 3746 3747 3748 3749 3750 3751 3752 3753
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3754
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3755 3756

        # change all `is_test` attributes to True
M
minqiyang 已提交
3757
        for i in six.moves.range(res.desc.num_blocks()):
3758
            block = res.desc.block(i)
M
minqiyang 已提交
3759
            for j in six.moves.range(block.op_size()):
3760 3761
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3762
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3763 3764 3765
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3766
        res._sync_with_cpp()
3767 3768
        return res

3769 3770
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3771
        """
3772 3773 3774
        **Notes:**
            **- All information about parameters will be lost after serialization**
            **- This API has no effect in Dygraph mode**
Y
yuyang18 已提交
3775

3776 3777
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
3778

3779 3780
        Parameters:
            - **binary_str_type** (str) - the binary prootbuf string.
Y
yuyang18 已提交
3781

3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
        Returns: Program: A deserialized Program.

        Return type: Program

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
3807
        """
3808 3809
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3810
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3811
        p._sync_with_cpp()
3812
        return p
Y
Yu Yang 已提交
3813

3814
    @staticmethod
3815
    def _construct_from_desc(desc):
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3831 3832
    @property
    def random_seed(self):
Y
yuyang18 已提交
3833
        """
3834 3835
        **Notes: It must be set before the operators have been added.**

Y
yuyang18 已提交
3836 3837 3838
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

3839 3840 3841
        Returns: random seed in current Program

        Return type: int64
3842 3843 3844 3845 3846 3847 3848 3849

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
3850 3851 3852
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)

                # Here we need to set random seed before we use fluid.layers.dropout
3853 3854
                print(random_seed)
                prog.random_seed = 1
3855 3856
                z_var = fluid.layers.dropout(x_var, 0.7)

3857
                print(prog.random_seed)
Y
yuyang18 已提交
3858
        """
D
dzhwinter 已提交
3859 3860
        return self._seed

Q
qiaolongfei 已提交
3861 3862
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3863
        """
3864 3865 3866 3867 3868 3869 3870
        **Notes: This API has no effect in Dygraph mode**

        The number of :ref:`api_guide_Block_en`  in this Program.

        Returns: num of :ref:`api_guide_Block_en`  in current Program

        Return type: int(Platform-dependent size)
3871 3872 3873 3874 3875 3876 3877 3878 3879

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
3880 3881


Y
yuyang18 已提交
3882
        """
Q
qiaolongfei 已提交
3883 3884
        return self.desc.num_blocks()

D
dzhwinter 已提交
3885 3886 3887 3888 3889 3890
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3891
    def __repr__(self):
3892
        return self.__str__()
3893

Y
Yu Yang 已提交
3894
    def global_block(self):
Y
yuyang18 已提交
3895
        """
3896 3897 3898 3899 3900 3901 3902
        **Notes: This API has no effect in Dygraph mode**

        Get the first :ref:`api_guide_Block_en` of this Program.

        Returns: The first  :ref:`api_guide_Block_en`  of this Program.

        Return type: :ref:`api_guide_Block_en`
3903 3904 3905 3906 3907 3908 3909 3910 3911

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
3912

Y
yuyang18 已提交
3913
        """
Y
Yu Yang 已提交
3914 3915
        return self.blocks[0]

Q
Qiao Longfei 已提交
3916
    def block(self, index):
Y
yuyang18 已提交
3917
        """
3918
        **Notes: This API has no effect in Dygraph mode**
Y
yuyang18 已提交
3919

3920 3921 3922 3923 3924 3925 3926 3927
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

        Parameter:
            - **index** (int) - The index of  :ref:`api_guide_Block_en`  to get

        Returns: The :code:`index` block

        Return type:  :ref:`api_guide_Block_en`
3928 3929 3930 3931 3932 3933 3934 3935 3936

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3937
        """
Q
Qiao Longfei 已提交
3938 3939
        return self.blocks[index]

Y
Yu Yang 已提交
3940
    def current_block(self):
Y
yuyang18 已提交
3941
        """
3942 3943
        **Notes: This API has no effect in Dygraph mode**

Y
yuyang18 已提交
3944 3945
        Get the current block. The :code:`current` block is the block to append
        operators.
3946

3947 3948 3949 3950
        Returns: The :code:`index` block

        Return type: Block

3951 3952 3953 3954 3955 3956 3957 3958
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3959
        """
Y
Yu Yang 已提交
3960 3961
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3962
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3973
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3974 3975 3976
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3977 3978 3979 3980
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3981
    def _rollback(self):
Y
yuyang18 已提交
3982 3983 3984 3985 3986
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3987 3988
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3989
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4000 4001 4002
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4003
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4004

W
Wu Yi 已提交
4005
    def _copy_param_info_from(self, other):
4006
        """
4007
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4008

Y
yuyang18 已提交
4009 4010 4011
        Notes: This is a very low level API. Users should not invoke it
        directly.

4012 4013 4014 4015 4016 4017 4018
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4019
            raise TypeError("_copy_param_info_from should be invoked with "
4020 4021 4022
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4023
            raise ValueError("_copy_param_info_from should be invoked with two "
4024
                             "program, with represent the same topology")
W
Wu Yi 已提交
4025
        self.global_block()._copy_param_info_from(other.global_block())
4026

4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4042
        self._parameters_on_pservers = other._parameters_on_pservers
4043
        self._endpoints = other._endpoints
4044
        self._ps_endpoint = other._ps_endpoint
4045 4046
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
4047
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
4048 4049
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4050

Y
yuyang18 已提交
4051 4052 4053
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4054 4055 4056 4057 4058 4059 4060
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4061
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
4062 4063 4064
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4065
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
4066
                             "program, with represent the same topology")
4067
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
4068 4069
            if var.is_data:
                self.global_block().var(var.name).is_data = True
H
Huihuang Zheng 已提交
4070 4071
            if var.desc.need_check_feed():
                self.global_block().var(var.name).desc.set_need_check_feed(True)
F
fengjiayi 已提交
4072

4073
    @dygraph_not_support
4074
    def list_vars(self):
Y
yuyang18 已提交
4075
        """
4076
        Get all :ref:`api_guide_Variable` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4077

4078 4079 4080
        Returns: The Generator will yield every variable in this program.

        Return type: iterable :ref:`api_guide_Variable_en`
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4092
        """
4093
        for each_block in self.blocks:
4094
            for each_var in list(each_block.vars.values()):
4095 4096
                yield each_var

Y
Yu Yang 已提交
4097

Y
Yu Yang 已提交
4098
class Parameter(Variable):
4099
    """
4100
    Parameter is derived from Variable. A parameter is a persistable
4101
    Variable, and will be updated by optimizers after each iteration.
4102
    The training of a neural network is essentially the updating of
4103 4104
    its parameters.

4105
    Relative to a general Variable, a Parameter has several its own
4106 4107
    member variables:

4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4120 4121
    """

Y
Yu Yang 已提交
4122
    def __init__(self, block, shape, dtype, **kwargs):
4123 4124 4125 4126 4127
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4128
        if len(shape) == 0:
4129 4130
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4131 4132 4133

        for each in shape:
            if each < 0:
4134 4135 4136
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
4137 4138 4139

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
4140 4141 4142 4143
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4144 4145
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
4146
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
4147

W
wanghaoshuang 已提交
4148
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4149

4150 4151
        self.is_distributed = False

F
fengjiayi 已提交
4152 4153 4154
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4155 4156 4157
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4158

F
update  
fengjiayi 已提交
4159 4160 4161 4162 4163 4164 4165 4166
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4167 4168 4169 4170 4171 4172 4173 4174 4175
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4176 4177 4178 4179 4180 4181
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
4182
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
4183
            for attr_name in additional_attr:
4184 4185
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4186 4187
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4188 4189 4190 4191
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4192

Y
Yu Yang 已提交
4193
# program is a global instance.
Y
Yu Yang 已提交
4194 4195
_main_program_ = Program()
_startup_program_ = Program()
4196

4197

4198
def default_startup_program():
Y
Yu Yang 已提交
4199
    """
Y
yuyang18 已提交
4200 4201 4202 4203 4204 4205 4206 4207 4208
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
4209

4210 4211 4212
    Returns: current default startup program

    Returns type: Program
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4228
    """
Y
Yu Yang 已提交
4229
    return _startup_program_
4230

4231

4232
def default_main_program():
Y
Yu Yang 已提交
4233
    """
Y
yuyang18 已提交
4234 4235 4236 4237 4238 4239 4240 4241 4242
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
4243

Y
Yu Yang 已提交
4244 4245
    Returns:
        Program: main program
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
4274 4275
            print(fluid.default_main_program().num_blocks)
            print(fluid.default_main_program().blocks[0].var('image'))
Y
Yu Yang 已提交
4276
    """
Y
Yu Yang 已提交
4277
    return _main_program_
Y
Yu Yang 已提交
4278 4279 4280 4281 4282


def switch_main_program(program):
    """
    Switch the main program to a new program.
4283

Y
Yu Yang 已提交
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
4298
    Switch the startup program to a new program
Y
Yu Yang 已提交
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
4311
@signature_safe_contextmanager
Y
Yu Yang 已提交
4312 4313
def program_guard(main_program, startup_program=None):
    """
4314 4315
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
4316
    variables to the new main programs.
4317

Y
Yu Yang 已提交
4318
    Examples:
4319 4320 4321
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
4322

4323 4324 4325 4326 4327
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
4328 4329 4330

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
4331

Y
Yu Yang 已提交
4332
    Examples:
4333
       .. code-block:: python
Y
yuyang18 已提交
4334

4335 4336 4337 4338 4339 4340
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
4341

Y
Yu Yang 已提交
4342
    Args:
4343 4344 4345
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
4358 4359


W
Wu Yi 已提交
4360
def _get_var(name, program=None):
X
xuwei06 已提交
4361
    """
Y
yuyang18 已提交
4362
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
4363

X
xuwei06 已提交
4364 4365 4366
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
4367
        If None, default_global_program() will be used.
X
xuwei06 已提交
4368 4369 4370 4371 4372 4373 4374

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
4375
    assert isinstance(program, Program)
X
xuwei06 已提交
4376 4377

    return program.global_block().var(name)
4378 4379


S
rename  
sneaxiy 已提交
4380
@signature_safe_contextmanager
L
lujun 已提交
4381 4382 4383 4384
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
4385

4386
    yield
P
Paddle CI 已提交
4387

L
lujun 已提交
4388
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
4389 4390


S
rename  
sneaxiy 已提交
4391
@signature_safe_contextmanager
L
lujun 已提交
4392 4393 4394 4395
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
4396

4397
    yield
M
minqiyang 已提交
4398

L
lujun 已提交
4399
    _dygraph_current_expected_place_ = tmp_place
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
    Please note, the type of custom operators cann't have the same type
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()