framework.py 155.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
Y
Yu Yang 已提交
37

38
__all__ = [
39 40 41 42
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
43
    'name_scope',
S
sneaxiy 已提交
44 45 46
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
47
    'in_dygraph_mode',
C
chengduo 已提交
48
    'is_compiled_with_cuda',
49
    'Variable',
50
    'load_op_library',
51
]
Y
Yu Yang 已提交
52

Q
qiaolongfei 已提交
53 54 55 56
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
57 58
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
59 60
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
61 62


L
lujun 已提交
63
def in_dygraph_mode():
L
lujun 已提交
64
    """
65 66
    This function checks whether the program runs in dynamic graph mode or not.
    You can turn on dynamic graph mode with :ref:`api_fluid_dygraph_guard` api.
L
lujun 已提交
67 68

    Returns:
69
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
70 71 72 73

    Examples:
        .. code-block:: python

74
            import paddle.fluid as fluid
L
lujun 已提交
75
            if fluid.in_dygraph_mode():
76 77 78
                print('running in dygraph mode')
            else:
                print('not running in dygraph mode')
L
lujun 已提交
79 80

    """
L
lujun 已提交
81
    return _dygraph_tracer_ is not None
82 83


84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
106 107
def _dygraph_tracer():
    return _dygraph_tracer_
108

W
Wu Yi 已提交
109

M
minqiyang 已提交
110
def _current_expected_place():
L
lujun 已提交
111
    return _dygraph_current_expected_place_
M
minqiyang 已提交
112 113


S
sneaxiy 已提交
114
def _cpu_num():
115
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
116 117 118 119 120 121 122 123
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
124
        os.environ['CPU_NUM'] = str(1)
125
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
126 127 128 129 130 131 132 133 134 135
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
136 137


C
chengduo 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
153
def cuda_places(device_ids=None):
L
lujun 已提交
154
    """
155 156 157 158 159
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
160 161

    If :code:`device_ids` is None, environment variable of
162
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
163 164 165
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
166
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
167 168

    If :code:`device_ids` is not None, it should be the device
169
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
170 171 172
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
173 174
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
175 176

    Returns:
177
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
178 179 180 181

    Examples:
        .. code-block:: python

182
            import paddle.fluid as fluid
L
lujun 已提交
183 184 185
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
186 187 188
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
189
        device_ids = _cuda_ids()
S
sneaxiy 已提交
190 191 192 193 194 195
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
196
    """
197
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
198 199 200
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
201 202
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
203 204
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
205

206 207
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
208 209

    Returns:
210
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
211 212 213 214

    Examples:
        .. code-block:: python

215
            import paddle.fluid as fluid
L
lujun 已提交
216 217 218
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
219 220 221 222 223 224
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
225
    """
226
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
227 228 229

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
230 231 232 233
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
234

235 236
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
237 238

    Returns:
239
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
240 241 242 243

    Examples:
        .. code-block:: python

244
            import paddle.fluid as fluid
L
lujun 已提交
245 246 247 248 249
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
250 251 252 253 254 255 256
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
283
@signature_safe_contextmanager
284 285 286 287 288 289 290 291 292 293 294 295
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
296

297
          import paddle.fluid as fluid
298 299 300 301 302 303 304 305 306 307 308
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
309 310
    """
    # TODO(panyx0718): Only [0-9a-z].
311 312 313 314 315 316 317 318 319
    # in dygraph we don't need namescope since it will cause mem leak
    if not in_dygraph_mode():
        assert prefix, "namescope prefix cannot be empty."
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
    else:
        yield
320 321 322 323 324 325 326 327 328 329 330 331


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
332 333 334
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
335 336 337 338


def grad_var_name(var_name):
    """
339 340
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
341 342 343
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
344

345
def convert_np_dtype_to_dtype_(np_dtype):
346 347
    """
    Convert the data type in numpy to the data type in Paddle
348

349
    Args:
350
        np_dtype(np.dtype): the data type in numpy.
351

352 353
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
354 355

    """
356 357
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
358
        return core.VarDesc.VarType.FP32
359
    elif dtype == np.float64:
360
        return core.VarDesc.VarType.FP64
361
    elif dtype == np.float16:
362
        return core.VarDesc.VarType.FP16
363
    elif dtype == np.int32:
364
        return core.VarDesc.VarType.INT32
365
    elif dtype == np.int16:
366
        return core.VarDesc.VarType.INT16
367
    elif dtype == np.int64:
368
        return core.VarDesc.VarType.INT64
369
    elif dtype == np.bool:
370
        return core.VarDesc.VarType.BOOL
371 372
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
373 374
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
375 376
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
377
    else:
M
minqiyang 已提交
378
        raise ValueError("Not supported numpy dtype %s" % dtype)
379 380 381


def dtype_is_floating(dtype):
382 383 384
    """
    Check the data type is floating or not.
    Args:
385
        dtype(np.dtype|core.VarDesc.VarType): data type.
386 387 388 389 390
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
391
    if not isinstance(dtype, core.VarDesc.VarType):
392 393
        dtype = convert_np_dtype_to_dtype_(dtype)

394 395 396 397
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
398 399


Y
Yang Yang(Tony) 已提交
400
def _debug_string_(proto, throw_on_error=True):
401 402 403 404 405 406 407 408 409 410 411
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
412
    error_fields = list()
Y
Yang Yang(Tony) 已提交
413
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
414 415
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
416 417 418
    return proto.__str__()


X
Xin Pan 已提交
419
class Variable(object):
420
    """
421
    **Notes**:
422
        **The constructor of Variable should not be invoked directly.**
423

424 425
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

426 427 428
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
429
    cases, variables are used for holding different kinds of data or training
430 431
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
432

433
    There are many kinds of variables. Each kind of them has its own attributes
434
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
435

436
    Most of a Variable's member variables can be setted to be None. It mean
437
    it is not available or will be specified later.
438

439
    Examples:
440 441
        In Static Graph Mode:

442 443
        .. code-block:: python

444
            import paddle.fluid as fluid
445
            cur_program = fluid.Program()
446 447 448 449
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
450
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
451 452 453 454 455 456 457 458 459

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

460 461
    """

Y
Yu Yang 已提交
462 463
    def __init__(self,
                 block,
Y
Yu Yang 已提交
464
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
465 466 467 468
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
469
                 capacity=None,
Q
QI JUN 已提交
470
                 persistable=None,
F
fengjiayi 已提交
471
                 error_clip=None,
Y
Yu Yang 已提交
472
                 stop_gradient=False,
F
fengjiayi 已提交
473
                 is_data=False,
H
Huihuang Zheng 已提交
474
                 need_check_feed=False,
Y
Yu Yang 已提交
475
                 **kwargs):
Y
Yu Yang 已提交
476 477
        self.block = block
        if name is None:
Y
Yu Yang 已提交
478
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
479

Y
Yu Yang 已提交
480
        if dtype is not None:
481
            if not isinstance(dtype, core.VarDesc.VarType):
482
                dtype = convert_np_dtype_to_dtype_(dtype)
483

L
lujun 已提交
484
        if in_dygraph_mode():
M
minqiyang 已提交
485
            # record vars in tracer rather than blocks
M
minqiyang 已提交
486
            self._ivar = kwargs.get("ivar", None)
487
            self.stop_gradient_ = kwargs.get("stop_gradient", True)
M
minqiyang 已提交
488
            if not self._ivar:
489
                self._ivar = core.VarBase(
J
Jiabin Yang 已提交
490 491 492
                    name, type
                    if type else core.VarDesc.VarType.LOD_TENSOR, dtype
                    if dtype else core.VarDesc.VarType.FP32,
493
                    list(shape) if shape else [], True
X
fix  
Xin Pan 已提交
494
                    if persistable else False)
M
minqiyang 已提交
495
            if persistable:
L
lujun 已提交
496
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
497
            self.op = None
M
minqiyang 已提交
498
        else:
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

H
Huihuang Zheng 已提交
563 564 565
            if need_check_feed and is_new_var:
                self.desc.set_need_check_feed(need_check_feed)

566 567 568 569 570 571 572 573
            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
574
            self.block.vars[name] = self
575
            self.op = None
576
            self._stop_gradient = stop_gradient
577
            self.is_data = is_data
Y
Yu Yang 已提交
578

579
    @dygraph_only
580 581
    def detach(self):
        """
582 583
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
584

585
        Returns a new Variable, detached from the current graph.
586

587
        Returns:
588
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
589

590

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    y = x.detach()

        """
        if in_dygraph_mode():
            new_var = self._cloneVar()
            self.block.append_op(
                type="assign",
                inputs={'X': [self]},
                outputs={'Out': [new_var]},
                stop_gradient=True)
            return new_var
        else:
            raise AttributeError("static graph model DO NOT supprt detach")

618
    @dygraph_only
619
    def numpy(self):
620
        """
621 622
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
623

624
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
625 626 627 628 629

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
630
            ndarray: dtype is same as current Variable
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    print(x.numpy())

        """

        if not self._ivar.value().get_tensor()._is_initialized():
            raise ValueError("%s is Empty, Please check if it has no data in" %
                             self.name)
M
minqiyang 已提交
652
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
653
        return np.array(new_ivar.value().get_tensor())
654

655 656 657
    @dygraph_only
    def set_value(self, value):
        """
658 659 660
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.ones([3, 32, 32], dtype='float32')
                with fluid.dygraph.guard():
                    fc = fluid.dygraph.FC("fc", 4)
                    t = to_variable(data)
                    fc(t)  # call with default weight
                    custom_weight = np.random.randn(1024, 4).astype("float32")
                    fc.weight.set_value(custom_weight)  # change existing weight
                    out = fc(t)  # call with different weight

        """
        assert isinstance(value, (Variable, np.ndarray))
        if list(value.shape) != list(self.shape):
            raise ValueError(
                "The shape of the new value must be the same as that of the original Variable."
            )
        self_tensor = self._ivar.value().get_tensor()
        if isinstance(value, Variable):
            value = value._ivar.value().get_tensor().__array__()
        self_tensor.set(value, _current_expected_place())

694
    @dygraph_only
695
    def backward(self, backward_strategy=None):
696
        """
697 698
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
699 700 701

        Run backward of current Graph which starts from current Variable

702 703
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
704

705 706
        Returns:
            NoneType: None
707 708 709 710 711 712 713 714 715 716 717 718

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
719 720
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
721 722 723 724 725 726 727 728 729
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
J
Jiabin Yang 已提交
730 731 732 733 734
        if in_dygraph_mode():
            from .dygraph import BackwardStrategy
            if backward_strategy is None:
                backward_strategy = BackwardStrategy()
                backward_strategy.sort_sum_gradient = False
735

J
Jiabin Yang 已提交
736 737 738 739
            self._ivar._run_backward(backward_strategy, _dygraph_tracer())
        else:
            raise ValueError(
                "Variable.backward() is only avaliable in DyGraph mode")
740

741
    @dygraph_only
742
    def gradient(self):
743
        """
744 745
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
746 747 748

        Get the Gradient of Current Variable

749 750
        Returns:
            ndarray: Numpy value of the gradient of current Variable
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

        """
        if self._ivar._grad_ivar() is None:
            raise ValueError("%s has no grad, Please set Variable.stop_gradient=False, or " \
                             "check if this is the first and only variable need grad, if so, please set its pre-Variable's " \
                             "stop_gradient=False, to make sure it has gradient " % self.name)
        if not self._ivar._grad_ivar().value().get_tensor()._is_initialized():
            raise ValueError(
                "%s's Grad is Empty, Please check if it has no data in" %
                self.name)
781 782
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
783

784
    @dygraph_only
785
    def clear_gradient(self):
786
        """
787 788 789 790
        **Notes**:
            **1. This API is ONLY avaliable in Dygraph mode**

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
791

792
        Clear  (set to ``0`` ) the Gradient of Current Variable
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
X
Xin Pan 已提交
819
        self._ivar._clear_gradient()
X
Xin Pan 已提交
820

821
    def __str__(self):
Y
Yang Yang(Tony) 已提交
822 823
        return self.to_string(True)

F
update  
fengjiayi 已提交
824
    def to_string(self, throw_on_error, with_details=False):
825 826 827
        """
        Get debug string.

828 829 830 831 832
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
833

834 835
        Returns:
            str: The debug string.
836 837 838 839 840

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
841

842 843 844 845 846
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
847
                print(new_variable.to_string(True))
848
                print("=============with detail===============")
849
                print(new_variable.to_string(True, True))
850
        """
L
lujun 已提交
851
        if in_dygraph_mode():
L
lujun 已提交
852
            # TODO(panyx0718): add more dygraph debug info.
J
Jiabin Yang 已提交
853 854 855 856 857 858 859
            tensor = self._ivar.value().get_tensor()
            if tensor._is_initialized():
                return 'name %s, dtype: %s shape: %s %s' % (
                    self.name, self.dtype, self.shape, str(tensor))
            else:
                return 'name %s, shape: %s, not inited' % (self.name,
                                                           self.shape)
860

F
update  
fengjiayi 已提交
861 862
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
863
        protostr = self.desc.serialize_to_string()
864
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
865 866 867 868
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
869 870 871
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
872
        return res_str
873 874 875

    __repr__ = __str__

876
    @property
877
    def stop_gradient(self):
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
                fc = fluid.FC("fc1", size=5, dtype="float32")
                fc2 = fluid.FC("fc2", size=3, dtype="float32")
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
                out1 = fc(a)
                out2 = fc2(b)
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

                assert (fc._w.gradient() == 0).all()
                assert (out1.gradient() == 0).all()
        """
L
lujun 已提交
907
        if in_dygraph_mode():
M
minqiyang 已提交
908 909
            return self._ivar.stop_gradient
        else:
910
            return self._stop_gradient
911

912 913
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
914
        if in_dygraph_mode():
M
minqiyang 已提交
915
            self._ivar.stop_gradient = s
916
        else:
917
            self._stop_gradient = s
918

919 920
    @property
    def persistable(self):
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
L
lujun 已提交
942
        if in_dygraph_mode():
943 944 945
            return self._ivar.persistable
        else:
            return self.desc.persistable()
946

Y
Yu Yang 已提交
947 948
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
949
        if in_dygraph_mode():
950 951 952
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
953 954
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
955

Y
Yu Yang 已提交
956 957
    @property
    def name(self):
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
L
lujun 已提交
974
        if in_dygraph_mode():
975 976 977
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
978

T
typhoonzero 已提交
979 980
    @name.setter
    def name(self, new_name):
L
lujun 已提交
981
        if in_dygraph_mode():
982 983 984
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
985

Y
Yu Yang 已提交
986 987
    @property
    def shape(self):
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1005
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
1006
        if in_dygraph_mode():
1007 1008 1009
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
1010 1011

    @property
F
fengjiayi 已提交
1012
    def dtype(self):
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
L
lujun 已提交
1029
        if in_dygraph_mode():
1030 1031 1032
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
1033 1034

    @property
1035
    @dygraph_not_support
Y
Yu Yang 已提交
1036
    def lod_level(self):
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
L
lujun 已提交
1058
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
1059 1060
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
1061
        return self.desc.lod_level()
Y
Yu Yang 已提交
1062

Y
Yu Yang 已提交
1063 1064
    @property
    def type(self):
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
L
lujun 已提交
1081
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1082
            return self._ivar.type
1083 1084
        else:
            return self.desc.type()
Y
Yu Yang 已提交
1085

W
Wu Yi 已提交
1086
    def _set_error_clip(self, error_clip):
1087 1088 1089 1090 1091 1092 1093 1094 1095
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1096 1097
        self.error_clip = error_clip

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1185
    def _cloneVar(self, copy=False):
1186 1187
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1188 1189
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1190 1191 1192 1193
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1194
        new_var = self._cloneVar()
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1205
        new_var = self._cloneVar()
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1216
                return self._cloneVar(True)
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1235
                return self._cloneVar(True)
1236
            index = int(item)
1237
            if (index > 0 and index >= self.shape[axis]) \
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
        reverse_axis = []

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
        def fill_constant(shape, dtype, value, force_cpu=False, out=None):
            self.block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [out]},
                attrs={
                    'shape': shape,
                    'dtype': out.dtype,
                    'value': float(value),
                    'force_cpu': force_cpu or force_init_on_cpu()
                },
                stop_gradient=True)
            out.stop_gradient = True
            return out

H
Hongyu Liu 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step if slice_item.step else 1

                assert (step == 1 or step == -1)

                if step == -1:
                    reverse_axis.append(dim)
                    assert (start is None and end is None)

                if start is None and end is None:
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
1303
            else:
H
Hongyu Liu 已提交
1304 1305 1306
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
                if isinstance(slice_item, Variable):
                    temp_1 = self.block.create_var(dtype='int32')
                    fill_constant([1], 'int32', 1, force_cpu=True, out=temp_1)
                    temp_end = self.block.create_var(dtype='int32')
                    self.block.append_op(
                        type='elementwise_add',
                        inputs={'X': slice_item,
                                'Y': temp_1},
                        outputs={'Out': temp_end},
                        attrs={'axis': -1})
                    slice_end.append(temp_end)
                else:
                    slice_end.append(slice_item + 1
                                     if slice_item != -1 else 10000000)

        def contain_var(one_list):
            for ele in one_list:
                if isinstance(ele, Variable):
                    return True
            return False

        def get_new_list_tensor(old_list):
            new_list_tensor = []
            for dim in old_list:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_list_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = self.block.create_var(dtype='int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_list_tensor.append(temp_out)
            return new_list_tensor

        inputs = {'Input': [self]}
        attrs = {
            'axes': slice_axis,
            'starts': [],
            'ends': [],
            'decrease_axis': decrease_axis
        }
        infer_flags = list(1 for i in range(len(slice_axis)))

        # starts
        if not contain_var(slice_start):
            attrs['starts'] = slice_start
        else:
            inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
            for i, dim in enumerate(slice_start):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        # ends
        if not contain_var(slice_end):
            attrs['ends'] = slice_end
        else:
            inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
            for i, dim in enumerate(slice_end):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        # infer_flags
        attrs['infer_flags'] = infer_flags
H
Hongyu Liu 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385

        out = self
        if len(slice_axis) > 0:
            # append slice_op here
            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
1386
                inputs=inputs,
H
Hongyu Liu 已提交
1387
                outputs={'Out': [slice_out_var]},
1388
                attrs=attrs)
H
Hongyu Liu 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

            out = slice_out_var

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
1406

Y
Yu Yang 已提交
1407

F
fengjiayi 已提交
1408 1409 1410
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1411

1412 1413
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1414 1415 1416 1417
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1418
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1419 1420 1421 1422 1423
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1424 1425 1426 1427
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1437
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1438 1439 1440 1441 1442 1443
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1444 1445 1446 1447 1448 1449 1450 1451
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1452 1453
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1454 1455
        return self.op_proto_map[type]

1456 1457 1458 1459 1460 1461
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1462 1463 1464 1465
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1466
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1467 1468
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
1469 1470
        }

F
fengjiayi 已提交
1471

X
Xin Pan 已提交
1472
class Operator(object):
1473
    """
1474 1475 1476 1477 1478 1479 1480
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1481
        type(str): The type of operator. Default None.
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1502
        Block.append_op or Block._prepend_op instead.
1503 1504 1505 1506

    Examples:
        .. code-block:: python

1507
            import paddle.fluid as fluid
1508
            cur_program = fluid.Program()
1509 1510 1511 1512 1513
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1514
    """
1515
    OP_WITHOUT_KERNEL_SET = {
1516 1517
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1518 1519
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1520
        'c_sync_comm_stream'
1521
    }
1522

Y
Yu Yang 已提交
1523 1524
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1525
                 desc,
Y
Yu Yang 已提交
1526 1527 1528
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1529
                 attrs=None):
L
lujun 已提交
1530
        if in_dygraph_mode():
1531 1532
            if type is None:
                raise ValueError(
1533
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1534
            self._type = type
M
minqiyang 已提交
1535
            self.attrs = attrs if attrs else {}
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1550
                )] = self.block.program._op_role
1551 1552 1553

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1554 1555
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1556 1557 1558 1559 1560 1561 1562 1563

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1564
                    "`type` to initialized an Operator can not be None.")
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1596
                        for index, arg in enumerate(in_args):
1597 1598 1599 1600
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1601
                            elif isinstance(arg, Variable):
1602
                                in_arg_names.append(cpt.to_text(arg.name))
1603 1604 1605 1606
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1633
                        if not in_dygraph_mode():
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1653
    def _has_kernel(self, op_type):
1654 1655
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1656
    def to_string(self, throw_on_error):
1657
        """
1658 1659
        Get debug string.

1660
        Args:
1661 1662
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1663

1664 1665
        Returns:
            str: The debug string.
1666 1667

        """
1668
        protostr = self.desc.serialize_to_string()
1669
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1670 1671 1672 1673
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1674 1675 1676

    __repr__ = __str__

F
fengjiayi 已提交
1677 1678
    @property
    def type(self):
L
lujun 已提交
1679
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1680
            return self._type
1681 1682
        else:
            return self.desc.type()
F
fengjiayi 已提交
1683 1684

    def input(self, name):
1685
        """
1686
        Get the input arguments according to the input parameter name.
1687

1688 1689
        Args:
            name(str): The input parameter name.
1690

1691 1692 1693
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1694
        """
F
fengjiayi 已提交
1695 1696
        return self.desc.input(name)

W
Wu Yi 已提交
1697
    def _rename_input(self, old_name, new_name):
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1708
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1709

W
Wu Yi 已提交
1710
    def _rename_output(self, old_name, new_name):
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1721
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1722

F
fengjiayi 已提交
1723 1724 1725 1726
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1727 1728 1729 1730 1731 1732 1733 1734
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1735
    def output(self, name):
1736
        """
1737
        Get output arguments by the output parameter name.
1738

1739 1740
        Args:
            name(str): The output parameter name.
1741

1742 1743 1744
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1745
        """
F
fengjiayi 已提交
1746 1747 1748 1749 1750 1751
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1752 1753 1754 1755 1756 1757 1758 1759
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1760
    def has_attr(self, name):
1761
        """
1762 1763
        Whether this Operator has the attribute with name or not.

1764
        Args:
1765
            name(str): the attribute name.
1766

1767 1768
        Returns:
            bool: True if has this attribute.
1769 1770

        """
F
fengjiayi 已提交
1771 1772 1773
        return self.desc.has_attr(name)

    def attr_type(self, name):
1774
        """
1775
        Get the type of attribute by attribute's name.
1776

1777 1778
        Args:
            name(str): the attribute name.
1779

1780 1781
        Returns:
            core.AttrType: the attribute type.
1782
        """
F
fengjiayi 已提交
1783 1784
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1785
    def _set_attr(self, name, val):
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1796 1797
        self._update_desc_attr(name, val)

1798 1799 1800
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1812 1813
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1814 1815
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1816
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1817 1818 1819 1820
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1821
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1822

F
fengjiayi 已提交
1823 1824 1825 1826 1827
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1828
        """
1829 1830
        Get the attribute by name.

1831
        Args:
1832
            name(str): the attribute name.
1833

1834 1835
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1836 1837
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1838
        return self.desc.attr(name)
Y
Yu Yang 已提交
1839

W
Wu Yi 已提交
1840
    def _block_attr_id(self, name):
1841
        """
G
gongweibao 已提交
1842
        Get the block attribute's id by name.
1843

1844 1845
        Args:
            name(str): the attribute name.
1846

1847 1848
        Returns:
            int: the block index.
1849
        """
W
Wu Yi 已提交
1850
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1851

W
Wu Yi 已提交
1852
    def _block_attr(self, name):
G
gongweibao 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1863
        id = self._block_attr_id(name)
G
gongweibao 已提交
1864 1865 1866
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1867
    def _blocks_attr(self, name):
G
gongweibao 已提交
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1878
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1879 1880 1881 1882 1883
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1884
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1895
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1896

J
JiayiFeng 已提交
1897
    def all_attrs(self):
F
fengjiayi 已提交
1898
        """
1899 1900 1901
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1902
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1903 1904 1905 1906
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1907 1908
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1909
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1910 1911 1912
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1913
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1914 1915 1916 1917
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1918 1919
        return attr_map

Y
Yu Yang 已提交
1920

Y
Yu Yang 已提交
1921
class Block(object):
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1936
        use `Program._create_block()` to create a block.
1937 1938 1939 1940

    Examples:
        .. code-block:: python

1941 1942 1943
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1944 1945 1946 1947 1948 1949 1950 1951 1952
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1953
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1954
        self.desc = program.desc.block(idx)
1955
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1956
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1957
        self.program = program
1958
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1959

1960
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1961 1962
        return self.to_string(True)

F
fengjiayi 已提交
1963 1964
    def to_string(self, throw_on_error, with_details=False):
        """
1965 1966
        Get debug string.

F
fengjiayi 已提交
1967 1968
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1969
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1970
            with_details(bool): more details about variables and parameters
1971 1972
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1973

1974 1975
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1976 1977 1978 1979
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1980
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1981 1982
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1983
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1984
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1985
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1986
            for op in self.ops:
F
fengjiayi 已提交
1987 1988
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1989 1990 1991
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1992 1993
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1994 1995
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1996 1997 1998

    __repr__ = __str__

Y
Yu Yang 已提交
1999 2000
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2001
        return self.desc.parent
Y
Yu Yang 已提交
2002

Y
Yu Yang 已提交
2003 2004 2005 2006
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2007
    def _set_forward_block_idx(self, idx):
2008 2009 2010 2011 2012 2013 2014 2015 2016
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2017
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2018

Y
Yu Yang 已提交
2019 2020
    @property
    def idx(self):
Y
Yu Yang 已提交
2021
        return self.desc.id
Y
Yu Yang 已提交
2022

Q
Qiao Longfei 已提交
2023
    def var(self, name):
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2037
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2038 2039 2040
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2041 2042
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2043
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2044
        return v
Q
Qiao Longfei 已提交
2045

X
Xin Pan 已提交
2046
    def _find_var_recursive(self, name):
2047 2048 2049 2050 2051 2052 2053
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2054
            Variable: the Variable with the giving name. Or None if not found.
2055
        """
Y
Yu Yang 已提交
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2080
        return None
Y
Yu Yang 已提交
2081

X
Xin Pan 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2101

Q
Qiao Longfei 已提交
2102
    def all_parameters(self):
2103
        return list(self.iter_parameters())
2104

2105
    def iter_parameters(self):
M
minqiyang 已提交
2106
        return (item[1] for item in six.iteritems(self.vars)
2107
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2108

Y
Yu Yang 已提交
2109
    def create_var(self, *args, **kwargs):
2110
        var = Variable(block=self, *args, **kwargs)
2111 2112
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2113
        return var
Y
Yu Yang 已提交
2114

Q
Qiao Longfei 已提交
2115 2116 2117
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2118
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2119 2120
        """
        Rename variable in vars and ops' inputs and outputs
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2133
        """
M
minqiyang 已提交
2134 2135
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2136

T
typhoonzero 已提交
2137
        if not self.has_var(name):
2138
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2139 2140
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2141
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2142 2143 2144 2145 2146 2147 2148
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2149
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2150 2151 2152 2153
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2154
        orig_var_type = v.type
M
minqiyang 已提交
2155
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2156
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2157
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2158
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
2159 2160 2161 2162
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
2163
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2164 2165 2166 2167 2168 2169 2170
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
2171
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2172 2173
            var = Variable(
                self,
T
typhoonzero 已提交
2174
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2175 2176 2177 2178
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2179
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2180 2181 2182
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2183
        self._sync_with_cpp()
2184
        return var
T
typhoonzero 已提交
2185

W
Wu Yi 已提交
2186 2187
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2188
        self.desc._remove_var(cpt.to_bytes(name))
2189 2190
        del self.vars[name]

Y
Yu Yang 已提交
2191 2192
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
2193
        param = Parameter(global_block, *args, **kwargs)
2194
        if 'initializer' in kwargs:
2195 2196 2197 2198 2199

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2200 2201 2202 2203 2204
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
2220
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2221
        return param
Y
Yu Yang 已提交
2222

Y
Yu Yang 已提交
2223
    def append_op(self, *args, **kwargs):
2224 2225 2226 2227 2228 2229
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2230
        if in_dygraph_mode():
2231 2232 2233
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
2234 2235 2236 2237 2238
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
2239

J
Jiabin Yang 已提交
2240 2241
            type = kwargs.get("type", None)

2242 2243 2244
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2245
                type=type,
M
minqiyang 已提交
2246 2247
                inputs=None,
                outputs=None,
2248
                attrs=attrs)
2249

M
minqiyang 已提交
2250 2251 2252
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2253
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2254 2255

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2256
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2257 2258
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2259
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2260
        else:
2261 2262 2263 2264 2265 2266 2267 2268 2269
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2270
            self.ops.append(op)
M
minqiyang 已提交
2271

2272 2273
        return op

W
Wu Yi 已提交
2274
    def _insert_op(self, index, *args, **kwargs):
2275 2276 2277 2278 2279 2280 2281 2282 2283
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2284 2285
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2286 2287 2288 2289
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2290
    def _remove_op(self, index):
2291 2292 2293 2294 2295 2296 2297 2298 2299
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2300 2301
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2302 2303
        del self.ops[index]

W
Wu Yi 已提交
2304
    def _slice_ops(self, start, end):
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2315
        return self.ops[start:end]
Y
Yancey1989 已提交
2316

W
Wu Yi 已提交
2317
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2318
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2319 2320
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2321
            op = Operator(
J
Jiabin Yang 已提交
2322
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2323

J
Jiabin Yang 已提交
2324
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2325
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2326 2327
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2328
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2329
        else:
2330 2331 2332 2333 2334 2335 2336 2337
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2338
            self.ops.insert(0, op)
2339

Y
Yu Yang 已提交
2340 2341
        return op

W
Wu Yi 已提交
2342
    def _sync_with_cpp(self):
2343
        """
2344 2345
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2346
        """
Q
Qiao Longfei 已提交
2347 2348 2349 2350 2351
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2352
        # sync variables removed from c++ end
2353
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2354
            if not self.desc.find_var(cpt.to_bytes(var)):
2355 2356
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2357
        # sync operators from cpp
2358 2359 2360 2361
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2378 2379 2380 2381 2382

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2383
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2384 2385 2386 2387 2388 2389 2390

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2404 2405 2406 2407
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2408
    def _copy_param_info_from(self, other):
2409
        """
2410 2411
        Copy the information of parameters from the other block.

2412
        Args:
2413 2414 2415 2416 2417
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2418 2419 2420 2421 2422

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2423 2424
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2425
        for p in other.iter_parameters():
2426 2427 2428
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
2429
                raise ValueError("_copy_param_info_from should be invoked with "
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
2442
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
2443
                error_clip=p.error_clip,
2444 2445 2446
                name=v.name)
            self.vars[new_p.name] = new_p

2447
    def _clone_variable(self, var, force_persistable=True):
2448 2449
        """
        Clone a variable into current block.
2450

2451 2452
        Args:
            var: the variable to be cloned.
2453 2454 2455
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2456 2457

        Returns:
2458
            Variable: the new  variable cloned from 'var' in current block.
2459 2460
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2461 2462 2463 2464 2465
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2466 2467
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2468
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2469 2470 2471 2472 2473 2474
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2475
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2476 2477
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2478 2479 2480 2481 2482 2483 2484
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2485
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2486 2487
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2488
        return ret_var
2489

Y
Yu Yang 已提交
2490

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2586
    def remove_input_by_id(self, node_id):
2587 2588 2589 2590 2591 2592
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2593
        self.node.remove_input(node_id)
2594

2595
    def remove_input(self, node):
2596 2597 2598 2599
        """
        Remove a node from inputs.

        Args:
2600
            node(IrNode): the node being removed.
2601
        """
2602
        self.node.remove_input(node.node)
2603

2604
    def append_input(self, node):
2605 2606 2607 2608
        """
        Append a node in inputs.

        Args:
2609
            node(IrNode): the node being appended.
2610
        """
2611
        self.node.append_input(node.node)
2612 2613 2614 2615 2616 2617 2618 2619

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2620
    def remove_output_by_id(self, node_id):
2621 2622 2623 2624 2625 2626
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2627
        self.node.remove_output(node_id)
2628

2629
    def remove_output(self, node):
2630 2631 2632 2633
        """
        Remove a node from outputs.

        Args:
2634
            node(IrNode): the node being removed.
2635
        """
2636
        self.node.remove_output(node.node)
2637

2638
    def append_output(self, node):
2639 2640 2641 2642
        """
        Append a node in outputs.

        Args:
2643
            node(IrNode): the node being appended.
2644
        """
2645
        self.node.append_output(node.node)
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
2863
                all(isinstance(v, Block) for v in val):
2864 2865
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
2866
                isinstance(val, core.ProgramDesc):
2867 2868 2869 2870
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2914 2915
class IrGraph(object):
    """
2916
    Python IrGraph. Beneath it is a core.Graph, which is used for
2917
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2918 2919
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2920 2921 2922 2923
    """

    def __init__(self, graph, for_test=False):
        """
2924 2925
        Construct an IrGraph using core.Graph.

2926 2927 2928 2929 2930 2931 2932 2933 2934
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2935 2936 2937 2938
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2939 2940 2941
        Warns:
            The method only clones the graph structure, not its attributes.

2942 2943 2944
        Returns:
            IrGraph: A new and duplicated graph.
        """
2945
        g = self.graph.clone()
2946 2947
        return IrGraph(g, self._for_test)

2948
    def is_test(self):
2949 2950 2951
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2952 2953
        return self._for_test

W
WangZhen 已提交
2954
    def all_nodes(self):
2955 2956 2957
        """
        Return all nodes included in the graph as a set.
        """
2958
        return {IrNode(node) for node in self.graph.nodes()}
2959

2960
    def all_var_nodes(self):
2961 2962 2963
        """
        Return all variable nodes included in the graph as a set.
        """
2964
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2965

2966
    def all_persistable_nodes(self):
2967 2968 2969
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2970 2971 2972 2973 2974
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2975
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2976

2977
    def all_op_nodes(self):
2978 2979 2980
        """
        Return all operator nodes included in the graph as a set.
        """
2981
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2982

2983
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2995
            IrVarNode: the created persistable variable node.
2996
        """
2997 2998 2999 3000 3001
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3002
        return IrVarNode(self.graph.create_var_node(var_desc))
3003 3004

    def create_var_node(self, name, var_type, shape, var_dtype):
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3016
            IrVarNode: the created variable node.
3017 3018
        """

3019 3020 3021 3022
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3023
        return IrVarNode(self.graph.create_var_node(var_desc))
3024 3025

    def create_var_node_from_desc(self, var_desc):
3026 3027 3028 3029 3030 3031 3032 3033
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3034
            IrVarNode: the created variable node.
3035
        """
3036
        return IrVarNode(self.graph.create_var_node(var_desc))
3037 3038

    def create_op_node(self, op_type, attrs, inputs, outputs):
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
3049
            IrOpNode: the created operator node.
3050
        """
3051 3052
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3053
        for attr, value in six.iteritems(attrs):
3054
            self._update_desc_attr(op_desc, attr, value)
3055
        for input_name, var_nodes in six.iteritems(inputs):
3056 3057 3058 3059
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3060
        for output_name, var_nodes in six.iteritems(outputs):
3061 3062 3063 3064
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3065
        return IrOpNode(self.graph.create_op_node(op_desc))
3066 3067

    def create_op_node_from_desc(self, op_desc):
3068 3069 3070 3071 3072 3073 3074
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3075
            IrOpNode: the created operator node.
3076
        """
3077
        return IrOpNode(self.graph.create_op_node(op_desc))
3078 3079

    def update_input_link(self, old_input_node, new_input_node, op_node):
3080 3081 3082 3083
        """
        Update the input's link of a operator node.

        Args:
3084 3085 3086
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3087
        """
3088
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3089 3090
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3091 3092 3093 3094
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3095
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3096

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
        'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3115
    def link_to(self, node_in, node_out):
3116 3117 3118 3119
        """
        Connect two nodes.

        Args:
3120 3121
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3122
        """
3123
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3124
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3125 3126
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3127 3128

    def safe_remove_nodes(self, remove_nodes):
3129 3130 3131 3132 3133 3134 3135
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3136
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3137 3138 3139 3140
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3141 3142
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3143

Z
Zhen Wang 已提交
3144 3145 3146 3147 3148 3149 3150 3151
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3152
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3153 3154 3155 3156
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3157
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3158 3159 3160
                        ]
                    else:
                        var_nodes[each_var_name].append(
3161 3162
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3163 3164
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3165
    def has_circle(self):
3166 3167 3168 3169 3170 3171
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3172 3173 3174
        return core.has_circle(self.graph)

    def graph_num(self):
3175 3176 3177 3178 3179 3180
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3181 3182 3183
        return core.graph_num(self.graph)

    def topology_sort(self):
3184 3185 3186 3187 3188 3189
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
3190
            list(IrNode): nodes in topology order.
3191
        """
3192
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3193
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3194 3195

    def build_adjacency_list(self):
3196 3197 3198 3199
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3200
            dict{IrNode: set(IrNode)}: the adjacency list.
3201
        """
3202 3203 3204 3205 3206
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3207

3208 3209 3210 3211 3212 3213 3214 3215
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3216
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3217 3218 3219 3220 3221
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3222 3223 3224
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3225
                                          + ' -o ' + pdf_save_path, shell=True)
3226 3227 3228 3229 3230
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3231
        remove_ctr_vars = set()
3232
        if remove_ctr_var:
3233
            for node in self.all_var_nodes():
3234 3235 3236
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3237 3238
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3239 3240
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3241 3242 3243 3244 3245 3246
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3247 3248 3249 3250
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3251 3252
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3253 3254 3255 3256 3257 3258 3259
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3260 3261 3262
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3263
        WARN: When the graph includes backward operator nodes, the
3264 3265 3266 3267 3268 3269
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3270
        convert_pass = core.get_pass('graph_to_program_pass')
3271 3272
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3273 3274 3275 3276
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3304
class Program(object):
D
dzhwinter 已提交
3305
    """
3306 3307
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3308
    it will contain nested block.
3309

3310 3311 3312
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3313

J
Jiabin Yang 已提交
3314
    A set of Program usually contains startup program and main program.
3315
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3316 3317 3318 3319 3320 3321 3322
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

3323 3324 3325 3326
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3327 3328

    Returns:
3329
        Program: An empty Program.
D
dzhwinter 已提交
3330 3331

    Examples:
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3345 3346 3347

    """

3348 3349
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3350 3351
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
3352
        self._seed = 0
Y
yuyang18 已提交
3353
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3354
        self.__op_role_var = []
T
tangwei12 已提交
3355

3356 3357
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3358
        self._is_distributed = False
3359
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3360
        self._is_chief = False
3361 3362 3363
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3364
        self._endpoints = []
3365 3366 3367
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3368
        self._trainers_endpoints = []
3369
        # the distributed lookup table names
T
tangwei12 已提交
3370
        self._distributed_lookup_table = None
3371 3372 3373

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3374 3375
        self._use_lamb = False

3376 3377 3378
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3379

3380 3381 3382
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3383
        self._program_config = None
3384

H
hutuxian 已提交
3385 3386 3387
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3388 3389 3390
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
3391
    @property
3392
    def _op_role(self):
Y
yuyang18 已提交
3393 3394 3395 3396 3397 3398 3399 3400
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3401
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3402 3403 3404 3405
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3406 3407
        return self._current_role

3408 3409
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3410 3411 3412
        self._current_role = role

    @property
3413
    def _op_role_var(self):
Y
yuyang18 已提交
3414
        """
3415
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3416

3417
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3418 3419 3420

        Notes: This is a very low-level API. Users should not use it directly.
        """
3421
        return self.__op_role_var
Y
yuyang18 已提交
3422

3423 3424 3425 3426 3427 3428 3429 3430 3431
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3432
    @signature_safe_contextmanager
W
Wu Yi 已提交
3433
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3434 3435 3436 3437 3438 3439 3440
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3441
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3442 3443 3444

        Examples:

3445
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3446
            >>> p, g = backward(...)
W
Wu Yi 已提交
3447
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3448 3449
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3450
        tmp_role = self._current_role
3451
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3452

Y
yuyang18 已提交
3453 3454
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3455
        self.__op_role_var = [
3456 3457 3458
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3459
        yield
3460
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3461
        self._current_role = tmp_role
Y
Yu Yang 已提交
3462

S
rename  
sneaxiy 已提交
3463
    @signature_safe_contextmanager
X
Xin Pan 已提交
3464
    def _lr_schedule_guard(self, is_with_opt=False):
3465 3466 3467 3468 3469 3470 3471
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3472 3473 3474 3475
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3476 3477 3478

        Examples:

3479
            >>> import paddle.fluid as fluid
3480 3481 3482 3483
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3484 3485

        tmp_role = self._current_role
3486
        tmp_var = self.__op_role_var
3487

3488 3489
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3490 3491
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3492
        # TODO(typhoonzero): how to set target learning rate var
3493
        self.__op_role_var = []
3494
        yield
3495
        self.__op_role_var = tmp_var
3496
        self._current_role = tmp_role
3497

3498
    def __str__(self):
Y
yuyang18 已提交
3499 3500 3501 3502 3503 3504 3505 3506 3507
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3508 3509
        return self.to_string(True)

F
fengjiayi 已提交
3510 3511 3512
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3513

3514 3515 3516
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
3517

3518
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
3519

H
haowang101779990 已提交
3520
        Returns:
3521
            str: The debug string describe current Program.
Y
yuyang18 已提交
3522 3523

        Raises:
3524
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
3525

3526 3527 3528 3529 3530 3531 3532
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
3533 3534 3535
                print("program string without detial: {}".format(prog_string))
                prog_string_with_detail = prog.to_string(throw_on_error=True, with_details=True)
                print("program string with detial: {}".format(prog_string_with_detail))
F
fengjiayi 已提交
3536 3537 3538 3539 3540 3541 3542 3543 3544
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3545 3546
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3547 3548
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3549

W
Wu Yi 已提交
3550
    def _get_desc(self):
Y
yuyang18 已提交
3551 3552 3553 3554 3555 3556 3557
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3558 3559
        return self.desc

X
version  
Xin Pan 已提交
3560 3561 3562
    def _version(self):
        return self.desc._version()

3563
    @dygraph_not_support
3564
    def clone(self, for_test=False):
Y
yuyang18 已提交
3565
        """
3566
        **Notes**:
3567 3568 3569 3570
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

3571
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3572

3573 3574
        Create a new Program with forward content of original one when ``for_test=True``.
        Create a new Program as the same as original one when ``for_test=False``
3575

3576

3577
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3578 3579 3580
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3581

Y
yuyang18 已提交
3582
        * Set for_test to False when we want to clone the program for training.
3583
        * Set for_test to True when we want to clone the program for testing.
3584 3585
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
3586
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
3587

3588 3589
        For Example:
            .. code-block:: python
L
Luo Tao 已提交
3590

3591 3592 3593 3594
                test_program = fluid.default_main_program().clone(for_test=True)
                # Here we use clone before Momentum
                optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize()
3595

3596
        Args:
3597

3598
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`.
3599

3600 3601
        Returns:
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as the same as original one when ``for_test=False``
3602

Y
yuyang18 已提交
3603 3604 3605

        Examples:

3606
        **Notes: The Program's order maybe different after** :code:`clone` **and
3607
        this will not affect your training or testing progress. In the following
3608
        example we give you an simple method** :code:`print_prog(program)` **to
3609
        print Program Descs inorder to make sure you have same print result
3610
        after** :code:`clone`:
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3648 3649 3650

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3662 3663 3664 3665 3666 3667 3668 3669 3670

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3718 3719
        """
        if for_test:
3720
            if self._appending_grad_times > 0:
3721 3722 3723 3724 3725 3726 3727
                forward_prog = Program()
                forward_prog.desc = core.prune_backward(self.desc)
                forward_prog.blocks = [
                    Block(forward_prog, i)
                    for i in six.moves.range(forward_prog.desc.num_blocks())
                ]
                forward_prog._sync_with_cpp()
3728 3729 3730
                p = forward_prog._inference_optimize(prune_read_op=False)
            else:
                p = self._inference_optimize(prune_read_op=False)
3731
        else:
3732
            p = Program()
G
gongweibao 已提交
3733 3734
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3735
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3736 3737 3738
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3739 3740

            p._current_role = self._current_role
3741
            p.__op_role_var = self.__op_role_var
3742
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3743

W
Wu Yi 已提交
3744
            p._sync_with_cpp()
3745

W
Wu Yi 已提交
3746
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3747
        p._copy_data_info_from(self)
3748
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3749
        return p
3750

3751
    def _prune(self, targets):
Y
yuyang18 已提交
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
3765 3766 3767 3768
        """

        if not isinstance(targets, list):
            targets = [targets]
Y
yuyang18 已提交
3769

3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
                    # and we need to find the current op that generate this
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

                    t = t.op
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
                else:
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, set(), targets_idx)
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()
        return res

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
3804
        """
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

3822 3823
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
3824 3825
        if not isinstance(targets, list):
            targets = [targets]
3826 3827 3828 3829 3830 3831

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

3832 3833 3834 3835
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3836 3837
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3838
                    # and we need to find the current op that generate this
3839 3840 3841 3842 3843 3844 3845 3846
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3847
                    t = t.op
3848 3849 3850 3851
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3852
                else:
3853 3854
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3855 3856 3857

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
3858
        res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
3859 3860 3861
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3862
        res._sync_with_cpp()
3863 3864
        return res

X
Xin Pan 已提交
3865
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3866
        """
F
fengjiayi 已提交
3867 3868 3869 3870 3871
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3872
        3. change the :code:`is_test`
Y
yuyang18 已提交
3873 3874 3875
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3876
        Args:
X
Xin Pan 已提交
3877 3878
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3879

Y
yuyang18 已提交
3880 3881 3882 3883 3884 3885
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3886
        res = Program()
3887
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3888 3889 3890 3891

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3892
        if prune_read_op:
3893 3894 3895 3896 3897 3898 3899 3900 3901
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3902
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3903 3904

        # change all `is_test` attributes to True
M
minqiyang 已提交
3905
        for i in six.moves.range(res.desc.num_blocks()):
3906
            block = res.desc.block(i)
M
minqiyang 已提交
3907
            for j in six.moves.range(block.op_size()):
3908 3909
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3910
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3911 3912 3913
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3914
        res._sync_with_cpp()
3915 3916
        return res

3917 3918
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3919
        """
3920 3921 3922 3923
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
3924

3925 3926
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
3927

3928
        Args:
Y
yuyang18 已提交
3929

3930
            binary_str_type (str): the binary prootbuf string.
3931

3932 3933
        Returns:
            Program: A deserialized Program.
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
3956
        """
3957 3958
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3959
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3960
        p._sync_with_cpp()
3961
        return p
Y
Yu Yang 已提交
3962

3963
    @staticmethod
3964
    def _construct_from_desc(desc):
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3980 3981
    @property
    def random_seed(self):
Y
yuyang18 已提交
3982
        """
3983
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
3984 3985
        the random seed from random device.

3986 3987 3988 3989
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
3990

3991 3992 3993 3994 3995 3996 3997 3998

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
3999 4000 4001
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)

                # Here we need to set random seed before we use fluid.layers.dropout
4002 4003
                print(random_seed)
                prog.random_seed = 1
4004 4005
                z_var = fluid.layers.dropout(x_var, 0.7)

4006
                print(prog.random_seed)
Y
yuyang18 已提交
4007
        """
D
dzhwinter 已提交
4008 4009
        return self._seed

Q
qiaolongfei 已提交
4010 4011
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4012
        """
4013 4014
        The number of :ref:`api_guide_Block_en`  in this Program.

4015 4016 4017 4018
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4019

4020 4021 4022 4023 4024 4025 4026 4027 4028

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4029 4030


Y
yuyang18 已提交
4031
        """
Q
qiaolongfei 已提交
4032 4033
        return self.desc.num_blocks()

D
dzhwinter 已提交
4034 4035 4036 4037 4038 4039
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
4040
    def __repr__(self):
4041
        return self.__str__()
4042

Y
Yu Yang 已提交
4043
    def global_block(self):
Y
yuyang18 已提交
4044
        """
4045 4046
        **Notes**:
            **This API has no effect in Dygraph mode**
4047 4048 4049

        Get the first :ref:`api_guide_Block_en` of this Program.

4050 4051
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4052

4053 4054 4055 4056 4057 4058 4059 4060 4061

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4062

Y
yuyang18 已提交
4063
        """
Y
Yu Yang 已提交
4064 4065
        return self.blocks[0]

Q
Qiao Longfei 已提交
4066
    def block(self, index):
Y
yuyang18 已提交
4067
        """
4068 4069
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4070

4071 4072
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

4073 4074
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4075

4076 4077
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4078 4079 4080 4081 4082 4083 4084 4085 4086

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4087
        """
Q
Qiao Longfei 已提交
4088 4089
        return self.blocks[index]

Y
Yu Yang 已提交
4090
    def current_block(self):
Y
yuyang18 已提交
4091
        """
4092 4093
        **Notes**:
            **This API has no effect in Dygraph mode**
4094

4095 4096
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4097

4098 4099
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4100

4101 4102 4103 4104 4105 4106 4107 4108
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4109
        """
Y
Yu Yang 已提交
4110 4111
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4112
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4113 4114 4115 4116 4117
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
4118

Y
yuyang18 已提交
4119 4120 4121 4122 4123
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4124
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4125 4126 4127
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4128 4129 4130 4131
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4132
    def _rollback(self):
Y
yuyang18 已提交
4133 4134 4135 4136 4137
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4138 4139
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4140
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4151 4152 4153
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4154
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4155

W
Wu Yi 已提交
4156
    def _copy_param_info_from(self, other):
4157
        """
4158
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4159

Y
yuyang18 已提交
4160 4161 4162
        Notes: This is a very low level API. Users should not invoke it
        directly.

4163 4164 4165 4166 4167 4168 4169
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4170
            raise TypeError("_copy_param_info_from should be invoked with "
4171 4172 4173
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4174
            raise ValueError("_copy_param_info_from should be invoked with two "
4175
                             "program, with represent the same topology")
W
Wu Yi 已提交
4176
        self.global_block()._copy_param_info_from(other.global_block())
4177

4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4193
        self._parameters_on_pservers = other._parameters_on_pservers
4194
        self._endpoints = other._endpoints
4195
        self._ps_endpoint = other._ps_endpoint
4196 4197
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
4198
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
4199 4200
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4201

Y
yuyang18 已提交
4202 4203 4204
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4205 4206 4207 4208 4209 4210 4211
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4212
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
4213 4214 4215
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4216
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
4217
                             "program, with represent the same topology")
4218
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
4219 4220
            if var.is_data:
                self.global_block().var(var.name).is_data = True
H
Huihuang Zheng 已提交
4221 4222
            if var.desc.need_check_feed():
                self.global_block().var(var.name).desc.set_need_check_feed(True)
F
fengjiayi 已提交
4223

4224
    @dygraph_not_support
4225
    def list_vars(self):
Y
yuyang18 已提交
4226
        """
4227
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4228

4229 4230
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4242
        """
4243
        for each_block in self.blocks:
4244
            for each_var in list(each_block.vars.values()):
4245 4246
                yield each_var

Y
Yu Yang 已提交
4247

Y
Yu Yang 已提交
4248
class Parameter(Variable):
4249
    """
4250
    Parameter is derived from Variable. A parameter is a persistable
4251
    Variable, and will be updated by optimizers after each iteration.
4252
    The training of a neural network is essentially the updating of
4253 4254
    its parameters.

4255
    Relative to a general Variable, a Parameter has several its own
4256 4257
    member variables:

4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4270 4271
    """

Y
Yu Yang 已提交
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
4282 4283 4284

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
4285 4286 4287 4288
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4289 4290
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
4291
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
4292

W
wanghaoshuang 已提交
4293
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4294

4295 4296
        self.is_distributed = False

F
fengjiayi 已提交
4297 4298 4299
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4300 4301 4302
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4303

F
update  
fengjiayi 已提交
4304 4305 4306 4307 4308 4309 4310 4311
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4312 4313 4314 4315 4316 4317 4318 4319 4320
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4321 4322 4323 4324 4325 4326
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
4327
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
4328
            for attr_name in additional_attr:
4329 4330
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4331 4332
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4333 4334 4335 4336
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4337

Y
Yu Yang 已提交
4338
# program is a global instance.
Y
Yu Yang 已提交
4339 4340
_main_program_ = Program()
_startup_program_ = Program()
4341

4342

4343
def default_startup_program():
Y
Yu Yang 已提交
4344
    """
Y
yuyang18 已提交
4345 4346
    Get default/global startup program.

4347 4348 4349
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
4350 4351 4352
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
4353
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
4354

4355
    Returns: current default startup :ref:`api_fluid_Program`
4356

4357
    Returns type: :ref:`api_fluid_Program`
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4373
    """
Y
Yu Yang 已提交
4374
    return _startup_program_
4375

4376

4377
def default_main_program():
Y
Yu Yang 已提交
4378
    """
Y
yuyang18 已提交
4379 4380 4381 4382 4383 4384 4385 4386 4387
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
4388

Y
Yu Yang 已提交
4389 4390
    Returns:
        Program: main program
4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
4419 4420
            print(fluid.default_main_program().num_blocks)
            print(fluid.default_main_program().blocks[0].var('image'))
Y
Yu Yang 已提交
4421
    """
Y
Yu Yang 已提交
4422
    return _main_program_
Y
Yu Yang 已提交
4423 4424 4425 4426 4427


def switch_main_program(program):
    """
    Switch the main program to a new program.
4428

Y
Yu Yang 已提交
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
4443
    Switch the startup program to a new program
Y
Yu Yang 已提交
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
4456
@signature_safe_contextmanager
Y
Yu Yang 已提交
4457 4458
def program_guard(main_program, startup_program=None):
    """
4459 4460
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
4461
    variables to the new main programs.
4462

Y
Yu Yang 已提交
4463
    Examples:
4464 4465 4466
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
4467

4468 4469 4470 4471 4472
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
4473 4474 4475

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
4476

Y
Yu Yang 已提交
4477
    Examples:
4478
       .. code-block:: python
Y
yuyang18 已提交
4479

4480 4481 4482 4483 4484 4485
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
4486

Y
Yu Yang 已提交
4487
    Args:
4488 4489 4490
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
4503 4504


W
Wu Yi 已提交
4505
def _get_var(name, program=None):
X
xuwei06 已提交
4506
    """
Y
yuyang18 已提交
4507
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
4508

X
xuwei06 已提交
4509 4510 4511
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
4512
        If None, default_global_program() will be used.
X
xuwei06 已提交
4513 4514 4515 4516 4517 4518 4519

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
4520
    assert isinstance(program, Program)
X
xuwei06 已提交
4521 4522

    return program.global_block().var(name)
4523 4524


S
rename  
sneaxiy 已提交
4525
@signature_safe_contextmanager
L
lujun 已提交
4526 4527 4528 4529
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
4530

4531
    yield
P
Paddle CI 已提交
4532

L
lujun 已提交
4533
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
4534 4535


S
rename  
sneaxiy 已提交
4536
@signature_safe_contextmanager
L
lujun 已提交
4537 4538 4539 4540
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
4541

4542
    yield
M
minqiyang 已提交
4543

L
lujun 已提交
4544
    _dygraph_current_expected_place_ = tmp_place
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
    Please note, the type of custom operators cann't have the same type
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()