tensor.py 68.1 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18 19 20
import numpy
import warnings

Y
Yu Yang 已提交
21
from ..layer_helper import LayerHelper
22
from ..param_attr import ParamAttr
23
from ..initializer import Initializer
24
from ..framework import _current_expected_place, convert_np_dtype_to_dtype_, _non_static_mode, _varbase_creator, device_guard, _in_legacy_dygraph, in_dygraph_mode, _get_paddle_place
X
xuwei06 已提交
25
from ..framework import Variable
26
from ..initializer import Constant
27
from ..core import VarDesc
28
from .. import core
29
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
30
from . import utils
31
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from paddle.utils import deprecated
33

34
from .utils import check_shape
W
wanghuancoder 已提交
35
from paddle import _C_ops
Y
Yu Yang 已提交
36 37

__all__ = [
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
64 65 66
]


X
xuwei06 已提交
67
def create_tensor(dtype, name=None, persistable=False):
68
    """
W
wangchaochaohu 已提交
69
    Create a variable, which will hold a Tensor with data type dtype.
70 71

    Args:
W
wangchaochaohu 已提交
72 73 74 75
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
76
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
77
            default value is False.
78 79

    Returns:
W
wangchaochaohu 已提交
80
        Variable: The tensor to be created according to dtype.
81 82 83 84

    Examples:
        .. code-block:: python

85
          import paddle.fluid as fluid
86 87
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
88 89 90 91
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
92
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
93 94
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
95 96


97 98
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
99
                     name=None,
100 101 102 103
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
104
	:api_attr: Static Graph
S
swtkiwi 已提交
105

106
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
107 108 109 110 111
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

112 113 114 115 116 117 118
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
119 120 121
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
122
        default_initializer (Initializer, optional): Initializer for the parameter
123 124

    Returns:
125
        The created parameter.
Y
yuyang18 已提交
126 127

    Examples:
128 129
        .. code-block:: python

130 131 132
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
133
    """
134 135
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
T
tianshuo78520a 已提交
136 137 138
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_parameter')
139 140 141 142 143 144 145 146 147

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
148
    helper = LayerHelper("create_parameter", **locals())
149
    if attr is None:
X
xuwei06 已提交
150
        attr = ParamAttr(name=name)
151 152
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
153 154 155
                                   default_initializer)


156 157 158 159 160 161 162
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
163
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
164

165
    Parameters:
166
        shape (list[int]|tuple[int]): Shape of the variable
167
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
168
                      variable will be filled with it.
169 170
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
171
                           Default: False
172
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
173
                         Default: False
174 175
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
176 177

    Returns:
178
        Variable: The created Variable
F
fengjiayi 已提交
179 180 181 182

    Examples:
        .. code-block:: python

183 184 185
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
186
                                           persistable=True, force_cpu=True, name='new_var')
187
    """
188 189 190
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
T
tianshuo78520a 已提交
191 192 193
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_global_var')
194 195

    check_dtype(dtype, 'dtype', [
196 197 198 199 200 201 202 203 204 205
        'bool',
        'float16',
        'float32',
        'float64',
        'int8',
        'int16',
        'int32',
        'int64',
        'uint8',
        'uint16',
206 207
    ], 'create_global_var')

Q
Qiao Longfei 已提交
208 209
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
210 211 212 213 214
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
215 216 217
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
218

Q
Qiao Longfei 已提交
219 220 221
    return var


222
def cast(x, dtype):
Y
Yu Yang 已提交
223
    """
S
swtkiwi 已提交
224

225
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
226 227
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
228 229

    Args:
230
        x(Tensor): An input N-D Tensor with data type bool, float16,
231
            float32, float64, int32, int64, uint8.
232
        dtype(np.dtype|str): Data type of the output:
233
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
234 235

    Returns:
236
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
237 238 239

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
240

241
            import paddle
242

243 244
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
245
    """
H
hong 已提交
246 247 248 249 250
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        return _C_ops.final_state_cast(x, dtype)

J
Jiabin Yang 已提交
251
    if _non_static_mode():
252 253
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
W
wanghuancoder 已提交
254
        out = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
255
        return out
256

257
    check_variable_and_dtype(x, 'x', [
258 259
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'uint8', 'uint16'
260
    ], 'cast')
261
    check_dtype(dtype, 'dtype', [
262 263
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8', 'uint16'
264 265 266
    ], 'cast')

    helper = LayerHelper('cast', **locals())
267 268
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
269 270 271 272 273 274 275 276 277
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


278
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
279
    """
280
    This OP concatenates the input along the axis.
281 282

    Args:
283 284
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
285 286
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
287
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
288
            as ``axis+R``. Default is 0.
289 290 291
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
292 293

    Returns:
294
        Tensor: A Tensor with the same data type as ``input``.
295 296 297

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
298

299
            import paddle.fluid as fluid
300 301
            import numpy as np

302 303 304 305 306 307
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
308 309 310 311
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
312 313
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
314 315
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
316 317 318 319 320 321 322 323
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
324
    """
325

326 327 328 329 330 331
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
332 333 334
        out = _varbase_creator()
        _C_ops.concat(input, out, 'axis', axis)
        return out
335 336

    if _in_legacy_dygraph():
S
songyouwei 已提交
337 338
        if isinstance(axis, Variable):
            axis = axis.numpy()
339
            axis = axis.item(0)
340 341
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
342 343 344
        out = _varbase_creator()
        _C_ops.concat(input, out, 'axis', axis)
        return out
345

346 347 348 349 350 351 352 353 354 355 356
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
357
        input = [input]
358
    check_type(axis, 'axis', (int, Variable), 'concat')
359

360 361 362 363 364
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

365
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
366
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
367 368

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
369 370 371 372
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

373
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
374
                "number of the elements must be 1, but received %s." % len(input)
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
394 395 396
    return out


G
Guo Sheng 已提交
397
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
398
    r"""
G
Guo Sheng 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
449 450

    Args:
G
Guo Sheng 已提交
451 452 453 454 455 456 457
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
458 459

    Returns:
G
Guo Sheng 已提交
460 461 462
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
463 464 465 466

    Examples:
        .. code-block:: python

467
            import paddle.fluid as fluid
468
            import numpy as np
G
Guo Sheng 已提交
469 470 471 472 473 474 475
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
476
    """
J
Jiabin Yang 已提交
477
    if _non_static_mode():
478 479 480 481 482 483 484 485 486 487
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

488 489 490 491 492
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
493
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
494 495 496
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
497
        type='tensor_array_to_tensor',
L
li099 已提交
498 499 500
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
501 502
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
503 504 505
    return out, out_index


506
def sums(input, out=None):
507
    r"""
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
529 530

    Args:
531 532 533 534
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
535 536

    Returns:
537 538
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
539 540

    Examples:
F
fengjiayi 已提交
541
        .. code-block:: python
K
kavyasrinet 已提交
542

543 544 545 546 547 548 549 550 551
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
552

553 554
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
555
    """
556 557 558 559
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
560
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
561 562
    else:
        check_variable_and_dtype(input, "input", \
563
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
564

Y
Yu Yang 已提交
565 566
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
567 568
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
569 570 571 572
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
573 574 575 576 577
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
578 579 580
    return out


F
fengjiayi 已提交
581
def assign(input, output=None):
582
    """
S
swtkiwi 已提交
583

584
    The OP copies the :attr:`input` to the :attr:`output`.
585

586
    Parameters:
587 588 589 590
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
591
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
592
            be created as :attr:`output`. Default: None.
593 594

    Returns:
595
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
596 597 598

    Examples:
        .. code-block:: python
599

600
          import paddle
601
          import numpy as np
602
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
603 604 605 606
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
607 608 609
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
610
    """
Y
Yu Yang 已提交
611
    helper = LayerHelper('assign', **locals())
612 613
    check_type(input, 'input', (Variable, numpy.ndarray, list, tuple, float,
                                int, bool), 'assign')
614 615
    is_inplace = True if output is not None else False

616 617 618 619
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
620 621
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
J
Jiabin Yang 已提交
622
    # but _non_static_mode()==False under @to_static, which means
623 624 625
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
626
        if _non_static_mode():
627 628 629 630 631 632 633 634 635
            if in_dygraph_mode() and output is None:
                output = _C_ops.final_state_assign(input)
            else:
                if output is None:
                    if _in_legacy_dygraph():
                        output = core.VarBase()
                    else:
                        output = core.eager.Tensor()
                _C_ops.assign(input, output)
636 637 638 639 640 641 642 643 644 645 646
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
            helper.append_op(
                type='assign', inputs={'X': [input]},
                outputs={'Out': [output]})
X
xuwei06 已提交
647
    elif isinstance(input, numpy.ndarray):
648 649 650 651 652
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
X
xuwei06 已提交
653
        dtype = convert_np_dtype_to_dtype_(input.dtype)
654 655 656 657 658 659 660 661
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
662 663
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
664
            values = [int(v) for v in input.flat]
665
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
666
            value_name = "fp32_values"
667
            values = [float(v) for v in input.flat]
668
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
669
            value_name = "int32_values"
670
            values = [int(v) for v in input.flat]
671 672 673
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
674
        else:
675 676
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
677
                "the data type of 'input' must be bool, float32, int32 or int64, but "
678
                "received %s." % convert_dtype(dtype))
679 680 681
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
682 683 684
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
685 686 687 688 689 690
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
691
                value_name: values
X
xuwei06 已提交
692 693
            })

J
Jiabin Yang 已提交
694
    if is_inplace and _non_static_mode():
695
        output._bump_inplace_version()
696

Y
Yu Yang 已提交
697 698 699
    return output


700
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
701
    """
S
swtkiwi 已提交
702

W
wangchaochaohu 已提交
703
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
704
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
705

T
tianshuo78520a 已提交
706
    The attribute `stop_gradient` of the created Tensor is set to True.
707 708

    Args:
709 710 711
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
712
        dtype(np.dtype|str): Data type of the output Tensor which can
713
            be float16, float32, float64, uint8, int16, int32, int64.
714 715 716 717 718 719
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
720 721
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
722 723

    Returns:
724
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
725

726 727 728
    Examples:
        .. code-block:: python

729
          import paddle.fluid as fluid
730
          # attr shape is a list which doesn't contain  Tensor.
731 732
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
733
          # data1=[[5], [5]] data2=[[5], [5]]
734

735
          # attr shape is a list which contains Tensor.
736
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
737
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
738

739
          # attr shape is a Tensor.
740
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
741
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
742
          
743
          # attr value is a Tensor.
W
wangchaochaohu 已提交
744 745
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
746
    """
747

W
wangchaochaohu 已提交
748
    attrs = {'force_cpu': force_cpu}
749
    dtype = convert_dtype(dtype)
750
    if not isinstance(value, Variable):
751
        if dtype in ['uint8', 'int16', 'int32', 'int64']:
W
wangchaochaohu 已提交
752
            attrs['str_value'] = str(int(value))
753
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
754 755
        else:
            attrs['str_value'] = str(float(value))
756
            attrs['value'] = float(value)
757

J
Jiabin Yang 已提交
758
    if _non_static_mode():
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
        if out is None and in_dygraph_mode():
            #Currently, final state mode don't support out is None.
            place = _current_expected_place()
            if force_cpu:
                place = core.CPUPlace()

            shape = utils.convert_shape_to_list(shape)
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)
            out = _C_ops.final_state_full(shape, float(value), dtype, place)
            out.stop_gradient = True
            return out

        else:
            shape = utils.convert_shape_to_list(shape)
            if out is None:
                out = _varbase_creator(dtype=dtype)

            if isinstance(value, Variable):
                if dtype in ['uint8', 'int16', 'int32', 'int64']:
                    attrs['str_value'] = str(int(value.numpy().item(0)))
                else:
                    attrs['str_value'] = str(float(value.numpy().item(0)))

            _C_ops.fill_constant(out, 'value',
                                 float(value), 'force_cpu', force_cpu, 'dtype',
                                 out.dtype, 'str_value', attrs['str_value'],
                                 'shape', shape)
            out.stop_gradient = True
            return out
789

790 791 792
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
793 794
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
795 796
        inputs['ValueTensor'] = value

797
    check_shape(shape)
798 799
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'uint8', 'int16', 'int32',
800
        'int64', 'complex64', 'complex128'
801
    ], 'fill_constant')
802
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
803

804 805 806 807 808
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
809
    utils.get_shape_tensor_inputs(
810
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
811

Y
Yu Yang 已提交
812
    if out is None:
X
Xin Pan 已提交
813
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
814
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
815 816
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
817
        inputs=inputs,
Y
Yu Yang 已提交
818
        outputs={'Out': [out]},
L
liym27 已提交
819
        attrs=attrs,
M
minqiyang 已提交
820
        stop_gradient=True)
Y
Yu Yang 已提交
821 822 823 824
    out.stop_gradient = True
    return out


825
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
826
@templatedoc()
Y
Yu Yang 已提交
827 828 829 830 831
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
832 833
                                  output_dim_idx=0,
                                  force_cpu=False):
834
    """
T
tianshuo78520a 已提交
835
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
836 837 838 839
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
840 841

    Args:
W
wangchaochaohu 已提交
842 843 844 845 846 847 848 849 850 851 852
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
853
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
854 855

    Returns:
W
wangchaochaohu 已提交
856
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
857 858 859 860 861

    Examples:

        .. code-block:: python

862
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
863
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
864
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
865
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
866

867
    """
868 869 870 871 872 873 874 875 876 877 878 879
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
        out = _C_ops.final_state_full_batch_size_like(
            input, shape, dtype, value, input_dim_idx, output_dim_idx, place)
        out.stop_gradient = True
        return out

Y
Yu Yang 已提交
880
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
881
    out = helper.create_variable_for_type_inference(dtype=dtype)
882 883 884 885 886 887
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
888
        'force_cpu': force_cpu
889 890 891 892 893
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
894 895 896 897
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
898
        attrs=attrs)
Y
Yu Yang 已提交
899 900 901 902
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
903 904
def argmin(x, axis=0):
    """
905 906 907
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
908

S
sneaxiy 已提交
909 910
    **argmin**

911 912
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
913 914

    Args:
915 916 917 918 919
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
920

S
sneaxiy 已提交
921
    Returns:
922
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
923

S
sneaxiy 已提交
924 925
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
926

927
            import paddle.fluid as fluid
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
955
    """
956 957 958
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
959
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
960
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
961 962 963 964 965
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
966
    out.stop_gradient = True
S
sneaxiy 已提交
967 968 969 970 971 972 973
    return out


def argmax(x, axis=0):
    """
    **argmax**

974 975
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
976 977

    Args:
978 979 980 981 982
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
983

S
sneaxiy 已提交
984
    Returns:
985
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
986

S
sneaxiy 已提交
987 988
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
989

990
            import paddle.fluid as fluid
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
1018
    """
1019 1020 1021
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
1022
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
1023
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
1024 1025 1026 1027 1028
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
1029
    out.stop_gradient = True
S
sneaxiy 已提交
1030 1031 1032
    return out


1033
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
1034
    """
1035 1036 1037
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
1038

1039 1040 1041
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
1042 1043

    Args:
1044 1045 1046 1047 1048
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
1049 1050 1051
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
1052 1053 1054
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
1055 1056

    Returns:
1057 1058 1059
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1060 1061 1062 1063

    Examples:
        .. code-block:: python

1064
            import paddle.fluid as fluid
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1106
    """
1107 1108 1109
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1110
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1111 1112 1113 1114
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1115 1116 1117 1118
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1119
                 'Indices': ids},
1120 1121
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1122 1123 1124
    return out, ids


Y
Yang Yu 已提交
1125
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1126
    """
1127 1128
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1129

1130
    Parameters:
1131
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1132
        dtype (np.dtype|str): Data type of output Tensor, it supports
1133
            bool, float16, float32, float64, int32 and int64.
1134 1135
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1136
            Default: False.
1137 1138

    Returns:
1139
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1140 1141 1142 1143

    Examples:
        .. code-block:: python

1144
          import paddle.fluid as fluid
1145 1146 1147 1148 1149
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1150 1151 1152 1153
    """
    return fill_constant(value=1.0, **locals())


1154
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1155
    """
1156 1157
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1158

1159
    Parameters:
1160
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1161
        dtype (np.dtype|str): Data type of output Tensor, it supports
1162
            bool, float16, float32, float64, int32 and int64.
1163 1164
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1165
            Default: False.
1166 1167
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1168 1169

    Returns:
1170
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1171 1172 1173 1174

    Examples:
        .. code-block:: python

1175
          import paddle.fluid as fluid
1176
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1177 1178 1179 1180
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1181 1182
    """
    return fill_constant(value=0.0, **locals())
1183 1184


F
fengjiayi 已提交
1185 1186
def reverse(x, axis):
    """
1187 1188 1189
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1190

1191
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1192

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1217
    Parameters:
1218 1219
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1220 1221
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1222 1223
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1224 1225

    Returns:
1226
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1227 1228 1229 1230

    Examples:
        .. code-block:: python

1231
          import paddle.fluid as fluid
1232 1233 1234 1235
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1246
    """
1247 1248 1249
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1250 1251 1252
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1253
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1254 1255
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1256
        inputs={'X': x},
F
fengjiayi 已提交
1257 1258 1259 1260 1261
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1262 1263 1264 1265 1266 1267 1268
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1269 1270 1271
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1287 1288
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1289
        file_path(str): The file path where variables will be saved.
1290
        overwrite(bool): Whether or not cover the given file when it has already
1291 1292
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1293 1294 1295 1296 1297 1298 1299 1300

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1301
            import paddle.fluid as fluid
1302 1303 1304 1305 1306 1307 1308
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1321
    Loads a list of variable from a single file.
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1333 1334 1335 1336 1337 1338 1339


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1340
       x (Tensor): The Tensor to be checked.
1341 1342

    Returns:
S
Steffy-zxf 已提交
1343
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1344 1345 1346 1347
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1348 1349
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1350
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1351
          # [False]
1352

1353
    """
J
Jiabin Yang 已提交
1354
    if _non_static_mode():
W
wanghuancoder 已提交
1355
        return _C_ops.isinf(x)
S
Steffy-zxf 已提交
1356

1357
    check_type(x, 'x', (Variable), 'has_inf')
1358
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1359
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1360 1361 1362 1363 1364 1365 1366 1367 1368
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1369
       x (Tensor): The Tensor to be checked.
1370 1371

    Returns:
S
Steffy-zxf 已提交
1372
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1373 1374 1375 1376
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1377 1378
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1379
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1380
          # [False]
1381

1382
    """
J
Jiabin Yang 已提交
1383
    if _non_static_mode():
W
wanghuancoder 已提交
1384
        return _C_ops.isnan(x)
S
Steffy-zxf 已提交
1385

1386
    check_type(x, 'x', (Variable), 'has_nan')
1387
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1388
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1389 1390 1391 1392 1393 1394
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1395

1396 1397 1398 1399
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1400
        x(Tensor): The Tensor to be checked.
1401 1402

    Returns:
N
Noel 已提交
1403
        Tensor: The tensor storing the output, contains a bool value.
1404 1405 1406 1407 1408

    Examples:

        .. code-block:: python

N
Noel 已提交
1409 1410 1411 1412 1413 1414
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1415
    """
1416 1417
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1418
    helper = LayerHelper("isfinite", **locals())
1419

1420
    out = helper.create_variable_for_type_inference(dtype='bool')
1421 1422
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1423 1424


1425
def range(start, end, step, dtype, name=None):
W
whs 已提交
1426
    """
1427
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1428

1429 1430
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1431

1432 1433
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1434

L
Liufang Sang 已提交
1435
    Parameters:
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1459 1460 1461 1462 1463

    examples:

        .. code-block:: python

1464
            import paddle.fluid as fluid
W
whs 已提交
1465

1466 1467
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1468

1469 1470 1471 1472 1473 1474 1475
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1476

W
whs 已提交
1477
    if not isinstance(start, Variable):
1478
        with device_guard("cpu"):
1479
            start = fill_constant([1], dtype, start, force_cpu=True)
1480 1481
    elif start.dtype != dtype:
        start = cast(start, dtype)
1482

W
whs 已提交
1483
    if not isinstance(end, Variable):
1484
        with device_guard("cpu"):
1485
            end = fill_constant([1], dtype, end, force_cpu=True)
1486 1487
    elif end.dtype != dtype:
        end = cast(end, dtype)
1488

W
whs 已提交
1489
    if not isinstance(step, Variable):
1490
        with device_guard("cpu"):
1491
            step = fill_constant([1], dtype, step, force_cpu=True)
1492 1493
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1494

Z
zyfncg 已提交
1495 1496 1497 1498
    if in_dygraph_mode():
        return _C_ops.final_state_arange(start, end, step, dtype,
                                         _current_expected_place())

Z
zyfncg 已提交
1499
    if _in_legacy_dygraph():
J
Jiawei Wang 已提交
1500 1501 1502
        out = _C_ops.range(start, end, step)
        out.stop_gradient = True
        return out
W
whs 已提交
1503

W
wanghuancoder 已提交
1504 1505 1506 1507 1508
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

1509 1510 1511
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1512
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
W
whs 已提交
1513 1514 1515 1516 1517
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1518
        outputs={'Out': out})
1519
    out.stop_gradient = True
W
whs 已提交
1520
    return out
Z
zhoukunsheng 已提交
1521 1522


1523
def linspace(start, stop, num, dtype=None, name=None):
1524
    r"""
1525
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1526 1527

    Args:
1528 1529 1530 1531
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1532
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1533
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1534
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1535
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1536 1537
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1538 1539

    Returns:
1540
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1541 1542
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1543

Z
zhoukunsheng 已提交
1544
    Examples:
Z
zhoukunsheng 已提交
1545 1546
        .. code-block:: python

1547 1548 1549
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1550 1551

    """
1552 1553
    if dtype is None:
        dtype = 'float32'
1554 1555 1556
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1557 1558
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1559 1560
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1561
    if not isinstance(start, Variable):
1562 1563
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1564
    if not isinstance(stop, Variable):
1565 1566
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1567
    if not isinstance(num, Variable):
1568 1569
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
Y
YuanRisheng 已提交
1570
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1571 1572
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                               dtype)
Y
YuanRisheng 已提交
1573 1574 1575
    if in_dygraph_mode():
        return _C_ops.final_state_linspace(tensor_start, tensor_stop,
                                           tensor_num, dtype)
1576 1577
    helper = LayerHelper("linspace", **locals())

1578 1579 1580
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1581
    if isinstance(start, Variable):
1582 1583
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1584 1585
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1586

1587
    if isinstance(stop, Variable):
1588 1589
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1590 1591 1592 1593 1594 1595
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1596 1597 1598 1599 1600 1601 1602 1603
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1604 1605

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1606 1607 1608

    helper.append_op(
        type='linspace',
1609 1610 1611 1612
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1613
        outputs={'Out': [out]})
1614 1615
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1616
    return out
1617 1618


Z
zhoukunsheng 已提交
1619 1620
def zeros_like(x, out=None):
    """
1621
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1622 1623 1624
    with `x`.

    Args:
1625 1626 1627 1628 1629 1630
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1631 1632

    Returns:
1633 1634 1635
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1636 1637 1638 1639

    Examples:
        .. code-block:: python

1640
          import paddle.fluid as fluid
1641
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1642 1643
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1644 1645
    """

1646 1647
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1648 1649 1650
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1651 1652 1653
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1654
            'zeros_like')
1655

Z
zhoukunsheng 已提交
1656 1657 1658 1659
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1660 1661


1662
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1663
def diag(diagonal):
1664
    r"""
1665 1666 1667
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1668

1669
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1670 1671

    Args:
1672 1673
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1674 1675

    Returns:
1676 1677
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1678 1679 1680 1681 1682 1683 1684

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1685 1686 1687

          import paddle.fluid as fluid
          import numpy as np
1688 1689 1690
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1691 1692

    """
1693 1694 1695
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1708 1709


1710 1711 1712 1713 1714
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1715
    """
1716
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1717 1718 1719

    Args:
        num_rows(int): the number of rows in each batch tensor.
1720 1721
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1722 1723
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1724
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1725 1726 1727 1728
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1729 1730

    Returns:
1731
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1732 1733 1734 1735 1736

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1737 1738
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1739
          #  [0, 1, 0]
1740 1741
          #  [0, 0, 1]]

1742
          data = fluid.layers.eye(2, 3, dtype='int32')
1743
          # [[1, 0, 0]
1744
          #  [0, 1, 0]]
1745 1746

          data = fluid.layers.eye(2, batch_shape=[3])
1747 1748 1749 1750 1751
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1752 1753
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1754 1755 1756 1757 1758
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1759

1760 1761 1762 1763
    if in_dygraph_mode():
        out = _C_ops.final_state_eye(num_rows, num_columns, dtype,
                                     _current_expected_place())
    elif _in_legacy_dygraph():
W
wanghuancoder 已提交
1764 1765
        out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                         num_columns)
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1783 1784

    if batch_shape is not None:
1785 1786 1787
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
J
Jiabin Yang 已提交
1788
        if _non_static_mode():
W
wanghuancoder 已提交
1789 1790
            out = _C_ops.reshape(out, 'shape', re_shape)
            return _C_ops.expand(out, None, 'expand_times', expand_times)
1791

1792 1793
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1794
        for batch_val in (batch_shape):
1795 1796
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1797 1798 1799 1800 1801 1802

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1803 1804 1805
    return out


Z
zhoukunsheng 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1818
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1829 1830
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1831 1832 1833 1834

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1835 1836 1837 1838
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1839 1840 1841 1842 1843 1844
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1845 1846 1847 1848 1849 1850


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)